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ON THE GEOMETRY OF MINKOWSKI PLANES

by E. Asplund and B. Grünbaum *)
(Reçu le 19 juillet 1960.)

The following propositions of elementary Euclidean geometry
are well-known.

If D is the orthocenter of the triangle with vertices A, B, C,

then each of the points A, B, C, D is the orthocenter of the

triangle having as vertices the three other points. The circum-
circles of the four triangles have all the same diameter.

In the present note we shall show that these and other
propositions of Euclidean geometry remain, to some extent, valid
also in Minkowski planes. Moreover, some of the results yield
characterizations of centrally symmetric convex curves, or of
ellipses, in terms of properties of triangles.

In the sequel G shall denote a bounded, closed, strictly convex
and smooth curve in the plane, which has the origin 0 as center
of symmetry. Any curve of the type x + XC (where x is a point
and X a positive real number) derived from C by similarity and

translation, shall be called a Minkowski circle, or a circle, for
short, with center x and radius X. The union of x + XC and its
interior shall be denoted by x + XD and called a disc.

The following facts are obvious for any Minkowski circle G.

1. Given any three non-collinear points there exists exactly
one circle x + XC containing them.

2. If x1 ^ x2 then (xx + \ C) f| + ^2 Q contains at
most two points.

3. If x1^x2and ylty2e (x1 + C) fl («2 + Q with ^ y%,

then xx + x2yx + y2.

Using these properties we shall establish

Theorem 1. Letpi; i1, 2, 3, 4, be points in the no
three collinear,and let x; + >H C, 1, 2, 3, 4, be circles such
that p.t e Xj+ Xj- C for all i =4 j. If \ X2 x3 1, then
X4 1.

*) This research was supported by the United States Air Force through the AirForce Office of Scientific Research of the Air Research and Development Command
under contract No. AF49 (638)-253. Reproduction in whole or in part is permittedfor any purpose of the United States G-overnment.
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Theorem 2. Let px, p2, p3 be distinct points of C, and let

Yj + C, / 1, 2, 3, be the three circles different from C each of
3

which contains two of the three points p^. Then p| (yi + C) is
2=1

not empty, and consists of precisely one point (the C-orthocenter
of the triangle with vertices pl7 p2, p3).

Since the two theorems are proved quite similarly (and also

easily deducible from each other) we shall prove only the first one.

Proof of Theorem 1. Using the property 3 stated above, it
follows from the assumptions of the theorem that xi + x.?-

Pk + Pi whenever {i, /, k) — {1, 2, 3}. Let x0 p2 + p3

— xv Then {p2, p3j (x4 + C) f| (xo + Q and, since

xo H- x% t= Pi ~~t~ Ps, also {Pi, Ps) (x2 + G) H (x0 + C).
Therefore {pl7 p2, p3} c x0 + C; since {px, p2, p3) c x4 + X4 C, it
follows from the above property 1 that x0 x4 and X4 1.

This ends the proof of Theorem 1.

Remark 1. From the above equations it follows that

12 1

ö Pi + ö ö (Pi + Pz + Ps)- In other words, the centroid
o o o
of the triangle with vertices p±, p2, p3 belongs to the segment
determined by the center x4 of the " circumcircle " x4 + G and

by the intersection-point p4 of the three circles obtained by
" mirroring " x4 + G on the midpoints of the sides of the triangle ;

moreover, the centroid divides this segment in the ratio 1: 2.

Remark 2. It is easily seen that each of the points p2,

Ps, Pi is ^e C-orthocenter of the triangle determined by the other
three points. If C is a Euclidean circle, the C-orthocenter
coincides with the orthocenter, and the equation of Remark 1

expresses in this case the well-known relation between the

centroid, the circumcenter and the orthocenter of a triangle;
they determine Euler's line, which may, therefore, be generalized
to Minkowski planes.

Remark 3. In both the Euclidean and the Minkowski case,

the three points on Euler's line (centroid c, orthocenter A, and

circumcenter r) of any triangle T may be " completed " by a
1 2

fourth point c* — r + h, which is the centroid of the asso-
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ciated triangle T*, congruent to T, whose vertices are obtained

by mirroring the circumcenter of T in the midpoints of the sides

of T. The above becomes particularly clear if the complete

symmetry of the relationship between T and T* is noted; thus

(X*)* T r^== h. fr* r
The fact that we used the central symmetry of C in the proof

of Theorem 1 is not accidental. Indeed, we have

Theorem 3. A strictly convex, smooth, closed curve K has a

center of symmetry if (and only if) it has the following property.
For any three (different) translates Kx, K2, K3 of K, no two

of which are mutually tangent and all three passing through a

common point x, there exists a translate K4 of K passing through
the three points of intersection Ki f| Kj? i ^ /, h f 1, 2, 3

different from x.

Proof. Given any chord of K there is a unique parallelogram
inscribed in K which has the given chord as one of its sides.

This parallelogram is degenerate exactly in the case when the
(unique) supporting lines at the end-points of the chord are

parallel. We shall show that the diagonals of a non-degenerate
parallelogram are such " degenerate parallelograms ". Let the
origin be in the center of the non-degenerate parallelogram, so

that we may denote its vertices by a, b, — a and — b. Suppose
that the diagonal [a, — a] is a side of another non-degenerate
parallelogram inscribed in K, whose other two vertices we may
denote by a + c and — a + c. Put K4 K, K2 K + a-—~ b

and K3 K -f- 2a. These three translates all intersect at the
point a, and so by the conditions of the theorem there must be

a fourth translate K4 passing through the points — b, 2a — b

and a + c, which belong respectively to Kx f| K2, K2 f| K3 and
K3 pi Ki. Thus, the translate K5 K4 — a + b passes
through a, — a and b + c, which means that one has either
K5 K or K5 K. — c. The first case is impossible, since it
would imply b a or b — —- a. The second case would mean
that b + 2c e K. We then repeat the whole argument once
more with K2 K — a + b and .Kg — K — 2a instead of K2
and K3 and find that also — b + 2c e K. This is absurd, hence
we have proved that the diagonals of any parallelogram inscribed
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in K are thamselves degenerate inscribed parallelograms, i.e.
that they connect the points of contact between K and two
parallel supporting lines. Consider now two such chords in K.
Take a chord connecting an endpoint of one of the previous
chords with an endpoint of the other and construct its parallelogram.

Then, by the above, the diagonals of this parallelogram
have the parallel tangent line property, hence they coincide with
the two original chords. But now we have proved the theorem,
since we have constructed a center of symmetry for K, namely
the common center of all its inscribed parallelograms.

Theorem 3 may be thought of as the converse of Theorem 1.

In the same way Theorem 2 has a converse, which is easily
deducible from the three preceding theorems.

Theorem 4. Let K be a strictly convex, smooth, closed curve.
Suppose that K has the property that whenever four of its translates

4

Ki5 i 1, 2, 3, 4, satisfy the conditions that p is empty but
j l

^.Q. K3- are non-empty for i 1, 2, 3, then Q4 K^- is also

nonempty. Then K has a center of symmetry.

Proof. Take three translates Kx, K2 and K3 of K that
satisfy the conditions for Theorem 3. Suppose moreover, that
the chord in K± which connects the intersection points of Kx
with K2 and K3 respectively which are different from the triple
intersection, is not a chord whose endpoint tangents are parallel.
Let K4 be the unique translate of K different from Kx which
also contains this segment as a chord. By the conditions of
Theorem 4, K4 passes through the remaining double intersection
point of K2 and K3. However, the above mentioned chord in
Kx is never of the "degenerate parallelogram" type, since if it
were, we could find the desired translate K4 passing through the
intersection points of K4, K2 and K3 outside of Kx f| K2 f| K3
by a passage to the limit. Hence Theorem 3 is applicable and
we have proved Theorem 4.

Remark 4. In distinction from theorems of a similar nature
given in [6, 7, 8], the properties used in Theorems 3 and 4 to
characterize centrally symmetric convex curves K make no
reference to the point which is to be shown to be the center
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of K. The characterization in [6], which may equivalently be

formulated as " There exists a point x such that each point of K
is the vertex of an affine-regular hexagon with center x, all of
whose -vertices belong to K ", fails if the centers of the hexagons

are not assumed to be fixed. Indeed, the curve K (e)

{(sin 9; cos 9 + £ (1 — cos 6cp); 0 < 9 < 2n} is easily seen

to be. convex for sufficiently small positive e, not to have a

center for £ > 0, and to allow an inscribed regular hexagon
(of side 1) to rotate in it. (Similar curves were studied in [4].)

** *
The notion of the Feuerbach (or " nine-points ") circle of a

triangle also (partially) generalizes to Minkowski planes. The
Feuerbach circle (in a Minkowski plane) of a triangle with ver-

ltices xx, x2, x3 and eircumcircle C is the circle — (x1 + x2 + x3)

+ |c.
Theorem 5. In any Minkowski plane, the Feuerbach circle

of a triangle passes through six " remarkable " points ; the

midpoints of the sides of the triangle, and the midpoints of the segments
determined by the C-orthocenter and the vertices.

Proof. The theorem may be established by an easy compu-
ltation. Indeed, since xs e C, the midpoint — (x1 + x2) of the

opposite side of the triangle satisfies j (x1 + x2) =^ {x1 + x2 + xz)

— ^ x3 e — (x1 + x2 + xs) + ^ C, and similarly for the two

lother midpoints. On the other hand,, for the midpoint — x{
l+ j (%i + x2 + ^3) °f the C-orthocenter and a vertex we have,

obviously, j(x1+ x2 + x3)+ | xt | + x2 + -f j ;

this ends the proof of the theorem.
Remark 5. As in the Euclidean case, it is easily established

that the four triangles derived from a given triangle T and its
C-orthocenter, have the same Feuerbach circle; it is also the
Feuerbach circle of the four triangles derived from the "
associated " triangle and its C-orthocenter.

In Euclidean geometry the following property of the Feuer-
bach circle is easily established:
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(*) The Feuerbach circle of any triangle passes through the
three intersections of a side of the triangle with the line
determined by the opposite vertex and the orthocenter.

Theorem 6. The only Minkowski planes with the•

property (*) (with G-orthocenter substituted for orthocenter) are
those whose circles are ellipses.

Proof. It is well-known ([1], p. 143) that ellipses are the
only centrally symmetric convex curves with the following
property :

(**) The midpoints of any pair of parallel chords are
collinear with the center.

We shall show that property (*) implies (**). Let y{ e C,
i 1, 2, 3, 4, be four points such that the chord with end-
points yx and y2 *s parallel to that with endpoints y3 and y±.
Then xt yx-\- y2Ar y3 — 2y{, for i 1,2, 3, are vertices of
a triangle with circumcenter r y1 + y2 + y3 and circum-
circle r + 2C, whose Feuerbach circle is C and whose C-ortho-
center is h — — r — — (2/i + 2/2 + 2/3)- Now if y± is (as
assumed in (*)) the intersection of the line determined by x3 and
h with that determined by xx and x2 (which also contains yz and

lis parallel to the chord y±, y2), the collinearity of — (yx + y2) and

2* (2/3 + 2/4) 0 follows from the fact that the lines determined

by x3 and A, by — (2/1 + y2) and 0, by r and yz are parallel, and

h — r. Thus (*) implies (**) and Theorem 6 is proved.
A great number of theorems in the geometry of circles in the

Euclidean plane remain valid in Minkowski geometry if it is
assumed that all the circles are of the same size. As an example
we cite the following theorem, due to Miquel for Euclidean circles
of arbitrary sizes ([3], pp. 86/87):

Theorem 7. Let four points x{ of C be given and let Ci7

i — 1, 2, 3, 4, be the four translates of G (different from C)
determined by pairs of neighboring points. Then there exists a translate
of C containing the four points where yi e Gt f| Ci+1, (C5 Cx),
but G.

The proof of Theorem 7 is very similar to that of Theorem

1 and we omit it. The circle containing the points yi is

x^ -f- x2 "F x3 -j- x^ —[- G.
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Some results transfer verbatim from the Euclidean to the
Minkowski case (usually because the equality of size is assumed,

explicitly or implicitly, in the Euclidean case). An example of
this kind is a " chain of theorems " due to Goolidge [2] (reproduced

in [3], p. 94).
** *

A. Florian [5] mentions, in an account of some unpublished
results of J. Molnâr, the following proposition: If a circle G in
the Euclidean plane is covered by the union of three circular
discs D^, i 1, 2, 3, of diameters not exceeding that of C, then
the disc D, bounded by G, is also covered by I)1 U D2 U D3.

We shall prove for Minkowski planes

Theorem 8. If G c U {xi + \ D) and \ < 1 for i — 1, 2, 3,
3 i~ 1

then D c U (xi + \ D).
i=1

Proof. Assuming C ^ xt + \ C for all i, let p±, p2, ps be

points of G such that pt e (x^ + Xj D) f| (% + \ D) for
{ h j, k){1, 2, 3}. We define y, pj + pk for {i, k}

{1,2,3}. By property 2 (p. 300), it follows that D f| + D)
D n (Vi + D). On the other hand, the points ply p2, p3 and

the circles C, yx + G, y2 + C, yz + G satisfy the conditions of
3

Theorem 2. Therefore, there exists a point p e p| (yt -f- G).

To complete the proof we have only to show that p e D; then,
since each point of D belongs to a segment with endpoints p
and some x g C, and each such segment is contained in one of

3

the discs yi + D, it follows that D is contained in U (l/j + D),
i=1

3

and thus also in U (x{ + \ D), as claimed. But if p $ D is
i= 1

assumed, a contradiction is readily reached: Let L be the line
determined by p and 0, and let * be the point of L f| C with
the greater distance from p. Since p* e C, for a suitable i we
have p*ej/j + D. But p e yi+ D which is impossible since
the segment with endpoints p and * is longer than the diameter
of D parallel to it, and therefore may not be covered by any
translate of D.

L'Enseignement mathém., t. VI, fasc. 4. 5
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This ends the proof of Theorem 8.

Obvious examples show that the restriction \ < 1 in Theorem

8 may not be omitted.

Remark 6. It is easily seen that Theorem 8 is valid also if
the circle C is not assumed to be strictly convex and smooth.
The argument is completely elementary but somewhat lengthy,
and we omit it. On the other hand, Theorems 1 qnd 2 have
to be properly reformulated in order to be applicable (and valid)
for circles which are not strictly convex and smooth.

Remark 7. It is easily seen that Theorems 1 and 2 do not
generalize to higher-dimensional spaces. Theorem ?Tis probably
valid for spaces of any dimension (with n + 1 " solid " spheres
covering the surface of another one in the ^-dimensional case),
although no proof seems to be known even in the case of Euclidean

spheres in three-dimensional space.

Note. After the present note was completed, the paper
" Zur elementaren Dreicksgeometrie in der komplexen Ebene "
(.Enseign. Math., 4 (1958), 178-211), by J. E. Hofmann, came
to our attention. In this paper the geometry of triangles in the
Euclidean plane is developed (in part) in a way closely related
to the method used in the present paper.
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