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ON THE ALGEBRA OF THE FOUR-COLOR PROBLEM1)

Christian Blatter

1. A regular " map " T on a surface M2 is a 2-dimensional cell

complex whose 1-skeleton is a graph of order three and whose

underlying topological space is M2. It is a well known unsolved

problem, whether or not every regular " map
55 T on the

2-sphere S2 allows an admissible 4-coloring of its " countries
1.e. an assignment of colors gl7 g2, g3, g4 to the individual 2-cells

of T, such that adjacent cells get different colors.

It was observed by Tait [5] that for a given " map
55 T an

admissible 4-coloring of its " countries 55 exists if an only if
there exists an admissible 3-coloring of its edges, i.e. an assignment

of colors gl7 g2, g3 to the individual 1-cells of T, such that
cells with a common endpoint get different colors. Later,
Heawood [2] showed that this in turn is the case if and only
if a certain system 1 of diophantine equations related to T has

a solution.
The proof of these theorems (see Ringel [4] where one may

also find an extensive bibliography) in terms of graph theory
is rather constructive and requires the distinction of several
cases. Because of the ambiguities involved in the construction,
it is not clear hov the different colorings are related to one
another and to the different solutions of the system I. Thus
one might expect that a treatment of the subject in terms of
elementary algebraic topology, as done by Tutte [6] for a
related question, should lead to more precise results.

2. An m-coloring of the r-cells of T is nothing but a function
from the set Tr of these cells to an arbitrary set M of m elements.
This naturally suggests considering r-chains on T over an abelian

1) This work was supported in part by NSF Grant GP-1648.
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group G of order m. Second, it is clear that two colorings which
differ only by a permutation of the colors among themselves
should be regarded as the same. Therefore the main objects
of our investigation will be equivalence classes of r-chains
modulo the symmetric group acting on G or, equivalently, the
m-partitions of the sets Tr.

In fact, we shall prove that the admissible 4-partitions of T2

(the equivalence classes of admissible 4-colorings of the
" countries " of T) are in one-one correspondence with the
admissible 3-partitions of T1 (theorem 2) ; and these in turn are
in one-one correspondence with the admissible 2-partitions of T°

(defined in 4.2) or, equivalently, with the solutions of the
system I in a certain projective space (theorems 3 and 4).

The essential point, however, is that these correspondences
of the admissible partitions are induced by the boundary
operator 5, acting on the representing r-chains over suitably
chosen groups G. Consequently our main tools will be the well
known homology properties of the sphere S2 and a reduction
theorem (theorem 1) on the compatibility of the respective
equivalence relations with d. Here it is important that for m 4
and m — 3 (and m — 2; see the remark 5.9) the symmetric
group on m letters has a normal subgroup of order m\ since

this is no longer true for m > 4, our methods do not lead to an
immediate generalization.

3. Sections I-IIi of the paper establish the necessary algebraical
apparatus. The main results are contained in the diagrams (4.6),
(5.19) and in theorem 4 of sections IV and V; in VI we finally
give an example.
The following notations will be used without reference:

(I) If X and M are sets, Map (X, M) denotes the set of all
functions /: X -» M. If G is a group, Aut (G) denotes
the group of automorphisms of G.

(II) Otherwise permutation groups are denoted by script
letters, the individual permutations by small greek letters.
If M is a set, (M) denotes the full symmetric group
on M\ if G is a group, (G) denotes the group of left
translations Ag, g e G, on G.
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(III) If F is a field, F+ denotes the additive group of F, F*
the multiplicative group of X, V„ (F) the vector space of

/z-tupies over F and P„_i (F) the associated (n — ^-dimensional

projective space.

I

1.1. If X is a set, an m-partition of X, m ^ 1, is a collection
of at most m nonempty disjoint subsets of X whose union is X.
The set of different m-partitions of X is denoted by Pm (X).

Let M be a set of m ^ 1 elements. Then any function
/ e Map (X, M) induces in a natural way an /»-partition of X
by virtue of the equivalence relation

X ~ 3; of (x) f (y) (x, yeX),

and all m-partitions of X can he obtained in this manner. Since

different functions /, h e Map (X, M) may very well induce the
same partition of X, we have to take additional measures to get
a unique representation of Pm (X) by means of such functions.

1.2. If PP is a permutation group on M, PP induces an
equivalence relation on Map (X, M) in virtue of

h ~ f (PP) oh n ° f, n e PP (LI)

The equivalence class represented by / is denoted by PP * f\
hence

PP of {7Io/|7IG^}.

Correspondingly, for any collection A c Map (X, ;)/) the
quotient set under the relation (1.1) is denoted by A/PP.

Proposition 1. Let X be a set and M a set with in 3> 1 ele¬

ments. Then there is a natural identification

Pm (X) « Map (X, M)jSP (M). (1.2)

In other words: Two functions /, h e Map (X, M) induce the
same /»-partition of X if and only if they are equivalent in the
sense of (1.1) with PP SP (M).
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1.3. If certain partitions of X are distinguished as admissible,
we shall also call admissible the functions inducing such partitions

and refer to admissibility by bold face type: Pm (X),
Map (X, M) denote respectively the set of different admissible
/^-partitions of X and the set of admissible functions /: X -> M.
Clearly (1.2) remains true if restricted to admissible partitions:

Pm(X) * Map (X, (1.3)

1.4. If G is a group and 0 a permutation group on G, we
denote by 0' the subgroup of 0 containing those n e 0 which
leave the neutral element of G fixed.

Proposition 2. (cf. [1], p. 86 ff.). Let G be a group and 0 a

permutation group on G which contains if (G) as normal
subgroup. Then 0 is the semidirect product of if (G)

and 0' \ i.e. each n e 0 is a unique product

n Àg o %', g e G n' e 0'.
Furthermore one has

0' 0 n Aut (G).

II

2.1. Let F denote the finite field of four elements 0, //, p2, p3 — e.

Proposition 3. if (F + is a normal subgroup of 0 (F).

Proof. Any Xg e if (F + different from the identity is of

order 2 and leaves no element fixed. Thus its cyclic
representation must be of the form (a, b) (c, d); whence if (F +

consists of the identity and the three permutations (0, p) (p2, e),

(0, p2) (p, e), (0, e) (p,p2). It is well known (see e.g. [7], p. 36)

that these form a normal subgroup of the symmetric group on
four letters.

Proposition 4. if %3 & F*? then

xt+ x2 + x3 0 O {x1,x2,x3} (2.1)

2.2. Let Z3 denote the field of integers modulo 3. Clearly

log: pm *=r m (meZ3) (2.2)
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is an isomorphism of the multiplicative group F* of F with Z3 +

(we shall only need that log is one-one).

Proposition 5. jgf (Z3 + is a normal subgroup of (Z3).

Proof, if (Z3 + is of index 2 in Sf (Z3).

Proposition 6. If x1: x2, x% e Z3*, then

xi + X2 + x3 — 9 o x1 x2 x3 (2.3)

III

3.1. Let K be an oriented 2-dimensional cell complex whose

underlying topological space is the 2-sphere S2 and let Kr be

the set of the "positive" r-cells of K:

Kr {erf I 1^1^ ar} (r 0, 1,2)

If G is an abelian group and Cr (G) the group of r-chains over G,

then there is a natural identification

Cr (G) Map (K\ G) (3.1)

which to the chain

Xy 9iOri,di^Gi

lets correspond the function given by

fr^)=gi (all/). (3.2)
Let

d-X -oy1,1 ez
j

be the incidence relations of the complex K. Then, in the
notation of (3.2), the boundary of the chain f becomes

V or1) Z nriXfr (all;). (3.3)
i

3.2. Since S2is an orientable manifold, we may assume that
the 2-cells of K are coherently oriented. If crj is a given 1-cell
of K,we therefore obtain from (3.3) the relation

df2Oj)=f20i)~f20t), (3.4)



— 180 —

where a?, a? (ix, i2 depending on /') are the two 2-cells " adjacent "
to a).
Similarly we get for a given vertex of K :

df1 (o*) Z^/1 (G}K)
> IjKk ± 1

» (3.5)
K

where the (the /K depending on A) are the 1-cells in the
star St a®.

3.3. Let Zr (G) denote the group of r-cycles, i.e. of r-chains /r
with dfr 0. Then we have

Proposition 7. The group Z2 (G) consists of the " constant "
2-chains given by

f2 (v2i) 9,gzG(all i).

Proposition 8. A 1-chain /1 is a boundary df2 if and only if it
is a cycle or, in the notation of (3.5), if and only if

ZljW1 (ffj) 0 (all k).
K

Propositions 7 and 8 are well known consequences of the fact
that S2 can be regarded as the boundary of a 3-cell (see e.g. ["31, p.
112, (21.4) and (22.4)).

3.4. Remark. If G is the additive group F+ of a field F with
unit element e, then the operators rjlj may be identified with the
elements rjru e e F and considered as scalar factors.

3.5. Remark. If G is of characteristic 2 and f an arbitrary
r-chain over G, one has

/'(-<) - =frW),
which shows that f can even be considered as a function on the
non-oriented cells g\. Furthermore it is clear that in this case
the rjlj need only be taken mod 2.

3.6. Now let ^ be a permutation group on G. Then the n e &
operate also on Map Ar, G) as described in 1.2 and thus in virtue
of the identification (3.1) on the chains over G.
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Proposition 9. If % e Aut (G), then commutes with i.e.

8(71 of)Ttodf e Map

Proof. The relations (3.3) immediately give

8(7r o f) *̂ (/' OD) • (3-6)

Since n commutes with the operators rj\j
1 gZ, we may replace

the right hand side of (3.6) by

(Çiir/affD) s/o or1);

here we have used (3.3) again.

3.7. Theorem 1. Let rl2 c C2 (G) be a collection of 2-cbains
on K and let be a permutation group on G which contains

if if (G) as a normal subgroup. Then the boundary
operator ô induces a one-one correspondence

A : A2/0> i=r d (A2)!0>',

such that the following diagram commutes:

A2 -±+ (A2)

ï i (3.7)
A2j3P *=* ô {A2)!&>.

Proof. The theorem is an immediate consequence of the
relation

ft2 ~/2 (f) C- I2 ~ 5/2 (^'), (3.8)

for th m Ais well defined by

A(0>°f2)&> o a/2

and has the required properties.
In order to prove (3.8), we first observe that

h2 no f2

I/Enseignement mathem., t. XI, fasc. 2-3. 12
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is by proposition 2 equivalent to

h2 Xg o %' o f2 geG 9n' ;

and this in turn is equivalent to

$£ o h2 £e o n' of2 (3.9)

Second, by the definition of if o h2 and proposition 7 one has

<£ o h2 h2 + Z2

and similarly for the right hand side of (3.9). Thus (3.9) is

equivalent to
h2 + Z2 tc' of2 + z2,

and this in turn is equivalent to

dh2 ô (n' of2). (3.10)

Now it follows from propositions 2 and 9 that (3.10) is the
same as

dh2 7i' o df2 71' e ;

whence (3.8) is proven.

IV

4.1. Let 77 be a cell complex homeomorphic to S2, as considered
in section III, and assume that the 1-skeleton of T is a graph of
order three; thus T is a regular " map " in the sense of the
introduction. It follows that each star St a® contains exactly
three 1-cellsand three 2-cells which we shall denote by errand
g\k (k 1,2, 3; the iK, jK depending on /c), respectively.

4.2. Using the incidences of the complex 71, we distinguish
certain partitions of the sets Tr { g\ | 1 ^ i ^ ar} (r 0, 1, 2)

of r-cells as admissible:

(I) A 4-partition of T2 is admissible, if for each 1-cell orj e T1

the two " adjacent " 2-cells are in different subsets of T2.

(II) A 3-partition of T1 is admissible, if for each vertex a® e T°
the three 1-cells <t}k of St a£ are respectively in the three
subsets of T1.
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(III) A 2-partition of T° is admissible, if for each 2-cell a\ ê T2

the vertices of o\ are partitioned in such a way that their
numbers in the two subsets of T° differ by a multiple of 3.

In view of (1.3), we may write for the partitions under (I)
and (II) above:

P4 (T2) « Map (T2, V)f9> (F), (4.1)

P3 (T1) « Map (T1, V*)lS? (F*),
where F is again the finite field of four elements considered
in 2.1. Novv by (3.1) the maps appearing in (4.1) can be regarded
at the same time as chains over F, and we may apply the
results of 3.3 and 3.7.

4.3. Lemma 1. (Tutte [6]) In the sense of (3.1) one has

d (Map (T2, V)) Map (T1, F*) ; (4.2)

that is to say: /1 eMap(T1, F*) is admissible on T1 if and

only if /1 — df2 and /2 e Map (T72, F) is admissible on T2.

Remark. Since F is of characteristic 2, remark 3.5 applies.
In particular it follows that the partition of T1 induced by df2
is independent of the orientation adopted on the individual
1-cells of T.

Proof of Lemma 1. If /2 is admissible, then by 4.2 (I)
and (3.4) df2 f1 is different from 0 on all 1-cells of 71, i.e.
Z1 e Map (T\ F*j.
Let

/1 (crj) - XjG F* (all j) (4.3)

and consider a vertex <7° of T. Then by proposition 8 and (3.5)
we have

X) f1 (*Jk) Xj1+ xh + Xj3 0, (4.4)
K

and thus by (2.1):
{xh>xh>xh} V*(4-5)

Together with 4.2 (II) this proves that f1 is admissible.
Conversely, let f1 e Map (T1, F*) he given by (4.3). By

assumption, for each vertex <7° one has (4.5); thus (4.4) follows
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from (2.1). Using proposition 8 again, we get

/1 f2 e C2 (F) Map (T2, F).

Finally, f2 is admissible because df2 f1 is nonzero on all 1-cells
of T.

4.4. Theorem 2. The boundary operator d induces a one-one
correspondence A of the different admissible 4-partitions
of T2 and the different admissible 3-partitions of 771, as

given by (4.1), such that the following diagram commutes:

Map (T2, V) —X Map(T\ V*)
^ ^

(4.6)
P4 (T2) ^ P3 (T1).

Proof. Since S£ (F+ is a normal subgroup of 9 (F)
(proposition 3), we may apply theorem 1, resp. diagram (3.7),
with A2 Map (T2, F) and 9 9 (F). Because of (4.1) and
(4.2) the diagram (3.7) goes over into (4.6) but for the lower
right entry, where we at first get

d (A2)/9f Map (T1, V*)f9' (F)

4.5. Now the permutations in 9' (F), if restricted to F*, are
just the permutations of F*; i.e.

9' (V)\v* 9(V*).
Together with (4.1) this shows

Map (T\ F*)/9" (F) Map (T1, V*) 19 (F*) « P3 (T1).

V

5.1. In order to establish our next main result we shall need

the (a2X a0)-matrix [aik] given by

Q:i, —

1 (a2i has a® as a vertex)

0 (otherwise)
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(it is clear that [aik] could also be defined in terms of the
matrices [tfij]). Since every of is a vertex of exactly three 2-cells of,
the matrix [aik] has exactly three entries 1 in each column and

the rest zeros.
A

5.2. Now we modify the complex T and obtain a new complex T
as follows:

A
(I) As a point set T coincides with T1 i.e. with S2.

(II) In the interior of each 2-cell of choose a point if (1 ^ i ^ a2).
A

The vertices of T are given by the union of the vertices
of (1 ^ k ^ a0) of T and the xf (1 ^ i ^ a2).

(III) The 1-cells of T are designed by if (all f, k) and defined
as follows: (a) Each 2-cell of is triangulated in an obvious

way by joining the point t° with each vertex of of of.
Thus a 1-cell x\k is generated whenever a] has of as a

vertex, i.e. whenever aik 1. We orient the x\k in such

a way that
d'A•*? - (5.1)

(b) If (T° is not a vertex of erf, i.e. if — 0, A is defined
to be the zero 1-chain.

(IV) If we now delete the 1-cells a) of T, then for each of
the two " adjacent " triangles pair off to a rhombuslike
quadrangle which we shall denote by xf (1 ^ oq).
A 0
T2 is defined to be the set of these x] ; we may again assume
that they are coherently oriented.

A
This completes the construction of T- Note that now the star
St of consists of the three 1-cells x\Kk and the three 2-cells x)K,

where the zf, jK are the same as in 4.1. Furthermore it follows
A A

from (3.5) and (5.1) that for any 1-chain /1 e (G) we have

df(A)-- Zf1CU (allk). (5.2)
K

Similarly at the vertices xf:

dfCD Ç/1 (Ax)(alli), (5.3)

the Jcx depending on ianddetermined by the condition aik 1.
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5.3. The one-one correspondence

(lrgjga,) (5.4)
A

of T1 and T2 induces a trivial one-one correspondence

A'- Pm(T1)*=?Pm {T2)(m^1) (5.5)

of the respective partitions. It is natural to call a 3-partition
A

of T2 admissible, if the corresponding 3-partition of T1 is admissible.

A comparison with 4.2 (II) shows that this is the case if
and only if the three 2-cells %]K of each star St of are respectively
in the three subsets of T2. Since these tjk are " separated " by
the this in turn is equivalent to the following :

A _ A
(II) A 3-partition of T2 is admissible, if for each nonzero I-cell

Tik the two " adjacent " 2-cells t2^, t22 (/1? /2 depending on

i, ft) are in different subsets of T2-

A
5.4. In T we consider chain groups

Cr (Z3)Map (T"",Z3) (5.6)

over the field Z3; the boundary operator is again denoted by d.

We remark that (2.2) and (5.4) induce a natural one-one
correspondence

A: Map (T1,V*)Map A (/') f2,
from the functions on the (nonoriented) 1-cells of T with values

A
in F* to the functions (5.6) on the 2-cells of T via

f2(z2) log am])) (1 ai) •

Since A induces the trivial correspondence (5.5) between the
A

partitions of T1 and T2, it follows in particular from (4.1) and

P3 (T2) « Map(7'2, (Z3) (5-7)

that the diagram

Map T1,V*)^Map Z3)

I 1 (5.8)

P3(T1) ^ p3(t2)
commutes.
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5.5. Lemma 2. The set

A1Ô(Map(T2,Z3)) (5-9)

of boundaries of admissible functions f2 consists exactly of the
A

functions f1 of the form

/1 (d) xk^0 (d ^ 0), (5-10)

where the xk satisfy the system of equations

YJaikxk=0(mod3) (1 (5.11)
fe 1

Remark. Remark 3.4 applies also to the afk; thus (5.11)

can be considered as a system of linear equations over the
field Z3.

Proof of Lemma 2. If /2 is admissible, then by 5.3 (il)
A A A

and (3.4) 3/2 f1 is different from zero on all nonzero 1-cellsof T:

/1(d)=xit# 0 (d^O). (5.12)
A

Consider now a vertex crk of T. By (5.2) and proposition 8 we
have

-EPCdfc) ~ (xhk+xkk+xhi)0, xiKk^0.
K

From (2.3) it follows that the xiKu are equal, and if we denote
their common value by xk, (5.12) goes over into (5.10).

Second, for a fixed vertex tf, (5.3) and proposition 8 together
with (5.10) yield

Ç/1 (d,) 0, (5.13)

which by definition of the kx is nothing else but (5.11).
A

Conversely, let/1 have properties (5.10) and (5.11). Then
we have for a fixed k:

-Z f1(dKfc) - (xk+xk+xk) 0. (5.14)
K

Second, for a fixed i, (5.11) implies (5.13) by definition of theA^.
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But (5.14) and (5. 13), together with (5.2), (5.3) and proposition
8 imply

f1 df2,/2C2(Z3) Map Z3).

T 1 A0 • A AIt is clear that / 2 is admissible, because df 2 /1 is different
from zero on all nonzero 1-cells of T.

5.6. Lemma 2 suggests considering the f1 e A1 not as functions
on the tik hut as functions on the of, the vertices of the original
complex T. Thus we introduce the injection

S - Map (T°,Z3), Sif1) =f°9
defined by

f°(tf°)xk (lgfcga0), (5.15)

where the xk are given by lemma 2. It is obvious that $ induces
an injection <9 of the equivalence classes mod (Z3), such
that the diagram

A1 -—* Map (T°, Z3)

1 1 (5.16)

A1/9"(Z3) -e- Map (T°, Z3)/ Sf (Z3)

commutes.

Lemma 3.

9Û1) Map (T°, Z*)

Proof. Let /1 e ^L1. First it is clear that & (f1) f° has
values in Z* only. Second, for a fixed i, 1 ^ i *=. a2, consider
the equation (5.11) and write it in the form

+ ••• + *kn *= 0 (mod 3), xkk ^ 0 (5.17)

where the kx are again determined by the condition aik 1,

i.e. that okx should be a vertex of a?. It follows that the numbers

of positive and of negative terms in (5.17) differ by a multiple
of 3, which shows that the vertices of of are partitioned as

required in 4.2 (III). Thus f° is admissible.
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Conversely, let f° eMap (T°, Z*) be given by (5.15). Since f°
is admissible, for each i equation (5.17) is fulfilled and thus, by
definition of the kx, so is equation (5.11). This shows that

A A A
f° 5(/1), where /1 is in A1 and is given by (5.10).

5.7. Remark. We repeat that an f° given by (5.15) is admissible
if and only if (a) f° sums to 0 on the vertices of each 2-cell of
and (b) xk ^ 0 (all k). Furthermore we note that as a

consequence of (1.3) one has

P2 (T°) » Map (T°, Z*)/Sf (Z*) (5.18)

5.8. We are now ready to state

Theorem 3. The boundary operator ô on T, composed with 5,

induces a one-one correspondence G ° A of the different
admissible 3-partitions of T2, as given by (5.7), with the
different admissible 2-partitions of T0, as given by (5.18),
such that the following diagram commutes:

Map A1Map (T°, Z*)
I 0) I (b) I (5.19)

P3&2)^

Proof. First we remark that if (Z3) is a normal subgroup
of y (Z3)(proposition 5). If we apply theorem 1, resp.
diagram (3.7), with A2 Map (J2, and y (Zs), the
square a)follows from (5.7) and (5.9).

As for the square (b), (5.16) and Lemma 3 immediately give

A1-—9—- Map (T°,Z3*)

A
1 1

AVy(Z3)^ Map *)/y
But the same argument as in 4.5 shows that here the lower right
entry may be replaced by Map (T°,Z*)/y(Zf), which by (5.18)
is nothing but P2 T°).
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5.9. Remark. It is fairly obvious that a third reduction step,
using Z2 ~ Z* as coefficient group and the coboundary
operator d instead of 3, would finally establish a one-one
correspondence of P2 (T°) [« Map (T°, Z2)fS? (Z2)] with a certain
collection of 1-chains mod 2 011 T, because (Z2) W (Z2).
We shall not carry this out in detail, since the transfer of the

system (5.11) will not lead to a simplification.

5.10. The contents of theorems 2 and 3 may be summarized in

Theorem 4. The admissible 4-partitions of T2 are in one-one
correspondence with the solutions of the system

(a)£aikxk 0(l^i^a2) 0 (all (5.20)
k=l

in P„0_i (Z3).

Proof. Diagrams (4.6), (5.8) and the first part of (5.19) show

immediately that P4 (T2) is in one-one correspondence with

A'hr (z3).
Second it is clear from Lemma 2 and the subsequent remark

that A1 is in natural one-one correspondence with the solutions

of (5.11), resp. (5.20 a), in Vao (Z3). Note that in A1 the
7i 6 9" (Z3) operate simultaneously on all xk, and this is still

A
true after the injection of A1 into Vao (Z3).

Therefore, by definition of Pao-i (Z3), one only has to verify
that (Z3) coincides with Zf acting on Z3.

VI

6.1. As an example we consider the complex formed by the
2-skeleton of an ^-sided prism N, n ^ 3. Let xk, yk (1 ^ k ^ n)
be the values of an admissible f° (cf. the remark 5.7) on the
vertices of the top and of the bottom face of N, respectively.
Then it is easily seen that (5.20) goes over into the following
system of equations and constraints:

Xi + x2 T T xn — 0 xk 0 (all k), (6*1)

J;i + J2 + ••• + Li 0 yu 7^ 0 (all k), (6*2)

yk + yic+x - xk - *k+i (all k) ; (6.3)
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here and in the sequel the index k is taken mod n wherever it
occurs.

Lemma 4. If the xk are given and satisfy (6.1), then (6.2),

(6.3) admit only the solution

yk ~~ xk (all k) ; (6.5)

except, if n is even and

xk + xk+i 0 (all k), (6.6)

in which case

yk xk (all k) (6.7)

is an additional solution of (6.2), (6.3).

Proof. We only have to show that there are no other
solutions. Thus let the yk satisfy (6.2), (6.3). If one has yko — xko
for some A0, then (6.5) follows from (6.3) by induction. If,
on the other hand, one has (6.7), then (6.3) implies (6.6). Since

(6.6) is the same as xk+1 — xk (all A), this is possible only for
even n.

6.2. Let Bn be the number of solutions of (6.1). Then we
immediately obtain the following

Corollary. The number of different solutions of the system (6.1)-
(6.3) is Bn (n odd), resp. BnJr2 (n even).

Lemma 5.

Bn i(2» + 2( —1)"). (6.8)

Proof. (6.1) is the same as

xn ~ (**h ~^x2 + %n— l) xk 7^ 9 (all A)

I which shows that the solutions of (6.1) are in one-one corres-
I pondence with the solutions of

+ x2 + + Xn — l 7^ 0 ^ 0 — 1).

But the number of these is easily seen to be 2""1 -Bn_1; whence
we obtain the difference equation
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Bn 2n~1 - Bn_t (n > 1) Bl 0 (6.9)

for the Bn. Now (6.8) is just the solution of (6.9).

6.3. Thus Theorem 4 and the corollary to Lemma 4 yield
Theorem 5. There are exactly

different admissible 4-partitions of the faces of an w-sided prism.

6.4. We now return to theorem 4. It has already been observed

by Heawood in his original paper [2] that the rank of the
matrix [aik] is oc2 — 1 in general and a2 — 3 in the somewhat
singular case, where [aik] has row sums 0 (mod. 2), i.e. where
each 2-cell of T has an even number of vertices.

If we consider for the moment Vao (Z3) as a probability space
with constant point measure l/3a°, then it is clear that the
subspace U defined by the homogeneous system (5.20 a) has

that the constraints (5.20 b) are independent relative to U

(which they certainly aren't; see however (6.8) for the case
of only one equation), we obtain immediately the following
expectancy for the number of solutions of (5.20) in Pao_i (Z3):

Note that in our case 3a0 — 2oq, which together with Euler's
formula gives a0 — 2a2 —4. Consequently we finally get as a

heuristic estimate for the cardinality of P4 T2) the expression

1
-1

1 _i~(2n — 1) (n odd), resp.-(2n +4) (n even)

general case). If we now assume

Note, however, that for arbitrary a2 ^ 4 there are **
maps "

with a2 " countries " on the 2-sphere, for which crd P4 (T2) — 1.
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