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for all », v in the shell

R < \\u — un\\ < k(c — mR).
1 —km

b) Let \\{I — K) 1 || k. There exist numbers R and
m < A-1 such that

|| (W-K)v-(W-K)u || ^ m I u —v || if || u || > R and || v || > R

12. Non-linear equations containing a linear completely
CONTINUOUS SYMMETRIC OPERATOR.

As we have seen in some previous theorems, under certain
general conditions, the existence of a solution of an
approximating equation or the existence of a solution at all, can fail
only if there is no approximating linear operator with bounded
inverse or if there is not everywhere such an operator. In the
cases when the operators considered are differentiable this means
that the derived linear operator does not have a bounded inverse
or the derived linear equation fails to have a unique and bounded
solution.1) It is, therefore, important to have conditions for the
existence of a bounded inverse of a corresponding linear operator.

In the case of an operator I —A, where A is completely
continuous, this is equivalent2) to the fact that u Au has

only the solution u — 0, i.e. 1 is not an eigenvalue of A. Here

we deal only with such cases and assume our non-linear equation
to have the form

u LVu (12.1)

where L is a completely continuous operator and V is an (in
general non-linear) operator. This is, indeed, the most usual
form of non-linear equations with a completely continuous

operator.
Moreover, we now consider the equation (12.1) in a Hilbert

space, that is, the operator LV has its domain and range in a

1) This is, of course, typical for the " regular case " of non-linear equations.
2) See footnote 2 on page 47.



— 165 —

Hilbert space H. Finally, throughout this section, let L be

a symmetric operator.
Under these general assumptions we will give conditions

that the derived equation

v LV;u)v, (12.2)

have only the trivial solution, u 9.

To this end we first note some well known statements1) on the
eigenvalues of a completely continuous symmetric operator:
Let A be such an operator defined on a Hilbert space H and
with range in LT, A being different from the zero-operator.

Then there exists a finite or infinite orthonormal set2) of

eigenvectors et corresponding to real eigenvalues Xt such that
every ueH can be written uniquely in the form

u — YuaieiJrU' where Au' — 6. (12.3)
i

Let us arrange the sequence of eigenvalues as follows :

^ (12.4)

where the Xn (2_n), n ^ 1, are positive (negative). One of the
two sequences may be empty.

Together with Au Xu vïq consider the equation

u kAu u ^ 9 (12.5)

Then, we have the corresponding sequence 3)

^ K-2 % K-i < 0 < K± g K2 ^ (12.6)

of " characteristic values " — instead of (12.4).

1) See, for example, F. Riesz and B. Sz.-Nagy [19], chapter VI, and A. N. Kolmo-
gorov and S.V. Fomin [18], II, section 27.

2) Aei ^iei, (ei, efc) ^ik.
3) The terminology differs in the literature. We define the " eigenvalues " accordingto the previous sections by Au Au, u * 0.
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By means of the maximum-minimum principle1) we have the
independent representations

X± sup {(Au ü) : || u || 1 } and

(12.7)
Xn inf sup {(Au u) : || u || 1 (u vt) 0, i 1, n — 1 }

u

if Xx and Xn, respectively, exist, that is, if the expressions on
the right hand side are positive. ..For and 1_„ we have
analogous representations, but the supremum and the infinum
must be interchanged.

We now introduce the set P of operators, p e P, which have
the following properties:

a) peP, ueH implies pu exists and pueH.
b) All peP are linear, continuous, and symmetric,
c) (pu, u) is real for all ueH.
If a is a real number, we write p < a, p g p > oc, p ^ oc

when the corresponding product (pu, u) is < ^ > g oc (u, u),
respectively, for all ueH, u ^ 9.

d) If p eP, p ^ 0, then y/peP, (%/p)2 p, and y/p <0(^0)
when p > 0(^0).

Then, obviously, all real numbers a belong to P. It is

easy to show that with A and p ^ 0 also the operator
C y/p A y/p is linear, completely continuous, and symmetric.

Furthermore, if p > 0, then yjpu — 9 implies u 0 and the

eigenvalues of Ap and those of y/p A y/p coincide. In
fact, Apcp Xcp and (p ^ 9 imply y/p A y/pW — XW with
W yjpcp ¥" 9. The operator y/p A yjp is self-adjoint if A is

self-adjoint and p ^ 0, p e P. Therefore, the eigenvalues of Ap
are real. On the other hand, if p > 0 and y/p A y/pW XW

then yjp~1 exists because yjpu — 6 implies u 9 and with
<p Xp'1 y we have y/p Apcp X y/pcp which implies
Apcp X(p. We have the development

u Yj ci^/iJrU' where y/pAyjpu' — 9,

i) Courant-Hilbert [20], chapter III, § 3.
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and { ¥i } is a set of orthonormal eigenvectors of the self-

adjoint operator C y/p A -Jp.
After these considerations we can prove the following

theorem.1)

Theorem 12.1. Let A be a linear completely continuous

symmetric operator on a Hilbert space H into 77, let k{ be its
characteristic values (according to (12.5), (12.6)), and let peP.

Then the equation

u Apu (12.8)

has only the solution u 0, i.e., n 1 is not an eigenvalue
of Ap, if one of the following conditions holds:

a) Kn and Kn+1 (/c_M and 7c_(„+1)), n ^ 1 exist and

Kn < p < Kn+1 (K_n > p > k_(n +1})

b) Kn(K_n) exists as the largest positive (smallest negative)
characteristic value and p > Kn(p < K_n)

c) There is no positive (negative) characteristic value and

p ^ 0 (p s 0)

d) k± (fc-i) exists and 0 A p < Kq (/c_i < p ^ 0)

e) ||p II < min I K; I

i

Proof. %) Let the n-th positive characteristic value Kn of A
exist and let p > Kn> 0. We show that then the n-th positive
eigenvalue jxn of C -Jp A -Jp is greater than 1.

Let { e{} and { } be the sequences of orthogonal and
normed eigenvectors of the operators A and C, respectively,
corresponding to the eigenvalues { } and { fjLt } respectively.

i) In the special case of the boundary value problem (g(x)y'Y4- p(x)ij 0, y(x2) 0,
V(xi) 0, most of the results follow easily from the Sturm comparison theorem.
See, for example, E.A Coddington and N. Levinson [21], chapter 8. In some.cases
of special equations in which stronger conditions such as ku < <xn ^ p ^ an + 1 < Kn + 1

instead of a) hold, the results can be obtained from other well known comparison theorems

for eigenvalues, appearing, for instance, in L. Collal.z [10], §9, and F. Riesz and
B. Sz.-Nagy [19], section 95.
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The system
n

u Il ^ Il ^
5 (w Ç>j) 0, Î I, 71 1,

y 1

with q>t s/p'1 Wt, that is

n n

I I 1
5 (^v 5 tyi) 0 7 1, 71 1,

y 1 y 1

is always solvable. For such a w, by (12.4), we have

n

(Au,u) X Av I cv I2 ^
y 1

Hence
n

K ^ sup {(4u w) : uXi cv ev, I m 1 1, (u <p;) 0,
m y 1

} (12.9)

ro4vV,
^sup)—y 7=—:(v> ^i) 0, 1 1, ...,n-l

^9 (VPV. V^)
since (y/pv, cpO(e, ÎP;), i 1, and the first supre-
mum on the right hand side can only become larger if we drop
the condition

n

" X cv ev •

y 1

1
The assumption p > Kn — >0 yields

K

(Ay/pv,y/pv)_(Cv ,v) (Cv ,v)/191m
(sfpVy/pV) O ,V)

Since the bounded set { cv } satisfying (12.9) is compact the

supremum in (12.9) is actually assumed. Therefore, from (12.9)
and (12.10) we get

A„ < A„sup{(Cvv):||v||1, (v 0, 1, 1 }
y

^n P'ti Of Mn ^ 1
•
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a2) If Kn+1 exists and 0 < p < Kn+1 we obtain /in+1 < 1 by a

similar argument where the roles of A and C as well as the roles

of X and fi are interchanged.
Thus the equation (12.8) does not have the eigenvalue 1,

that is, the theorem holds true for the case a) with positive

p e P.

b) If Kn+1 does not exist but rcn does, i.e., the right hand side

of (12.7) is positive for n but not positive for 1, then,

replacing u by yfpu with Kn < p, we obtain that

inf sup {(NfpA^Jpu, u) : || u || 1 (u vt) 0 i 1,... n }
v î u

also cannot be positive, i.e., fin+1> 0 does not exist either.
From ax) it follows that in this case pn > 1 is the smallest

positive eigenvalue, i.e. the theorem holds for the case b) with
positive Kn and p.

c) If there is no positive eigenvalue then (Au, u) S 0 for

all u, which obviously implies (yjp A -Jpu, u) — (A sjpu,
^Jpu) ^ 0 for p ^0. Thus 1 is not an eigenvalue.

d) In this case the proof is similar to ax) and a2) if p ^ 0:
the largest eigenvalue /q becomes less than one here.

The cases of negative eigenvalues and negative p's can be

easily reduced to the positive cases treated above. Let X~

and ky be the eigenvalues and characteristic values, respectively,
of the operator —A. So we have X_n — X~ and the
same with k~. From K_(n+1) < p < K_n it follows that
Kn+i > —p > k~. Because Ap — A (— p) we can, therefore
apply the above results to —A and -p instead of A and p,
respectively.

e) We have1)

min(| K; I) || I"1
\| Ail/ max (I Ai |)

Therefore, it follows under the condition e) that
Il AP11^ \\AII' Il PII< 1

«

Hence, 1 is not an eigenvalue.

i) See, for example, N. I. Acliieser and I. M. G-lasmann [14], p. 47.
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This completes the proof.

Theorem 12.1 can be applied to all previous theorems which
use the fact that the derived linear equation has only the zero-
solution to establish the solvability of the given non-linear
equation, provided that this equation can be written in the form

u LVu (12.11)

with a linear, completely continuous, and symmetric operator L.
In these cases we are able to give explicit conditions on the
derivative V{u) of F as essential conditions for the existence of

a solution of (12.11). This derivative plays the part of the
operator peP in Theorem 12.1. We remember that, in this
sense, V(u) > k is equivalent to (F0O e, e) > k (e, e) for all
ce77, e A 0, and the same with <, and 5L We now give
a few examples, first a neighborhood theorem:

Theorem 12.2. Let the product operator LV with a linear
completely continuous symmetric operator L and a non-linear
continuously differentiable operator F be defined on a Hilbert
space H and have its range in H. Let F(u) ueH, satisfy one
of the conditions a) through e) of Theorem 12.1 with A L
and V(u) p e P.

Then for each point (u0 w0 u0 — LVu0) there exists an
Q (u0, r, a, b)-neighborhood in which the equation

u Tw + w, (w+I — TeQ),

is uniquely and continuously solvable. In particular, the
equation

u LVu + w, (12.12)

has a unique and continuous solution u (w) for w and u in certain
spheres about w0, u0, respectively, i.e., I — LV has a local
inverse there.

The proof follows from Theorem 7.1 and supplements and
the fact that a completely continuous operator has only a point
spectrum. Therefore, the operator (I — LF'(u))_1 is bounded under
the assumptions of Theorem 12.2.
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The conditions of this theorem are not sufficient for the

existence of a solution of (12.12) for each w eH or, in particular,
for w 6. But as in previous sections, simple additional

assumptions assure the existence of a solution of (12.12) for an

arbitrary given w eH.

Theorem 12.3. Let L and V satisfy the conditions of

Theorem 12.2 and let one of the following assumptions be

fulfilled :

a) For some u0 e H and w0 u0 — LVu0 let the set

U {u : u LVu + w0+X(w-w0), 0 ^ 2 < 1 } (12.13)

be bounded.

b) For some u0 e H and w0 — u0 — LVu0 let the set

S {s:s ||fc|| \\(I-LV[u))k\\-\ keH, ueU}, (12.14)

where U is defined in (12.13), be bounded.
Then the equation (12.12) has a solution.
For the proof we set

Txu (I-LV)u + w0+À(w-w0), 0 ^ 2 ^ 1

and denote by A the set of all 2 in [0, 1] for which Txu 9 is

solvable. A is non-empty because 2 0 belongs to A.
Theorem 12.2 proves A is open with respect to [0, 1]. A is also

closed. This can be shown in the case a) in the same way as

in the proof of Theorem 10.3 under 2) where the operator V
is to be replaced by LV, and in the case b) the proof
follows from Theorem 9.1 with Tu (I—LV) u-\-w and

T0u {I — LV) u+Wq
As already remarked in section 9 before corollary 9.2 the

boundedness of S, (12.14), is equivalent to the existence of
the operators (/—LF(M))_1 as uniformly bounded operators
for ueU. The conditions of Theorem 12.1 for p V\u^ are
not strong enough to insure this uniform boundedness with the
one exception of condition c.
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Therefore, we are now going to assume the conditions a)
through e) in the stronger form that p lies in a closed interval
for which these conditions hold:

ä) Kn and Kn+1 (/c_n and K_(n+1)) n ^ 1, exist and

Kn < an SpS CCn+1 < Kn + 1{K_n > a_n ^p^ a_(„ + 1) >K_(b + 1))

Kn (k _ M) exists as the largest positive (smallest negative)
characteristic value and p ^ ocn > Kn(p g a_„ < K_n)

c) There is no positive (negative) characteristic value and

V ^ 0 (p S 0).

d) kx (k_x) exists and 0 ^ p ^ oq < kx (zc_1 < a_1 ^ p ^ 0).

^ ||p II ^ a < min I Kt I

i

Here Kt are the characteristic values of A according to (12.6)
and a, oq are real constants.

Then, instead of Theorem 12.1, we have

Theorem 12.4. Let A be a linear completely continuous
symmetric operator on a Hilbert space H into i/, let Kt be its
characteristic values (according to (12.5), (12.6)), and let peP.
Finally, let one of the above conditions a) through ë) be satisfied.

Then the inequality
\ Pi-1 \ ^ m > 0, (12.14)

holds for the eigenvalues of Ap where m is a constant which
does not depend on p but only on the interval [oq, oq] in which p
is assumed to lie according to the conditions a) ë).

The proof is quite similar to the proof1) of Theorem 12.1 and

may be left to the reader.
From Theorem 12.4 it follows that, under its assumptions,

the norm of I — Ap has a positive lower bound. To prove this

fact we assume first that p > 0, p eP. Then also y]p > 0,

by definition of P, that is, yjpu 6 implies u — B, or ->/p_1

exists.2) Since yjp'1 has a bounded inverse 3), namely Jp1

|| y/p~x u || ^ k || u I k > 0 for all u e H (12.15)

1) For instance, in the first case a) we get the inequality Pn + i â °n +1 < 1 < °n ^ Vn
where m, <rn + i, <fn are the eigenvalues of the operators Ap, A<*n + i, Aa„, respectively.

2) Vp ~1 is not necessarily in P.
3)E. Hille and R. S. Phillips [4], p. 42, Theorem 2.11.6.
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Let { IF,-} be the set of orthonormal eigenvectors of the

operator C \/pA J~pcorresponding to the eigenvalues of C

which are also the eigenvalues of the operator as already-

mentioned above. Let ubean arbitrary element in ||m|| 1,

and Jpu £ c; where the sum includes the term W0 in
i

which CV0 6 and || W0 || 1.

Then (12.14) and (12.15) yield

I (I —Ap) uI2 I Jp-^I-C)JI2^ k2 1 C) I2

k2£I ct|2I 1 —pi |2 ^ k2 min (m2, 1) 0
i

Hence
Il I — Ap I ^ m > 0

If p g 0, i.e. (pu, u) ^ 0 for u # 6, then each ueHis either

in the null space, N, of yfp, i.e. yjpu 0, or it is not. We
then consider classes of elements by defining ux, u2 to belong to
the same class üc, briefly u± u2, if and only if % — u2e N.

Then it follows immediately from % u2 that y/pux yfpu2,
and vice-versa. Since also (I — Ap) N — N we may regard the

operator yfp as an operator on the Hilbert space spanned by the
congruence classes modulo N, represented by one arbitrary
element, ü, of each class. In other words we identify the
elements of each class. Thus we have y/pü — 0 implies ueN,
i.e. that Vp~ 1 exists, and we can repeat our above argument in
the case üc =£ N, i.e. ü £ N.

If ueN we simply have

|| (I — Ap) u || || u ||

The cases p ^ 0 can be treated, as above, by considering the

operator A(—p) —A (—p).
Hence, under the assumptions of Theorem 12.4 we have

|| I — Ap || ^ c > 0 (12.16)
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These considerations together with Theorem 12.3, setting
L A and pv p (u) v V\u) c, yield the

Theorem 12.5. Let the product operator LV with a linear
completely continuous symmetric operator L and a continuously
difïerentiable operator V be defined on a Hilbert space H and
have its range in H.

Let Kt he the characteristic values of L A according to
(12.5) and (12.6), and let F'(u) v pu, peP, satisfy one of the
conditions ä) through e) (as defined for Theorem 12.4) for
each ueH.

Then the equation

u LVu + w

has a solution for each weH.
This theorem generalizes, for example, some existence

theorems for non-linear integral equations of the Hammerstein
type, that is, equations of the form x)

u(x) + jK(x,y)f(y,u(y))dyg (x), (12.17)
J?

where x, y are ^-dimensional vectors and £ is a region in Rn\

viz., no defmiteness of the kernel K is required and the
derivative fu (x, u) need not be bounded by the least characteristic
value Äq.

Example. The problem —y" f (x, y), y (a) A, y (b) B,
(b > a), is solvable if, for instance, the function / is continuous
and continuously difïerentiable with respect to y. in the strip
a ^ x ^ b, I y \ < oo, and if fy (x, y) satisfies there one of the
conditions: 2)

7l2
I fy (x, y) I g a < — -2 ; or f < 0 ;

(b-d)1
or

n2 7i2 (n + l)2n2.
w < a„ gfy(x,y) ^ otn+1 < — -2-.(b-a)2 (b-a)2

1) A. Hammerstein [22], see also F. G-. Tricomi [23], section 4.6.
2) The known theorems usually cover only the first two cases of this special example.

See F. Lettenmeyer [24] and H. Epheser [25]. These papers are more general in
another direction.
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The proof follows immediately from Theorem 12.5 by writing
the problem in the form (12.17). In this case the operator L
happens to be definite. But this is not required or used in
the proof.
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