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Unknotting with a single twist

Samantha ALLEN and Charles LiviINGsTON

Abstract. Given a knot K C S3, is it possible to unknot it by performing a single twist,
and if so, what are the possible linking numbers of such a twist? We develop obstructions
to unknotting using a twist of a specified linking number. The obstructions we describe are
built using classical knot invariants, Casson—Gordon invariants, and Heegaard Floer theory.

Mathematics Subject Classification (2020). Primary: 57K10.
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1. Introduction

Figure 1 presents three illustrations of the right-handed trefoil knot, 7°(2,3).
In each, performing a full twist on the parallel strands that pass through the small
circle results in an unknot. In the first two cases the required twist is negative, and
in the last it is positive. The linking numbers of the twists, which by convention
are always positive, are 2, 3, and 0, respectively. Thus, we say the set of unknotting
twist indices, denoted U, satisfies {27,37,07} C U(T(2,3)). The reader is invited
to show that for the figure eight knot, 4;, {27,07,0%,2%} C U(4;). The results
of this paper will imply that these two containments are, in fact, equalities.

Our goal is to consider the question of which knots can be unknotted with a
single twist and, more generally, to describe tools for analyzing U/(K). One of
our basic results, a consequence of Corollary 8.4, is the following.

Theorem. For each knot K C S3, U(K) is a subset of a set of the form
{a=,(a+1)~,0~,0",b%, (b + )T} for some a,b > 0. With the exception of the
case a = 1,b = 1, the containment is always proper.

We will see that the values of @ and b are determined by the Heegaard Floer
complex CFK*°(K). Much of our work is identifying and organizing invariants
that can be used to further restrict U/ (K).
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FiGgure 1
Unknotting the trefoil

With a few exceptions, finding knots for which the unknotting set has several
elements is difficult. For instance, for large £k > 2 we don’t know of any examples
for which {k~, (k + 1)*} C U(K). The following result, stated as Corollary 5.8,
indicates the challenge of building examples and the impossibility of finding
examples among low-crossing number knots.

Theorem. If {k~,(k + 1)T} CU(K) for k > 1, then

2k3 +3k2—-11k+6
c .

g(K) =

This general problem of understanding unknotting with a single twist has
been extensively studied, often in the more general setting in which the operation
consists of introducing perhaps more than one full twist on the parallel strands.
A sampling of references includes [AN, ANMMI, ANMM3, ANY, GoS, HM97,
Mat, MY, Ter]. Of particular note is work of Ince [Incl, Inc2] which applies
Heegaard Floer theory in the case of linking number O and that of Sato [Sat],
which considers a related slicing problem in CP?2.

There is an interesting generalization of these questions related to slicing
knots in +CP?2. In the case that | ¢ U(K), one can ask for the minimum
genus of a surface bounded by K in :CP? that represents the homology class
| € Hy(=CP2\ B, 3) 2 Z. Progress on this problem has recently been made by
Pichelmeyer [Pic].

From the perspective of classical knot theory, a theorem of Ohyama [Ohy]
heightens the interest in unknotting with one twist: every knot can be unknotted
with two full twists. In [Liv2] it is observed that the linking numbers of the
two twists can be any consecutive pair of integers, and if one requires that the
linking numbers be 0O, then up to 2g twists might be required, where g is the
three-genus of the knot.
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Some of our results concerning /(K) overlap with previous ones, albeit with
alternative and at times simpler proofs. Other results, especially those based on
Heegaard Floer theory, are new, as is our examination of new ways to use the
various approaches in conjunction.

The basis of much of our work is the observation that if K can be unknotted
with a single twist, then three-manifolds built by surgery on K bound four-
manifolds with special properties. This in turn lets us apply a range of tools to
the problem, including those that arise in classical knot theory, Casson—Gordon
theory, and Heegaard Floer theory. Of special relevance is the work of Aceto and
Golla [AG] applying Heegaard Floer theory to the question of which surgeries
on a given knot K bound rational homology four-balls.

We now summarize a few of the main results presented in the paper.

Outline. Section 2 presents the basic geometric observations that form the basis
of our later work. This includes the observation that if K can be unknotted with
a single twist of sign s and linking number [, then S> , (K) = S}, (J)
for some knot J. We also note the well-known fact that for such knots K,
S3 2(K) bounds a four-manifold W with Hy(W) = Z; and, if I # 0,
Hy(W) = 0; in addition, we note that in fact H;(W) =~ 7;(W) and that the map
71(S2,(K)) — Hy(W) is surjective.

Sections 3, 4, 5, and 6 present results related to homological invariants
associated to branched cyclic covers and the infinite cyclic cover. In Section 3 the
focus is on the ranks of the homology groups. As we describe, our results that
arise from Z[t,t~!]-coefficients instead of Q[t,!]-coefficients depend on the
use of Grobner bases. In cases in which the rank of the homology is not sufficient
to provide necessary obstructions, we observe in Section 4 that the Q/Z-valued
linking form can provide stronger obstructions.

Section 5 explores the use of the knot signature function, using an approach
developed by Casson and Gordon; our results include a short proof of a theorem of
Ait Nouh and Yasuhara [ANY] which they stated for torus knots. In combination,
these results place strong limits on the possibility of the set ¢/(K) containing
both positive and negative entries; for instance, if {4~,5%} C U(K), then the
genus of K is at least 23; another new application of the signature result is that,
with a few exceptions, if ged(/;,l) # 1, then {l;,l} ¢ U(K) for any knot K
(with any choice of signs).

Finally, Section 6 complements the signature results of Section 5 with a
discussion of the Arf invariant. Applications to torus knots are described. In
addition, among classical knot invariants, the Arf invariant is to our knowledge
the strongest one that can address the possibility of 1% € /(K). Later we will see
that Heegaard Floer obstructions offer alternative obstructions, but even for low-
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crossing alternating knots of fewer than 13 crossings, the Arf invariant provides
an obstruction in over 600 cases in which the Heegaard Floer obstructions vanish.

Section 7 provides background on Heegaard Floer theory, summarizing the
essential properties of the knot invariants vt(K) and V;(K). We also describe
the needed properties of the three-manifold correction terms, d(Y,s), restricting
to the case of ¥ = S2(K).

Section 8 presents an obstruction to unknotting based on the invariants V;(K).
The obstruction itself was first presented by Sato [Sat] and our result also follows
from work of Aceto—Golla [AG]. We include our own proof; in our setting we
are able to give very short, and hopefully accessible, arguments. In addition, we
present new applications of these obstructions. Section 9 presents much stronger
constraints on the invariants V;(K). These are specific to the unknotting problem
and do not apply in the more general settings of [AG, Sat].

In Section 10 we present obstructions based on the Upsilon invariant of
Ozsvith-Stipsicz-Szabé [OSS]. As we will make clear, the Upsilon invariant is
theoretically no stronger than the V;-invariants, but it has the advantage of being
much more computable; this is illustrated with an example of connected sums of
torus knots. Section 11 presents obstructions based on the Heegaard Floer invariants
associated to cyclic covers of a knot K, more specifically, d(M>(K),s).

Section 12 discusses the case of alternating knots, in which computations are
most accessible, and Section 13 illustrates a construction of Ait Nouh that provides
examples of knots that can be unknotted with positive and negative twists, both
of linking number 1.

Section 14 addresses the initial question: given a knot, can it be unknotted
with a single twist? That is, for what knots is U(K) = @?

Section 15 presents some comments and open problems concerning the
sets U(K).

In the appendices we present a few technical results and present a summary
of an analysis of prime knots of eight or fewer crossings.

2. Geometric results related to unknotting twists

Throughout this paper we will use surgery descriptions of three-manifolds,
knots, and their branched covering spaces. A basic reference is the text by
Rolfsen [Rol, Chapter 9H]. More details can be found in [GS] and original
sources such as [Kir].

2.1. Three-dimensional aspects of surgery diagrams and unknotting. Let
K C S* be a knot. We denote by S3(K) the three-manifold formed by n-



Unknotting with a single twist 545

surgery on K. If (K,J) is a link, we write S,f’m(K ,J) for the three-manifold
formed by performing n- and m-surgery on K and J, respectively.

In the case of the unknot U and s = +1 we have S2(U) =~ S3. It follows that
S3 (K, U) = 82 (K') for some n’ and K’. As described in [Rol, Chapter 9G], K’
is the knot formed by performing a full twist to the strands of K passing through
U, twisting left or right depending on whether s = 1 or s = —1, respectively.
The new surgery coefficient is n’ = n — sl?, where [ = link(K,U). (In general,
the linking number is defined for oriented links. Here, we chose orientations so
that the linking number is nonnegative.) In summary, we have the next result.

Theorem 2.1. Suppose that K can be unknotted with a single left-handed or
right-handed twist, corresponding to signs s = —1 and s = 1, respectively, and
linking number [. Then for all n,

SS(K) = Ss.;_s[Z‘s(Ul: U2)s

where Uy, and U, are both unknotted and have linking number 1.

Corollary 2.2. In the setting of the theorem:
¢)) Sis;z(K) = Sg,s(Ul, U,), where link(Uy,U,) = 1.
2 s3 (K) = 82, (U1, U) = SS?’IQ_H(J), for some knot J .

—sl2—5

2.2. Four-dimensional aspects of surgery diagrams and unknotting. There
are homeomorphisms

S3U) = S'x 8% = d(S! x BY),

but note that these are not canonical and this fact makes discussing framings
somewhat complicated. Akbulut [Akb] developed a diagrammatic method of
illustrating S' x B3, its handlebody structure as a manifold built from B* by
adding a single one-handle, and framed curves in its boundary; these framed curves
determine attaching maps for two-handles. In these diagrams, an unknotted circle
C with a dot represents S' x B3, its boundary is identified with 0-surgery on
the same unknotted circle, and framed curves in that boundary are represented
by curves in the complement of C marked with integers. A full exposition
is contained in [GS]. Before stating the theorem that builds on the geometric
connections between the three-dimensional and four-dimensional perspective, we
present an example.

Example 2.3. The right-handed trefoil knot K can be unknotted by performing a
single negative twist of two-strands. Thus S7(K) = S5 _, (U1, Uy) for some link
of unknotted circles {U, U,}. Standard surgery diagrams (see [Rol, Chapter 9G])
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Figure 2
Four diagrams of Sj(T(2,3)). The two middle diagrams are isotopic.

I__J\W

0

[
ﬁﬂ

appear in the first three frames of Figure 2. The fourth frame of Figure 2 provides
the dotted-circle diagram (see [GS, Section 5.4]), in which S!x B3 is represented
by the curve with a dot on it and the attaching curve for a two-handle addition
is represented by a curve with framing —1. This final diagram then represents a
four-manifold bounded by S2(K).

In general, for any link of unknotted circles (U;,U;), we have Sgys(Ul, Uy) =~
0W, where W is a four-manifold that can be built from S! x B? by adding a
single two-handle. The next theorem then follows readily; we write Z; for Z/1Z,
so in the special case / =0 we have Z; = Z.

Theorem 2.4. Suppose that K can be unknotted with a single twist of sign s

and linking number [ .

(1) SESIZ(K) = OW where W can be built from S' x B3 by adding a single
two-handle, added with framing s in a diagram for S! x B3.

(2) The attaching curve for the two-handle represents | € Hi(S! x B?), so
m(W)> HH(W) = Z.

(3) The map induced by inclusion, H; (SESIZ(K)) — H (W), corresponds to the
surjection L2 — Zj.

3. Single twist unknotting: Homological constraints

The simplest obstructions to unknotting with a single twist arise from
homological properties of the cyclic branched covers and the infinite cyclic cover
of the knot. To describe these, we let M;(K) denote the g-fold cyclic branched
cover of §3 with branching set K and let Mo (K) denote the infinite cyclic
cover. We begin with a definition.

Definition 3.1. A triple (U;,U,,s) where (U;,U,) is a link with unknotted
components and s = =1 is called a surgery diagram for a knot K if U,
represents the knot K in S3(U,) =~ S3.
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Theorem 3.2. If K can be unknotted with a twist of linking number | and [ is
divisible by q, then H\(My4(K),Z) is generated by q elements. Additionally, if
[ =0, then the homology group H,(M«(K),Z) is generated by a single element
as a Z[t,t~']-module.

Proof. Details of the construction of branched covers of knots from surgery
diagrams are presented in [Rol, Chapter 6C]. Starting with the surgery diagram
for K, (U1,Us,s), one can construct a surgery diagram of M,(K); the surgery
link consists of the components of the preimage of U, in the g-fold branched
cover of S* over Uy, M, (U;) = S*. There are ¢ components. In particular, the
homology of M,(K) has a presentation with ¢ generators.

The case of / = 0 is similar; in brief, the infinite cyclic cover is given by
surgery on the set of translates of a single curve in the infinite cyclic cover of the
unknot. Rolfsen’s illustration of infinite cyclic covers [Rol, Chapter 7C] makes
the result apparent. -

Note. Recall that rank(H;(My(K),Z)) < 2g(K). This follows from a theorem
of Seifert [Sei]; see also [Rol, Chapter 8, D9] and [Gil]. Thus, the obstruction
arising from Theorem 3.2 can provide information only in the case g < 2g.

Example 3.3. For low-crossing prime knots, this result is of limited value. Among
prime knots of 12 or fewer crossings, for only seven is rank(H;(M,(K),Z)) > 2.
These are 1261554,]261750, 12]1553, 1211554, 121’1555, 12”555, and 12”642- Thus,
only these seven are obstructed from being unknotted with a single twist with
even linking number using 2-fold branched covers.

For connected sums, the theorem offers stronger results. For instance, for
the trefoil knot, 7(2,3), H1(M2(T(2,3))) = Z3 and thus 37(2,3) cannot be
unknotted with a single twist of even linking number. In this context, it is worth
noting that there are examples of composite knots that can be unknotted with a
single twist, [MS, MY, Ter], and an open conjecture is that all such examples
have exactly two prime components.

3.1. Alexander ideals and Grobner bases. The homology of the infinite cyclic
cover of a knot has a presentation as a Z[t,t~!]-module of the form 4 = V —¢VT,
where V is a square Seifert matrix of size 2g. For 0 < k < 2g, the k -elementary
ideal (or Alexander ideal) Ej(K) is defined to be the ideal in Z[t,t~!] that is
generated by the (2g—k)x(2g—k) minors of A. These ideals are independent of the
choice of Seifert matrix V' and are invariants of the underlying module. In general
Eo(K) is principal, generated by the Alexander polynomial. If H;(My(K)) is
generated by a single element, then E{(K) = (1).
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A reduced Grobner basis of a multi-variable polynomial ideal is a generating
set of a specific form. A basic reference is [DF]. For us, the relevant properties are
that such bases are readily computable by computer packages (we use Wolfram
Mathematica [Wol]) and permit one to determine whether two given ideals are
equal. To apply Grébner bases to our work, we note that there is a surjection

Z[t,s] = Z[t,s]/ (1 —ts) = Z[t,t71],

and thus ideals in Z[t,t7!] can be analyzed via their preimages in the polynomial
ring Zlt, s].

Example 3.4. In considering the rank of H;(Mx(K)) we can use rational
coefficients, in which case the obstruction is more easily computed, or we can
work with integer coefficients, in which case the computation is more complicated
but the results are much stronger. For instance, there are 84 prime knots of 9
or fewer crossings. Of those, only two, 8,5 and 94, have infinite cyclic cover
with noncyclic homology using Q[z,~!]-coefficients. If one switches to Z[t,t71]-
coefficients, an additional seven knots are obstructed from being unknotted with a
twist of linking number 0 (935, 937, 941, 946, 947, 948, 949 ). Among these examples
is 94¢6; see [Rol, Chapter 8C], where showing that this knot does not have cyclic
Alexander module is presented as an exercise. From what is developed there, it
is easily seen that the second Alexander ideal is (3,1—1t) C Z[t,t!]. For the
rest of the examples, we used Mathematica to find the Grobner basis for E;(K),
in each case showing that the module is nontrivial.

4. Single twist unknotting: Two-fold covers, linking forms and signatures

In the case that the modules H;(M,(K)) do not obstruct an unknotting twist,
the linking form on H;(M>(K)) can offer much stronger constraints. Recall
that for any three-manifold M with H;(M,Q) = 0, there is a linking form
lk: Hi{(M) x H{(M) — Q/Z. In the case that M = dW, where H;(W) = 0
and the intersection form of W is presented by a matrix @, the matrix Q is
also a presentation matrix for H;(M) and Q! presents the linking form of M
with respect to a corresponding generating set of H;(M). (Our sign convention,
which differs from that of some references, is chosen so that if M = S3(K),
then the meridian to K has self-linking 1/n € Q/Z.) More generally, if M is
given as surgery on a link, then the linking form with respect to the meridians
is presented by the inverse of the associated surgery matrix, formed from the
linking matrix by using the surgery coeflicients as the diagonal entries.
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Theorem 4.1. If K can be unknotted with a single twist of linking number 2k
and sign s, then the two-fold branched cover M,(K) is given by surgery on a
two-component link with surgery matrix

a b
Q - (b a) ’
where |a2 —b2| =det(K) and a + k=1 mod 2.

Proof. The statement that the surgery matrix is 2 x 2 with the diagonal entries
equal follows from the discussion of Section 3. The determinant of a knot is the
order of the homology of the 2-fold branched cover, giving the condition that
|a? — b?| = det(K).

A theorem of Nagami [Nag] states that for a closed four-manifold W with
H.(W,Z3) = 0, the two-fold branched cover over a surface that represents 2k
for some homology class k € Hy(W) is Spin if and only if the mod 2 reduction
of k is dual to the second Stiefel-Whitney class of W. As described after
the completion of this proof, the bounding manifold we have constructed is the
two-fold branched cover of a punctured +CP?; because the boundary is S3,
Nagami’s result applies: to move to the setting of closed manifolds simply cap
off the punctured manifold with a four-ball and the surface with an orientable
surface.

Thus, the two-fold cover is Spin if and only if &k is odd. The intersection form
of the two-fold cover is given by @, and so the cover is Spin if and only if a is
even. Combining these observations we have that the parities of k¥ and a must
differ, or more concisely, a + k=1 mod 2. O

Kauffman and Taylor [KT] proved that if a knot K bounds a surface F in
a four-manifold W and the two-fold branched cover of (S3, K) extends over
(W, F), then the signature of K is determined by invariants of W, the normal
bundle to F, and the two-fold branched cover of W over F. Restricting to
our setting, we consider a knot K that can be unknotted with a single twist of
linking number / and sign s = &1. Such a knot bounds a disk A C sCP?2\ B4
with Euler class satisfying x2 = s/?. The pair (CP?\ B* A) is built from the
unknotted ball pair (B*, B?) by adding a two-handle with framing s along an
unknotted J in the complement of dB2. If [ is even, then the two-fold cover
branched over A is thus built from B* by adding two two-handles to B* with
the same framings. Notice that such a handlebody description of a four-manifold
yields a surgery diagram for its boundary, and in the present case this surgery
diagram is identical to the one presented in Section 3.

A restatement of [KT, Theorem 3.1] in this special case immediately yields
the following result.
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Theorem 4.2. If a knot K C S3 can be unknotted with a single twist of even
linking number | and sign s = 1, then

1
o(K)=0(N)—2s+ Eslz,

where N is the two-fold cover of sC P2\ B* branched over some disk A such
that dA = K.

Theorems 4.1 and 4.2 have the following corollary.

Corollary 4.3. If a knot K C S can be unknotted with a single twist of even
linking number | = 2k and sign s = +1, then the two-fold cover of S* branched
over K bounds a four-manifold N with second Betti number b,(N) = 2, signature

o(N) =o(K) + 2s(1 — k?),

and intersection pairing with matrix of the form

o=(; 2)

The value of a is even or odd depending on whether k is odd or even, respectively.
The value of |a®>—b?| = det(K) and Q is negative definite, indefinite, or positive
definite depending on whether o(K) + 25 — %sl2 is =2,0 or 2, respectively.

Proof (Corollary 4.3). The equation o(N) = o(K)+2s(1—k?) is a restatement of
the equation in Theorem 4.2, replacing / with 2k . The matrix Q is the intersection
form of the two-fold branched cover N ; the conditions on its determinant and
the parity of a follow from Theorem 4.1.

Finally, a form of rank two is negative definite if and only if it has signature
—2; in our case the signature is given by o(K) + 2s — %slz. The argument is
similar for the indefinite and positive definite cases. O

Corollary 4.3 implies that the signature of a knot places very strong constraints
on the possible even linking numbers of unknotting twists. Here is one simply
stated result. Recall that if K is unknotted with a left-handed twist then the sign
is § = —1.

Corollary 4.4. If K C S* can be unknotted with a single twist of linking number
2k, k >0 and sign s, then

k? -2 <s0(K)/2 < k>.
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Proof. Using the set up of Corollary 4.3, we have so(K)/2 = (k?—1)+s0(N)/2.
The result follows from the observation that —2 < o(N) < 2. Ll

Corollary 4.5. If K C §3 and det(K) =3 mod 4, then {0~,0%} ¢ U(K).

Proof. According to Corollary 4.4, if K can be unknotted with twists of linking
number /[ = 0 of both signs s = —1 and s = 1, then o(K) = 0. However,
in Murasugi’s paper in which the knot signature was first defined, he proved
that if det(K) =3 mod 4 then o(K) = 2 mod 4; see [Mur, Theorem 5.6]. In
particular, o(K) # 0. O

Example 4.6. Consider the knot K = —7;. This is a two-bridge knot B(21, 13)
and M,(K) = L(21,13). It satisfies o(K) = 0 and det(K) = 21. This knot
has unknotting number 1, and a quick examination of its diagram shows that it
can be unknotted with a left-handed twist, so 0~ € U(K). We will show that
0" & U(K). Suppose that K could be unknotted with a single positive twist
of linking number 0. Then Corollary 4.3 implies that M»(K) bounds a positive
definite four-manifold N with b,(N) = 2 and intersection pairing

o= :)

with determinant 21. Up to change of basis, there are only two such matrices:

1110 5 2
Ql“(lo 11) and QZ_(z 5)'

This would imply that H;(M>(K)) = Z,; is generated by an element with self-
linking either 11/21 or 5/21. The set of all self-linking numbers of generators
would be given by the set of residues 11(i?) mod 21 or 5(i%) mod 21, where
ged(i,21) = 1. These two sets are {2,8,11} and {5,17,20}. On the other hand,
as an oriented manifold, X(K) = L(21,13) and the set of self-linking numbers
of generators is given by {10, 13,19}.

Example 4.7. Consider the question: for a given knot K, is {0~,0%} C U(K)?
The results of this section imply that if K can be unknotted with a single twist
of linking number O, then o(K) € {—2,0,2}. Furthermore, if det K =3 mod 4,
then by Corollary 4.5 at most one of 0~ and 07 are in U(K). Thus, if o(K) # 0
the answer is “no.” There are 35 prime knots of 8 or fewer crossings, and this
condition reduces the number of possible “yes” cases to 13.
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Of these remains 13 knots, four are unknotting number 1 and amphichieral,
starting with the figure eight knot, 4;. Thus, for these the answer is ‘“yes.”
The answer is also “yes” for 8;3; we leave it to the reader to find crossing
changes of each sign that unknot 8;3. The remaining set of eight knots is
{61,77, 81, 83, 8, 812, 818, 820} . In addition to 7; that was described in this section,
other tools developed in this paper will rule out 8 and 8;g. This leaves five
unknown cases: {61, 81, 83,812, 820}.

In Appendix C we have a more extended discussion of low-crossing number
knots and Table 1 presents a summary for all prime knots of eight an fewer
crossings, considering all linking numbers and not just / = 0.

S. Single twist unknotting: Casson-Gordon invariants and signatures

We begin by reviewing Casson—Gordon invariants, restricting to the generality
needed for our applications. Suppose that M3 is a closed oriented three-manifold,
| >0,and ¢: Hi(M) — Z; is a surjective homomorphism. Suppose further that
¢ extends to a map ¢: Hy(W\ F) — Z;, where W is an oriented four-manifold
with W = M and F is an embedded, possibly empty, surface. Then, for
0 < r <, we have the definition

2[F1?r(l — 1)

(1) 0r(M.$) = sign(W) — & (W) - =———

Here sign(W) is the signature of W and W is the [-fold cyclic branched cover
of W associated to ¢. The integer e (W) is the signature of the intersection
form on HZ(W, C) restricted to the w; = 27ir/! -eigenspace of the action of the
generator of the group of deck transformations acting on Hy(W,C). Lastly, [F]?
is the self-intersection number of F. (The fact that o,(M,¢) is a well-defined
invariant of the triple (M,¢,r) is one of the accomplishments of [CGIl]. There
it is only required that there is a four-manifold and homomorphism pair (W, )
such that d(W, @) = n(M,¢) for some n > 0. In all our work, such a pair exists
for n =1, so we are restricting to that setting.)

The result [CGl, Lemma 3.1] can be applied to the case of S32(K) with ¢
the quotient map to Z; for a divisor / of m, in which case it states:

2mr(l —r)
/2 '
Here sign(A) denotes the signature of a complex hermitian matrix A; if A4 is

one-dimensional, that is, if A = m for some real number, sign(m) is simply
the sign of m. The matrix V is a Seifert matrix for K. In standard notation,

(2) o, (Sp(K),$) = sign(m) —sign((1 —w; ")V + (1 —w])V*) —
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the signature of the hermitianized Seifert form is called the Tristram—Levine
r/1-signature of K, denoted o,/;(K).

The next theorem and its proof are closely related to results of Aceto—Golla—
Lecuona in [AGL]. The proofs there are more complicated that ours, necessarily
so because they are working with four-manifolds with handlebody decompositions
that might have three-handles. In our special case the results are slightly stronger
in that we are not restricted to the case that r and [/ are relatively prime.

Theorem 5.1. Suppose that m # 0 and S>(K) bounds a four-manifold W built
from S'x B3 by adding a two-handle along a curve representing | € H,(S'xS?).
Then m = £1? for some | >0 and forall r, 0 <r <|,

o1 (K) = (s —=2sr(l = 1))| = 1,

where s = 157 = £1.
Proof. First observe that the handle decomposition of W yields a surgery
description of S, (K) as Sg,(J1,J2) for some link (J1,J>) and some integer

a. The surgery matrix is
0 I
[ al’

In our situation, @ will be seen to be +1, but for now we simply observe that
since H;(S2(K)) is cyclic, ged(a,l) =1, 12 = £m, and the map induced by
inclusion H;(S2(K)) — H;(W) corresponds to the quotient map Zim| = Z.

The manifold W can be used to compute o,(S;,(K),¢), where ¢ is the
quotient map ¢ : Z, — Z;. There is no branching surface. Observe that W is
a rational homology ball and so has signature O.

We will explain in the final paragraph of this proof that the a)l -eigenspace in
H2(W C) is 1-dimensional if r is not divisible by /. Thus, |e,(W)| < 1. From
the definition of o, we see that for each value of r,

|0r(S;3;(K),¢)I <1
Equation (2) then can be written as
|sign(m) — 0,/1(K) —2sr(I = r)| <1,

as desired.

It remains to show that the wj -eigenspace in HZ(W,C) is I-dimensional if
0<r <l—1. The space W has the homotopy type of a CWcomplex built with a
single O-cell, 1-cell, and 2-cell: call them d,e, and f. Thus the /-fold cover w
has the homology of a chain complex with / cells in each of these dimensions:
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call them {d;},{e;}, and {fj}, for 0 <i <[ —1. In each dimension there is a
decomposition of the chain complex into wj -eigenspaces for 0 <r </ —1; in
the case of dimension 2, the w; -eigenspace contains 5;3 w; " i f;. A dimension
count shows that each of these is in fact a generator of the eigenspace. The fact
that if r # 0 this chain is a cycle follows from the facts that df; = ) d; and

ool =0 if r#£0. O

The following corollary is similar to results proved in [MY] and a related
result in [ANY], which was presented in the case of torus knots.

Corollary 5.2. If K can be unknotted with a single twist of linking number
I >0, then for all r, O <r <, and for s either 1 or —1

lor/1(K) +s—2sr(l —r)| < 1,

where s = —1 or s =1, depending on whether the twist is left-handed or right.

Proof. Except for the sign of s, this is an immediate consequence of Theorem 5.1.
Suppose that K can be unknotted with a negative twist. In this case, the three-
manifold of interest is Sl32(K ) and in Equation (2), the term 75 = 1. Similarly
for the right-handed twist. U

The next result is similar, only we consider the case of Sg’(K ).

Theorem 5.3. Suppose that S3(K) bounds a four-manifold W built from S'x B3
by adding a two-handle along a curve representing 0 € Hy(S' x S2). Then W
is a definite manifold. For all | >0, and all r, O <r <1,

|Ur/l(K) ‘|‘S| <1,

where s =1 if W is positive definite and s = —1 if W is negative definite.

Proof. In this case, the handle decomposition of W yields a surgery description
of Sg(K) as S&S(Jl, J,) for some link (J;, J;) and some integer s. The surgery

matrix is
0 0
0 s/

Because Hi(S$(K)) is cyclic, we have that s = +1.

Let ¢: H1(S$(K)) — Z; be a surjection. Then the manifold W can be used
to compute o,(So(K),¢). There is no branching surface. In this case, W has
signature sign(s) = £1, depending on whether it is positive or negative definite.
Also, W is built from S x B3 by adding ! two-handles; it follows that each
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eigenspace is 1-dimensional and ]er(W)l < 1. (The computation of the dimension
of the eigenspace follows similarly as in the proof of Theorem 5.1.) Thus, the
definition of the o, yields

07(S3(K). ¢) —s| < 1.
Equation (2) then implies that

. 2:.0:r(l —=r
sign(m) — o,/1(K) — % —s| <1
Here m = 0, so this can be rewritten as
|Ur/l(K) -|-S| =1,

as desired. |

Corollary 54. If K can be unknotted with a single twist of linking number
[ =0, then for all ¢ >0 and all r,

|Ur/q(K) + S| S ls

where s = —1 if it is a left-handed twist and s = 1 if it is a right-handed twist.

Corollary 5.5. The positive torus knot K = T(p,q) cannot be unknotted with a
positive twist of linking number greater than I

Proof. The signature function satisfies o,/;(K) < =2 for all r/l > 1/pq. (A
proof is left to the appendix, Theorem A.4.) If K could be unknotted with a
positive twist of some linking number / > 2, then the terms on the left in
Corollary 5.2 would have absolute value at least three. O

Corollary 5.6. Suppose a knot K can be unknotted with twists of linking numbers
l1,l; > 2 and signs s, and s, respectively. Then one of the following holds:

(1) ged(y,12) =1,
(2) 1 =1, =2 with s, -',é.S'z, or .

(3) 1 =1 and sy = s;.

Proof. Let I;,I; > 2 and ged(ly,l2) = n # 1. Then 1 = ﬁl-lm . %2& We let
ri=1;/neZ for i =1,2. Suppose that K can be unknotted with twists of sign
s; and linking number /; for i € {1,2}. Applying Corollary 5.2, we see that, on

the one hand,

B
o1n(K) =—=s1+ 25111 (lh—r) +m = (—1 +21,° ( p ))Sl + 11,
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for some n; € {0,1,—1}. On the other hand,

n—1
o1/n(K) = —=s2 + 28212 (2 —1r2) + )2 = (—1 +215° ( 2 ))52 + 12,

for some n, € {0,1,—1}. Note that if s; # 5., these two equations imply that
01/»(K) is both nonnegative and nonpositive. In this case, 01/,(K) = 0 and thus
Iy = I, = 2. Now assume that s; = s,. From the formulas for o1/,(K) given
above, we have

—1 —1
S1 (—1+2112n > )—Sl (—1+2!22n : ):772—)’)1.
n n

Simplifying,

n—1 N2 —m 1
B — 2 = €10,4+=,+1¢.
(™ —1") e 251 { 2 }
Multiplying by n”Tzl, we see that
2 2
122—112 € 0,:|: ! ,* i .
2n—1) n-—1

Note that ;”% is an integer only when » = 2 and n—"_-z-l— = 4. It is easily checked
that neither 2 nor 4 is a difference of two squares. Therefore, we have that that

L2—112=0 and I; = I,. O

Example 5.7. The unknot U has U(U) = {27,17,0~,0",1%,2%}. There are no
known example of knots K for which {k=, (k+1)*} C U(K) and k > 1. If such
an example exists, then Corollary 5.2 implies that the signature function alternates
between positive and negative entries at k-roots of unity and (k+1)-roots of unity.
This implies that the Alexander polynomial has multiple zeroes between these
unit roots, and thus we get a bound on the degree of the Alexander polynomial.
This in turn provides a lower bound on the genus of the knot. Since the result
in Corollary 5.2 is stated in terms of a quadratic function, the calculations are
not difficult, and results such as the following appear: If {37,4%} € U(K) then
g(K)>9, and if {47,57} € U(K) then g(K) > 23.

In general, the bound on g(K) is determined by summing quadratic polyno-
mials and is thus given by a cubic equation. Having observed this, that cubic can
be found explicitly by interpolating the first four values. We get the following
result.

Corollary 5.8. If k > 1 and {k~,(k + )T} CU(K), then

2k3 4+ 3k2—-11k + 6
- .

g(K) =
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We note that if one considers pairs such as {k~,(k +2)*} the computation
becomes unmanageable; in this case the k-roots of unity and (k + 2)-roots of
unity do not alternate around the unit circle.

6. Single twist unknotting: Arf invariant

If M is a closed three-manifold and H,(M, Z,) = 0, then the Rochlin invariant
u(M) € Z1¢ is defined as follows. There exists a parallelizable four-manifold W
with dW = M and H;(W,Z;) =0; u(M) is defined to be the signature of the
intersection form of —W, reduced modulo 16.

For knots K C S3 there is an Arf invariant, Arf(K) € Z,, which can
be defined as follows. If K has determinant det(K), then Arf(K) = 0 when
det(K) = £1 mod 8 and Arf(K) = 1 when det(K) = =£3 mod 8. This
is often stated in terms of the Alexander polynomial, using the fact that
det(K) = |AK(—1)|.

Background for these invariants is included in [GAn, Rob] and especially [Gor,
Theorem 2], which, in the current setting, implies

3) p(S2(K)) = n(S2(U)) + 8Arf(K) € Zss,

for n odd. (Note that in [Gor] the invariants take value in Q/Z, in which Z/16
embeds.)

Theorem 6.1. If K can be unknotted with a single twist of linking number |
with | odd, then:

l

+1 mod 8 if Arf(K) =0 € Z,,
+3 mod 8 if Arf(K) =1 € Z,.

Proof. If | is odd and K can be unknotted with a twist of linking number / and
sign s, then SESIZ(K) is a Zj;-homology sphere that bounds a Z,-homology
B*. Thus, u(S? ,,(K)) =0. From Equation 3

@ u(S? ,2(U)) = —8Arf(K) mod 16.

Notice that at this point, all the terms are either 0 or 8 modulo 16, so we can
disregard signs. Furthermore, since u(M) = —u(—M), the sign of the surgery
coefficient on the unknot is not relevant. Thus, at this point, we need to determine
the p-invariant of the space S2(U) for n = [%. Notice that as unoriented
manifolds, this is a lens space: S2(U) =~ L(n, 1).

There is a homeomorphism L(n,1) = L(n,n—1) and L(n,n—1) is constructed
as n/(n — 1) rational surgery on the unknot. As described, for instance, in [Rol,



558 S. ALLEN and C. LIVINGSTON

FiGure 3
Surgery diagram for L(5,1) = L(5,4)

Section 9H], this space can be described as integer surgery on a link, where the
surgery coefficients are determined by a continued fraction expansion of n/(n—1).
For example, we have

5 1
g, P ——
4 1
P
" 1
2
and thus, up to orientation, L(5,1) = L(5,4) has a surgery diagram as shown in

Figure 3.

In general, for L(n,n — 1) there is a chain of n — 1 components, all of
framing 2. Such a surgery diagram provides an even (and thus parallelizable)
four-manifold bounded by L(n,n — 1). An easy argument shows the surgery
matrix is positive definite and thus has signature n — 1. Applying this to the case
of n =12, Equation 4 becomes

8Arf(K) =1?> -1 mod 16.

The value of /> —1 modulo 16 depends only on / mod 8: for odd [, [2—1=0
mod 16 if and only if / = +1 mod 8 and /> —1 =8 mod 16 if and only if
[ = £3 mod 8. O

Corollary 6.2. Let K be the torus knot T(p,q). If p and q are odd and K
can be unknotted with single twist of odd linking number [, then | = =1 mod 8.
If the torus knot T(2p,q) can be unknotted with a single twist of odd linking
number [, then | = +q mod 8.

Proof. The Alexander polynomial of the torus knot is given by
(P2 -1)( -1)

A f) == :

T ) = (T
In the case that p and g are both odd, the evaluation at + = —1 is immediately
seen to be 1. If p is even, then evaluating (179 —1)/(t? — 1) at t = —1 can be

accomplished, for instance, using L’Hospital’s rule and is seen to equal ¢g. [
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Example 6.3. The torus knot 7(2k,2k 4+ 1) can be unknotted with a single twist
of linking number 2k + 1.

7. Summary of Heegaard Floer theory

Heegaard Floer theory associates to each knot K C S a chain complex
CFK*(K) and to each three-manifold Y, a collection of chain complexes
CF*°(Y,s) (see [OS2]). Here s € Spin°(Y), the set of Spin¢-structures on Y.
We will leave the definition of Spin€(Y) to the references; the key fact that
we will be using is that in general there is a correspondence between Spin€(Y)
and H?(Y) = H,(Y) and in the case of ¥ = S3(K), there is a natural choice
for that correspondence. In particular, invariants associated to a given Spin€-
structure, such as d(S3(K),s), can be written as d(S3(K),i), where i € Z
satisfies (—|m| 4+ 1)/2 < i < |m|/2 and thus uniquely represents an element
in Z, . In this section, we will summarize some of the invariants and their
properties.

7.1. Heegaard Floer knot invariants Vj;(K). These are integer-valued invari-
ants defined for £ > 0, defined in [NW]. (We provide further discussion in
Appendix B.) They satisfy the following properties.

e  Vi(K)=Vi+1(K) = Vi(K)—1 for all k > 0.
e Vi(K)=0 for all k > g(K).

In general, these are difficult to compute. There are two cases in which they are
accessible.

Example 7.1 (Alternating knots). The Heegaard Floer complex for an alternating
knot is determined entirely by the knot’s signature, as follows. If K is alternating
and o(K) > 0, then V(K) = 0 for all k > 0. If o(K) < 0, then
Vie(K) = max{| =2&420=0) | 0} for & > 0.

Example 7.2 (Torus knots). The Vi(7(p,q)) are determined by the Alexander
polynomial. See, for example, [BL].

7.2. Heegaard Floer knot invariants v*(K). This invariant has a simple
definition in terms of the Vi (K):

vH(K) =min{n | V,(K) = 0}.

We have g(K) > vt (K) for all knots K.
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7.3. The Upsilon invariant Yx (¢#). The Upsilon function Yk (¢) is a piecewise
linear function defined for 0 <t < 2. Some of its key properties are the following.

e For all ¢t €[0,2] and for all knots K and J, Ygus(t) = Yg(t) + Ys(t).
o Y k(1) =-Tk().
e  For all nonsingular points ¢, the derivative satisfies | T ()| < g(K).

In general, for a particular knot K, the invariants Vi (K) offer stronger
constraints than does Yk . However, the additivity of Tx makes it computable in
cases in which computing the V; might be difficult. The proof of the following
theorem is left to Appendix B since it calls on some details of Heegaard Floer
theory that are not presented in the body of this paper.

Proposition 7.3. Let K be a knot and g = g(K) be the genus of K. Then for
t €[0,2] and s >0,

—gt —2Vs(K)—2s +2g +2 t < 1—%,

gt —2Vy(K) + 2 t>1-2=

—st —2V4(K) < T (K) < {
T

7.4. The Heegaard Floer correction term, d(Y,s). Heegaard Floer theory
associates to each three-manifold ¥ with Spin€-structure s, a rational invariant
denoted d(Y,s), first defined in [OS1]. We will need these invariants in the case
that Y is surgery on a knot. In this case, an immediate consequence of [NW,
Remark 2.10] is the following result, showing that the relevant d -invariants of
surgery on K are determined by the invariants V;(K).

Theorem 7.4. For n >0 and 0 <i <n/2,

2% — @)% —
d(S3(K),i) = @i=n"=n Ly
4n
The main theorems from [OS1] that we will use concerning the d -invariants

are as follows.

Theorem 7.5. Suppose that |H,(Y)| = m and a given Spin€ -structure s on Y
extends to a rational homology ball W having boundary Y . Then d(Y,s) = 0.

There are some subtleties about determining which Spin€-structures extend,
but if we appropriately choose identifications of Spin¢ with Hy(Y) or H2(W),
the key results are easily summarized. In the background we have that a Spin®-
structure on Y extends to W if and only if the corresponding element in H?2(Y)
is in the image of the restriction map from H2(W).
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Theorem 7.6. Suppose that Y = 0W, where H.(W,Q) =~ H.(B* Q). Then
|H1(Y)| = I? for some integer | > 0 and there exists a coset H of an index [
subgroup of Hy(Y) such that d(Y,i) =0 for all i € H.

Corollary 7.7. If S3(K) bounds a rational homology ball, then n = +I? for
some 1. If | is odd, then d(S}(K),kl) =0 for 0 <k <Il—1.If | is even, then
d(S3(K),(k + 3)) =0 for 0<k <I—1.

Proof. A duality argument shows that if a rational homology three-sphere M
bounds a rational homology four-ball X, then |H;(M)| = |ker(H;(M) —
Hi(X))|?; see, for instance, [CG2]. Thus, we write n = [2. It follows from
Theorem 7.5 that for [/ values of i, d(S2(K),i) = 0. It is now an exercise
in arithmetic, using Theorem 7.4, to show that the only integer values occur at
i =kl for I odd and at i = (k + 3)! for I even, O

8. Single twist unknotting: Heegaard Floer obstructions

In [BL], the Heegaard Floer d -invariants of three-manifolds manifolds of the
form SI?Z(K) are studied in the case of algebraic knots. Aceto and Golla [AG]
expanded on this, undertaking an extensive study of the question of, for a given
knot K, which of the manifolds S 3 i (K) bound rational balls. Many of the results
of this section are built from special cases of what appears there: for instance,
their theorem that if S (K) and S2,(K) both bound rational homology balls,
then / and m are consecutive. Our Theorem 8.2 follows immediately, showing
that if 0 <! <m and {{7,m™} C U(K), then [ —m = 1. We will include
proofs of the results we need for two reasons: in our setting the arguments are
fairly straightforward and accessible, and the arguments provide access to stronger
results in the case of the unknotting problem.

We begin with the following, which follows readily from [BL] and is stated
explicitly in the context of unknotting twists by Sato [Sat].

Theorem 8.1. Suppose that K can be unknotted with a negative twist of linking
number | > 0.

o Ifl=2x+1, then for all 0 <k <«,
Vi (K) = (@ —k) (e —k + 1)/2.
o Ifl=28+2, then for all 0 <k <8,

V(k+%)1(K) =B-KPB-k+1)/2.



562 S. ArLLen and C. LIvINGSTON

Proof. Suppose that K can be unknotted with a negative twist of linking
number / > 0. Then Sl32(K) bounds a rational homology ball and we can
apply Corollary 7.7. If | is odd, then / =2a + 1 for some « > 0. Theorems 7.4
and 7.7 imply that for 0 <k < «,

2kl —12)? — |2

Vil (K) = VB
2k -2a—1)2-1
B 8
Mo —&){ax—k +1)
- s ,

as desired.
Similarly, if / is even, then / =28 +2 for some 8 > 0. For 0 <k <, we
have
Qk+3)i—12)2-12
812
Qk+3)-26-22-1
8
. 2k -28-1)2% -1
B 8
_B-kHB-k+1)
2 ki
as desired. L

Ve 1y (K) =

This theorem places unexpectedly strong constraints on the possible values
of /. Recall vt = vt(K) = min{n |V,(K) = 0}.

Theorem 8.2. For a knot K, there are at most two positive values of | for which
K can be unknotted by a negative twist of linking number | . If K can be unknotted
using negative twists of two different linking numbers, then vt (K) = y(y +1)/2
for some y and the two values of | are I} = (1 + /1+ 8v1(K))/2) and
l =1y + 1. If vt(K) is not of this form, there is at most one possible value

for 1, and it is given by the ceiling, [(1+ /1 + 8v+(K))/2)].

Proof. In order to simplify the notation in this proof, we are abbreviating V;(K)
by V; and similarly are writing v*(K) as v™.

For odd 7, if we let k =a —1 we see that Vig_1)2o+1) = 1. Letting k = «,
we have Vy@q+1) = 0. Thus, for / odd,

(@—1DQRx+1) <vt <aa+1).
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For even [, if we let k = —1 we see that Vie-byop+2) = 1. If we let k = B
we see that Vg, 1)28+2) = 0. Thus, we arrive at the inequalities

(,B—%)(Zﬁ+2)<v+5 (,B+%)(2,8+2).

In either case, these are quadratic in @ or B and the bounds on each are
determined using the quadratic formula. Expressing either in terms of / (and
recalling that «, 8 > 0) yields the same inequality:

1+ +/1+8v+ <l<3+\/9+8v+
2 - 2 '

For vt > 0, the difference of these bounds is strictly between 1 and 2. If
vt = 0, then the difference of these bounds is exactly 2. In either case, the
interval can contain at most two integers. The left endpoint is an integer exactly
when vt = y(y + 1)/2 for some integer y. In this case the interval contains
two integers. If v* is reduced by 1, then the right endpoint becomes an integer.
In this case, since the right endpoint is not included in the interval, there is only
one integer in the interval. O

Example 8.3. Let K = 7'(7,8). Then K can be unknotted with a negative twist
of linking number 7, and we have Vo(K) = 6,V7(K) = 3,Vi4(K) = 1, and
V21(K) = 0.

We also have that K can be unknotted with a negative twist of linking
number 8, and V4(K) =6, Vi2(K) =3, Voo(K) =1, and Vog(K) = 0.

Corollary 8.4. For any knot K, there are at most three values of | such that K
can be unknotted with a single positive twist of linking number 1. Similarly, there
are at most three values of | such that K can be unknotted with a single negative
twist of linking number 1.

Proof. There are two possible positive linking numbers for negative twists.
Considering mirror images, we see there are at most two possible positive linking
numbers for negative twists. Finally, there is the possibility of unknotting with a
linking number O twist. O

Thus, for a given knot K, |[/(K)| < 6. This combined with Corollary 5.6
implies the following result.

Corollary 8.5. If [U(K)| = 6, then U(K) = {2~,17,0-,0%,1F,2+).
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Example 8.6. The unknot realizes the unknotting set {27,17,07,0%, 1%, 2%},
The smallest nontrivial example we know of which realizes this unknotting set
is the knot 8. Figure 4 presents two diagrams of 8¢. In the first, drawn instead
as a long knot in R?3, illustrates that it is amphicheiral (consider the rotation
around the origin) and thus we can restrict to positive twists. A crossing change
at the point marked with a square is an unknotting operation, so this provides
{27,0,0",2%} C U(K). The second diagram provides a linking number 1 twist
that unknots 8¢9. The knot 8¢ will reappear in Section 13.

Ficure 4
On the left, the knot 89 drawn as a long knot in R3. On
the right, a ribbon diagram of 8¢ which can be unknotted with
a positive twist on the strands captured by the linking circle.

Addenda. Mohamed Ait Nouh has discovered an alternative proof of the portion
of Theorem 8.2 that states that if K can be unknotted with two positive (or
negative) twists of linking numbers I, > [; > 0, then [, = [; + 1. This alternative
is based on Donaldson’s work in [Don]; as far as we can determine, it does
not yield estimates of the possible values of /;. Here is an outline of the
argument. The knot K#— K is slice, so it bounds a disk D; C B*. Appropriately
adding two two-handles to B* with framings +1 and —1 constructs a manifold
W =~ (CP?# — CP2?)\ B*, with K# — K becoming unknotted in the boundary,
and thus bounding a disk D, C B*. In the union W U B* =~ CP%# — CP2,
the union D; U D, forms a smoothly embedded 2-sphere representing the class
(I1,12) € Hy(CP2%#— CP?). Luo [Luo] applied Donaldson’s results to prove that
this in turn implies the /; and /, are consecutive.
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9. Further Heegaard Floer obstructions

Standard modifications of surgery diagrams of three-manifolds, as described,
for instance, in [Rol, Chapter 9H], permit us to find two contrasting surgery
descriptions of a specific manifold built from a knot K that can be unknotted
with a single negative twist of linking number /. That is, ¥ = S;”Q +1(K) has a
surgery description as surgery on a link (U, K*), where —1-surgery is performed
on U which is unknotted and has linking number / with K* and 1-surgery is
performed on K*, which is also unknotted. (This operation is sometimes referred
to as blowing-up a —1.)

We can modify the surgery description of Y again by blowing-down the +1-
framed K*: as a consequence, ¥ can be described by (—/? — 1)-surgery on a
second knot, which we denote by J. The following lemma is proved by keeping

track of the meridian of K as the blow-up and blow-down are performed.

Lemma 9.1. If K can be unknotted with a single negative twist of linking number
[, then there is a knot J and an orientation-preserving homeomorphism from
Sh LK) 1o S2,,_,(J). On homology, this homeomorphism carries the first
homology class represented by the meridian of K to | times the first homology

class represented by the meridian of J.

To compute d -invariants, we will want to reduce integers modulo /% + 1
appropriately.

Definition 9.2. For a,n € Z with n > 1, we define a, to be the least nonnegative
number for which a —a, is divisible by n. We define

Jrn—l n—1
a — .
2 % 2

We leave it to the reader to check that this can be thought of as a cyclic
distance in the following sense. If the metric on the unit circle in C is scaled so
that the circumference is n, then [a], is the geodesic distance from 1 to e#27/",

la], =

Example 9.3.
e [0ls4=0 [lla=1 [a=2 [la=1.
e [0s=0 [lls=1 [2s=2 [3s5=2 [4s=1.

Theorem 9.4. If K can be unknotted with a single negative twist of linking
number [, then there exists a knot J such that

d(S3, (K),i) = d(S%_ (D). [li + Blzyr)
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for all integers i satisfying 0 <i < IZT'H Here B =0 if | is even and B = [2%
if | is odd.

Proof. The only issue that requires proof is the term J that appears. The issue
arises because of how the Spin€ -structures are parameterized with integers. In the
case that n = [? + 1 is odd there is a unique Spin-structure on S° Z,2_,(K) and
this determines which Spin€ -structure is denoted so. However, if n is even, there
are two Spin structures, one of which corresponds to so and the other to sy,
where k = %ﬂ There is a simple means to rule out one of the possibilities: if
n=1%2+1 is even, and B =0, then

d(Spyy(K),i) # d(S25o_,(J), [li + Bli24y) mod Z. O

It is simpler to have both surgery coefficients positive, so we consider the
mirror image of J and use the symmetry of the d-invariants under conjugation
to conclude the following.

Theorem 9.5. If K can be unknotted with a single negative twist of linking
number 1, then there exists a knot J' such that

( 12+1(K) ) ( [2+1(J) [ll +ﬁ]12+1)
1

l +1 _ . ¢ _ 12+
for all integers i satisfying 0 <i < . Here B =0 if | is even and p = —5—=
if | is odd.

We can now apply Theorem 7.4 to get the following result.

Theorem 9.6. Suppose that K can be unknotted with a single negative twist of
linking number 1 and n =1? + 1. Then there exists a knot J’' such that for all
i satisfying 0 <i <n/2,
(2i —n)?> —n 2V (K) = _@lli + Bln = n)? —
4n 4n
Here B =0 if |l is even and B =n/2 if | is odd.

n
+ 2V[li+ﬂ]n (JI)‘

Rearranging the terms of this expression, we have:

Corollary 9.7. Suppose that K can be unknotted with a single negative twist of
linking number 1 and n = 1? + 1. Then there exists a knot J' such that for all
i satisfying 0 <i <n/2,

L_i_[itBh i + Bl

Vom0 = g =5 = gt e L v

Here B =0 if | is even and B =n/2 if | is odd.
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To apply this corollary, we use one of the basic properties of the V; invariants
described in Section 7.1 to conclude:

3) 0=<V({J)-Via(J) =1
Let n =12 + 1 and define

L@ e i ji)?

o i j@ | i* n
j@) = [li + Bl» and s(i) = it A +2n+ - +3
so that, for each i € {0,...,n/2}, we have
(©) Vi) = s(i) - Vi(K).

If j(i) <n/2, we also have

(7) Viiy+1(J") = 5@’ — Vir(K)

for some i’.
Substituting Equations (6) and (7) into Equation (5) and rearranging, we get:

s(i’) —s@) < Vi(K) — Vi(K) <s(') —s@) + L.

This process yields n/2 inequalities. Due to Equation (5), some of these
inequalities will be redundant.

Example 9.8. Consider the case of / =0 and i = 0. Then Corollary 9.7 implies
that Vo(J') = —Vp(K). Since these are non-negative, we have the following
theorem, first proved by Sato [Sat].

Theorem 9.9. If K can be unknotted with single negative twist of linking number
| =0, then v (K) =0.

Example 9.10. Consider the case of / = 4. We have the following table of values.

1
i)y o 4 8 5 1 3 7 6 2
si) 4 2 1 1 2 1 0 o0 1

We conclude that if a knot K can be unknotted with a single negative twist
of linking number / = 4, then the following inequalities must be satisfied. (The
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redundant inequalities have been removed.)

1 = W(K) - Va(K) =2,
Va(K) — Va(K) <1,
1 < Vi(K) - V5(K) <2,
Vi(K) = V3(K) <1,
V3(K) = V7(K) <1,
Va(K) — Vs(K) = 1.

Example 9.11. In the case of [ = 7, a similar computation yields 23 inequalities
after 6 redundant ones have been removed. (This is a tedious computation which
we omit.) We now compare this to the values given by Theorem 8.1: if a knot
K can be unknotted with a negative twist of linking number / = 7, then

Vo(K) = 6, V7(K) = 3, Via(K) = 1, Va1 (K) = 0.

Note that this implies that V;(K) = 0 for all i > 21. Imposing these restrictions
reduces our initial list of inequalities to a list of 14 inequalities (5 of which consist
of a single sub-inequality). This indicates that, for a fixed linking number /, the
construction may yield finer information than Theorem 8.1. For example, the
inequality

1 < Vo(K) —Vis(K) <2

remains, while Theorem 8.1 tells us that
1 <W(K)<3 and 0=<Vie(K) =<1,
implying that
0 < Vo(K) —Vi6(K) <3,

a broader range.
Consider the knot K = T'(3,17). One can compute the following table of V;
invariants.

i 0 1
Vi(K) 6 5

[, v
[, O]
~ B

7 8 9 10 11 12 13 14 15 16
3 3 3 2 2 2 1 1 1 0

B W
A

We see that Theorem 8.1 cannot rule out a negative twist of linking number 7,
while our work above does:

VQ(K) = V16(K) = 352,

Furthermore, a negative twist of linking number 7 is not ruled out by Corollary 5.2
(signature obstruction) or Theorem 6.1 (Arf obstruction).
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10. Heegaard Floer obstructions related to the Upsilon invariant

As we have seen, the invariants V;(K) provide strong obstructions for a
given integer [ to satisfy ! € U(K). However, these invariants can be difficult
to compute; for instance, they do not behave additively under connected sums
of knots. In this section, we will apply Theorems 8.1 and 8.2 along with
Proposition 7.3 to determine bounds on / for which the specific computation
of the ¥, would be difficult.

Example 10.1. Consider the knot K = T(2,25)—T(3, 8). This knot has t(K) =5
and g4(K) =7 (see [Fel]). Since 7(K) < vT(K) < g4(K) (see [HW]), Theorem

8.2 implies
1+ /14 8t(K) <1< 34 9+ 8g4(K)
> =

2

and we have 4 <] <5.
From Theorem 8.1, we know the following:

(8) Ifl =4, then V2 =1,Vs =0.
9 Ifl] =5, then Vy=3,Vs=1,Vi0=0.

Proposition 7.3 yields a list of restrictions on the Upsilon function of K:

—6¢ = 1/2,
o If | =4, then Yg(r) > max{—2r —2,—-6t} = =V
—2t—-2 t=>1/2.
—10¢ t£2/5,
o Ifl =5,then Yk(¢) > max{—6,—5t —2,—-10t} = -5t -2 2/5<t <4/5,
—6 t>4/5.

On the other hand, Upsilon functions of torus knots are easily computed [OSS].
We have that

—12¢ 0<t<1, —t—4 2/3<t<]l,
and Y73 () =

T 1) =
raani {12:—24 1<t<2, f—6  1<t<4/3,

and so
—5t 0<t=<2/3,

-1t +4 2/3 =<t
11: —-18 1=<t=<4/3
5t —10 4/3 <t <2.

Y1@2,25)-13,8 1) =
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Comparing this to the restrictions above, we have an obstruction when ¢ = 1 for
both / =4 and / = 5. We conclude that the knot K = 7(2,25)—T(3,8) cannot
be unknotted with a negative twist of linking number [ > 0.

11. Obstructions from the Heegaard Floer homology of
double branched covers

In Section 4 we explored how the linking form on the two-fold branched
cover of a knot K provides obstructions to unknotting with a single twist. For
a rational homology sphere M, the Heegaard Floer correction term d(M,s) can
be thought of as a Q-valued lift of the value of the linking form lk(x, x) € Q/Z
for x € Hi(M) after an appropriate identification of Spin® -structures on M with
Hqi(M). Thus, as we now describe, when the linking form obstructions vanish,
it is possible for the lifted invariants to provide non-trivial obstructions.

The needed result from Heegaard Floer theory is the following.

Theorem 11.1 ([OS1, Owe]). Let Y be a rational homology three-sphere which
is the boundary of a simply-connected positive definite four-manifold X with
|\H%(Y;Z)| odd. Let the intersection pairing of X be represented in a basis by
the matrix Q. Define a function

mg:Z"/Q(Z") - Q
by

T y—1lg _
T2 E e e Cuanc). el = o

where Char(Q) is the set of characteristic covectors for Q. Then there exists a
group isomorphism

mg(g) =min{

¢:Z"/Q(Z") — Spin‘(Y)
with
mo(g) = d(Y,¢(g))
and  mo(g) = d(Y.$(g)) (mod 2)

for all g € Z" ] Q(Z").

Note that Char(Q) corresponds to the set of first Chern classes of Spin¢-
structures for X and we are using the identification of Spin¢ -structures on Y
with H?(Y). We will also use the fact that

Char(Q) = {¢ = (§1.&2.....&) € Z" | & = Qii}.
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According to [Owe], to compute m g it suffices to consider characteristic covectors
such that
—0ii <& < Qi —2,
which, for forms of rank two, makes the computation fast, even for relatively
large values of the Q;;.
To illustrate the application of these results to the untwisting problem, we
begin with a basic example.

Example 11.2. Suppose a knot K satisfies o(K) = —2 and det(K) = 3; for
instance the trefoil knot or any knot with the same Seifert form. Suppose that,
like the trefoil, K can be unknotted with a negative twist of linking number 2.
Corollary 4.3 implies that M>(—K) bounds a simply-connected, positive definite
four-manifold N with b,(N) =2 and intersection pairing

o= 2)

with determinant 3. There are only two such matrices:

(o) (52)

These differ by a change of basis, so we consider only Q = (21). Then we
have the quotient map ¢: Z2 — Z2/Q(Z?) =~ Z/3Z =~ H?*(Y); the cosets of
the kernel have representatives go = ($), g1 = (), and g2 = (9). To compute
mg we consider the subset of characteristic covectors

() (5)-6) (2]

A quick computation shows that only (§) is in the coset of (J), only (3
is in the coset of (), and (7?) and (%) are both in the coset of (). We
compute that
1 1
mg(go) =—5 and  mg(g1) =mg(g2) = ¢
Thus Theorem 11.1 implies that ¢ satisfies

d(Z(-K), ¢(g0)),

v

v

d(Z(=K),9(g1)),

v

D= A= N =

d(Z(=K), ¢(g2))-
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Note that ¢(go) necessarily represents the Spin-structure on the two-fold branched
cover. In the case where K is the trefoil, £(—K) = —L(3, 1) and the three bounds
are sharp.

Manolescu and Owens [MO] computed that for the untwisted right-handed
Whitehead double of the trefoil, J = Wh™(T(2,3),0), the d-invariant of the
Spin-structure on its two-fold branched cover is —4. This knot also satisfies
Ay(t) =1, and thus det(J) = 1 and o(J) = 0. Thus, the calculation shows that
T(2,3)#J cannot be unknotted with a negative twist of linking number 2, and
this cannot be obstructed by any classical knot invariant.

Example 11.3. Consider the knot K = 95. This is a two-bridge knot with
o(K) = =2, det(K) = 23, and X(K) = L(23,17). We will show that 2~ ¢ U(K).
Suppose that K could be unknotted with a single negative twist of linking number
2. Then Corollary 4.3 implies that X(—K) bounds a simply-connected, positive
definite four-manifold N with b,(N) =2 and intersection pairing

o5 2)

with determinant 23. Up to change of basis, there is only one such matrix:

12 11
Q=(11 12)'

Note that this matrix is not ruled out by the methods of Section 4. We have
the quotient map v : Z? — Z2?/Q(Z?) =~ Z/23Z =~ H?*(X(—K)); the cosets of
the kernel have representatives g; = (9) for 0 <i < 22. We compute that, in

particular,

19

mo(ga) = — .

In [OS1], Ozsvéath and Szabé gave a formula for computing the d-invariants for
—L(p,q). We find that the set of d -invariants for ¥ = ¥(—K) = —-L(23,17) are

4_694_69_%,_E9 E5E9 E’—E’_E’_E’ E9Es 4_"6's
% 11 1 29 73 41 25 25 41 73}

{29 1 11 7 1349 9 15 1 15 9 49 13

46° 46’ 46° 46’ 46° 46" 46 46 46 46

Among these, the only value which is congruent to —32 modulo 27 is 2. Thus

46 46
any isomorphism ¢ such that

d(Y.¢(g4)) = mo(gs) (mod 2)
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would not satisfy
d(Y.¢(g4)) < mo(gs).

By Theorem 11.1, we have reached a contradiction. Therefore, K = 95 cannot be
unknotted with a single negative twist of linking number 2.

12. Obstructions for alternating knots

A knot is called (Floer homologically) thin if its knot Floer homology
is supported on a single diagonal. A knot K is called o-thin if its knot
Floer homology is supported on the —o(K)/2 diagonal. Alternating and quasi-
alternating knots are o -thin. In [Pet], Petkova showed that the minus version of
the Heegaard Floer knot complex, CFK™ (K), of a thin knot K is completely
determined by its Ozsvédth-Szabé tau invariant and its Alexander polynomial. For
a o-thin knot, CFK™(K) is determined by o(K) and its Alexander polynomial.
It follows that for each thin knot K, its V;(K) invariants are equal to those of
some T(2,n) torus knot, determined by t(K) (or o(K) in the case of o -thin).

Lemma 12.1. If K =T (2,2k + 1), then

.u_|_.;.J if k is even and 0 <i <k,

k
2
Vi(K) = q8L —[L]  ifk is odd and 0 < i <k,
0 ifi>k.

Proposition 12.2. Suppose that K is a thin knot. If K can be unknotted with a
negative twist of linking number | > 0, then | € {1,2,3, 4}.

Notes.

(1) A similar result appears in [AG, Proposition 5.6] using methods related to
those of Section 8. Ruling out the case of | = 5 requires the methods of
Section 9.

(2) Thanks are due to Linh Truong for pointing out that Proposition 12.2 applies
generally to thin knots, rather than just the subset of alternating knots.

Proof. The proof follows from the following observation: Lemma 12.1 implies that
for any knot K, the values of V;(K) decrease linearly as a function of i, while
Theorem 8.1 implies that values of V;(K) decrease quadratically. More precisely,
fix a linking number / > 0. From Lemma 12.1 we have that, for i > 0 and
i+l =k,

/ [
(10) Vi(K) — Visa (K) € {M | M ; 1}.
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From Theorem 8.1, we have that if / is odd, j >0, and j + 1 < I_Tl, then

I-1
Vit(K) = Vji1(K) = ———J.
If, in addition, jI + [ <k, then we can apply Equation (10) to see that j = 0.
This implies that Theorem 8.1 can determine at most 2 nonzero V;(K) values.
Thus [ € {1,3,5}. We repeat this process when / is even. From Theorem 8.1, if
[ iseven, j >0,and j+1< 1%2, then

-2
Vo B =V (K) = ===

If, in addition, (j + 1)/ +1 <k, then we can apply Equation (10) and reach a
contradiction for all values of /.

Thus, if Theorem 8.1 determines at least two nonzero V;(K) values, or if it
determines one nonzero value in addition to determining that V;(K) = 0, then it
must be that / = 1, 3, or 5. The remaining cases are when Theorem 8.1 determines

(1) one nonzero value and one V;(K) =0 where i > k.

(2) only one value.

In the notation of Theorem 8.1, these are the cases where o, = 1 or 0
respectively, or / = 1,2,3, or 4. Therefore we must have that / € {1,2, 3,4, 5}.

Note that if / = 5, then Theorem 8.1 implies that Vy(K) = 3 and Vs5(K) = 1.
Comparing this to Lemma 12.1, we conclude that V;(K) = V;(T(2,13)). In this
situation, a computation similar to that in Example 9.11 yields a contradiction. Thus
a thin knot cannot be unknotted with a negative twist of linking number 5. [

Combining Proposition 12.2 with the results of the previous sections, we can
draw conclusions about the set /(K). The following two results are stated for
alternating knots but hold (with identical proof) for o -thin knots, as well.

Theorem 12.3. Suppose that K is an alternating knot. Then U(K) is a subset
of one of the following, determined by o(K).

o(K)
0 {2=,1-,0—,0%, 1+, 2%}
+2 {17,0F,2% 3%}
+4 {17,3%)

+6, +8 {17, 4%}
> 8 {17}

< -8 {1t}
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Example 12.4. Here we show that K = 12a369 cannot be unknotted with a single
twist. We first note that K is alternating with o(K) = 6 so that U(K) € {17,4%}.
Because Arf(K) = 1, Theorem 6.1 implies that 1= ¢ U(K). If 4T € U(K),
then Corollary 5.2 implies that |01 /4(K) —5| < 1. However, 071/4(K) = 2 and
thus U(K) = @.

Proof of Theorem 12.3. Suppose that K is an alternating knot. Let k = —o(K)/2.
Then for each i, we have that V;(K) = V;(T(2,2k + 1)) and, because —K is
also alternating, V;(—K) = V;(-T(2,2k + 1)) = V;i(T(2,2(—k — 1) + 1)). Note
that if K can be unknotted with a twist of linking number /, then —K can be
unknotted with an opposite twist of the same linking number. From Lemma 12.1,
we know that

k if k >0,

TQ2,2k+ 1)) =
R ) {0 if k<0.

In the proof of Theorem 8.2, it is shown that if K can be unknotted with a
negative twist of positive linking number /, then

1+ VIF8FE) _, _ 3+ /9T 8F(K)
2 = 2 ‘

In particular, this implies that if v*(K) > 7, then [ > 4. This contradicts
Proposition 12.2 and so we conclude that k < 6. Similarly, by considering
vt(=K), we conclude that k > —6 for K to be unknotted with a positive twist
of positive linking number. Applying this bound for each value of k yields a
short list of possible values for both positive and negative twists. Factoring in
the signature function obstructions from Section 5 (and recalling that, with our
conventions, ¢(K) = 01/2(K)), further restricts the lists. In particular, if o(K) > 2
or o(K) < -2, then 0F ¢ U{(K). We are left with the following possibilities:

e If k=0, then U(K) C {27,17,07,0%, 1F,2%}.
e If k =F1, then U(K) C {1F,0F, 2%, 3%},

o If k =7F2, then U(K) € {1T,3%}.

o If k = F3, then U(K) C {1F,3%, 4%},

o If k = F4, then U(K) C {1T, 4%},

o If k =F5, then U(K) C {1T, 4%},

o If k = F6, then U(K) C {1F, 4%},

o If k <-6,then U(K) C {17}.

e If k>6, then U(K) C {IT}.
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Finally, combining Theorem 8.1 with Lemma 12.1, we can rule out 3% for k = F3
and 4% for k = F5, F6. O

For large signature, Theorem 6.1 implies a slightly stronger result.

Corollary 12.5. If K is an alternating knot with |o(K)| > 8 and Arf(K) =1,
then K cannot be unknotted with a single twist.

13. Ait Nouh’s linking numbers +1 examples

The following construction was discovered by Ait Nouh. Figure 5 presents two
illustrations of the knot 6;. Blowing down the —1 in the diagram on the left or
the +1 in the diagram on the right has the effect of removing the clasp in the
evident ribbon disk (while adding a twist to the ribbon). In both cases, the effect
of removing that clasp is to unknot 6;. Thus, we see that 6; can be unknotted
with either a positive or negative twist of linking number 1.

A similar approach applies for any ribbon knot which is unknotted by removing
a single clasp in a ribbon disk. An examination of ribbon diagrams for ribbon
knots presented in [Kaw] reveals that this can be successfully applied for the knots
61, 820, 946, 10140, and 10;53. This method can be expanded to some other ribbon
knots with nice diagrams. A special case of this was discussed in Example 8.6
and illustrated in Figure 4 (cf. Page 564) where we showed that the knot 8y can
also be unknotted with either a positive or negative twist of linking number 1.
This resolves the remaining unknown cases for the ribbon knot 8y and implies
that U(89) = {27,17,07,0", 1%, 27},

FIGURE 5
Ribbon untwisting
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14. Unknotting with a single twist

We now return to the original question posed in this paper. Given a knot K,
is it possible to unknot it using a single twist? In applying our results to any
particular knot, the analysis of the signature constraints and Arf invariant is a
straightforward computation. For an alternating knot, computing the Heegaard
Floer invariants is also straightforward, while in the non-alternating case it can be
more difficult. There is no all-encompassing statement that provides a simply stated
single test that implies U(K) = @. In this section we make three observations:
(1) For low-crossing number knots, it is difficult to rule out U(K) = @; (2) it
is fairly easy to construct large families of knots for which U(K) = &; and
(3) in a non-formal sense, it is our expectation that generically most knots have
U(K) = @. Stronger statements in the case of alternating knots are possible; these
represent a fairly special case that can be addressed by the methods of Section 12
(see, for instance, Corollary 12.5).

14.1. Low-crossing number knots. The results summarized in Table 1 concerning
prime knots with 8 or fewer crossings are not encouraging with respect to finding
reasonable criteria that imply U (K) = @: of the 35 knots, 22 can be unknotted
with a single twist and the remaining 13 are unknown. On close examination, this
lack of examples is not so surprising and is specifically the result of the knots
having so few crossings. First, for low-crossing number knots, having unknotting
number 1 is fairly likely: in the case of 8 and fewer crossings, 18 are unknotting
number 1. As the crossing number increases, the proportion of unknotting number 1
knots decreases. Second, for low-crossing number knots the genus is also small,
which implies that the signature function and Heegaard Floer complex have fairly
simple structure. The obstructions we have developed become more effective as
these become more complicated.

To further indicate the limitations of working with low-crossing number knots,
we note that among prime knots of 12 or fewer crossings, there is only one
example that can readily be shown to have U(K) = &, and that is the the torus
knot 7(2,11), for which the signature and Arf invariant rule out all possible
linking numbers. If in addition we consider obstructions arising from Heegaard
Floer theory, then we can show that U/(K) = @ for only three additional prime
knots of 12 or fewer crossings: 12ase9, 12a716, and 12a1229.

14.2. Building examples. To illustrate the simplicity of building examples for
which U(K) = @, we provide one example, K = T(2,7) #37T(2,—5), which
can be addressed using the Arf invariant and the conditions on the signature
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function. We leave the explicit calculation of the invariants and details of the use
of Theorem 5.1 to the reader.

e  We have that Arf(7(2,7)) =0 and Arf(T(2,-5)) =1, so Arf(K) =1 € Z,,
ruling out linking numbers [ = +1.

o 0y/2(K) =6, ruling out all cases of / even with the exception of / = 4.
o 01/4(K) =2, ruling out [ = 4.

e 01/3(K) =8, ruling out / = £3.

e 0y/5(K) =38, ruling out / = £5.

e For all /, Theorem 5.1 implies that if K can be unknotted with a linking
number [ twist, then |01 /I(K)| > 21 — 2. For the knot in question, this is
easily shown to be false for / > 6.

14.3. Generically, 4(K) = @. Our remarks here are speculative, but it is worth
observing that all of our results point to the likelihood that by any reasonable
measure, for most large crossing number knots one has U(K) = @.

First, if one considers all knots K of crossing number N, the expected value
of vt (K) and of o(K) most certainly grows as a function of N . By considering
Seifert’s algorithm to analyze the genus, the growth rate probably cannot be
greater that N€ for some positive € < 1, and perhaps it is even logarithmic, but
one can safely predict that it goes to infinity.

Given that o(K) is large, in general one does not expect to have a linking
number / = 0 unknotting twist, which requires |o(K)| <2 by Corollary 4.4.
Given that vT(K) is large, the possible values of a linking number for any
unknotting twist are restricted to at most two possible values for each direction
twist by Theorem 8.2.

Finally, for a given value of /, Theorem 8.1 places very strict constraints on
V.(K) for I values of r. Similarly, by Corollary 5.2 the value of o,/;(K) is
highly constrained for / — 1 values of r. To say the least, the expectation is that
it would be very rare for all the constraints to be satisfied simultaneously.

15. Comments and Questions

(1) A census of prime knots with up to eight crossings, summarized in Table 1,
reveals there are only ten such knots K for which U/(K) is completely
known. The first example with unknown values is U/(6;).

(2) Our results are based primarily on knot invariants that are related to four-
manifolds in some way. As of yet, three-manifold techniques have provided



3)

(4)

)
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little access to solving the problem of determining /(K) for individual knots.
On the other hand, they seem well-suited for addressing more geometric
questions, for instance related to primeness, and for working with families of
knots; some examples of this are included in [ANMMI, ANMM2, GoS, Mot].

As is evident from our work here, the case of linking number one
is especially challenging. This challenge is related to the difficulty of
finding invariants related to homology three-spheres, as opposed to rational
homology spheres. Recent years have seen seen the development of a
host of powerful new approaches to studying homology spheres and knot
concordance. As of yet, the applicability of these methods to the unknotting
problem is speculative, but we mention three of these notable advances:
Manolescu’s Pin(2) concordance invariants [Man], Manolescu—Hendricks’s
involutive invariants [HM], and Hom-Levine-Lidman’s Heegaard Floer
invariants of knots in homology spheres [HLL]. We expect that a continued
study of the linking number one problem will bring new focus on particular
problems related to knots in homology three-spheres.

Ohyama’s theorem [Ohy] states that any knot can be unknotted with two
twists. A closer look at his construction shows that the linking numbers are
consecutive integers. With more care it can be seen that Ohyama’s proof
yields the following.

Theorem 15.1. For every integer | > 0 and knot K, it is possible to unknot
K with a pair of oppositely signed twists of linking numbers | and [ + 1.

The results concerning signatures presented in this paper can be generalized
to show that if the / + 1 in the statement of the theorem is replaced with
[ +k for any k > 1, then it is no longer true. On the other hand, for a
fixed pair (/1,/2), we are unable to either offer a generalization or find an
obstruction. For instance, the following statement is possibly true: Every knot
K can by unknotted by a pair of oppositely signed twists of linking numbers
3 and 5. (Here, 3 and 5 could be replaced by any relatively prime pair.)

The problem of determining whether a given knot has unknotting number
one has been resolved for all prime knots of 10 or fewer crossings. There
are 27 knots of 11 or fewer crossings, out of a total of 801 knots, for which
it is unknown. Note that saying that a knot K has unknotting number one
implies that {0%,2F} € L/(K) (with one of the two choices of sign) but not
conversely. A good but lengthy project is to review the calculations that went
into determining the unknotting numbers to identify knots of low crossing
number for which the question of whether 0 € U/(K) is unresolved.
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A. Signatures of torus knots

In [Lit], Litherland presented a formula for the signature function of a torus
knot, generalizing a formula of Goldsmith [Gol] for the Murasugi signature.
Figure 6 illustrates Litherland’s description of the signature function of 7'(p,q)
in the case of p = 5,9 = 7. We have changed the scale; Litherland worked with
a unit square, and we have modified his coordinates so that we can work with
points in the integer lattice. In a rectangle with vertices (0,0), (¢,0), (0, p),
and (q, p), line segments are drawn: one from (gx,0) to (0, px), and the other
from (gx, p) to (g, px). According to [Lit], the signature at w = e?™'* is given
by counting the number of lattice points interior to the two triangular regions
(C; and C;) and subtracting the number of lattice points in the interior of the
remaining region.

In the illustration we have x = 0.6 and find o0.(T(p,q)) =3+ 1—-20 = —16.
1

By symmetry, we can focus on the range 0 < x < 5

It will be simpler to work with negative signature, which we denote

EP,Q (.X) = —0x (T(p’ q))

Fix a choice of p, ¢g. To avoid the case that lattice points lie on the side of the
triangles, we let S, , denote the singular set {#}iez- We call the lower and
upper triangle counts #C; and #C,, and the remaining count by #C3, so that
for x € Sp 4, #C1 +#Cy +#C3 = (p — 1)(g — 1). We then have

Theorem A.l (Exact count). For x € Sp 4,

(1) 0pq(x) = (p—1)(g = 1) = 2(#C; + #C3).

FIGURE 6
Signature count
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The simplest estimate for the signature function results from a consideration
of areas. The three (blue) shaded squares in Figure 6 illustrate that the count #C,
is the sum of the areas of squares, and this sum approximates the area of the
lower triangle. In general, if we approximate the counts, #C; and #C,, as well
as the count of the lattice points in the complementary region, by the areas of
the regions, we arrive at the following.

Theorem A.2 (Approximation). For x € Sp 4,
(12) Tp.a(x) & pq — pgx’ — pg(1 — x)(1 — x) = 2pgx(1 - x).

We need to improve this to find a precise lower bound for the 7, ,4(x). To
do so, we can subtract the areas of the two triangles from the total number of
lattice points, (p — 1)(g — 1), yielding the next result.

Theorem A.3 (Lower approximation). For x € Sp 4,
Tp.q(¥) > (p— D@ —1) — pgx* — pg(1 — x)(1 - x).

Theorem A.d. For all x €[0,1], if 0 < x < o then Tpqa(x) = 0. If 5- <x <3
then 0p4(x) > 0.

Proof. Notice that to prove this theorem, we need to only verify it for points
x & Spq. The value of G, 4(x) for x € Sp, is given as the two-sided average
at nearby points. If an integer-valued function is positive at almost all points in
an open interval, the two-sided averaged function is positive everywhere on the
interval.

Denote the hypotenuses of triangles C; and C, by /; and [, both of which
depend on the choice of x. As x incréases from 0 to 1, the value of Tp4(x)
increases when a lattice point lies on /; and it decreases when a lattice point
lies on [/;.

Step 1: The first positive jump in o,,(x). The function on the plane
¢: (i,j) = ip + jgq is constant on each line /,, taking value pg(l + x) on
the general line and, in particular, taking value pg on the line when x = 0. To
find the first positive jump, we must find the smallest x > 0 such that the line /,
contains a lattice point (i, j) in the rectangle for which ¢(i, j) > pg. We show
that occurs at x = —-.

We begin by using the fact that p and g are relatively prime: there exists
an r satisfying 0 <r < ¢ such that rp +sg = 1 for some s. A simple algebraic

argument shows that —p < s <0.
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Consider the point (i, j) = (r, p + s). Notice that this is in the interior
of the rectangle. We have ¢(i,j) = rp+ (p + s)g = pg + 1. This is clearly
the least possible integer value of ip + jg that is greater than pg. Writing

pq+1= pq(l+ pl—q) shows that the corresponding value of x is ﬁ, as desired.

Step 2: The first negative jump in o, ,(x). This case is simpler. It is evident
that the first negative jump corresponds the value of x for which the line /4
contains the lattice point (1,1). It is a simple algebra exercise to show that the
value of x is %+ %.

Step 3: 7,4(x) > 0 for x > % + %. The proof of the theorem is completed

% e I % The lower
bound given in Lemma A.3 is quadratic, increasing on [0, %] If we denote that
lower bound by B, ,(x), we need to check that § = ,Bp,q(% + %) > (0. A direct

substitution and simplification yields

by showing that Gp,q(x) > 0 for all x satisfying - +

8=p+qm2(§+%)—3.

If we assume that p > 3 and g > 5, then we have

P q 3 1 9 5 7
8> -2(=+=<)-3=-= —q—3>=-4+--3=—.
= pta =25 +3) AT T EE TS 25
'The remaining cases 7(2,k) and T(3,4) can be computed explicitly. l

B. Basic definitions related to Upsilon, Y (K), and proof of
Proposition 7.3

Let K be a knot and let C = CFK™ (K) be the Heegaard Floer knot complex
for K. This is a graded chain complex; the grading called the Maslov grading. The
Maslow grading of an element is denoted gr(x). The complex has two increasing
filtrations. One is called the Alexander filtration, with the filtration level of an
element x denoted Alex(x). The other is called the algebraic filtration, with the
filtration level of an element x denoted Alg(x).

The invariant Vs can be defined to be

Ve(K) 1= —% max{gr(x) | x € Ho(C{i <0, <s})

and  Ukx +£0 e H,(C) for all k}
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where C{i < 0,j < s} is the subcomplex of C consisting of elements of
Alexander filtration at most s and algebraic filtration at most 0. This definition
is equivalent to that given in [NW].

In [OSS], Ozsvith, Stipsicz, and Szab6 defined the knot invariant Upsilon
Yk (t) for t € [0,2]. Suppose that B is a bifiltered basis of CFK®(K). In [Liv1],
it is shown that

Yk(t) = —2-min{r | Ho(F:,;) — Ho(CFK*(K)) is surjective}

where F;, is the subcomplex generated by the set

{x e B‘(%Alex(x) + (1 - -;-) Alg(x)) < r} .

Diagrammatically, the subcomplex JF;, is represented as the lower half-space
with boundary line

! i+ 1 i Py r

2/ 2) ="

Note that sums of elements in this half-space are in F,,, but might not have
bifiltration levels satisfying the given constraint.

B.1. Relating Y (K) to V;(K).

Proposition B.1. Let K be a knot and g = g(K) be the genus of K. Then for
t €10,2] and s >0,

—gt —2Ve(K)—2s +2g+2 ¢
gt —2Vs(K) +2 t

1

—u—MMMSTxms{ =T
>1-

NP

L
.

Proof. Fix s > 0 and abbreviate V (K) by V;. The maximum grading of a
generator of homology in C{i <0, < s} is —2V;. Thus the maximum grading
of a generator in C{i < V;—1,j <s+ Vs —1} is —2 and there is a generator
of grading 0 in C{i < Vi,j <s+ Vi}.

In particular, if the complex C{i < Vs,j < s + V;} contains a grading 0
generator and the value of r is

r=(%@+wy+0—%)%)

then JF;, contains a generator of grading O and the map Ho(F:,) —
Ho(CFK®*°(K)) is surjective. Thus,

Tk (1) > -2 (é (s+ Vo) + (1 — %) Vs) = —2V; —1s.
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On the other hand, since C{i < Vy—1,j < s+ Vs — 1} does not contain a
generator of grading 0 (the maximum grading here is —2), for each ¢ € [0,2],
the minimum r-value in the definition of Yk (¢) is such that the following system
of inequalities has a (nonempty) solution

Li+(1=%)i=<r (A)
(13) —FR i ~L5E, (B)

where g = g(K) is the genus of the knot K. Combining inequalities (13)(B)
and (13)(C), we have that if i > Vi — 1, then

t t t
—j+(1—5)i=-2-(j—i)+i>—§g+Vs—1,

t LY. t . : !
5}—!—(1—5)1=(5—~1)(j—z)+j>(—2-—1)g+s—|-Vs—1.

Therefore, if the system of inequalities is to have a solution, either

t
(14) r>—cg+ Vi1
or
(15) r>(%—l)g+s+Vs—l.

This implies that for all ¢ € [0, 2],

t t
r>min{—5g+Vs—l,(i—l)g+s+Vs—1}.

The two lower bounds agree when t = 1 — g. When ¢t > 1 — %, Inequality (14)
gives the weaker lower bound on r and we have

Ti(t) =—-2r <tg —2V; + 2.
When t <1-— %, Inequality (15) gives a weaker lower bound on r and we have

Yk(t) =—-2r <—tg+2g—-2s5s -2V + 2. O

C. Results for knots with up to eight crossings

In Table 1, we summarize our result for knots with up to eight crossings. We
find ten knots for which there are no remaining unknown values and 13 knots for
which there are no known values.
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TaBLE 1
Known and unknown values for prime knots with up to 8 crossings.
Here, “known values” are those which are confirmed to be in the set of
unknotting indices for the given knot. The “unknown values” are those
which cannot yet be ruled out, but for which realizability is unknown.

Knot Known values Unknown values
3 .
49 2-,07,07,27F
51 3~
55 |
61 1=,0-,11, 2% 2-,0"
62 o=, 0t 5
63 2-,0-,0t, 2%t
71 4=
72 2-,0t 3~
73 3
n 2_,0+, 1
7s 1t
76 2,01 o
77 2-,0F ot
81 0—,2% 2—,0t
85 f=
83 2=,1-,0-,0t, 1, 2%t
84 0—,2%,3+
8s 3~
86 2=.0T, 1T
87 0-,2F 3t
88 1-,1t g—2+
89 2-,17,0-,0T,1%,2F
810 0,2+, 3t
811 2-,0t i
812 a=.0-, 0.2t
813 2-,0-,01,2T
814 2-,0t I
815 1+
816 0—,2%+,3%
817 2=,0—,0T,2t
818 2—, 2t
819 4—,37
820 1-,0—,1%,2F 2-,0t

821 7= Ot 1t
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Most of the known values are a result of the observation that if K has
unknotting number 1, then either {0~,2%} C U(K) or {0%,27} C U(K),
depending on the sign of the crossing change needed to unknot K. For the two
knots 3; and 8;¢ (the torus knots 7(2,3) and 7T(3,4), respectively), knowledge
of their diagrams contributes to the known values. Using the method of Section 13,
we have that {1~,1%} is a subset of /(61), U(8g), U(89), and U(829). That the
knots 5; and 7; can be unknotted with negative twists of linking numbers 3
and 4, respectively, is shown in [Nou, Figure 6] and [Nou, Figure 5], respectively.
Finally, in [Nou] Ait Nouh shows that the knot 7; is not slice in CP?2. This
rules out all remaining values for 7;.
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this paper.
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