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Zéro-cycles sur les surfaces de del Pezzo

(Variations sur un thème de Daniel Coray)

Jean-Louis Colliot-Thélène

Résumé. Soit X une surface projective, lisse, géométriquement rationnelle sur un corps
de caractéristique zéro. On lui associe deux entiers N(X) et M(X), fonctions simples du

carré de la classe canonique. On établit les propriétés suivantes.

(a) Si le pgcd des degrés des points fermés sur X est 1, alors il existe des points fermés

dont les degrés sont au plus égaux à N(X) et sont premiers entre eux dans leur
ensemble.

(b) Si X possède un point rationnel, alors tout zéro-cycle sur X de degré au moins égal
à M(X) est rationnellement équivalent à un zéro-cycle effectif, et les points fermés
de degré au plus égal à M(X) engendrent le groupe de Chow des zéro-cycles de X.

Le résultat (a) généralise un théorème de Daniel Coray sur les surfaces cubiques (1974).

Une combinaison de théorèmes de Bertini et d'utilisation de corps fertiles rend ici ses

arguments plus flexibles. On établit ensuite les résultats par considération des différents

types birationnels de surfaces géométriquement rationnelles : surfaces de del Pezzo et

surfaces fibrées en coniques (ces dernières déjà étudiées avec D. Coray en 1979).

Un dernier paragraphe discute l'existence de points fermés de degré 3 non alignés sur
une surface cubique sans point rationnel. On la relie à la question de la densité des points
rationnels sur une surface de del Pezzo de degré 1.

Abstract. Let A be a smooth, projective, geometrically rational surface over a field of
characteristic zero. To any such surface one associates two integers N(X) and M(X) which
are simple functions of the square of the canonical class. We prove:

(a) If the gcd of the degrees of closed points on A is 1, then there exist closed points
on X the degrees of which are coprime to one another as a whole and are less than

or equal to N(X).

(b) If X has a rational point, then any zero-cycle on X of degree at least equal to M(X)
is rationally equivalent to an effective cycle. Effective zero-cycles of degree less than

or equal to M(X) generate the Chow group of X.

Result (a) extends a theorem on cubic surfaces obtained by Daniel Coray in his thesis

(1974). Combining Bertini theorems and large fields, we introduce some flexibility in his

method. The results (a) and (b) then follow from a case by case analysis of the various
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birational equivalence classes of geometrically rational surfaces: del Pezzo surfaces and

conic bundle surfaces (the latter type had been handled with D. Coray in 1979).

In a last section, for smooth cubic surfaces without a rational point, we relate the

question whether there exists a degree 3 point which is not on a line to the question
whether rational points are dense on a del Pezzo surface of degree I.

Mathematics Subject Classification (2020). 14G05, 14J26, 14C99.

Keywords. Zero-cycles, rational points, rational surfaces, del Pezzo surfaces.

1. Introduction

Soient k un corps et X une k-variété algébrique, par quoi l'on entend un

k-schéma séparé de type fini sur k. Donnons quelques rappels sur les zéro-

cycles et l'équivalence rationnelle [Fui, Chap. I]. Un zéro-cycle sur X est une

combinaison linéaire à coefficients entiers de points fermés. À tout tel zéro-cycle

z J2p nP > avec point fermé et np e Z nul sauf pour un nombre fini de

points fermés P, on associe son degré

degk(z) := J2nP[k(P) : k] e Z,
p

où k{P) est le corps résiduel d'un point fermé F, et [k(P) : k] est le degré
de cette extension finie de corps. Le groupe abélien libre Z0(X) des zéro-cycles
contient le sous-groupe des zéro-cycles rationnellement équivalents à zéro. Celui-ci
est par définition engendré par les zéro-cycles de la forme p* (divc (/)), où C est

une courbe sur k, normale, intègre, de corps des fonctions rationnelles k(C), où

p : C -»• X est un k-morphisme propre, où / e k(C)* est une fonction rationnelle

non nulle sur C, où divc(/)) e Zo(C) est son diviseur sur C, qui est un zéro-

cycle sur C, et où p* : Z0(C) -* Z0(X) est l'image directe par morphisme

propre. Le quotient de Z0(X) par le sous-groupe des zéro-cycles rationnellement

équivalents à zéro est appelé groupe de Chow des zéro-cycles sur X et est noté

CHo{X). Lorsque X est propre sur k, l'application degfc : Zo(X) Z passe au

quotient par l'équivalence rationnelle (puisque le degré du diviseur d'une fonction
rationnelle sur une courbe propre, normale, intègre, est nul). On a donc dans ce

cas une application induite degj. : CH0(X) -» Z. On note alors A0(X) le noyau
de cette application.

Un zéro-cycle J2p npP est dit effectif si l'on a np > 0 pour tout P. Il y a

identification entre l'ensemble X(k) des points P-rationnels de X et l'ensemble
des zéro-cycles effectifs de degré 1 de Z.
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Si X est une courbe C projective, lisse, géométriquement connexe de genre

g sur le corps k, l'inégalité de Riemann pour la courbe C montre que l'on a

les propriétés suivantes :

(i) Tout zéro-cycle de C de degré au moins égal à g est rationnellement

équivalent à un zéro-cycle effectif.

(ii) Si C possède un zéro-cycle de degré 1, alors la courbe C possède un

zéro-cycle effectif de degré g et un zéro-cycle effectif de degré g + 1.

(iii) Si g > 1 et C possède un point k -rationnel P0, le groupe de Chow CH0(X)
est engendré par les points fermés P de degré degk(P) < g. En effet, pour
tout zéro-cycle z, le zéro-cycle z + (g — degfc(z))/o est de degré g.

(iv) Si C est de genre 0 ou 1 et possède un zéro-cycle de degré 1, alors

C(k) ^ 0.

On peut se demander dans quelle mesure ces belles propriétés des zéro-

cycles sur les courbes s'étendent aux zéro-cycles sur les variétés de dimension

quelconque.
Pour les variétés projectives, lisses, connexes sur un corps algébriquement clos

de degré de transcendance infini sur le corps premier, en particulier k C le

corps des complexes, une propriété comme (i) impose de sévères restrictions à

la géométrie de la variété considérée. Ceci a fait l'objet de travaux bien connus
de Mumford et de Bloch. De manière générale, pour X/C une telle variété, s'il
existe un entier d{X) > 0 tel que tout zéro-cycle sur X de degré au moins

d(X) est rationnellement équivalent à un zéro-cycle effectif, alors pour tout
i > 2 les groupes de cohomologie cohérente //' (X, Ox) sont nuls (Bloch et

Srinivas [BS]). Pour X/C une surface projective et lisse, c'est une conjecture
de Bloch qu'inversement la condition H2(X,Ox) 0 implique l'existence d'un
entier d — d(X) comme ci-dessus.

Sur un corps k quelconque, il est alors naturel de se limiter aux k -variétés

X projectives, lisses, géométriquement connexes qui vérifient: il existe un entier

dgeom(X) tel que, sur tout corps algébriquement clos £2 contenant k, tout zéro-

cycle de degré au moins dgeom(X) sur X x^Çi est rationnellement équivalent à

un zéro-cycle effectif.
Parmi celles-ci, on trouve les variétés géométriquement rationnellement

connexes, au sens de Kollâr, Miyaoka et Mori. Pour ces variétés, on a A0(Xq) 0,
et donc dgeom(X) 1 convient.

Une classe bien étudiée de telles variétés est celle des modèles projectifs et

lisses d'espaces homogènes de groupes algébriques linéaires connexes. En ce qui
concerne l'analogue de la question (iv) ci-dessus, à savoir si l'existence d'un zéro-

cycle de degré 1 implique celle d'un point rationnel, pour les compactifications
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lisses d'espaces principaux homogènes de groupes algébriques linéaires connexes,
ceci a été établi dans de nombreux cas (Serre, Sansuc, Bayer-Lenstra), mais des

contre-exemples pour les espaces homogènes généraux ont été donnés par Florence

et par Parimala. L'énoncé historique concerne les quadriques: une quadrique qui
possède un point dans une extension de degré impair possède un point rationnel.

Il fut conjecturé par Witt (1937), démontré par Artin (non publié, 1937) et par
Springer [Spr].

En dimension 2, la classe des variétés (séparablement) rationnellement

connexes coïncide avec celle des k -surfaces géométriquement rationnelles, pour
lesquelles on dispose de la classification k -birationnelle de Enriques, Manin, Is-

kovskikh, Mori : tout telle surface est k -birationnelle soit à une surface fibrée en

coniques sur une conique, soit à une surface de del Pezzo. Dans cet article, nous
étudions systématiquement les énoncés de type (i), (ii), (iii) pour les surfaces de

del Pezzo. En combinaison avec l'étude des zéro-cycles sur les surfaces fibrées en

coniques faite avec Coray [CTC], ceci établit les théorèmes suivants, analogues
des énoncés (i), (ii), (iii) ci-dessus pour les courbes.1

Théorème A (Théorème 6.1). Soit X une k-surface projective, lisse, géométriquement

rationnelle, sur un corps k de caractéristique zéro. Soit Kx la classe

canonique de X. Soit

N(X) max(10, L4 - (KX.KX)/2J).

Si X possède un zéro-cycle de degré 1, alors X possède des points fermés dont
les degrés sont inférieurs ou égaux à N(X) et sont premiers entre eux dans leur
ensemble.

Théorème B (Théorème 6.2). Soit X une k-surface projective, lisse, géométriquement

rationnelle, sur un corps k de caractéristique zéro. Soit Kx la classe

canonique de X. Supposons que X possède un point k -rationnel. Soit

M(X) max(904, |3 - {Kx.Kx)/2\).

Tout zéro-cycle de degré au moins M(X) est rationnellement équivalent à un

zéro-cycle effectif. En particulier, le groupe de Chow des zéro-cycles est engendré

par les points fermés de degré au plus M(X).

Ceci pose deux questions:

'L'analogue de l'énoncé (iv) est connu, et rappelé dans la démonstration du théorème 6.1: pour
une k-surface X projective, lisse, géométriquement rationnelle avec (Kx-Kx) > 4, si X possède un
zéro-cycle de degré 1, alors X possède un point rationnel.
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(1) Peut-on établir ces énoncés, avec des entiers N(X) et M(X) ne dépendant

que de la géométrie de X sur une clôture algébrique du corps de base k,
sans utiliser la classification k -birationnelle des surfaces géométriquement
rationnelles et une analyse cas par cas

(2) A-t-on des analogues de ces énoncés pour les variétés rationnellement

connexes de dimension supérieure

Le point de départ de cet article est la thèse de Daniel Coray (Cambridge,

UK, 1974) [Corl]. Daniel Coray y montra que si une surface cubique lisse X
définie sur un corps k parfait possède un point rationnel dans une extension finie
de corps K/k de degré premier à 3, alors elle possède un point rationnel dans

une extension de corps K/k de degré soit 1, soit 4, soit 10. Voici le principe
de sa démonstration. On considère un point fermé P de degré premier à 3 aussi

petit que possible, on fait passer par ce point et par un point de degré 3 une

surface de P| de degré aussi petit que possible, pour que le genre arithmétique

pa de la courbe intersection T soit aussi petit que posssible. Si cette courbe est

lisse et géométriquement connexe de genre g pa, on applique le théorème de

Riemann-Roch sur la courbe T à un zéro-cycle de degré au moins égal à g,
premier à 3, et de degré aussi petit que possible. Dans les bons cas, on établit
ainsi l'existence sur F et donc sur X d'un zéro-cycle effectif, et donc d'un point
fermé, de degré premier à 3 plus petit que celui que l'on avait au début, et on

recommence le procédé. Le processus a ses limites: on n'arrive pas à résoudre

les cas 4 et 10, dont la possibilité à ce jour n'est pas exclue.

La méthode fut ensuite appliquée par Coray [Cor2] aux surfaces de del Pezzo

de degré 4, et une variante fut appliquée par Coray et moi [CTC] aux surfaces

fibrées en coniques sur la droite projective.
Une difficulté technique dans ces articles est que les courbes obtenues dans

un système linéaire donné ne sont pas a priori lisses ni même géométriquement
irréductibles: on doit donc considérer et discuter les dégénérescences possibles.

Voici maintenant le contenu détaillé de l'article.
Au § 2, on donne un argument nouveau et général, combinant théorème de

Bertini, déformation et spécialisation, qui dans ce type d'argument permet de ne

considérer que le cas des courbes lisses. La souplesse obtenue nous permet de

développer l'argument de Coray dans plusieurs directions.2

Au § 3.1 on reprend l'argument de Coray [Corl] pour les surfaces cubiques.
Au § 3.2, on montre que si une surface cubique lisse possède un point

rationnel, alors le groupe de Chow des zéro-cycles est engendré par les points

2B. Poonen m'a très récemment fait remarquer que l'utilisation des corps fertiles et en particulier
des corps de séries formelles k((t)) pourrait souvent être remplacée par une utilisation du lemme de

Lang-Nishimura ([CTCS, Lemme 3.1.1], [Poo, Thm. 3.6.11]) comme c'est fait dans [Poo, Lemma 9.4.8].
Les deux types d'arguments sont en fait très proches.
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rationnels et les points fermés de degré 3, et que tout zéro-cycle de degré au

moins 10 est rationnellement équivalent à un zéro-cycle effectif.
Au § 4.1, on établit pour les surfaces de del Pezzo de degré 2 l'analogue du

résultat de Coray pour les surfaces de del Pezzo de degré 2. On montre ici que
s'il y a un point dans une extension finie de corps de degré impair, alors il y a

un point dans une extension de degré 1, 3 ou 7. Le degré minimal impair 3 ne

peut être exclu ([KM], voir la remarque 4.3).

Au § 4.2, on montre que si une surface de del Pezzo de degré 2 possède un

point rationnel, alors tout zéro-cycle de degré 0 est rationnellement équivalent à

la différence de deux zéro-cycles effectifs de degré 6, et que tout zéro-cycle de

degré au moins 43 est rationnellement équivalent à un zéro-cycle effectif.

Au § 5, on montre que sur une surface de del Pezzo de degré 1 tout zéro-

cycle de degré 0 est rationnellement équivalent à la différence de deux zéro-

cycles effectifs de degré 21, et que tout zéro-cycle de degré au moins 904 est

rationnellement équivalent à un zéro-cycle effectif.
Au § 6, on note que ces divers résultats, combinés avec [CTC], achèvent la

démonstration des théorèmes A et B mentionnés ci-dessus.

Au § 7, logiquement indépendant du reste de l'article, on revient aux surfaces

cubiques. On s'intéresse à une question soulevée par Qixiao Ma [Ma] : sur une

surface cubique lisse sans point rationnel, existe-t-il un point fermé de degré 3

non découpé par une droite On relie ce problème à la question (ouverte) de la

densité des points rationnels sur les surfaces de del Pezzo de degré 1.

Pour ne pas alourdir ce texte, on se limite aux corps de caractéristique nulle.

On laisse au lecteur le soin de voir ce qui subsiste sur un corps quelconque. Des

résultats dans cette direction sont obtenus dans [Corl] et [Ma].
On utilise librement dans cet article la théorie de l'intersection sur les surfaces

projectives lisses [Ser, Mum], la théorie des surfaces cubiques et plus généralement
des surfaces de del Pezzo comme on peut la trouver dans les livres [Man2]
et [Koll], dans [Manl] et [Isk], et dans le rapport [VA], On utilise aussi des

résultats sur les variétés rationnellement connexes, établis par les techniques de

déformation de Kollâr, Miyaoka et Mori [Koll, Kol2].
Daniel Coray, qui fut professeur à l'Université de Genève, et fut aussi directeur

de publication de la revue l'Enseignement Mathématique, nous a quittés en 2015.

C'était un esprit fin et original. Les démonstrations de l'article [CTCS], où un

substitut du principe de Hasse fut établi pour la première fois pour une classe

de variétés ne se ramenant pas par transformations birationnelles à des espaces

homogènes de groupes algébriques linéaires, en gardent la trace. À ce sujet

on pourra aussi consulter ses Notes de Géométrie et d'Arithmétique, récemment

traduites [Cor3], Je suis heureux de pouvoir dédier cet article à sa mémoire.
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2. Bertini et corps fertiles

2.1. Corps fertiles et F -densité. Un corps F est dit fertile (terminologie due à

Moret-Bailly; en anglais on dit «large field») s'il satisfait la propriété suivante:
si une F-variété X intègre possède un F-point lisse, alors l'ensemble A"(F)
de ses points F-rationnels est dense dans X pour la topologie de Zariski. On
consultera [Pop] pour un rapport récent sur le sujet. Une extension finie d'un corps
fertile est fertile. Pour tout corps F, le corps F k((t)) des séries formelles sur
k est fertile.

Soient k un corps et X une k -variété propre. La relation de F-équivalence
sur X(k) est par définition engendrée par la relation élémentaire suivante: deux
k -points A, B e X(k) sont élémentairement liés s'il existe un k -morphisme

/ : P£ -> X tel que A et B sont dans f(P1(k)). Si deux k -points P et Q

sont F-équivalents, alors le zéro-cycle F — Q est rationnellement équivalent à

zéro sur X
Soient k un corps de caractéristique zéro et X une k -variété projective, lisse,

géométriquement connexe. On dira dans cet article que la k-variété X satisfait
la propriété de densité si, pour toute extension finie de corps L/k telle que
X(L) ^ 0, l'ensemble X(L) est dense dans Xl pour la topologie de Zariski. Sur

un corps k fertile, toute k-variété lisse géométriquement connexe X satisfait la

propriété de densité.

Une hypersurface cubique lisse dans Vnk pour n > 3 est k-unirationnelle
dès qu'elle a un point rationnel (voir [Kol3]). Elle satisfait donc la propriété de

densité.

On dira que la k-variété X satisfait la propriété de R-densité si, pour toute
extension finie de corps L/F et tout P e X(L), les points Q e X{L) qui sont

F-équivalents à F sont denses dans Xl pour la topologie de Zariski. Donnons
deux classes de telles variétés.

Proposition 2.1. Soit k un corps de caractéristique zéro. Toute k-hypersurface
cubique lisse X dans P£, avec n > 3, satisfait la propriété de R-densité.

Démonstration. On se ramène au cas X(k) 0. Comme X est alors k -

unirationnelle [Kol3], il existe un ouvert non vide V c PJJU1 et un F-morphisme
génériquement fini dominant / : V -> X. Comme f(V(k)) est dense dans X
pour la topologie de Zariski, il existe A f(V(k)) distinct de F tel que la droite

par A et F découpe exactement trois points rationnels distincts, A, B. P sur X.
La symétrie tg par rapport à B est bien définie en A et satisfait tg (A) P.
Quitte à remplacer V par un ouvert non vide W, tg ° f définit un F-morphisme
g : W -> X qui est dominant et satisfait F e g(W(k)). Comme W est un ouvert
de P£-1, tout point de g(W(k)) C X(k) est F-équivalent à F sur I.
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L'énoncé suivant est dû à J. Kollâr [Kol2, Thm. 1.4, Cor. 1.5, Rem. 1.10].

Théorème 2.2. Soit k un corps fertile de caractéristique zéro. Si X est une
k -variété projective et lisse géométriquement rationnellement connexe, alors elle

satisfait la propriété de R-densité.

Démonstration. Soient k un corps fertile de caractéristique zéro et X une
k -variété projective et lisse géométriquement rationnellement connexe. Soit
P e X(k). Kollâr montre d'abord qu'il existe un fc-morphisme / : -» X
tel que le fibré vectoriel f*Tx soit ample sur P£ et que l'on ait deux k -points
A, B de P£ avec f{A) P et Q := f{B) =£ P.

Il montre ensuite (point 4.2 de [Kol2]) qu'il existe une £-variété V qui est

un ouvert du schéma Hom(P£,Ar, B i-> Q) tel que le morphisme d'évaluation

W (P* \B)xkV->X
donné par (t,g) m- g(t) soit lisse.

Le k -point P est dans l'image de W(k) par cette application, et tous les

&-points de f( W(k)) sont R-équivalents sur X, via cette application, via le

point Q g(B).

Etant donnés une variété quasiprojective lisse intègre X sur le corps k (de

caractéristique zéro) et un entier naturel m > 1, on note SymmX le quotient
de Xm par l'action du groupe symétrique 6m. Il y a une bijection naturelle

entre les k -points de Syrnm X et les zéro-cycles effectifs sur X de degré m.
Le groupe &m agit librement sur le complémentaire dans Xm des diagonales

partielles. Le quotient de ce complémentaire par @m est un ouvert lisse de

SyrnmL" qu'on notera SymfepX. Les k -points de SymfepX correspondent aux

zéro-cycles effectifs de la forme JZ • Pj avec Pj des points fermés distincts sur X
(un tel zéro-cycle effectif, sans multiplicités, sera appelé séparable) dont les corps
résiduels k(Pj) satisfont ffj[k(Pj) : k] m. On trouvera une étude générale
détaillée de cette correspondance dans [Ryd].

Proposition 2.3. Soit k un corps de caractéristique zéro. Soit X une k-variété
projective et lisse, géométriquement connexe. Soient P\,..., Pt des points fermés
de degrés respectifs s\,... ,st sur k et soit z — P\-\ h Pt le zéro-cycle associé

sur X, qui correspond aussi à un k-point de W SymsfepX x • • • x Syrrr^ X. On

considère l'ensemble S des k-points de W, de zéro-cycle associé z\ +--- + Z,

tels que pour chaque i le zéro-cycle effectif zi, de degré Si, soit rationnellement

équivalent à Pi sur X. Si X satisfait la propriété de R-densité, alors £ C W(k)
est dense dans W pour la topologie de Zariski.
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Démonstration. Il suffit de le montrer dans le cas t — 1. Soit donc s > 0 un
entier et P un point fermé de degré s sur X, de corps résiduel L. Le point
P définit un point de X( L). Soit k une clôture algébrique de k. La projection
7T : Xi -> X induit une application rr* de X(L) dans l'ensemble des cycles
effectifs de degré s sur X. Cette application peut aussi être décrite de la manière

suivante. Soit P e X(L) et {(Pi,..., Ps)} l'ensemble de ses images dans Xs(k)
par les divers plongement de L dans k. L'image de (P\,..., Ps) e Xs(k) dans

isyms X(k) est invariante sous l'action du groupe de Galois Gal (k/k). Ceci définit
donc une application X(L) -> SynffX(k), ensemble qui coïncide avec l'ensemble
des zéro-cycles effectifs de degré s sur Z.

Si deux points P, Q de X{L) sont R-équivalents sur Xi, alors les zéro-cycles

jr*(P) et sont rationnellement équivalents sur X. Sous l'hypothèse que
X satisfait la propriété de R -densité, l'ensemble des points de X(L) qui sont
R -équivalents à P sur Xi est dense dans Xi pour la topologie de Zariski.
Ceci implique que l'ensemble £ des k-points de SynffA^k) correspondant à des

zéro-cycles effectifs rationnellement équivalents à P, vus comme zéro-cycles de

degré s sur X, est dense dans SyrffiA' pour la topologie de Zariski.

Pour la propriété plus faible de densité, on a le résultat suivant, dont la
démonstration est identique à celle de la proposition 2.3.

Proposition 2.4. Soit k un corps de caractéristique zéro. Soit X une k-variété
projective et lisse, géométriquement connexe. Soient P\,..., Pt des points fermés
de degrés respectifs sur k et soit z — P\ H hPt le zéro-cycle associé

sur X, qui correspond aussi à un k-point de W Sym^ X x ••• x Symss'epX.

Si X satisfait la propriété de densité, l'ensemble £ des k-points de W, de

zéro-cycle associé z\ H h zt avec les Zi zéro-cycles effectifs de degré si, est

dense dans W pour la topologie de Zariski.

2.2. Théorème de Bertini et variantes. Rappelons l'une des versions des

théorèmes de Bertini.

Théorème 2.5. Soit k un corps de caractéristique zéro. Soit X une k-variété
projective, lisse, géométriquement connexe. Soit f : X —> P£ un k-morphisme
d'image de dimension au moins 2 et engendrant l'espace projectif P£. Il existe

un ouvert non vide de l'espace projectif dual de P£ tel que, pour tout hyperplan
h de Pnk correspondant à un point de cet ouvert, la k-variété Xh f~l (h) C X
soit projective, lisse, géométriquement connexe.

Référence: Jouanolou [Jou, Chap. I, Théorème 6.3]. Sur un corps algébriquement
clos : Hartshorne [Har, Cor. III.10.9 et Ex. ffl.11.3]
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Lemme 2.6. Soit k un corps. Soit X une k-variété projective, lisse, géométriquement

connexe. Soit f : X -> un k-morphisme dont l'image engendre

l'espace projectif Pj?. Soit r < n + 1 mm entier. Il existe un ouvert de Zariski
non vide de Xr dont les points géométriques sont les r-uples (P\,..., Pr) e Xr
dont les images sont des points projectivement indépendants dans P".

Démonstration, C'est clair.

Proposition 2.7. Soit k un corps de caractéristique zéro. Soit X une k-variété
projective, lisse, géométriquement connexe. Soit f : X -» P£ un k -morphisme

d'image de dimension au moins 2, engendrant l'espace projectif V"k. Soit r < n

un entier. Il existe un ouvert non vide U C Xr tel que, pour tout corps L
contenant k et pour tout L-point (P\,..., Pr) e U(L), il existe un hyperplan
h C VnL tel que l'image réciproque X/, f~](h) c Xi soit une L-variété lisse

et géométriquement intègre contenant les points {P\,..., Pr\.

Démonstration. Soit d la dimension de X. Notons P* le projectif des hyperplans
de P P". On note indifféremment h un point de P* ou l'hyperplan de P qu'il
définit. Pour h e P*, on note Xh /"' (h). Par hypothèse, chaque Xh est de

dimension d — 1. Par le théorème 2.5, il existe un ouvert non vide W0 c P* tel

que pour tout h e Wq la variété Xh soit lisse et géométriquement connexe.

Soit Z c 2ZxP* le fermé dont les points géométriques sont les (Pi,..., Pr: h)
avec he P* et P; e f~l(h). Soient p : Z -» P* et q : Z -> Xr les deux

projections.
Soit U\ C Xr un ouvert donné par le lemme 2.6. La restriction fj

g-1 (Ci) -> U\ de q : Z -* Xr au-dessus de U\ est une fibration en espaces

projectifs de dimension N — r. La fibre au-dessus d'un point (P\,...,Pr)
consiste en les hyperplans de P" qui contiennent (Pi,...,Pr). Cette fibration
est localement scindée pour la topologie de Zariski, localement c'est un espace

projectif. La variété V\ est donc lisse, géométriquement intègre, de dimension

rd + N — r. Au-dessus de tout point he P*, la fibre de la projection Z -> P*
est le produit (XhY, qui est de dimension r(d — 1). Si l'image de Vj c Z via la

projection p : Z -» P* n'était pas Zariski-dense dans P*, alors la dimension de

V\ serait au plus r(d — l) + N — 1. Ainsi le morphisme composé V\ C Z P*
est dominant. Soit W\ c P* un ouvert non vide contenu dans son image. Soit

w Wo n Wi C P*. Soit V p~l(W) nfiCZ. Soit U := q(V) c Zr. C'est

un ouvert de U\ C Xr, puisque q : V\ -» U\ est un fibré projectif, en particulier
est lisse. Comme q : V\ U\ est un fibré projectif localement scindé pour la

topologie de Zariski, et que le corps de base k est infini, pour tout corps L
contenant k, la flèche induite V(L) -> U(L) est surjective.
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Pour tout point h e W C P*, l'image réciproque Vf, via V -» W est non
vide, et c'est un ouvert de p~l{h) C Xr. Par ailleurs p~l(h) (Xf,)r, qui est

lisse et géométriquement connexe car on a W cW0.
On a bien montré: Pour tout L-point M (Pi,..., Pr) de U, il existe un

L -hyperplan h de PnL, contenant chacun des f{Pf), et tel que f~l(h) c Xl
soit une L -hypersurface lisse et géométriquement intègre.

La proposition 2.7 admet la généralisation suivante.

Proposition 2.8. Soit k un corps de caractéristique zéro. Soit X une k -variété

projective, lisse, géométriquement connexe. Soit f : X — P£ un k-morphisme
d'image de dimension au moins 2, engendrant l'espace projectif P£. Soient

s\,...,st des entiers naturels tels que si <n. Il existe un ouvert lisse non
vide

U C Sym^X x • • • x Sym^X
tel que, pour tout corps L contenant k et tout L-point de V, correspondant à

une famille de zéro-cycles effectifs séparables z; sur Xl avec z,- de degré s,, il
existe un hyperplan h C P£ tel que l'image réciproque Xy, f~l(h) c Xl soit
une L-variété lisse et géométriquement intègre contenant les points du support
du zéro-cycle z,.

Démonstration. On utilise la proposition 2.7 et les notations de sa démonstration.
On introduit le fermé

Zj c Synf'X x---xSymirX x P*

qui est l'image schématique de Z c Xr x P* par le morphisme fini

Xr x P* -» Sym51 X x • • • x Sym5' X x P*.

La projection Z Xr se quotiente par l'action du groupe fini G GSl x... 6Sl,
donnant la projection Zi -> SymV| Xx - • •xSyirP' X. On peut supposer que l'ouvert
U\ C Xr dans la proposition précédente est contenu dans le complémentaire des

diagonales partielles de Xr. On a V\ C Z. Le morphisme V\ -> U\ définit un
fibré projectif localement trivial sur U\ pour la topologie de Zariski, et cette

projection est compatible avec l'action fidèle de G sur V\ et U\. Il en résulte

que le quotient V\/ G ->• U\/ G est un fibré projectif localement trivial pour la

topologie de Zariski sur U\/G. Soit V' c fj/G l'ouvert qui est l'image de

l'ouvert V c Vi par la projection Vj -> V\/G, puis U' C U\/G l'ouvert image
de V' par le morphisme V\/G -> U\/G. Il résulte de ce qui précède que, pour
tout corps L contenant k, la flèche induite V\L) —> U'(L) est surjective. Tout

point géométrique de P* qui est dans l'image de V' c Z\ par la projection
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Zi -> P* est dans l'image de F, et donc correspond à un hyperplan dont
l'intersection avec X est lisse et connexe. L'ouvert U' convient pour l'énoncé
de la proposition.

Théorème 2.9. Soit F un corps de caractéristique zéro. Soit X une F -variété

projective, lisse, géométriquement connexe. Soit f : X —* Vf un F -morphisme
d'image de dimension au moins 2, engendrant l'espace projectif Vf. Soient

P\,..., Pt des points fermés de X de degrés respectifs Si sur k, tels que la

somme des Si soit au plus égale à n.

(a) Si X satisfait la propriété de densité, par exemple si le corps F est fertile,
alors il existe un hyperplan h C Vf défini sur F tel que Xh f~lifi) C X
soit lisse, géométriquement intègre, et contienne des zéro-cycles effectifs

z\,... ,zt de degrés respectifs s\,. ,.,st.

(b) Si la variété X satisfait la propriété de R -densité, par exemple si F est

fertile et X est géométriquement rationnellement connexe, alors il existe un

hyperplan h C Vf défini sur F tel que Xh f~l(h) C X soit lisse,

géométriquement intègre, et contienne des zéro-cycles effectifs z\,... ,zt
de degrés respectifs s\,... ,st, chaque zéro-cycle z,- étant rationnellement

équivalent à Pi sur X.

Démonstration. Le point (a) est obtenu en combinant les propositions 2.4 et 2.8,

et en utilisant la définition des corps fertiles.

Le point (b) est obtenu en combinant les propositions 2.3 et 2.8, et le

théorème 2.2 pour les variétés rationnellement connexes sur un corps fertile.

2.3. Générisation et spécialisation. On a l'énoncé bien connu suivant.

Lemme 2.10. Soit R un anneau de valuation discrète excellent, F son corps des

fractions et k son corps résiduel. Soit X un R-schéma propre. Si la F -variété

X xr F possède un point fermé P de degré d, alors il existe un zéro-cycle

effectif z de degré d sur la k-variété X xr k.

Démonstration. La fermeture intégrale de R dans l'extension F(P)/F est un
anneau de Dedekind S semi-local, fini et plat sur R, de degré d. Comme le

R -schéma X est propre, l'adhérence du point P e X( F) dans X est un schéma

fini et plat de degré d. La fibre de ce point au-dessus de Spec(k) c Spec (R)
est un sous k -schéma de dimension zéro de X XRk, dont le zéro-cycle associé

est de degré d.
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Proposition 2.11. Soient k un corps et F — k((t)) le corps des séries formelles
sur k. Soit X une k-variété propre.

(a) Le pgcd des degrés des points fermés a la même valeur sur X et sur Xf
(b) Pour tout entier r > 1, le plus petit degré d'un point fermé de degré premier

à r, qui est aussi le plus petit degré d'un zéro-cycle effectif de degré premier
à r, a la même valeur sur X et sur Xp

(c) Soit I un ensemble d'entiers naturels. Si le groupe de Chow des zéro-cycles

sur XF est engendré par les classes de cycles effectifs de degré del,
alors il en est de même sur X.

(d) Soit d > 0 un entier. Si tout zéro-cycle sur Xf de degré au moins d

est rationnellement équivalent à un zéro-cycle effectif, alors il en de même

sur X.

Démonstration. Si P e X est un point fermé de X, alors P F est un point
fermé de Xp de même degré. Si M est un point fermé de Xp de degré d,
d'après le lemme 2.10, il existe un zéro-cycle sur X de degré d, et si d est

premier à r, il existe sur X un point fermé de degré premier à r et au plus

égal à d. Les énoncés (c) et (d) sont des conséquences de l'existence et des

propriétés de l'homomorphisme de spécialisation sur les groupes de Chow [Fui,
§20.3].

3. Surfaces cubiques lisses

3.1. Surfaces cubiques avec un zéro-cycle de degré 1. Le théorème suivant est

dû à Coray [Corl]. Nous en reproduisons les différents pas, avec la simplification
apportée par l'utilisation du théorème 2.9(a) : il n'y a plus de discussion des

cas possibles où les courbes utilisées dans la démonstration sont réductibles ou

singulières.

Ihéorème 3.1 (Coray). Soit k un corps de caractéristique zéro. Si une k -surface

cubique lisse X cP| contient un zéro-cycle de degré 1, alors elle possède un

point fermé de degré 1, ou 4, ou 10.

Démonstration. L'énoncé peut se reformuler ainsi: si la £-surface cubique lisse

possède un point fermé de degré d premier à 3, alors le degré minimal d'un
tel point est 1, ou 4, ou 10. Notons que ce degré minimal est aussi le degré
minimal d'un zéro-cycle effectif de degré premier à 3.

On va systématiquement appliquer le théorème 2.9(a). On peut le faire soit

en invoquant le fait que la propriété de densité vaut pour les surfaces cubiques
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lisses sur k car elles sont k -unirationnelles dès qu'elles ont un k -point (Segre,

[Kol3]), soit en utilisant la la proposition 2.11 qui permet, pour le théorème à

démontrer, de supposer le corps k fertile. On note K le faisceau canonique

sur X. Le système linéaire complet \-K\ associé au faisceau inversible —K

définit le plongement de X dans Pour tout entier n > 0, le système linéaire

|—nK\ définit un plongement dans un espace projectif, d'image de dimension 2,

engendrant cet espace projectif. Pour un fibré inversible £, on note h'(X,C), ou

h' (£) quand le contexte est clair, la dimension sur k du groupe de cohomologie
cohérente Hl{X,C).

Pour la surface cubique lisse X comme pour toute surface projective et lisse

géométriquement rationnelle, on a H1(X,Ox) 0 et H2(X,Ox) 0, et donc

X(X,Ox) h°(Ox) - h\Ox) + h2{Ox) 1. Soit n > 1.

Par dualité de Serre [AK, Chap. IV, Prop. 4.1] on a h2(—nK) h°((n + 1 AT)

et hl(-nK) hl((n + 1 )AT). On a h°((n + 1)AT) 0 car -K est ample.
On a aussi hl((n + \)K) 0 par le théorème d'annulation de Kodaira, puisque

—K est ample.
Pour n > 1, le théorème de Riemann-Roch sur la surface X ([Ser, Chap. IV,

§8], [Mum, Lecture 12, Prop. 3]) donne donc

h°(—nK) 3n(n + l)/2 + 1.

Si T est une courbe projective, lisse, géométriquement connexe dans le système

linéaire \ —nK\, on a la formule

g(r) pa(r) 3«(«-i)/2 + i.

Une telle courbe contient un zéro-cycle de degré 3n — (—K. — nK), découpé par
un plan de P3k

Soit d > 0 le degré minimum d'un zéro-cycle effectif de degré premier à 3

sur X. C'est donc aussi le degré minimum d'un point fermé de degré premier à 3

sur X. Si d 1, on a fini. Supposons d > 2. Si la surface cubique possède un

point sur une extension quadratique de k, une construction bien connue montre

qu'elle possède un point rationnel. On se limite donc dorénavant au cas d > 4. La
surface X contient un point fermé de degré 3, découpé par une droite quelconque
de P|.

Il existe un unique entier n > 1 tel que

g 3n(n — l)/2 + 1 < d < 3n(n + l)/2 + 1.

Comme on a > 4, on a « > 2.

Supposons d'abord g 3n(n — l)/2 + 1 < d < 3n(n + l)/2 — 3. Comme d est

premier à 3 et d + 3 < 3n(n + l)/2, le théorème 2.9(a) assure l'existence d'une
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courbe T projective, lisse, géométriquement connexe dans le système linéaire

\-nK\, contenant la réunion d'un zéro-cycle effectif de degré d et d'un zéro-

cycle effectif de degré 3, donc contenant un zéro-cycle de degré 1, et donc aussi

un zéro-cycle de degré g 3n{n — l)/2 + 1. Par le théorème de Riemann-Roch,
la courbe T possède donc un zéro-cycle effectif de degré 3n(n — l)/2 + 1 < d,
ce qui contredit l'hypothèse que d est minimal.

Il reste donc les possibilités suivantes :

d 3n(n + l)/2,
d 3n(n + l)/2 — 1,

d — 3n(n + l)/2 — 2,

d 3n{n - l)/2+ 1.

Le cas d 3n(n + l)/2 est exclu, car d est premier à 3.
Dans chacun des trois autres cas, toute courbe lisse T dans le système linéaire

|—nK\ contenant un zéro-cycle de degré d contient un zéro-cycle de degré 4,

car, comme on l'a déjà indiqué, elle contient un zéro-cycle de degré 3n.

Supposons d 3n{n +1)/2-1. Par le théorème 2.9(a), il existe une courbe F

lisse géométriquement connexe dans le système linéaire |—nK\ contenant un zéro-

cycle effectif de degré d, degré qui est congru à 2 mod. 3. Comme la courbe V

contient un zéro-cycle de degré 4, elle contient donc aussi un zéro-cycle de degré
d -4, degré qui est premier à 3. Comme on a n > 2, on a

g 3n(n - l)/2 + 1 < 3n(n + l)/2 - 1 - 4 d - 4.

Le théorème de Riemann-Roch sur la courbe T assure alors l'existence d'un
zéro-cycle effectif de degré d -4, premier à 3, ce qui est en contradiction avec

l'hypothèse d minimal.
Supposons d — 3n(n + 1)/2 — 2 et n impair. Par le théorème 2.9(a), il existe

une courbe T lisse géométriquement connexe dans le système linéaire \—nK\

contenant un zéro-cycle effectif de degré d, degré qui est congru à 1 mod. 3.

Comme 2 est combinaison linéaire de 3n(n + l)/2 — 2 et 3n, il existe alors un

zéro-cycle de degré 2 sur T. La courbe T contient donc un zéro-cycle de degré
d - 2. Comme on a n > 2, on a

g 3n{n - l)/2 + 1 < 3 n(n + l)/2 - 2- 2 d -2.
Par le théorème de Riemann-Roch, sur la courbe T, il existe un zéro-cycle effectif
de degré d - 2, qui est premier à 3. Ainsi X possède un zéro-cycle effectif de

degré d-2 premier à 3, ce qui est en contradiction avec l'hypothèse d minimal.
Supposons donc d 3n(n + l)/2 - 2 et n pair, donc n > 2. Par le

théorème 2.9(a), il existe une courbe T lisse dans le système linéaire \—nK\
contenant un zéro-cycle effectif de degré d, degré qui est congru à 1 mod. 3.
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Dans le cas n 2, on a g — 4 et d 7. Comme F contient un zéro-cycle
de degré 4, le théorème de Riemann-Roch sur une courbe montre l'existence d'un
zéro-cycle effectif de degré 4 sur une telle courbe, et donc aussi sur X, ce qui
est en contradiction avec l'hypothèse d minimal.

On peut donc supposer n pair, n > 4. Dans ce cas, on a

g 3n(n - l)/2+ 1 < 3n(n + l)/2 — 2 — 8 d- 8.

Comme F contient un zéro-cycle de degré 4, le théorème de Riemann-Roch sur

une courbe montre l'existence d'un zéro-cycle effectif de degré d — 8 sur T et

donc sur X, et d — 8 est congru à 2 modulo 3, ce qui est en contradiction avec

l'hypothèse d minimal.

Il reste à examiner le cas d 3n(n - l)/2 + 1, où l'on a n > 2 et d > 4.

On a donc une k -surface X avec un point fermé P de degré d premier à 3

minimal, au moins égal à 4. L'unique entier n tel que

3n(n - l)/2 + 1 < d < 3n{n + l)/2 + 1

satisfait 3n(n — l)/2 + 1 d.
On prend un point fermé M de degré 3 sur X découpé par une droite D

définie sur k, qu'on peut choisir générale car le corps k est infini. Soit p : Y -> X
l'éclatement de X en le point fermé M. On note E c Y le diviseur exceptionnel
et K le faisceau canonique sur X.

Le système linéaire |p*(—K) — E\ définit un morphisme Y —» D Vlk,
dont les fibres sont les sections de X par les plans contenant D. On a un

plongement ^P[xP^ dont la projection sur le premier facteur est définie par
le système linéaire \p*{—K) — E\ et la projection sur le second facteur est définie

sur le second facteur par \p*(—K)\. Il s'en suit que pour tout couple d'entiers

a > l,b > 1 le faisceau inversible a(p*(-K) - E) + bp*(—K) est très ample. En

particulier, pour n > 3, le faisceau p*(-nK) -2E est très ample. Le fait que
ces faisceaux inversibles soient très amples peut aussi s'établir en utilisant [Rei,
Thm. 1],

On considère sur Y les systèmes linéaires \p*(—nK) — 2E\ pour n > 1. Ceci

correspond aux sections de X par des surfaces de degré n > 3 dans P3, avec une

singularité au point fermé M, qui est de degré 3. Imposer une telle singularité
correspond à 9 conditions linéaires.

Lemme 3.2. Soit n > 3. On a h°(Y, p*(-nK)-2E) — 3n(« + l)/2—8, le système

linéaire \p*(~nK) — 2E\ définit un plongement de la surface Y dans un espace

projectif de dimension 3n{n + l)/2 —9. Toute courbe géométriquement connexe et

lisse F dans le système linéaire associé satisfait g(F) pa(T) — 3»(n-l)/2—2.
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Démonstration. Le faisceau canonique Ky sur 7 est p*(K) + E. Par dualité de

Serre, on a

h2(p*(-nK)-2E) h°(p*(K) + E + p*(nK) + 2É)

h°(p*({n + \)K) + 3E^

et

h\p*{-nK)-2E) hl(p*((n + l)tf) + 3e).

L'opposé de p*((n + 1)/Q + 3E est p*(-(n + l)iQ - 3E qui est la somme
de 3(p*(-K) - E) et de p*(-mK) avec m > 1, et donc est très ample. Ceci

implique d'une part h°(p*((n + l)K) + 3E) — 0, d'autre part d'après le théorème

d'annulation de Kodaira, hl(p*((n + Y)K) + 3E) 0. En utilisant le théorème

de Riemann-Roch sur la surface Y, ceci donne

h°(Y:p*(-nK) -2E) 3«(n + l)/2 - 8.

La formule pa(r) (LE + Ky)/2 + 1 donne le calcul du genre de T.

Pour appliquer le théorème 2.9(a), on a besoin de l'inégalité

3n(n — l)/2 + 1 — d < 3n(n + l)/2 — 9

soit n >20/6 et donc n > 3. On se restreint donc maintenant à n > 4. Comme

on a d — 3/2(n — l)/2 + 1, ceci équivaut à ignorer les cas d 1, d 4 et
d - 10.

Le théorème 2.9(a) assure l'existence sur Y d'une k -courbe T lisse et

géométriquement connexe sur 7, de genre g 3«(« —1)/2 —2, contenant un zéro-cycle
effectif de degré d 3n(n — l)/2 + 1.

La courbe T contient aussi un zéro-cycle de degré 3n, découpé par l'image
réciproque d'une section plane de X c La courbe T possède donc un zéro-

cycle de degré 2. Elle contient donc un zéro-cycle de degré d—2 3n(n- \)/2— \,
de degré premier à 3, et satisfaisant d —2 > g. Le théorème de Riemann-Roch

sur une courbe assure qu'il existe sur T, et donc sur 7, et donc sur X, un

zéro-cycle effectif de degré d — 2, premier à 3, ce qui contredit l'hypothèse d

minimal.

On voit donc que l'on a soit d 1, soit d 4, soit d 10.



464 J.-L. Colliot-Thélène

3.2. Surfaces cubiques avec un point rationnel.

Théorème 3.3. Soit k un corps de caractéristique zéro. Soit X c une surface

cubique lisse possédant un point rationnel.

(a) Soit Q X(k) un point rationnel. Tout zéro-cycle effectif de degré au moins
3 sur X est rationnellement équivalent à un zéro-cycle effectif Z\ + rQ avec

r > 0 et Z\ effectif de degré au plus 3.

(b) Tout zéro-cycle de degré positif ou nul est rationnellement équivalent à une

différence z\ — z2 avec z\ effectif et z2 effectif de degré au plus 3.

(c) Tout zéro-cycle de degré zéro est rationnellement équivalent à la différence
de deux cycles effectifs de degré 3.

(d) Tout zéro-cycle de degré au moins 3 est rationnellement équivalent à un

zéro-cycle effectif ou à la différence d'un zéro-cycle effectif et d'un point
fermé de degré 3.

(e) Le groupe de Chow des zéro-cycles sur X est engendré par les classes des

points rationnels et des points fermés de degré 3.

(f) Tout zéro-cycle sur X de degré au moins égal à 10 est rationnellement

équivalent à un zéro-cycle effectif.

Démonstration. On va systématiquement appliquer le théorème 2.9(b).
On peut le faire car la propriété de R -densité vaut pour les surfaces cubiques

lisses sur tout corps k de caractéristique zéro (Proposition 2.1).

On pourrait aussi observer que d'après la proposition 2.11, pour le théorème à

démontrer, on peut supposer le corps k fertile, ensuite invoquer le fait bien connu

qu'une surface cubique lisse est géométriquement rationnelle et donc

géométriquement rationnellement connexe, et enfin appliquer le théorème 2.2. Cette

méthode sera utile dans l'étude des surfaces de del Pezzo de degré 2 et de

degré 1.

Soit z un zéro-cycle effectif de degré d > 1. Soit n le plus petit entier tel

que d +2 < 3n(n + l)/2 + 1. On a donc

3n(n — l)/2 4- 1 < d +2

soit encore

3n(n — l)/2 < d.

D'après le théorème 2.9(b), quitte à remplacer z par un zéro-cycle effectif
rationnellement équivalent encore noté z et Q par un point rationnel rationnellement

équivalent encore noté Q, on peut supposer qu'il existe une courbe lisse

géométriquement connexe T dans le système linéaire |—nK\ contenant le zéro-cycle z

et le point rationnel Q.
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On a g(T) pa(F) 3n{n - l)/2 + 1. Si l'on a

d - 1 > 3n(n — l)/2 + 1,

alors le zéro-cycle z - Q est rationnellement équivalent sur T, donc sur X, à

un zéro-cycle effectif de degré d — 1.

La condition est satisfaite sauf si

3n(n — l)/2 < d < 3n(n — l)/2 + 1.

Considérons le cas d 3n(n — l)/2 + 1. Ici pa(E) d. Dans ce cas, on
fixe un autre point rationnel R e X(k), distinct de Q, non dans le support de

z, et non situé sur une des droites de X, et on exige

d + 1+3 + 1 < 3n(n + l)/2 + 1.

Ceci est possible si

3n(n - l)/2 + 6 < 3n(n + l)/2 + 1

soit encore n > 2.
On considère l'éclatement p:Y-*X en le point R, la courbe exceptionnelle

E c Y, et le faisceau inversible p*(—nK) — 2E sur Y. La surface Y est une
surface de del Pezzo de degré 2. Le faisceau anticanonique sur Y est donné par

p*(-K)-E. Il est ample, son double p*(—2K) — 2E est très ample. Le système

linéaire \p*{-K)\ sur Y correspond au morphisme Y X, ceci implique que

pour tous entiers a > 0 et b > 1, le faisceau inversible ap*(—K)+b(p*(—K) — E)
est ample, et que le faisceau inversible ap*(—K)+2b(p*(—K) — E) est très ample.
On peut aussi établir ces divers énoncés de très-amplitude par une application
de [Rei, Thm. 1].

Sur la surface Y, le théorème de Riemann-Roch pour le faisceau

L p*(—nK) -2E —nKY + (n - 2)E,

le théorème de dualité de Serre et le théorème d'annulation de Kodaira donnent

alors, pour n > 2,

h°(Y, p*(—nK) - 2E) 3n(n + l)/2 - 2.

Pour n > 2, le système linéaire \p*(—nK) — 2E\ définit donc un plongement de

la surface Y dans un espace projectif PA' avec N 3n(n + 1 j/2 — 3, espace

projectif qu'elle engendre. Comme on a d + I 3« (« — l )/2 + 2 < 3n (n + 1)/2—3,
le théorème 2.9(b) assure l'existence dans le système linéaire \p*(—nK) - 2E\
d'une courbe Tcf projective, lisse et géométriquement intègre, et qui contient

un zéro-cycle effectif z\ rationnellement équivalent à p*(z) sur Y et un point



466 J.-L. Colliot-Thélène

rationnel Q\ rationnellement équivalent au point p*(Q). Le genre de cette courbe

est 3n(n — l)/2. Le zéro-cycle z\ — Q\ est de degré 3n(n — l)/2. Il est donc

rationnellement équivalent, sur T, et donc sur Y à un zéro-cycle effectif de degré
d — 1. Le zéro-cycle p*(z) - p*(Q) sur Y est donc rationnellement équivalent
à un zéro-cycle effectif, et il en est donc de même de son image directe z — Q

sur X.
Considérons le cas d 3n(n - l)/2 et pa d + 1. On s'intéresse au cas

d > 4 et donc n > 3.

Dans ce cas on va fixer un couple de points rationnels R et S suffisamment

général, et imposer un point double en chacun de ces points, ce qui impose
6 conditions linéaires pour le système linéaire |—nK\. Voici comment faire cela

formellement.

Soit p : Y -> X l'éclaté de X en R et S, et soient Er c Y, resp. Es C Y

les courbes exceptionnelles. La surface Y est une surface de del Pezzo de degré 1.

Sur cette surface, le faisceau inversible —Ky p*(-K)-Er-Es est ample
et le faisceau inversible —3Ky est très ample [Koll, Chap. III, Prop. 3.4],

Pour n > 3, le faisceau inversible

p*(—nK) - 2Er - 2Es -nKy + (n - 2)ER + (n - 2)ES

sur Y est très ample, comme on voit en utilisant [Rei, Thm. 1],

En utilisant le théorème de Riemann-Roch pour le faisceau inversible

p*(-nK) —2Er — 2Es sur Y, la dualité de Serre et le théorème d'annulation
de Kodaira, pour n > 3 on obtient

h°(Y, p*(—nK) - 2Er - 2Es) 3n(n + l)/2 - 5.

Pour n > 3, le système linéaire \p*(—nK) — 2Er -2Es\ définit un plongement
de Y dans avec N 3n(n + l)/2 —6, dont l'image engendre projectivement
piV

On a

d + 1 + 1 < 3n{n + l)/2 — 5

c'est-à-dire

3n(n - l)/2 < 3n{n + l)/2 — 7,

puisque l'on a n > 3.

D'après le théorème 2.9(b), il existe un zéro-cycle effectif z' sur Y rationnellement

équivalent à p*(z) sur Y, un point rationnel Q' e Y{k) rationnellement

équivalent à p*{Q) sur Y et une courbe r c P géométriquement intègre et lisse

sur Y dans le système linéaire |p*(—nK) — 2Er -2Es\ qui contient le support
de z' et le point Q'. Le genre de cette courbe est d — 1, et le zéro-cycle z' — Q'
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est donc rationnellement équivalent sur T à un zéro-cycle effectif, il en est donc
de même pour z — Q sur X.

En conclusion, tout zéro-cycle z effectif de degré d au moins égal à 4 sur
X est rationnellement équivalent à un zéro-cycle zx + rQ, avec zi effectif de

degré au plus 3.

Ceci établit le point (a). On notera que le choix du point rationnel Q est

arbitraire. Les points (b) et (c) sont des conséquences évidentes de (a).

Il y a une classe standard l dans CH0(X) de degré 3, celle découpée par
une droite définie sur k quelconque mais non située sur la surface X. Comme

X possède des points rationnels, et que ces points sont denses pour la topologie
de Zariski, on peut trouver une telle droite qui découpe sur X trois points
rationnels distincts. Si P est un point fermé de degré 2 non situé sur une droite
de la surface, alors la droite qu'elle définit découpe sur X une somme P + p
avec p point rationnel, et P + p est dans la classe i, donc équivalent à la

somme de trois points rationnels alignés. Si P est situé sur une droite D de

la surface, alors P est rationnellement équivalent sur D donc sur X à 2 Q

pour tout point rationnel Q de la droite. En résumé, tout point fermé P de

degré 2 sur X est rationnellement équivalent à un zéro-cycle a + b + c — d avec

a,b,c,d points rationnels. Les résultats (d) et (e) s'obtiennent alors formellement
à partir de (a).

Démontrons (f). D'après la proposition 2.11, on peut supposer k fertile. Le plus

petit entier d pour lequel il existe un entier naturel n avec 3«(n —1)/2+1 < d — 3

et d + 3 + 1 < 3n(n + l)/2 +1 est d 13, qui correspond an — 3.

Considérons un zéro-cycle z — P avec z effectif de degré d 13 et P un

point fermé de degré 3. Le théorème 2.9(b) montre l'existence d'un zéro-cycle
effectif z' rationnellement équivalent à z, d'un zéro-cycle effectif P' de degré 3

rationnellement équivalent à P, et d'une courbe lisse géométriquement intègre
T c X dans le système linéaire |—3AT de genre g 10 contenant le support de

z' et celui de Q'. Le théorème de Riemann-Roch sur T assure alors l'existence
d'un zéro-cycle effectif de degré 10 rationnellement équivalent sur T, donc sur

X, à z — P.
Soit z un zéro-cycle quelconque sur X de degré au moins 10. D'après (d), soit

il est rationnellement équivalent à un zéro-cycle effectif, soit il est rationnellement

équivalent à une différence zi — P avec P point fermé de degré 3 et z\ zéro-cycle
effectif de degré au moins 13. D'après (a), le zéro-cycle z\ est rationnellement

équivalent à Z2 + rQ avec Q point rationnel, r > 0, et Z2 zéro-cycle effectif de

degré 13. Ainsi z est rationnellement équivalent à rQ + zx - P avec zx effectif
de degré 13. Et on a vu ci-dessus que, pour un tel zi, le zéro-cycle z\ - P est

rationnellement équivalent à un zéro-cycle effectif.
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Remarque 3.4. Dans [CTC], pour une surface fibrée en coniques relativement
minimale au-dessus de la droite P£, notant r le nombre de fibres géométriques

singulières de la fibration X -> nous montrons que tout zéro-cycle sur X
de degré au moins max(0, [r/2J — 1) est rationnellement équivalent à un zéro-

cycle effectif. Une autre démonstration, plus conceptuelle, fut plus tard obtenue

par P. Salberger [Sa], La démonstration de [CTC] requiert des discussions sur la

décomposition possible des courbes obtenues dans un système linéaire. Il n'est pas
clair si on pourrait utiliser la méthode du § 2 pour simplifier cette démonstration.

Remarque 3.5. L'analogue du théorème 3.3 est connu pour les surfaces de del

Pezzo X de degré 4 avec un point rationnel. Dans ce cas on a mieux. Par

éclatement d'un k -point non situé sur les droites de X, on obtient une surface

cubique Y fibrée en coniques au-dessus de avec 5 fibres géométriques

dégénérées. Le théorème de [CTC] donne alors que tout zéro-cycle sur Y de

degré au moins 1 est rationnellement équivalent à un zéro-cycle effectif. Ceci

vaut donc aussi pour une surface de del Pezzo X de degré 4 possédant un point
rationnel (l'existence d'un tel point suffit pour que les point rationnels soient
denses pour la topologie de Zariski sur X).

4. Surfaces de del Pezzo de degré 2

4.1. Surfaces de del Pezzo de degré 2 avec un zéro-cycle de degré 1. On suit
la méthode de Coray pour les surfaces cubiques [Corl], avec la flexibilité donnée

par le théorème 2.9(a).

Théorème 4.1. Soient k un corps de caractéristique zéro et X une k-surface
de del Pezzo de degré 2. Si X possède un zéro-cycle de degré 1, elle possède un

point fermé de degré 1, ou 3, ou 7.

Démonstration. Une telle surface X possède des points dans des extensions

quadratiques du corps de base k, puisque c'est un revêtement double de P^,
donné par le système linéaire associé à -K. Soit Q un point de degré 2 sur

X. Supposons donné un point fermé de degré d impair. On peut supposer d
minimal avec cette propriété. Si d — 1, on a un point rationnel. Supposons donc

d > 3.

D'après la proposition 2.11, on peut supposer le corps k fertile. Les seuls

faisceaux inversibles évidents sur X sont les faisceaux —nK. Ils sont amples

pour n > 1, et très amples pour n > 2, par exemple par [Rei, Thm. 1], Soit

n > 2. On a

h2(nK) h°((\ + n)K) =0,
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car le faisceau inversible —K est ample. Comme —K est ample, on a

h\nK) /r1 ((1 + n)K) 0

d'après le théorème d'annulation de Kodaira. Le théorème de Riemann-Roch sur
la surface X donne alors

h°(-nK) (-nK.{-nK - K))/2 + 1 n2 + n + 1.

Pour tout entier n > 1, le faisceau inversible —nK est ample et ses sections

définissent un morphisme X -> ~Pnk+n d'image de dimension au moins 2,

engendrant projectivement P^2+n.

Pour T une courbe projective et lisse dans le sytème linéaire \—nK\, on a

g(T) pa(T) (-nK.-nK + K)/2+l =n2-n + 1.

Une telle courbe T contient un zéro-cycle (effectif) de degré (-nK).(-K) 2n

obtenu par intersection avec l'image réciproque d'une droite de Pjr.
Notons (n + l)2 - (n + 1) + 1 n2 + n + 1. Soit n > 1 l'unique entier tel que

g=n2-n + \<d < n2 + n + 1.

Supposons d'abord

g n2-n + \<d < n2 + n — 2.

Comme on a d +2 < n2 + n, le théorème 2.9(a) garantit l'existence d'une courbe

T projective, lisse, géométriquement connexe dans le système linéaire \—nK\,
possédant un zéro-cycle effectif de degré d et un point de degré 2. Comme d

est impair, on n'a pas d n2 -n + 2, donc on a n2 -n + 3 < d et d -2 > g. Le
théorème de Riemann-Roch sur la courbe T assure l'existence d'un zéro-cycle
effectif de degré d — 2 sur T, donc sur X, ce qui est une contradiction avec

l'hypothèse d minimal.
On ne peut avoir d — n2 +n, car d est impair. Il reste donc à considérer les

cas d n2 + n — 1 et d n2 - n + l — g.
Considérons le cas d n2 +n-1. Le théorème 2.9(a) établit l'existence d'une

courbe T projective, lisse, géométriquement connexe sur k de genre g n2—n +1
contenant un zéro-cycle effectif de degré d n2 + n- 1. Comme on a remarqué
ci-dessus, cette courbe contient aussi un zéro-cycle de degré 2n. Comme n2+n-1
et 2n sont premiers entre eux, cette courbe possède un zéro-cycle de degré 1.

Par le théorème de Riemann-Roch sur la courbe T, elle possède un zéro-cycle
effectif de degré n2 - n + 1. On a n2 — n + 1 < n2 + n — 1 si et seulement si

n > 1, i.e. d >5. Si donc d n'est pas égal à 3, on trouve sur T et donc
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sur X un zéro-cycle effectif de degré impair plus petit que d, ce qui est une

contradiction avec l'hypothèse d minimal.

Il reste à considérer le cas g n2 - n + 1 d. On a un point fermé de

degré d > 3. Comme k est fertile, on peut choisir un point k -rationnel général

m dans et son image réciproque M par le morphisme X -* C'est un

point fermé de degré 2. On considère p : Y —r X l'éclaté de X en le point
M, on note E C Y le diviseur exceptionnel, et on considère sur Y le système
linéaire \p*{—nK) — 2E\. Ses sections correspondent aux courbes du système

linéaire \—nK\ sur X qui ont un point double en le point fermé M, ce qui

impose 6 conditions linéaires. On a donc h°(Y, p*{—nK) — 2E) > n2 + n — 5.

Lemme 4.2. Pour n > 3, le faisceau inversible p*{—nK) — 2E est très ample,

et l'on a h°(Y, p*(—nK) — 2E) n2 + n — 5.

Démonstration. Soit D ~ P£ la droite paramétrant les droites de P| passant

par m. À tout point de X non au-dessus de m on associe sa projection dans

P2k puis le point de D correspondant à la droite joignant cette projection à m.
L'application rationnelle de X vers D ainsi définie s'étend en un morphisme
Y D dont le système linéaire associé est donné par le faisceau inversible

p*(—K) — E. On sait que le faisceau inversible —2K sur X est très ample,
définissant un plongement X C P^. On a un plongement

Y <=-> (P1 xI)h (P1 x P*)

défini par p*(—K) - E pour la projection vers P1 et par p*(-2K) pour la

projection vers X C P^. Il s'en suit que pour tout couple d'entiers a > 1,6 > 1

le faisceau inversible a(p*(—K) — E) + bp*(-2K) est très ample.
En particulier, pour n 4, le faisceau inversible p*(-nK) -2E est très

ample sur Y, et comme p*(—K) correspond à un morphisme Y -* X ->• P^,
ceci implique que pour tout n > 4, le faisceau inversible p*{—nK) — 2E est très

ample sur Y.
Procédant comme dans le lemme 3.2, pour n > 4, on montre

h1(Y,p*(-nK)-2E) =0, h1 (Y, p*(—nK) — 2E) -0,
puis h?(Y, p*(—nK) — 2E) n2 + n — 5.

Si l'on a d < n2 + n — 6, c'est-à-dire n2 — n + 1 < n2 + n — 6, c'est-à-
dire n > 3, c'est-à-dire si on exclut d 3 et d 7, le théorème 2.9(a)

assure l'existence d'une courbe Y géométriquement connexe et lisse dans le

système linéaire \p*{—nK) — 2E\ sur Y contenant un zéro-cycle effectif de degré
d n2 — n + 1. Cette courbe satisfait g(f) pfl(r) n2 — n — 1. Elle contient un
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zéro-cycle de degré 2n. Comme d — n2 — n + 1 et 2n sont premiers entre eux,
T contient un zéro-cycle de degré 1. Par le théorème de Riemann-Roch sur F,
elle contient un zéro-cycle effectif de degré n2 - n — 1, impair et strictement

plus petit que d n2 — n + 1, ce qui est une contradiction avec l'hypothèse d

minimal.

N'ont donc été exclus de ce processus de descente des degrés impairs que les

degrés 1, 3, ou 7.

Remarque 4.3. Comme annoncé dans [KM, Remarkl9], pour une surface de del

Pezzo de degré 2, on ne peut exclure la possibilité d'existence d'un point de

degré 3 en l'absence de point rationnel. Je détaille ici l'argument qui m'a été

indiqué par J. Kollâr. Sur un corps k convenable de caractéristique zéro, on

peut trouver dans une conique lisse C(u,v,w) 0 et une quartique lisse

Q(u,v,w) 0 dont l'intersection consiste en la réunion d'un point fermé de

corps résiduel K degré 3 sur k et d'un point fermé de corps résiduel L de

degré 5 sur k. En particulier cette intersection ne contient pas de point rationnel.

Soit F k{t) le corps des fonctions rationnelles en une variable. La quartique
de V2f définie par aC(u,v,w)2 -tQ(u,v,w) — 0 est lisse, car elle se spécialise

en t — oo en une quartique lisse. On considère la surface de del Pezzo X de

degré 2 sur F définie par l'équation multihomogène

z2 —aC(u, v, w)2 -I- tQ(u, v, w) — 0.

Supposons qu'elle ait un point sur F. Par congruences modulo t, on voit que
l'on devrait avoir une solution non triviale pour C(u,v,w) 0 Q(u,v,w)
dans k, ce qui n'est pas. Ainsi X{F) 0. Il est par contre clair que X possède

un point sur l'extension cubique K(t)/F et un point sur l'extension quintique

L{t)/F, avec C(u, v,w) — 0 — Q(u, v, w) et z 0.

On peut aussi faire des variantes avec F k((t)) le corps des séries formelles.

Dans la situation parallèle des surfaces fibrées en coniques sur Pj- avec 6 fibres

géométriques dégénérées, des exemples analogues avec F un corps p-adique
avaient été construits dans [CTC, §5].

4.2. Surfaces de del Pezzo de degré 2 avec un point rationnel.

Théorème 4.4. Soient k un corps de caractéristique zéro et X une surface de

del Pezzo de degré 2 sur k possédant un point rationnel.

(a) Soit Q e X(k) un point rationnel. Tout zéro-cycle effectif de degré au moins
6 sur X est rationnellement équivalent à un zéro-cycle effectif Z\+rQ avec

r > 0 et z\ effectif de degré au plus 6.



472 J.-L. Colliot-Thélène

(b) Tout zéro-cycle de degré positif ou nul est rationnellement équivalent à une

différence Z\ — z2 avec z\ effectif et z2 efffectif de degré au plus 6.

(c) Tout zéro-cycle de degré zéro est rationnellement équivalent à la différence
de deux cycles effectifs de degré 6.

(d) Tout zéro-cycle de degré au moins égal à 43 est rationnellement équivalent
à un zéro-cycle effectif.

Démonstration. On va systématiquement appliquer le théorème 2.9(b). À la
différence du cas des surfaces cubiques lisses (Théorème 3.3), en présence d'un
k -point sur la surface de del Pezzo de degré 2, la k -unirationalité et la propriété
de densité ne sont pas connues dans tous les cas [Man2, STYA], En outre, pour
ces surfaces, on n'a pas étudié la propriété de R -densité. On va donc utiliser ici
la proposition 2.11, qui permet de supposer le corps k fertile, et le théorème 2.2.

Soit n > 1. On a h°(—nK) n2 + n + 1, et si T est une courbe

géométriquement connexe lisse dans le système linéaire | - nK\, alors

g(T) pa(T) «2 - n + 1. Pour tout n > 1, le système linéaire | - nK\
définit un morphisme de X dans un espace projectif d'image de dimension au

moins 2. Pour n > 2, c'est un plongement.
Soit z un zéro-cycle effectif de degré d > 1. Soit n le plus petit entier tel

que d + 2 < n2 + n + 1. On a n2 — n < d.

D'après le théorème 2.9(b), quitte à remplacer le zéro-cycle effectif z

par un zéro-cycle effectif rationnellement équivalent encore noté z et Q par
un point rationnel rationnellement équivalent encore noté Q, comme on a

h°{-nK) >d+ 2, on peut supposer qu'il existe une courbe lisse géométriquement

connexe T dans le système linéaire \-nK\ contenant le zéro-cycle z et le point
rationnel Q.

Si l'on a n2 — n + 1 <<7 — 1, alors le zéro-cycle z — Q est rationnellement

équivalent sur T, donc sur X, à un zéro-cycle effectif de degré d — 1.

La condition est satisfaite sauf si

n2 — n < d <n2+n + 1.

Considérons le cas d — n2 — « + 1. Ici pa(T) d. Dans ce cas, on fixe

un autre point rationnel R e X(k), distinct de Q, non dans le support de z, et

situé ni sur une des courbes exceptionnelles de X ni sur le lieu de ramification
du revêtement double Z -» P2 défini par le système linéaire | — K\. Quitte à

remplacer par des cycles effectifs rationnellement équivalents, on cherche une

courbe T géométriquement intègre dans le système linéaire | — nK\ contenant
le point Q, le support de z, et possédant un k -point double en R, pour faire
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baisser le genre géométrique de 1. On veut donc

d + 1 + 3 + 1 < n2 -Y n -f- 1,

avec d n2 — n + 1, soit n > 2 et d > 3.

Voici comment faire cela précisément. On considère l'éclatement p : F -> X
en le point R, la courbe exceptionnelle E c F, et le faisceau inversible

p*(—nK) — 2E sur F. La surface Y est une surface de del Pezzo de degré 1.

D'après le lemme 4.2, pour tout couple d'entiers a > \,b > 1 le faisceau

inversible a(p*(—K) - E) + bp*(-2K) est très ample sur Y. Ainsi pour tout
n > 3, le faisceau inversible p*(—nK) —2E est très ample sur Y. On applique
ensuite le théorème 2.9(b) à F, au plongement de Y défini par p*(—nK) — 2E
au point Q\ p~l(Q) et au zéro-cycle effectif z\ p*(z). On trouve ainsi

une courbe Ti c Y géométriquement connexe, lisse, et contenant un &-point Q2

rationnellement équivalent à Q\ sur F et un zéro-cycle effectif z2 rationnellement

équivalent à z\ sur F. En utilisant le théorème de Riemann-Roch sur F, on

montre pa(Fi) — n2 - n — d — 1. Par Riemann-Roch sur la courbe V\, on trouve

un zéro-cycle effectif z3 rationnellement équivalent sur n à z2 - Q2, donc

rationnellement équivalent à zi - öi sur ^ • Alors le zéro-cycle effectif p*(z3)
de degré d — 1 est rationnellement équivalent à z — Q sur X.

Considérons le cas d n2-n. On a pa{Y) d +1. Dans ce cas, choisissons

un couple de k -points étrangers au support de z, à Q, aux courbes exceptionnelles
de première espèce sur X et au lieu de ramification.

Quitte à remplacer Q et z par des cycles effectifs rationnellement équivalents,

on cherche une courbe T géométriquement intègre dans le système linéaire \—nK\
contenant le point Q, le support de z, et sur laquelle les points R et S sont

doubles, afin de faire baisser le genre géométrique de 2. Il faut pour cela

öl-l-l-t-6 + l<n2-l-n + l,

avec d n2 — n. On doit donc avoir n > 3 et d > 6.

Voici comment faire cela précisément. Choisissons le couple R, S stable par
l'involution associée au revêtement double X -> défini par | — K\.

On considère l'éclatement p : Y -> X en ces points R et S, les courbes

exceptionnelles Er, Es C Y introduites par l'éclatement, et le faisceau inversible

p*(-nK) — 2Er -2Es sur F. D'après le lemme 4.2, pour n > 3, ce faisceau

inversible est très ample sur F.
On applique ensuite le théorème 2.9(b) à F, au plongement de F défini

par p*(-nK) — 2Er - 2Es au point Q\ p~l{Q) et au zéro-cycle effectif
z 1 p*(z). On trouve ainsi une courbe L C F géométriquement connexe, lisse,
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et contenant un k -point Q 2 rationnellement équivalent à Q\ sur Y et un zéro-

cycle effectif z2 rationnellement équivalent à z\ sur Y En utilisant le théorème de

Riemann-Roch sur Y, on montre pa(Fi) — n2-n-1 d — 1. Par Riemann-Roch

sur la courbe r1, on trouve un zéro-cycle effectif Z3 rationnellement équivalent
sur Ti à z2 — g2, donc rationnellement équivalent à Zi — Q\ sur Y. Alors le

zéro-cycle effectif p*(z3) de degré d - 1 est rationnellement équivalent à z - Q

sur X.
Ceci établit (a). Les énoncés (b) et (c) sont des conséquences immédiates.

Montrons (d). Soit z un zéro-cycle quelconque de degré d > 0. D'après (b), il
est rationnellement équivalent à Z\ — z2 avec z\ effectif et z2 effectif de degré 6.

Le plus petit entier d pour lequel on a n2—n+1 < d—6 et d+6+ 1 < /72+» + 1

est d 49, avec n 7. On considère d'abord le cas où le zéro-cycle effectif

Zi est degré d 49. On utilise l'hypothèse k fertile et le théorème 2.9(b).

Quitte à remplacer les zéro-cycles effectifs Z\ et z2 par des zéro-cycles
effectifs rationnellement équivalents, dans le système linéaire | — 7 AT | qui vérifie

h°(-7K) 7i2+h + 1 57 > 49+6+1 on trouve une courbe V géométriquement
irréductible et lisse de genre n2 - n + 1 43 qui contient les supports de z\
et z2. Le zéro-cycle z\ — z2 de degré 43 est rationnellement équivalent sur T,
donc sur A à un zéro-cycle effectif.

Ceci implique que tout zéro-cycle z\ — z2 sur X avec z\ effectif de degré
d > 49 et z2 effectif de degré 6 est rationnellement équivalent à un zéro-cycle
effectif.

Ainsi tout zéro-cycle z sur X de degré au moins égal à 43 est rationnellement

équivalent à un zéro-cycle effectif.

Remarque 4.5. La démonstration établit que pour Q e X(k) donné, tout zéro-

cycle effectif de degré d > 1 sur Z est rationnellement équivalent à z\ + Q

avec z 1 zéro-cycle effectif, si d {1,2,3,6}.

5. Surfaces de del Pezzo de degré 1

Théorème 5.1. Soit X/k une surface de del Pezzo de degré 1.

(a) Soit Q e X(k) un point rationnel. Tout zéro-cycle effectif de degré au moins
21 sur X est rationnellement équivalent à un zéro-cycle effectif z\ + rQ
avec r > 0 et z\ effectif de degré au plus 21.

(b) Tout zéro-cycle de degré positif ou nul est rationnellement équivalent à une

différence z\ — z2 avec z\ effectif et z2 effectif de degré au plus 21.
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(c) Tout zéro-cycle de degré zéro est rationnellement équivalent à la différence
de deux cycles effectifs de degré 21.

(d) Tout zéro-cycle sur X de degré au moins égal à 904 est rationnellement

équivalent à un zéro-cycle effectif.

Démonstration. On va systématiquement appliquer le théorème 2.9(b). On dispose

ici automatiquement d'un k -point P, le point fixe du système linéaire | — K\,
qui satisfait h°(—K) 2. Pour tout n > 2, le système linéaire [ — nK\ est sans

point base [Koll, Chap. III, Prop. 3.4], et son image est de dimension 2. Pour

tout n > 3, le faisceau inversible —nK est très ample.
On ne connaît en général pas la k -unirationalité, la propriété de densité, et

encore moins la propriété de R -densité. On va donc utiliser la proposition 2.11,

qui permet de supposer le corps k fertile, et le théorème 2.2.

Soit n > 1. On a h°(—nK) n(n + l)/2 + 1, et si F est une courbe

géométriquement connexe lisse dans le système linéaire | — nK\, alors g(T)
pa(F) n(n-l)/2+l.

Soit z un zéro-cycle effectif de degré d > 2. Soit n le plus petit entier tel

que d + 2 < n(n + l)/2 + 1. On a n(n — l)/2 < d et n > 2.

D'après le théorème 2.9(b), sous l'hypothèse d + 2 < n(n + l)/2 + 1 et

n > 3, quitte à remplacer le zéro-cycle effectif z par un zéro-cycle effectif
rationnellement équivalent encore noté z, étranger à P, et Q par un point
rationnel rationnellement équivalent encore noté Q, étranger aux précédents, on

peut supposer qu'il existe une courbe lisse géométriquement connexe F dans le

système linéaire |—nK\ contenant le zéro-cycle z et le point rationnel Q.
Si l'on a n(n - l)/2+ 1 < d - 1, alors le zéro-cycle z - Q est rationnellement

équivalent sur F, donc sur X, à un zéro-cycle effectif de degré d — 1.

La condition est satisfaite sauf si

n(n — l)/2 < d < n(n — l)/2 + 1.

Considérons le cas d n(n - l)/2 + 1. Ici pa(F) d. Quitte à remplacer z

et Q par des cycles effectifs rationnellement équivalents, on cherche une courbe

T géométriquement intègre dans le système linéaire | — nK\ contenant Q, le

support de z, et possédant un k -point double en un point rationnel P étranger

aux précédents, pour faire baisser le genre géométrique de 1. On veut donc

d + 1 +3 + 1 < n(n - l)/2 + 1,

avec d n(n — I)/2 + 1, soit n > 4 et d > 7. On considère l'éclatement

p : Y X en précisément le point P point fixe du système linéaire anticanonique,
la courbe exceptionnelle £ c F, et le faisceau inversible p*{—nK)— 2E sur Y.
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Le système linéaire |p*(—K) — E\ sur Y définit un morphisme Y ->
correspondant au pinceau de courbes de genre arithmétique 1 définies par -K
sur X, surface de del Pezzo de degré 1. Sur X, tout système linéaire \-nK\ avec

n > 2 définit un morphisme dans un espace projectif, d'image de dimension 2.

On conclut que sur Y, les sections de tout faisceau inversible de la forme

p*(—nK) + m(p*(—K) — E) avec n > 2 et m > 1 définissent un morphisme
de Y dans un espace projectif d'image de dimension 2. Ainsi, pour n > 3, les

sections du faisceau inversible p*{-nK) - 2E définissent un morphisme de Y

dans un espace projectif d'image de dimension 2.

Comme le groupe des sections de -nK sur X ayant un point double en

P s'injecte dans le groupe des sections de p*(—nK) — 2E sur Y, on a, sous

l'hypothèse n > 4 ou encore d > 7,

h°(Y, p*(—nK) - 2E) > n(n - l)/2 + 1 - 3 > d + 2.

Par ailleurs le genre de toute courbe géométriquement connexe lisse dans le

système linéaire \p*(—nK) — 2E)\ est égal à (n2 — n)/2 d — 1.

D'après le théorème 2.9(b), sous l'hypothèse n > 3, quitte à remplacer le

zéro-cycle effectif p*(z) par un zéro-cycle effectif rationnellement équivalent z\,
étranger à p*(Q), et p*(Q) par un point rationnel Q\ Y(k) rationnellement

équivalent, il existe une courbe lisse géométriquement connexe T dans le système

linéaire \p*(—nK) — 2E\ contenant le zéro-cycle z\ et le point rationnel Q\.
Cette courbe est de genre d — 1. On trouve donc sur elle un zéro-cycle effectif de

degré d — 1 rationnellement équivalent à z\ — Qi. L'image directe sur X donne

un zéro-cycle effectif de degré d — 1 rationnellement équivalent à z - Q.

Considérons le cas d — n(n — l)/2. Ici pa(r) — d + 1. Dans ce cas, on

va fixer deux autres points rationnels R,S e X(k), distincts de Q. Quitte à

remplacer par des cycles effectifs rationnellement équivalents, on cherche une
courbe T géométriquement intègre dans le système linéaire \ — nK\ contenant
les point Q, le support de z, et sur laquelle les points R et S sont doubles,

pour faire baisser le genre géométrique de 2. Il faut pour cela

J + 1+ 6+1<h (h -j- 1 j2 -}- 1,

avec d n(n — l)/2. On doit donc avoir n > 6 et d > 15.

On considère l'éclatement p : Y -» X en les points R et S, les courbes

exceptionnelles Er, Es C Y, et le faisceau inversible p*(—nK) — 2Er - 2Es
sur Y.
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Lemme 5.2. Soient k un corps et X une k -variété projective. Soit f : X —» P"

un k-morphisme, Z C son image schématique. Soit Y -* X l'éclaté de

X en un k-point lisse m X(k), et soit E C Y le diviseur exceptionnel.
Si f : X —> Z est éfa/e dans un voisinage de m, alors le système linéaire

|/*(Op«(l)) <g> Oy(— E)\ sur Y est sans point base.

Démonstration. Pour établir cela, on peut supposer k algébriquement clos. Il
suffit alors d'utiliser le fait qu'au point m le morphisme / sépare les points
infiniment voisins.

Sur la surface de del Pezzo X de degré 1, le système linéaire \—2K\ définit

un morphisme / : X -> d'image de dimension 2. Comme on a supposé

car(7:) 0, ce morphisme est génériquement étale. Soit S e X(k) un point où

/ est étale. Soit gs : Xs X l'éclatement au point S et Es C Xs la courbe

exceptionnelle. D'après le lemme 5.2, le système linéaire |gj(—2K) - Es \ est

sans point base et définit un morphisme surjectif Xs —»• Pjr. Tout multiple de

gl(-2K) — Es e Pic (Ts) est sans point base et définit un morphisme d'image
de dimension 2.

Pour le point R annoncé plus haut on va choisir le point P qui est le point
base du système linéaire | - K\ sur X. Soit gp : Xp -» X l'éclaté de X en P

et Ep c Xp la courbe exceptionnelle.
On a vu ci-dessus que gp(-K) - Ep définit un morphisme Xp — P1. Tout

multiple de gp(—K) — Ep définit donc un morphisme.

Rappelons que pour n > 2, le système linéaire \ —nK\ sur X est sans point
base.

Soit Y le produit fibré Xp et Xs au-dessus de X. C'est l'éclaté p : Y -> X
de X en P et S. On note encore Ep et Es les diviseurs exceptionnels dans Y.
Toute combinaison linéaire à coefficients entiers (a,b,c)

a(p*(-2K) - ES) + b(p*(-K) - EP) + c(p*(-K))

avec a > 0,b > 0 et c 0 ou c > 2 définit un système linéaire sans point
base sur Y, d'image de dimension 2. Ainsi pour n 6 et pour n > 8, le

système linéaire \p*{-nK) — 2Es — 2£>| définit un système linéaire sans point
base sur Y, d'image de dimension 2.

D'après le théorème 2.9(b), sous l'hypothèse n > 8, quitte à remplacer le

zéro-cycle effectif p*(z) par un zéro-cycle effectif rationnellement équivalent z\,
étranger à p*(Q), et p*(Q) par un point rationnel Q\ e Y(k) rationnellement

équivalent, il existe une courbe lisse géométriquement connexe Ti dans le système

linéaire \p*(-nK) — 2E\ contenant le zéro-cycle z\ et le point rationnel Q\.
Cette courbe est de genre d — 1. On trouve donc sur elle un zéro-cycle effectif de
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degré d - 1 rationnellement équivalent à z\ - Q\. L'image directe sur X donne

un zéro-cycle effectif de degré d — 1 rationnellement équivalent à z - Q.
La condition n > 7 équivaut ici à d n(n — l)/2 > 21.
Ceci établit (a). Les énoncés (b) et (c) sont des conséquences immédiates.

Montrons (d). Soit z un zéro-cycle quelconque de degré d > 0. D'après (b), il
est rationnellement équivalent à z\ — z2 avec zi effectif et Z2 effectif de degré 21.

Le plus petit entier d pour lequel on a n(n — l)/2 +1 < d - 21 et

d + 21 + 1 < n(n + l)/2 +1 est d 925, avec n 43.

On considère d'abord le cas où le zéro-cycle effectif zi est degré d — 925.

On utilise l'hypothèse k fertile et le théorème 2.9(b). Quitte à remplacer les zéro-

cycles effectifs z\ et z2 par des zéro-cycles effectifs rationnellement équivalents,
dans le système linéaire | - A3K\ qui vérifie /z°(—43K) n(n + l)/2 + 1

947 on trouve une courbe F géométriquement irréductible et lisse de genre
n(n — l)/2+ 1 904 qui contient les supports de z\ et z2. Le zéro-cycle z\ — z2

de degré 904 est rationnellement équivalent sur r, donc sur X à un zéro-cycle
effectif.

Ceci implique que tout zéro-cycle Z\ - z2 sur X avec Z\ effectif de degré
d > 925 et z2 effectif de degré 21 est rationnellement équivalent à un zéro-cycle
effectif.

Ainsi tout zéro-cycle z sur X de degré au moins égal à 904 est rationnellement

équivalent à un zéro-cycle effectif.

Remarque 5.3. La démonstration établit que, pour Q e X(k) donné, tout zéro-

cycle effectif de degré d > 1 sur A est rationnellement équivalent à zi + Q

avec Z\ zéro-cycle effectif, si l'on a d £ {1,2,3,4,6,10,15,21}. Il est très

vraisemblable que l'on pourrait éliminer le cas d 21. Ce serait le cas si avec

les notations de la démonstration ci-dessus on savait que le système linéaire

\p*(—lK) — 2Es — 2Ep\ sur Y est sans point base.

Si l'on pouvait éliminer le cas d 21, alors au point (d) on pourrait
remplacer 904 par 466.

6. Surfaces géométriquement rationnelles

Soient k un corps et X une k -surface projective et lisse géométriquement
rationnelle. Le théorème d'Enriques-Manin-Iskovskikh [Isk] et Mori dit qu'une
telle surface k-minimale est k-isomorphe soit à une surface projective et lisse

fibrée en coniques (génériquement lisses) relativement minimale au-dessus d'une

conique lisse, soit à une surface (lisse) de del Pezzo. Une surface de del Pezzo

X est une surface dont le faisceau anticanonique -K est ample.
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Pour une surface fibrée en coniques relativement minimale X -» C au-
dessus d'une conique lisse, les fibres générales sont des coniques lisses. Les

fibres singulières Xp sont formées de deux droites conjuguées se rencontrant
transversalement au-dessus d'un point fermé séparable P.

Théorème 6.1. Soient k un corps de caractéristique zéro et X une k-surface
projective, lisse, géométriquement rationnelle. Il existe un entier N{X), qui ne

dépend que de la géométrie de X sur une clôture algébrique de k, tel que si

X possède un zéro-cycle de degré 1, alors X possède des points fermés dont
les degrés sont inférieurs ou égaux à N(X) et sont premiers entre eux dans leur
ensemble. Notant Kx la classe canonique de X, on peut prendre

N(X) max(10, L4 - (KX.KX)/2J).

Démonstration. Considérons d'abord le cas d'une surface de del Pezzo. Soit
d — (K.K) son degré. Une telle surface possède un zéro-cycle effectif de degré
d. On a l < d <9. Supposons que X possède un zéro-cycle de degré 1. Pour
d >5, c'est un résultat classique qu'alors X possède un point rationnel: pour
d — 5,7 il existe toujours un point rationnel [Manl, VA]. Pour d — 8, l'existence
d'un zéro-cycle de degré 1 implique que toute classe dans le groupe de Picard

géométrique invariante sous l'action du groupe de Galois de k est dans l'image
du groupe de Picard de X. La moitié de la classe anticanonique de X définit
alors un plongement de X dans dont l'image est une quadrique. On se ramène

ainsi à l'énoncé pour les quadriques de P|, pour lesquelles le résultat est un cas

particulier du théorème de Springer [Spr] pour les quadriques quelconques. Pour
d — 9, X est une surface de Severi-Brauer. Le cas d 6 est plus subtil. On

peut l'établir en utilisant le théorème de Manin [Man2, Chap. IV, Thm. 30.3.1]

que X contient un ouvert qui est un espace principal homogène sous un k -tore.
Pour d 4, l'existence d'un point rationnel fut établie par Coray [Cor2]. On

laisse au lecteur le soin de simplifier [Cor2] suivant la méthode de cet article. Pour
d 4, X est une intersection de deux quadriques dans VAk. Par des méthodes

élémentaires, M. Amer (non publié) et A. Brumer [Bru] montrèrent ensuite que,

pour tout entier naturel m, toute intersection de deux quadriques dans Vf qui
possède un point dans une extension de k de degré impair possède un point
rationnel.

Dans tous ces cas, on peut prendre N{X) — 1.

Pour d 3, le théorème de Coray [Corl] repris au paragraphe 3.1 ci-dessus
donne un point dans une extension de degré 1, 4 ou 10 et dans une extension de

degré 1 ou 3. On peut prendre N{X) 10.

Pour d 2, le théorème 4.1 donne un point dans une extension de degré 1,

3 ou 7 et dans une extension de degré 1 ou 2. On peut prendre N(X) — 7.
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Toute surface de del Pezzo de degré 1 possède un point rationnel canonique,
le point fixe du système linéaire anticanonique. Ici N(X) 1.

On vérifie facilement que si Y -> X est un A -morphisme birationnel de k -

variétés projectives, lisses, géométriquement connexes, si X satisfait la propriété
ci-dessus avec N(X), alors Y satisfait la propriété avec N(Y) N(X). Par

ailleurs, si Y -> X est un k -morphisme birationnel de surfaces projectives et

lisses, qui géométriquement est obtenu par éclatements successifs de s points,
alors (Ky.Ky) (Ky.Kx) — s. Si donc on peut prendre pour N(X) la fonction
de Kx indiquée à la fin du théorème, alors on peut prendre pour N{Y) cette
fonction de Ky.

Soit donc désormais X une A:-surface projective, lisse, géométriquement
rationnelle, A-minimale, possédant un zéro-cycle de degré 1. On a déjà établi
l'énoncé avec N(X) 10 pour les surfaces de del Pezzo. Considérons maintenant
le cas d'une surface X fibrée en coniques relativement minimale au-dessus d'une

conique C lisse. Comme X, la courbe C possède un zéro-cycle de degré 1, et
donc C ~ La surface X possède donc un point fermé de degré 1 ou 2. Si

on note r le nombre de fibres géométriques singulières de la fibration X -> P£,
on a r 8- (K.K). D'après [CTC, Ihm. B], si X possède un point fermé de

degré impair, alors X possède un point fermé de degré impair au plus égal à

max(l, |r/2J), valeur que l'on prend pour N(X).

Théorème 6.2. Soit X une k-surface projective, lisse, géométriquement rationnelle,

sur un corps A de caractéristique zéro. Supposons que X possède un point
k-rationnel. Soit Ky la classe canonique de X. Il existe un entier M(X), qui
ne dépend que de la géométrie de X sur une clôture algébrique de k, tel que
tout zéro-cycle de degré au moins M(X) est rationnellement équivalent à un

zéro-cycle effectif. En particulier, le groupe de Chow des zéro-cycles est engendré

par les points fermés de degré au plus M(X). Notant Ky la classe canonique
de X, on peut prendre

M(X) max(904, L3 - (Ky.Ky)/2J).

Démonstration. On vérifie que si X -r Y est un A-morphisme birationnel de

A-surfaces projectives et lisses géométriquement connexes, et s'il existe un tel
entier M {Y) avec la propriété ci-dessus pour Y, alors on a la même propriété

pour X avec M(X) M(Y). Par ailleurs la fonction de (Ky.Ky) indiquée
dans le théorème est non décroissante par éclatement. On peut donc supposer la
surface X A -minimale.
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Pour les surfaces fïbrées en coniques au-dessus de relativement minimales

avec r fibres géométriques singulières, d'après [CTC, Thm. B] on peut prendre

M(X) max(0, Lr/2J — 1).

On sait que toute k -surface de del Pezzo de degré au moins égal à 5 avec un

point rationnel est k -birationnelle à un espace projectif [Manl, VA], Dans ce cas,

on peut donc prendre M(X) 0. Pour les surfaces de del Pezzo dont le degré
est 4, on peut prendre M(X) 1 : par éclatement d'un k -point non situé sur les

16 droites, on se ramène à un fibré en coniques avec r < 5 fibres géométriques

singulières, et on peut appliquer le résultat général ci-dessus. Pour les surfaces

de del Pezzo de degré 3, le théorème 3.3 donne M(X) 10. Pour les surfaces

de del Pezzo de degré 2, le théorème 4.4 donne M{X) 43. Pour les surfaces

de del Pezzo de degré 1, le théorème 5.1 donne M(X) 904.

Remarque 6.3. Il resterait à éliminer l'hypothèse d'existence d'un point rationnel
dans le théorème 6.2, ce qui impliquerait le théorème 6.1 avec l'estimation sans

doute trop grossière N(X) M(X) + 1.

7. Surfaces cubiques sans point rationnel

Soit k un corps de caractéristique zéro. Soit X c P| une surface cubique
lisse. Comme rappelé plus haut, si la surface cubique lisse X possède un point
rationnel, alors elle est k-unirationnelle et l'ensemble X(k) de ses points k -

rationnels est dense dans X pour la topologie de Zariski. Il est donc facile de

trouver 3 points rationnels sur X qui ne sont pas alignés dans P|. Le théorème

suivant est une réponse partielle à la question posée à la fin de l'introduction du

récent article [Ma].

Théorème 7.1. Soit X c une surface cubique lisse sur un corps k de

caractéristique nulle, sans point rationnel. Si tout point fermé de degré 3 sur X
est découpé par une droite de P^, alors à toute droite générale de P^ on peut
associer une surface de del Pezzo de degré 1 sur k dont les points k -rationnels

ne sont pas denses pour la topologie de Zariski, et donc qui en particulier n'est

pas k -unirationnelle.

Un point de degré 3 découpé par une droite sera dit "aligné".

Démonstration. Comme X{k) - 0, on n'a pas non plus de point quadratique sur

X. Soient k une clôture algébrique de k et G Gal(k/k). On note X X xkk.
Soit De V\ une droite qui ne rencontre aucune des 27 droites de X.
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Le pinceau L ~ P£ des plans de P|- contenant D découpe donc sur X soit

une cubique lisse, soit une cubique avec une unique singularité.
Soit Q X n D. C'est un point fermé de degré 3, qui sur fi correspond à 3

points dont aucun n'est situé sur une droite de X. Soit q — Y -> X l'éclaté de X
en P. Soit fi C F le diviseur exceptionnel. Sur k, ceci donne naissance à trois
courbes Ri, chacune isomorphe à une droite projective sur k. La famille des plans

passant par L définit un morphisme p :Y —»• L dont les fibres sont précisément
les cubiques mentionnées ci-dessus. En particulier la fibration Y xp k -» Pi est

relativement minimale.
Sur k, le morphisme p admet une section, car le diviseur exceptionnel q~l (P)

se découpe en trois courbes isomorphes à PL que p applique isomorphiquement

sur Pi.
k

Chaque fibre Ym p~l(m) au-dessus d'un fi-point m e L(fi) contient le

point fermé Q Supposons Ym lisse. Le théorème de Riemann-Roch sur la courbe

Ym, qui est de genre 1, montre qu'un point fermé Q e Ym qui est de degré 3 est

aligné sur Ym C X si et seulement si le diviseur Q — P, qui est de degré zéro,

a une classe nulle dans Pic(Fm).
Si donc il existe une classe de degré 3 dans Pic(Fm) qui est distincte de la

classe de Q, alors il existe sur Ym, et donc sur X, un point fermé de degré 3

non aligné.
Soit F fi(L), resp. E fi(L) le corps des fonctions rationnelles sur L,

resp. sur Lp Soit Yv/F la fibre générique de p. Soit Wv/F la jacobienne de

la courbe Yv. C'est une courbe elliptique sur F. Soit W —> P£ le modèle propre
régulier minimal de Wv/F (existence: [Sha, Chap. 7]; unicité: (Sha, Chap. 8]).

Je dis qu'alors Wj -> PL est le modèle propre régulier minimal de la E -

courbe elliptique W^xp E. La minimalité est le point non évident. Faute d'avoir
trouvé une référence dans la littérature, je donne une démonstration. Supposons

que W-ç contienne une courbe exceptionnelle de première espèce D j, donc lisse

de genre zéro et satisfaisant {D\.D\) -1, contenue dans une fibre. Supposons

que cette courbe admet une conjuguée D2 sous Galois qui la rencontre, et donc

est contenue dans la même fibre géométrique. Alors

(0! + D2)2 (öi)2 + (ö2)2 + 2(0!.02) -2 + 2(0!.02) > 0,

donc, vu les propriétés de la forme d'intersection sur une fibre, qui est semi-

définie négative [Sha, Chap. 6, p. 91], on a (Di + D2)2 0, et D\ + D2 est

un multiple rationnel de la fibre contenant D\ et D2. Cette fibre contient une

composante de multiplicité 1, comme on voit par intersection avec la section nulle
de Wj -* Pl. Ainsi la fibre est D\ + D2, et l'on a {D\.D2) 1. Mais ceci

n'est pas possible, car le genre géométrique des fibres serait zéro. On voit donc

que les divers conjugués de D\ sont dans des fibres distinctes. Mais alors leur
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somme définit un diviseur sur la A -variété W que le critère de Castelnuovo [Sha,

Chap. 6, p. 102] permet de contracter, contredisant le fait que W -> est

minimal.
Comme Y^xp E possède les points E -rationnels correspondant aux courbes

Ri, le choix d'une de ces courbes Ri définit un E-isomorphisme de courbes:

Wr, Xf E ~ Yrj xjr E. Vu l'unicité des modèles réguliers propres minimaux pour
les courbes lisses de genre au moins 1 [Sha, Chap. 8], on voit qu'il existe un

Pi-isomorphisme W xk k Y x/ç k induisant l'isomorphisme donné sur les

fibres génériques.
Ainsi la &-variété W xkk est isomorphe à l'éclaté d'une surface cubique lisse

en 3 &-points alignés. Ceci montre déjà que W est une &-surface projective et lisse

géométriquement rationnelle dont le faisceau canonique K satisfait (K.K) 0.

La section nulle M de W -» L correspond sur k à l'éclatement d'un A:-point
de X non situé sur une droite de X, elle satisfait (M.M) — 1. On peut donc

la contracter. On obtient une surface W' qui est l'éclatée de la surface X en

deux k -points non situés sur les 27 droites, et dont le faisceau canonique satisfait

(K.K) 1. Pourvu que l'on ait pris la droite D initiale dans un ouvert de Zariski
non vide convenable de la grassmannienne des droites de la surface W' est

géométriquement l'éclatée de la surface cubique en un couple général de points
de A, et donc est une surface de del Pezzo de degré 1.

Soit m e L(k) un point à fibre Ym lisse. La jacobienne de Ym est la fibre
Wm de W -> L en m.

On a la suite exacte bien connue faisant intervenir groupes de Picard et groupes
de Brauer:

0 -> Pic(Fm) -> Pic(Fm)G - Br(A) -> Br(Fm).

Comme Ym possède un point dans une extension de degré 3de A, cette suite

induit une suite exacte

0 -» Pic(Fm) -» Pic(Fm)G Br(A)[3]

où A[n\ désigne le sous-groupe de n-torsion d'un groupe abélien A. Sur les

classes de degré zéro, cette suite exacte induit une suite exacte

0 -> Pic°(Fm) -> Pic°(Fm)G -> Br(A)[3],

Le groupe Pic°(Fm)G est le groupe lLm(A) des A-points de la A-courbe elliptique
Wm. Si la flèche induite Wm(k) —> Br(A)[3] a un noyau non trivial, alors on a

Pic°(Fm) 0. Si z est un élément non nul dans Pic°(Fm), alors la classe Q + z

est une classe de degré 3, rationnellement équivalente à un zéro-cycle effectif de

degré 3 par le théorème de Riemann-Roch sur Ym, définissant un point fermé de

degré 3 non rationnellement équivalent à Q sur Fm, et donc non aligné.
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La flèche Wm(k) Br(k)[3] a un noyau non trivial si Wm(k) ^ Wm(k)[i\.
Si pour aucun m e L(k) à fibre lisse cette condition n'est satisfaite, les k-

points de W sont contenus dans la réunion des fibres singulières de W -»
et du fermé de W qui sur l'ouvert de lissité correspond au schéma défini par
la 3-torsion. En particulier, les &-points ne sont pas denses pour la topologie de

Zariski sur W, qui est une surface de del Pezzo de degré 1.

Remarque 7.2. Si le corps k est fertile, par exemple si k est un corps p -adique,
alors pour toute surface de del Pezzo de degré 1, l'ensemble W(k), qui est non

vide, est dense pour la topologie de Zariski. Dans ce cas on a donc des points
fermés de degré 3 non alignés sur toute k-surface cubique lisse.

Ceci est en fait facile à voir directement. Soit U C Gr(l.P^) l'ouvert formé
des droites qui rencontrent X géométriquement en trois point distincts. Soit
V C Sym3 A l'ouvert lisse, intègre, correspondant aux ensembles de 3 points
géométriques distincts. On a un k -plongement fermé de U, de dimension 4,

dans V, de dimension 6, identifiant U(k) avec les triplets de points géométriques
distincts alignés. L'image de U(k) dans V(k) définit des k-points, lisses, de U.
Ainsi V(k) est non vide, et donc, si k est fertile, les points de V(k) sont denses

pour la topologie de Zariski sur V, et il en existe hors de U.

Remarque 7.3. C'est une question ouverte si pour toute surface de del Pezzo de

degré 1 sur un corps k de caractéristique zéro, les points rationnels sont denses

pour la topologie de Zariski. On consultera [SvL] pour des résultats partiels.
Plus généralement, c'est aussi une question ouverte si, pour une famille lisse non

géométriquement isotriviale W -* de fibre générique une courbe elliptique,
les points rationnels sont denses pour la topologie de Zariski. Ces problèmes sont

ouverts déjà pour k le corps Q des rationnels.

Remarque 7.4. Soit k Q. Soient p.q deux nombres premiers distincts, et

distincts de 3. Soit C c Pq la cubique lisse sur Q définie par l'équation

x3 + pqy3 + q2z3 0.

On a C(Qq) — 0, donc C(Q) 0. La courbe jacobienne J de C est donnée

par
x3 + y3 + pz3 0.

Si p est congru à 5 modulo 9, on sait [Mor, Chap. 15, Ihm. 3] que l'on a

J{Q) 0. Comme on a Pic°(C) C i(Q), ceci implique Pic°(C) 0. En

utilisant le théorème de Riemann-Roch sur la courbe C, on en déduit que
tout point fermé de degré 3 sur C est aligné. Ceci répond à une question de

C. Shramov.
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La démonstration du théorème suivant est entièrement parallèle à celle du

théorème 7.1 et est laissée au lecteur.

Théorème 7.5. Soit X une surface del Pezzo de degré 2 sur un corps k de

caractéristique nulle, sans point rationnel Si tout point fermé de degré 2 sur X
est image réciproque d'un point rationnel de via le morphisme anticanonique
X -* Y*2k, alors il existe une surface de del Pezzo de degré 1 sur k dont les

points k-rationnels ne sont pas denses pour la topologie de Zariski, et donc qui
en particulier n'est pas k-unirationnelle.
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