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Zéro-cycles sur les surfaces de del Pezzo
(Variations sur un theme de Daniel Coray)

Jean-Louis CoLLioT-THELENE

Résumé. Soit X une surface projective, lisse, géométriquement rationnelle sur un corps
de caractéristique zéro. On lui associe deux entiers N(X) et M(X), fonctions simples du
carré de la classe canonique. On établit les propriétés suivantes.

(a) Si le pged des degrés des points fermés sur X est 1, alors il existe des points fermés
dont les degrés sont au plus égaux a N(X) et sont premiers entre eux dans leur
ensemble.

(b) Si X possede un point rationnel, alors tout zéro-cycle sur X de degré au moins égal
a M(X) est rationnellement équivalent & un zéro-cycle effectif, et les points fermés
de degré au plus égal a8 M(X) engendrent le groupe de Chow des zéro-cycles de X .

Le résultat (a) généralise un théoréme de Daniel Coray sur les surfaces cubiques (1974).
Une combinaison de théorémes de Bertini et d’utilisation de corps fertiles rend ici ses
arguments plus flexibles. On établit ensuite les résultats par considération des différents
types birationnels de surfaces géométriquement rationnelles: surfaces de del Pezzo et
surfaces fibrées en coniques (ces dernicres déja étudiées avec D. Coray en 1979).

Un dernier paragraphe discute 1’existence de points fermés de degré 3 non alignés sur
une surface cubique sans point rationnel. On la relie & la question de la densité des points
rationnels sur une surface de del Pezzo de degré 1.

Abstract. Let X be a smooth, projective, geometrically rational surface over a field of
characteristic zero. To any such surface one associates two integers N(X) and M(X) which
are simple functions of the square of the canonical class. We prove:

(a) If the ged of the degrees of closed points on X is 1, then there exist closed points
on X the degrees of which are coprime to one another as a whole and are less than
or equal to N(X).

(b) If X has a rational point, then any zero-cycle on X of degree at least equal to M(X)
is rationally equivalent to an effective cycle. Effective zero-cycles of degree less than
or equal to M(X) generate the Chow group of X.

Result (a) extends a theorem on cubic surfaces obtained by Daniel Coray in his thesis
(1974). Combining Bertini theorems and large fields, we introduce some flexibility in his
method. The results (a) and (b) then follow from a case by case analysis of the various



448 J.-L. CoLLioT-THELENE

birational equivalence classes of geometrically rational surfaces: del Pezzo surfaces and
conic bundle surfaces (the latter type had been handled with D. Coray in 1979).

In a last section, for smooth cubic surfaces without a rational point, we relate the
question whether there exists a degree 3 point which is not on a line to the question
whether rational points are dense on a del Pezzo surface of degree 1.

Mathematics Subject Classification (2020). 14GO05, 14J26, 14C99.

Keywords. Zero-cycles, rational points, rational surfaces, del Pezzo surfaces.

1. Introduction

Soient k un corps et X une k-variété algébrique, par quoi I'on entend un
k-schéma séparé de type fini sur k. Donnons quelques rappels sur les zéro-
cycles et I’équivalence rationnelle [Ful, Chap. I]. Un zéro-cycle sur X est une
combinaison linéaire & coefficients entiers de points fermés. A tout tel zéro-cycle
z=>) pnpP, avec P point fermé et np € Z nul sauf pour un nombre fini de
points fermés P, on associe son degré

deg;(z) := an[k(P) k]l e Z,
P

ou k(P) est le corps résiduel d’un point fermé P, et [k(P) : k] est le degré
de cette extension finie de corps. Le groupe abélien libre Zy(X) des zéro-cycles
contient le sous-groupe des zéro-cycles rationnellement équivalents a zéro. Celui-ci
est par définition engendré par les zéro-cycles de la forme p.«(divc(f)), ot C est
une courbe sur k, normale, intégre, de corps des fonctions rationnelles £(C), ou
p: C — X estun k-morphisme propre, ol f € k(C)* est une fonction rationnelle
non nulle sur C, ot dive(f)) € Zo(C) est son diviseur sur C, qui est un zéro-
cycle sur C, et ol p« : Zo(C) — Zo(X) est I'image directe par morphisme
propre. Le quotient de Zy(X) par le sous-groupe des zéro-cycles rationnellement
équivalents a zéro est appelé groupe de Chow des zéro-cycles sur X et est noté
CHy(X). Lorsque X est propre sur k, I’application deg; : Zo(X) — Z passe au
quotient par I’équivalence rationnelle (puisque le degré du diviseur d’une fonction
rationnelle sur une courbe propre, normale, intégre, est nul). On a donc dans ce
cas une application induite deg; : CHo(X) — Z. On note alors A¢(X) le noyau
de cette application.

Un zéro-cycle ) pnpP est dit effectif si 'on a np > 0 pour tout P. Il y a
identification entre I’ensemble X (k) des points k-rationnels de X et I’ensemble
des zéro-cycles effectifs de degré 1 de X.
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Si X est une courbe C projective, lisse, géométriquement connexe de genre
g sur le corps k, I’inégalité de Riemann pour la courbe C montre que 'on a
les propriétés suivantes :

(i) Tout zéro-cycle de C de degré au moins égal a g est rationnellement
équivalent a un zéro-cycle effectif.

(ii) Si C posseéde un zéro-cycle de degré 1, alors la courbe C posseéde un
zéro-cycle effectif de degré g et un zéro-cycle effectif de degré g + 1.

(iii) Si g > 1 et C posseéde un point k -rationnel Py, le groupe de Chow CHy(X)
est engendré par les points fermés P de degré deg;(P) < g. En effet, pour
tout zéro-cycle z, le zéro-cycle z + (g —deg,(z))Po est de degré g.

(iv) Si C est de genre 0 ou 1 et possede un zéro-cycle de degré 1, alors

C(k) # 0.

On peut se demander dans quelle mesure ces belles propriétés des zéro-
cycles sur les courbes s’étendent aux zéro-cycles sur les variétés de dimension
quelconque.

Pour les variétés projectives, lisses, connexes sur un corps algébriquement clos
de degré de transcendance infini sur le corps premier, en particulier k = C le
corps des complexes, une propriété comme (i) impose de sévéres restrictions a
la géométrie de la variété considérée. Ceci a fait ’objet de travaux bien connus
de Mumford et de Bloch. De maniere générale, pour X/C une telle variété, s’il
existe un entier d(X) > 0 tel que tout zéro-cycle sur X de degré au moins
d(X) est rationnellement équivalent a un zéro-cycle effectif, alors pour tout
i > 2 les groupes de cohomologie cohérente H'(X,(Ox) sont nuls (Bloch et
Srinivas [BS]). Pour X/C une surface projective et lisse, c’est une conjecture
de Bloch qu’inversement la condition H?(X,Ox) = 0 implique ’existence d’un
entier d = d(X) comme ci-dessus.

Sur un corps k quelconque, il est alors naturel de se limiter aux k-variétés
X projectives, lisses, géométriquement connexes qui vérifient: il existe un entier
dgeom(X) tel que, sur tout corps algébriquement clos 2 contenant k, tout zéro-
cycle de degré au moins dgeom(X) sur X xx €2 est rationnellement équivalent a
un zéro-cycle effectif.

Parmi celles-ci, on trouve les variétés géométriquement rationnellement
connexes, au sens de Kolldr, Miyaoka et Mori. Pour ces variétés, on a 4¢(Xgq) =0,
et donc dgeom(X) =1 convient.

Une classe bien étudiée de telles variétés est celle des modeles projectifs et
lisses d’espaces homogénes de groupes algébriques linéaires connexes. En ce qui
concerne 1’analogue de la question (iv) ci-dessus, a savoir si 1’existence d’un zéro-
cycle de degré 1 implique celle d’un point rationnel, pour les compactifications
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lisses d’espaces principaux homogenes de groupes algébriques linéaires connexes,
ceci a été établi dans de nombreux cas (Serre, Sansuc, Bayer—Lenstra), mais des
contre-exemples pour les espaces homogenes généraux ont été donnés par Florence
et par Parimala. L'énoncé historique concerne les quadriques: une quadrique qui
posseéde un point dans une extension de degré impair possede un point rationnel.
Il fut conjecturé par Witt (1937), démontré par Artin (non publié, 1937) et par
Springer [Spr].

En dimension 2, la classe des variétés (séparablement) rationnellement
connexes coincide avec celle des k-surfaces géométriquement rationnelles, pour
lesquelles on dispose de la classification k -birationnelle de Enriques, Manin, Is-
kovskikh, Mori: tout telle surface est k-birationnelle soit a une surface fibrée en
coniques sur une conique, soit a une surface de del Pezzo. Dans cet article, nous
étudions systématiquement les énoncés de type (i), (ii), (iii) pour les surfaces de
del Pezzo. En combinaison avec 1’étude des zéro-cycles sur les surfaces fibrées en
coniques faite avec Coray [CTC], ceci établit les théorémes suivants, analogues
des énoncés (i), (ii), (iii) ci-dessus pour les courbes.!

Théoreme A (Théoréme 6.1). Soit X une k-surface projective, lisse, géométri-
quement rationnelle, sur un corps k de caractéristique zéro. Soit Kx la classe
canonique de X . Soit

N(X) = max(10, |4 — (Kx.Kx)/2]).

Si X posséde un zéro-cycle de degré 1, alors X posséde des points fermés dont
les degrés sont inférieurs ou égaux a N(X) et sont premiers entre eux dans leur
ensemble.

Théoreme B (Théoréme 6.2). Soit X une k-surface projective, lisse, géométri-
quement rationnelle, sur un corps k de caractéristique zéro. Soit Ky la classe
canonique de X . Supposons que X posséde un point k -rationnel. Soit

M(X) = max(904, |3 — (Kx.Kx)/2]).

Tout zéro-cycle de degré au moins M(X) est rationnellement équivalent a un
zéro-cycle effectif. En particulier, le groupe de Chow des zéro-cycles est engendré
par les points fermés de degré au plus M(X).

Ceci pose deux questions:

1analogue de 1’énoncé (iv) est connu, et rappelé dans la démonstration du théoréme 6.1: pour
une k-surface X projective, lisse, géométriquement rationnelle avec (Kx.Kx) > 4, si X posséde un
zéro-cycle de degré 1, alors X posséde un point rationnel.
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(1) Peut-on établir ces énoncés, avec des entiers N(X) et M(X) ne dépendant
que de la géométrie de X sur une cloture algébrique du corps de base k,
sans utiliser la classification k-birationnelle des surfaces géométriquement
rationnelles et une analyse cas par cas ?

(2) A-t-on des analogues de ces énoncés pour les variétés rationnellement
connexes de dimension supérieure ?

Le point de départ de cet article est la theése de Daniel Coray (Cambridge,
UK, 1974) [Corl]. Daniel Coray y montra que si une surface cubique lisse X
définie sur un corps k parfait posseéde un point rationnel dans une extension finie
de corps K/k de degré premier a 3, alors elle posséde un point rationnel dans
une extension de corps K/k de degré soit 1, soit 4, soit 10. Voici le principe
de sa démonstration. On considére un point fermé P de degré premier a 3 aussi
petit que possible, on fait passer par ce point et par un point de degré 3 une
surface de Pi de degré aussi petit que possible, pour que le genre arithmétique
pa de la courbe intersection I' soit aussi petit que posssible. Si cette courbe est
lisse et géométriquement connexe de genre g = p,, on applique le théoréme de
Riemann-Roch sur la courbe I' & un zéro-cycle de degré au moins égal a g,
premier & 3, et de degré aussi petit que possible. Dans les bons cas, on établit
ainsi I’existence sur I' et donc sur X d’un zéro-cycle effectif, et donc d’un point
fermé, de degré premier a 3 plus petit que celui que I'on avait au début, et on
recommence le procédé. Le processus a ses limites: on n’arrive pas a résoudre
les cas 4 et 10, dont la possibilité a ce jour n’est pas exclue.

La méthode fut ensuite appliquée par Coray [Cor2] aux surfaces de del Pezzo
de degré 4, et une variante fut appliquée par Coray et moi [CTC] aux surfaces
fibrées en coniques sur la droite projective.

Une difficulté technique dans ces articles est que les courbes obtenues dans
un systéme linéaire donné ne sont pas a priori lisses ni méme géométriquement
irréductibles: on doit donc considérer et discuter les dégénérescences possibles.

Voici maintenant le contenu détaillé de 1’article.

Au § 2, on donne un argument nouveau et général, combinant théoréme de
Bertini, déformation et spécialisation, qui dans ce type d’argument permet de ne
considérer que le cas des courbes lisses. La souplesse obtenue nous permet de
développer I’argument de Coray dans plusieurs directions.?

Au § 3.1 on reprend I’argument de Coray [Corl] pour les surfaces cubiques.

Au § 3.2, on montre que si une surface cubique lisse posséde un point
rationnel, alors le groupe de Chow des zéro-cycles est engendré par les points

2B. Poonen m’a trés récemment fait remarquer que I’utilisation des corps fertiles et en particulier
des corps de séries formelles k((¢t)) pourrait souvent étre remplacée par une utilisation du lemme de

Lang-Nishimura ([CTCS, Lemme 3.1.1], [Poo, Thm. 3.6.11]) comme c’est fait dans [Poo, Lemma 9.4.8].
Les deux types d’arguments sont en fait trés proches.
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rationnels et les points fermés de degré 3, et que tout zéro-cycle de degré au
moins 10 est rationnellement équivalent a un zéro-cycle effectif.

Au § 4.1, on établit pour les surfaces de del Pezzo de degré 2 1’analogue du
résultat de Coray pour les surfaces de del Pezzo de degré 2. On monire ici que
s’il y a un point dans une extension finie de corps de degré impair, alors il y a
un point dans une extension de degré 1, 3 ou 7. Le degré minimal impair 3 ne
peut étre exclu ([KM], voir la remarque 4.3).

Au § 4.2, on montre que si une surface de del Pezzo de degré 2 posséde un
point rationnel, alors tout zéro-cycle de degré O est rationnellement équivalent a
la différence de deux zéro-cycles effectifs de degré 6, et que tout zéro-cycle de
degré au moins 43 est rationnellement équivalent a un zéro-cycle effectif.

Au § 5, on montre que sur une surface de del Pezzo de degré 1 tout zéro-
cycle de degré O est rationnellement équivalent & la différence de deux zéro-
cycles effectifs de degré 21, et que tout zéro-cycle de degré au moins 904 est
rationnellement équivalent a un zéro-cycle effectif.

Au § 6, on note que ces divers résultats, combinés avec [CTC], achevent la
démonstration des théoremes A et B mentionnés ci-dessus.

Au § 7, logiquement indépendant du reste de 1’article, on revient aux surfaces
cubiques. On s’intéresse a une question soulevée par Qixiao Ma [Ma]: sur une
surface cubique lisse sans point rationnel, existe-t-il un point fermé de degré 3
non découpé par une droite ? On relie ce probleme a la question (ouverte) de la
densité des points rationnels sur les surfaces de del Pezzo de degré 1.

Pour ne pas alourdir ce texte, on se limite aux corps de caractéristique nulle.
On laisse au lecteur le soin de voir ce qui subsiste sur un corps quelconque. Des
résultats dans cette direction sont obtenus dans [Corl] et [Ma].

On utilise librement dans cet article la théorie de I’intersection sur les surfaces
projectives lisses [Ser, Mum], la théorie des surfaces cubiques et plus généralement
des surfaces de del Pezzo comme on peut la trouver dans les livres [Man2]
et [Koll], dans [Manl] et [Isk], et dans le rapport [VA]. On utilise aussi des
résultats sur les variétés rationnellement connexes, établis par les techniques de
déformation de Kollar, Miyaoka et Mori [Koll, Kol2].

Daniel Coray, qui fut professeur a I’Université de Geneve, et fut aussi directeur
de publication de la revue 1’Enseignement Mathématique, nous a quittés en 2015.
C’était un esprit fin et original. Les démonstrations de I’article [CTCS], ol un
substitut du principe de Hasse fut établi pour la premiere fois pour une classe
de variétés ne se ramenant pas par transformations birationnelles a des espaces
homogenes de groupes algébriques linéaires, en gardent la trace. A ce sujet
on pourra aussi consulter ses Notes de Géométrie et d’Arithmétique, récemment
traduites [Cor3]. Je suis heureux de pouvoir dédier cet article a sa mémoire.
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2. Bertini et corps fertiles

2.1. Corps fertiles et R -densité. Un corps F est dit fertile (terminologie due a
Moret-Bailly; en anglais on dit «large field ») s’il satisfait la propriété suivante:
si une F-variété X intégre possede un F -point lisse, alors I’ensemble X(F)
de ses points F -rationnels est dense dans X pour la topologie de Zariski. On
consultera [Pop] pour un rapport récent sur le sujet. Une extension finie d’un corps
fertile est fertile. Pour tout corps k, le corps F = k((t)) des séries formelles sur
k est fertile.

Soient k£ un corps et X une k-variété propre. La relation de R-équivalence
sur X(k) est par définition engendrée par la relation élémentaire suivante: deux
k-points A,B € X(k) sont élémentairement liés s’il existe un k-morphisme
f P, — X tel que A et B sont dans f(P!(k)). Si deux k-points P et Q
sont R-équivalents, alors le zéro-cycle P — Q est rationnellement équivalent a
zéro sur X .

Soient k un corps de caractéristique zéro et X une k -variété projective, lisse,
géométriquement connexe. On dira dans cet article que la k-variété X satisfait
la propriété de densité si, pour toute extension finie de corps L/k telle que
X(L) # 0, I'ensemble X(L) est dense dans X7 pour la topologie de Zariski. Sur
un corps k fertile, toute k-variété lisse géométriquement connexe X satisfait la
propriété de densité.

Une hypersurface cubique lisse dans P} pour n > 3 est k-unirationnelle
des qu’elle a un point rationnel (voir [Kol3]). Elle satisfait donc la propriété de
densité.

On dira que la k-variété X satisfait la propriété de R -densité si, pour toute
extension finie de corps L/k et tout P € X(L), les points Q € X (L) qui sont
R-équivalents a P sont denses dans X; pour la topologie de Zariski. Donnons
deux classes de telles variétés.

Proposition 2.1. Soit k un corps de caractéristique zéro. Toute k -hypersurface
cubique lisse X dans P7, avec n > 3, satisfait la propriété de R -densité.

Démonstration. On se ramene au cas X(k) # @#. Comme X est alors k-
unirationnelle [Kol3], il existe un ouvert non vide V C PZ‘I et un k-morphisme
génériquement fini dominant f : V — X. Comme f(V(k)) est dense dans X
pour la topologie de Zariski, il existe A € f(V(k)) distinct de P tel que la droite
par A et P découpe exactement trois points rationnels distincts, 4, B, P sur X .
La symétrie tp par rapport 2 B est bien définie en A et satisfait tg(A) = P.
Quitte a remplacer V par un ouvert non vide W, tgo f définit un k-morphisme
g: W — X qui est dominant et satisfait P € g(W(k)). Comme W est un ouvert
de P{~!, tout point de g(W(k)) C X(k) est R-équivalent & P sur X. O



454 J.-L. CoLL1oT-THELENE

L’énoncé suivant est di a J. Kollar [Kol2, Thm. 1.4, Cor. 1.5, Rem. 1.10].

Théoreme 2.2. Soit k un corps fertile de caractéristique zéro. Si X est une
k -variété projective et lisse géométriquement rationnellement connexe, alors elle
satisfait la propriété de R -densité.

Démonstration. Soient k un corps fertile de caractéristique zéro et X une
k -variété projective et lisse géométriquement rationnellement connexe. Soit
P € X(k). Kollar montre d’abord qu’il existe un k-morphisme f : P,i - X
tel que le fibré vectoriel f*Tx soit ample sur P}C et que l'on ait deux k -points
A,B de P, avec f(A)=P et Q:= f(B) #P.

Il montre ensuite (point 4.2 de [Kol2]) qu’il existe une k-variété V qui est
un ouvert du schéma Hom(P}c, X, B +— Q) tel que le morphisme d’évaluation

W=P,\B)xxV—>X

donné par (¢,g) > g(t) soit lisse.
Le k-point P est dans 1I’image de W(k) par cette application, et tous les
k-points de f(W(k)) sont R-équivalents sur X, via cette application, via le

point Q = g(B). O

Etant donnés une variété quasiprojective lisse intégre X sur le corps k (de
caractéristique zéro) et un entier naturel m > 1, on note Sym™X le quotient
de X™ par l'action du groupe symétrique &,,. Il y a une bijection naturelle
entre les k-points de Sym™X et les zéro-cycles effectifs sur X de degré m.
Le groupe &, agit librement sur le complémentaire dans X™ des diagonales
partielles. Le quotient de ce complémentaire par &,, est un ouvert lisse de
Sym™X qu'on notera Symyg,,X . Les k-points de Symg,,X correspondent aux
zéro-cycles effectifs de la forme ), P; avec P; des points fermés distincts sur X
(un tel zéro-cycle effectif, sans multiplicités, sera appelé séparable) dont les corps
résiduels k(P;) satisfont } :[k(P;) : k] = m. On trouvera une étude générale
détaillée de cette correspondance dans [Ryd].

Proposition 2.3. Soit k un corps de caractéristique zéro. Soit X une k-variété
projective et lisse, géométriquement connexe. Soient P,..., P, des points fermés
de degrés respectifs s1,...,5; sur k et soit z = Py+---+ P, le zéro-cycle associé
sur X, qui correspond aussi a un k -point de W = Symg}, , X x---xSymyg, X. On
consideére ’ensemble £ des k-points de W, de zéro-cycle associé zy + --- + z;
tels que pour chaque i le zéro-cycle effectif z;, de degré s;, soit rationnellement
équivalent a P; sur X. Si X satisfait la propriété de R-densité, alors € C W(k)
est dense dans W pour la topologie de Zariski.
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Démonstration. 1l suffit de le montrer dans le cas ¢+ = 1. Soit donc s > 0 un
entier et P un point fermé de degré s sur X, de corps résiduel L. Le point
P définit un point de X(L). Soit k une cloture algébrique de k. La projection
7 : X7 — X induit une application w7, de X(L) dans I’ensemble des cycles
effectifs de degré s sur X . Cette application peut aussi étre décrite de la maniere
suivante. Soit P € X(L) et {(Py,..., Ps)} ’ensemble de ses images dans X*(k)
par les divers plongement de L dans k. L'image de (P,..., Ps) € X*(k) dans
Sym® X (k) est invariante sous 1’action du groupe de Galois Gal(k/k). Ceci définit
donc une application X(L) — Sym® X (k), ensemble qui coincide avec 1’ensemble
des zéro-cycles effectifs de degré s sur X.

Si deux points P, Q de X(L) sont R-équivalents sur Xy , alors les zéro-cycles
«(P) et m4«(Q) sont rationnellement équivalents sur X. Sous I’hypothése que
X satisfait la propriété de R-densité, I’ensemble des points de X(L) qui sont
R-équivalents 2 P sur X; est dense dans X; pour la topologie de Zariski.
Ceci implique que I’ensemble £ des k -points de Sym®X (k) correspondant a des
zéro-cycles effectifs rationnellement équivalents a P, vus comme zéro-cycles de
degré s sur X, est dense dans Sym®X pour la topologie de Zariski. O

Pour la propriété plus faible de densité, on a le résultat suivant, dont la
démonstration est identique a celle de la proposition 2.3.

Proposition 2.4. Soit k un corps de caractéristique zéro. Soit X une k -variété
projective et lisse, géométriquement connexe. Soient Pi,..., P; des points fermés
de degrés respectifs s1,...,8; sur k et soit z = Py+---+ P, le zéro-cycle associé
sur X, qui correspond aussi @ un k-point de W = Symg, X x---x Symg, X .
Si X satisfait la propriété de densité, l’ensemble £ des k-points de W, de
zéro-cycle associé z1 +---+ z; avec les z; zéro-cycles effectifs de degré s;, est

dense dans W pour la topologie de Zariski.

2.2. Théoreme de Bertini et variantes. Rappelons ’'une des versions des théo-
remes de Bertini.

Théoreme 2.5. Soit k un corps de caractéristique zéro. Soit X une k-variété
projective, lisse, géométriquement connexe. Soit f : X — P un k-morphisme
d’image de dimension au moins 2 et engendrant I’espace projectif P}. Il existe
un ouvert non vide de I’espace projectif dual de Py tel que, pour tout hyperplan
h de Py correspondant a un point de cet ouvert, la k-variété X, = f “hcx
soit projective, lisse, géométriqguement connexe.

Référence : Jouanolou [Jou, Chap. I, Théoréme 6.3]. Sur un corps algébriquement
clos: Hartshorne [Har, Cor. I11.10.9 et Ex. II1.11.3]
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Lemme 2.6. Soit k un corps. Soit X une k-variété projective, lisse, géométri-
quement connexe. Soit f : X — Pp un k-morphisme dont 'image engendre
Pespace projectif P,. Soit r < n + 1 un entier. Il existe un ouvert de Zariski
non vide de X" dont les points géométriques sont les r-uples (Py,...,Pr) € X7
dont les images sont des points projectivement indépendants dans P".

Démonstration. C’est clair. ]

Proposition 2.7. Soit k un corps de caractéristique zéro. Soit X une k-variété
projective, lisse, géométriquement connexe. Soit f : X — P} un k-morphisme
d’image de dimension au moins 2, engendrant l’espace projectif Pj. Soit r <n
un entier. Il existe un ouvert non vide U C X" tel que, pour tout corps L
contenant k et pour tout L-point (Py,...,P,) € U(L), il existe un hyperplan
h C P! tel que 'image réciproque Xy = f~'(h) C Xy, soit une L-variété lisse
et géométriquement intégre contenant les points {Py,..., P.}.

Démonstration. Soit d la dimension de X . Notons P* le projectif des hyperplans
de P = P”. On note indifféremment % un point de P* ou I’hyperplan de P qu’il
définit. Pour h € P*, on note X, = f~!(h). Par hypoth&se, chaque Xj est de
dimension d — 1. Par le théoréme 2.5, il existe un ouvert non vide Wy, C P* tel
que pour tout h € Wy, la variété Xj soit lisse et géométriquement connexe.

Soit Z C X" xP* le fermé dont les points géométriques sont les (Pq, ..., Pr;h)
avec h € P* et P; € f~1(h). Soient p: Z — P* et q: Z — X" les deux
projections.

Soit U; € X" un ouvert donné par le lemme 2.6. La restriction V; =
g Y (Uy) - Uy de q: Z — X" au-dessus de U; est une fibration en espaces
projectifs de dimension N — r. La fibre au-dessus d’un point (Py,...,P,)
consiste en les hyperplans de P” qui contiennent (Pi,..., P,). Cette fibration
est localement scindée pour la topologie de Zariski, localement c’est un espace
projectif. La variété V; est donc lisse, géométriquement integre, de dimension
rd + N —r. Au-dessus de tout point 4 € P*, la fibre de la projection Z — P*
est le produit (X3)", qui est de dimension r(d —1). Si I'image de V; C Z via la
projection p : Z — P* n’était pas Zariski-dense dans P*, alors la dimension de
V1 serait au plus r(d —1) + N — 1. Ainsi le morphisme composé¢ V;, C Z — P*
est dominant. Soit W; C P* un ouvert non vide contenu dans son image. Soit
W =WynNW, CP* Soit V=p l(W)nV;cZ.Soit U:=q(V)C X". Cest
un ouvert de U; C X", puisque ¢ : V3 — U; est un fibré projectif, en particulier
est lisse. Comme g : V3 — U; est un fibré projectif localement scindé pour la
topologie de Zariski, et que le corps de base k est infini, pour tout corps L
contenant k, la fleche induite V(L) — U(L) est surjective.
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Pour tout point # € W C P*, Iimage réciproque V;, via V — W est non
vide, et c’est un ouvert de p~!(h) C X". Par ailleurs p~!(h) = (X;)", qui est
lisse et géométriquement connexe car on a W C Wj.

On a bien montré: Pour tout L-point M = (Py,..., P;) de U, il existe un
L-hyperplan h de P?, contenant chacun des f(P;), et tel que f~'(h) C X
soit une L -hypersurface lisse et géométriquement integre. O

La proposition 2.7 admet la généralisation suivante.

Proposition 2.8. Soit k un corps de caractéristique zéro. Soit X une k-variété
projective, lisse, géométriquement connexe. Soit f : X — P} un k-morphisme
d’image de dimension au moins 2, engendrant [’espace projectif Pj. Soient
S1,...,5; des entiers naturels tels que ) ;s; < n. Il existe un ouvert lisse non
vide

st

U C Symg,X x---x Symg,, X

sep

tel que, pour tout corps L contenant k et tout L-point de U, correspondant a
une famille de zéro-cycles effectifs séparables z; sur Xp, avec z; de degré s;, il
existe un hyperplan h C P} tel que l'image réciproque X, = f~'(h) C XL soit
une L -variété lisse et géométriquement intégre contenant les points du support
du zéro-cycle ), z;.

Démonstration. On utilise la proposition 2.7 et les notations de sa démonstration.
On introduit le fermé

Z, CSym°lX x-.-x Sym** X x P*
qui est I'image schématique de Z C X" x P* par le morphisme fini
X" xP* - Sym®*' X x ... x Sym*™ X x P*,

La projection Z — X" se quotiente par I’action du groupe fini G = G;, x... Gy, ,
donnant la projection Z; — Sym®! X x---xSym*” X . On peut supposer que I’ouvert
U; C X" dans la proposition précédente est contenu dans le complémentaire des
diagonales partielles de X". On a V; C Z. Le morphisme V; — U; définit un
fibré projectif localement trivial sur U; pour la topologie de Zariski, et cette
projection est compatible avec I’action fidéle de G sur V; et U;. Il en résulte
que le quotient V;/G — U;/G est un fibré projectif localement trivial pour la
topologie de Zariski sur U;/G. Soit V' C V;/G Touvert qui est I’image de
I'ouvert V C V; par la projection V; — V;/G, puis U’ C U;/G l'ouvert image
de V' par le morphisme V;/G — U;/G. 1l résulte de ce qui précéde que, pour
tout corps L contenant k, la fleche induite V'(L) — U’(L) est surjective. Tout
point géométrique de P* qui est dans I'image de V'’ C Z; par la projection
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Z, — P* est dans I'image de V, et donc correspond & un hyperplan dont
I’intersection avec X est lisse et connexe. L'ouvert U’ convient pour I’énoncé
de la proposition. O

Théoreme 2.9. Soit F un corps de caractéristique zéro. Soit X une F -variété
projective, lisse, géométriquement connexe. Soit [ : X — P& un F -morphisme
d’image de dimension au moins 2, engendrant l'espace projectif P . Soient
P1,..., Py des points fermés de X de degrés respectifs s; sur k, tels que la
somme des s; soit au plus égale a n.

(a) Si X satisfait la propriété de densité, par exemple si le corps F est fertile,
alors il existe un hyperplan h C P%. défini sur F tel que Xp = f~'(h) C X
soit lisse, géométriquement intégre, et contienne des zéro-cycles effectifs
Z1,...,Z; de degrés respectifs si1,...,5;.

(b) Si la variété X satisfait la propriété de R-densité, par exemple si F est
fertile et X est géométriquement rationnellement connexe, alors il existe un
hyperplan h C P% défini sur F tel que X, = f~Y(h) C X soit lisse,
géométriquement intégre, et contienne des zéro-cycles effectifs zi,...,z;
de degrés respectifs si,...,8;, chaque zéro-cycle z; étant rationnellement
équivalent a P; sur X.

Démonstration. Le point (a) est obtenu en combinant les propositions 2.4 et 2.8,
et en utilisant la définition des corps fertiles.

Le point (b) est obtenu en combinant les propositions 2.3 et 2.8, et le
théoréme 2.2 pour les variétés rationnellement connexes sur un corps fertile. [

2.3. Générisation et spécialisation. On a 1I’énoncé bien connu suivant.

Lemme 2.10. Soit R un anneau de valuation discréte excellent, F son corps des
fractions et k son corps résiduel. Soit X un R-schéma propre. Si la F -variété
X xg F posséde un point fermé P de degré d, alors il existe un zéro-cycle
effectif z de degré d sur la k-variété X xgk.

Démonstration. La fermeture intégrale de R dans I’extension F(P)/F est un
anneau de Dedekind S semi-local, fini et plat sur R, de degré d. Comme le
R-schéma X est propre, I’adhérence du point P € X(F) dans X est un schéma
fini et plat de degré d. La fibre de ce point au-dessus de Spec(k) C Spec(R)
est un sous k-schéma de dimension zéro de X xg k, dont le zéro-cycle associé
est de degré d. 0
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Proposition 2.11. Soient k un corps et F = k((t)) le corps des séries formelles
sur k. Soit X une k-variété propre.

(a) Le pged des degrés des points fermés a la méme valeur sur X et sur Xf.

(b) Pour tout entier r > 1, le plus petit degré d’un point fermé de degré premier
a r, qui est aussi le plus petit degré d’un zéro-cycle effectif de degré premier
a r, a la méme valeur sur X et sur Xr.

(c) Soit I un ensemble d’entiers naturels. Si le groupe de Chow des zéro-cycles
sur Xr est engendré par les classes de cycles effectifs de degré d € I,
alors il en est de méme sur X.

(d) Soit d > O un entier. Si tout zéro-cycle sur Xr de degré au moins d
est rationnellement équivalent a un zéro-cycle effectif, alors il en de méme
sur X.

Démonstration. Si P € X est un point fermé de X, alors P x; F est un point
fermé de Xr de méme degré. Si M est un point fermé de Xr de degré d,
d’aprés le lemme 2.10, il existe un zéro-cycle sur X de degré d, et si d est
premier & r, il existe sur X un point fermé de degré premier a r et au plus
égal a d. Les énoncés (c) et (d) sont des conséquences de l'existence et des
propriétés de I’homomorphisme de spécialisation sur les groupes de Chow [Ful,
§20.3]. O

3. Surfaces cubiques lisses

3.1. Surfaces cubiques avec un zéro-cycle de degré 1. Le théoréme suivant est
d@i a Coray [Corl]. Nous en reproduisons les différents pas, avec la simplification
apportée par l’utilisation du théoréeme 2.9(a): il n’y a plus de discussion des
cas possibles ol les courbes utilisées dans la démonstration sont réductibles ou
singuliéres.

Théoréme 3.1 (Coray). Soit k un corps de caractéristique zéro. Si une k -surface
cubique lisse X C P;Z contient un zéro-cycle de degré 1, alors elle posséde un
point fermé de degré I, ou 4, ou 10.

Démonstration. L'énoncé peut se reformuler ainsi: si la k-surface cubique lisse
posséde un point fermé de degré 4 premier a 3, alors le degré minimal d’un
tel point est 1, ou 4, ou 10. Notons que ce degré minimal est aussi le degré
minimal d’un zéro-cycle effectif de degré premier a 3.

On va systématiquement appliquer le théoréme 2.9(a). On peut le faire soit
en invoquant le fait que la propriété de densité vaut pour les surfaces cubiques
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lisses sur k car elles sont k-unirationnelles dés qu’elles ont un k-point (Segre,
[Kol3]), soit en utilisant la la proposition 2.11 qui permet, pour le théoréme a
démontrer, de supposer le corps k fertile. On note K le faisceau canonique
sur X . Le syst¢me linéaire complet |-K| associé au faisceau inversible —K
définit le plongement de X dans P,3C. Pour tout entier n > 0, le systéme linéaire
|-nK| définit un plongement dans un espace projectif, d’image de dimension 2,
engendrant cet espace projectif. Pour un fibré inversible £, on note 4’(X, L), ou
h'(L£) quand le contexte est clair, la dimension sur k du groupe de cohomologie
cohérente H!(X,L).

Pour la surface cubique lisse X comme pour toute surface projective et lisse
géométriquement rationnelle, on a H!(X,Ox) =0 et H*(X,0x) = 0, et donc
x(X,0x) = h°(Ox) — k' (Ox) + h*(Ox) = 1. Soit n > 1.

Par dualité de Serre [AK, Chap. IV, Prop. 4.1] on a h?(-nK) = h°((n +1)K)
et h'(—nK)=h'((n + 1)K). On a h°((n + 1)K) =0 car —K est ample.

On a aussi 2! ((n+1)K) = 0 par le théoréme d’annulation de Kodaira, puisque
—K est ample.

Pour n > 1, le théoreme de Riemann-Roch sur la surface X ([Ser, Chap. 1V,
§8], [Mum, Lecture 12, Prop. 3]) donne donc

ho(—nK) =3n(n +1)/2 + 1.

Si T' est une courbe projective, lisse, géométriquement connexe dans le systeme
linéaire | —nK|, on a la formule

g(T) = pa(T) =3n(n-1)/2 + 1.

Une telle courbe contient un zéro-cycle de degré 3n = (—K.—nK), découpé par
un plan de P}.

Soit d > 0 le degré minimum d’un zéro-cycle effectif de degré premier a 3
sur X . C’est donc aussi le degré minimum d’un point fermé de degré premier a 3
sur X. Si d =1, on a fini. Supposons d > 2. Si la surface cubique posséde un
point sur une extension quadratique de k, une construction bien connue montre
qu’elle posseéde un point rationnel. On se limite donc dorénavant au cas d > 4. La
surface X contient un point fermé de degré 3, découpé par une droite quelconque
de P;.

Il existe un unique entier n > 1 tel que

g=3nn—1)/24+1<d <3n(n+1)/2 +1.

Comme ona d >4,onan>2.
Supposons d’abord g =3n(n—1)/2+1<d <3n(n+1)/2—3. Comme d est
premier a 3 et d +3 <3n(n +1)/2, le théoreme 2.9(a) assure I’existence d’une
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courbe I' projective, lisse, géométriquement connexe dans le systeme linéaire
|-nK|, contenant la réunion d’un zéro-cycle effectif de degré 4 et d’un zéro-
cycle effectif de degré 3, donc contenant un zéro-cycle de degré 1, et donc aussi
un z€ro-cycle de degré g = 3n(n—1)/2 + 1. Par le théoréme de Riemann-Roch,
la courbe I' possede donc un zéro-cycle effectif de degré 3n(n —1)/2+4+1 < d,
ce qui contredit I’hypothése que 4 est minimal.

Il reste donc les possibilités suivantes:

d=3nn+1)/2,

d=3nn+1)/2-1,
d=3nn+1)/2-2,
d=3nn-1)/2+1.

Le cas d = 3n(n 4+ 1)/2 est exclu, car d est premier a 3.

Dans chacun des trois autres cas, toute courbe lisse I' dans le systéme linéaire
|-nK| contenant un zéro-cycle de degré d contient un zéro-cycle de degré 4,
car, comme on I’a déja indiqué, elle contient un zéro-cycle de degré 3n.

Supposons d = 3n(n+1)/2—1. Par le théoré¢me 2.9(a), il existe une courbe T’
lisse géométriquement connexe dans le systéme linéaire |—nK| contenant un zéro-
cycle effectif de degré 4, degré qui est congru a2 2 mod. 3. Comme la courbe T’
contient un zéro-cycle de degré 4, elle contient donc aussi un zéro-cycle de degré
d —4, degré qui est premier 2 3. Comme on a n > 2, on a

g=3nn—-1/2+1<3n(n+1)/2—1—4=d—4.

Le théoréme de Riemann-Roch sur la courbe I' assure alors I’existence d’un
zéro-cycle effectif de degré d —4, premier a 3, ce qui est en contradiction avec
I’hypothése d minimal.

Supposons d = 3n(n +1)/2—2 et n impair. Par le théoréme 2.9(a), il existe
une courbe I' lisse géométriquement connexe dans le systeme linéaire |—nK|
contenant un zéro-cycle effectif de degré d, degré qui est congru a2 1 mod. 3.
Comme 2 est combinaison linéaire de 3n(n + 1)/2 —2 et 3n, il existe alors un
zéro-cycle de degré 2 sur I'. La courbe I' contient donc un zéro-cycle de degré
d —-2.Comme onan>2,ona

g=3nn—-1)/2+1<3n(n+1)/2-2-2=d -2.

Par le théoréme de Riemann-Roch, sur la courbe I, il existe un zéro-cycle effectif
de degré d —2, qui est premier a 3. Ainsi X possede un zéro-cycle effectif de
degré d —2 premier a 3, ce qui est en contradiction avec 1’hypothése d minimal.
Supposons donc d = 3n(n + 1)/2 —2 et n pair, donc n > 2. Par le
théoreme 2.9(a), il existe une courbe I' lisse dans le systtme linéaire |—nK|
contenant un zéro-cycle effectif de degré d, degré qui est congru a 1 mod. 3.
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Dans lecas n =2, ona g=4 et d =7. Comme I' contient un zéro-cycle
de degré 4, le théoreme de Riemann-Roch sur une courbe montre 1’existence d’un
zéro-cycle effectif de degré 4 sur une telle courbe, et donc aussi sur X, ce qui
est en contradiction avec I’hypothése d minimal.

On peut donc supposer n pair, n > 4. Dans ce cas, on a

g=3nn-1/24+1<3mr+1)/2-2-8=d -8.

Comme I' contient un zéro-cycle de degré 4, le théoréme de Riemann-Roch sur
une courbe montre 1’existence d’un zéro-cycle effectif de degré d —8 sur I' et
donc sur X, et d —8 est congru a 2 modulo 3, ce qui est en contradiction avec
I’hypothése d minimal.
Il reste a examiner le cas d =3n(n—-1)/2+ 1, oul’'ona n>2 et d > 4.
On a donc une k-surface X avec un point fermé P de degré d premier a 3
minimal, au moins égal a 4. L'unique entier n tel que

3n(n—1)/2+1<d<3nn+1)/2+1

satisfait 3n(n — 1)/2+1=4d.

On prend un point fermé M de degré 3 sur X découpé par une droite D
définie sur k, qu’on peut choisir générale car le corps k est infini. Soit p: ¥ — X
I’éclatement de X en le point fermé M. On note E C Y le diviseur exceptionnel
et K le faisceau canonique sur X.

Le systtme linéaire |p*(—K) — E| définit un morphisme ¥ — D = P!,
dont les fibres sont les sections de X par les plans contenant D. On a un
plongement Y C P}C X P,:’; dont la projection sur le premier facteur est définie par
le systeme linéaire |p*(—K)— E| et la projection sur le second facteur est définie
sur le second facteur par |p*(—K)|. Il s’en suit que pour tout couple d’entiers
a>1,b>1 le faisceau inversible a(p*(—K)—E) + bp*(—K) est trés ample. En
particulier, pour n > 3, le faisceau p*(—nK)— 2E est trés ample. Le fait que
ces faisceaux inversibles soient tres amples peut aussi s’établir en utilisant [Rei,
Thm. 1].

On considere sur Y les systémes linéaires |p*(—nK)—2E| pour n > 1. Ceci
correspond aux sections de X par des surfaces de degré n > 3 dans P?, avec une
singularité au point fermé M, qui est de degré 3. Imposer une telle singularité
correspond a 9 conditions linéaires.

Lemme 3.2. Soit n > 3. Ona h°(Y, p*(-nK)—2E) = 3n(n+1)/2-8, le systéme
linéaire |p*(—nK) —2E| définit un plongement de la surface Y dans un espace
projectif de dimension 3n(n+1)/2—9. Toute courbe géométriquement connexe et
lisse T' dans le systéme linéaire associé satisfait g(I') = pa(I') = 3n(n—1)/2-2.
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Démonstration. Le faisceau canonique Ky sur Y est p*(K)+ E. Par dualité de
Serre, on a

h*(p*(—nK) —2E) = h°(p*(K) + E + p*(nK) + 2E)
- h°(p*((n + 1K) + 3E)

et

W (p*(-nK) —2E) = h' (p*((n + DK) + 3E).

Lopposé de p*((n + 1)K) + 3E est p*(—(n + 1)K) — 3E qui est la somme
de 3(p*(—K)— E) et de p*(-mK) avec m > 1, et donc est trés ample. Ceci
implique d’une part h°(p*((n +1)K)+3E) = 0, d’autre part d’aprés le théoréme
d’annulation de Kodaira, #'(p*((n + 1)K) 4+ 3E) = 0. En utilisant le théoréme
de Riemann-Roch sur la surface Y, ceci donne

hO(Y, p*(—nK) —2E) =3n(n+ 1)/2 8.

La formule p,(I") = (I'.T' + Ky)/2 + 1 donne le calcul du genre de T. U

Pour appliquer le théoréme 2.9(a), on a besoin de I’inégalité
3n(n—-1)/24+1=d <3n(n+1)/2-9

soit n > 20/6 et donc n > 3. On se restreint donc maintenant a2 n > 4. Comme
onad=3nmn-—1)/2+ 1, ceci équivaut a ignorer les cas d =1, d = 4 et
d =10.

Le théoréme 2.9(a) assure 1’existence sur ¥ d’une k-courbe I' lisse et géomé-
triquement connexe sur Y, de genre g = 3n(n—1)/2—2, contenant un zéro-cycle
effectif de degré d =3n(n —1)/2 + 1.

La courbe I' contient aussi un zéro-cycle de degré 3n, découpé par I’image
réciproque d’une section plane de X C Pi. La courbe I" posseéde donc un zéro-
cycle de degré 2. Elle contient donc un zéro-cycle de degré d—2 = 3n(n—1)/2-1,
de degré premier a 3, et satisfaisant d —2 > g. Le théoréme de Riemann-Roch
sur une courbe assure qu’il existe sur I', et donc sur Y, et donc sur X, un
zéro-cycle effectif de degré d — 2, premier a 3, ce qui contredit I’hypothese d
minimal.

On voit donc que I'on a soit d = 1, soit d = 4, soit d = 10. O
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3.2. Surfaces cubiques avec un point rationnel.

Théoreme 3.3. Soit k un corps de caractéristique zéro. Soit X C P,3c une surface
cubique lisse possédant un point rationnel.

(a) Soit Q € X(k) un point rationnel. Tout zéro-cycle effectif de degré au moins
3 sur X est rationnellement équivalent a un zéro-cycle effectif z; +rQ avec
r >0 et z effectif de degré au plus 3.

(b) Tout zéro-cycle de degré positif ou nul est rationnellement équivalent a une
différence zy —z, avec zy effectif et z, efffectif de degré au plus 3.

(c) Tout zéro-cycle de degré zéro est rationnellement équivalent a la différence
de deux cycles effectifs de degré 3.

(d) Tout zéro-cycle de degré au moins 3 est rationnellement équivalent a un
zéro-cycle effectif ou a la différence d’un zéro-cycle effectif et d’un point
fermé de degré 3.

(e) Le groupe de Chow des zéro-cycles sur X est engendré par les classes des
points rationnels et des points fermés de degré 3.

(f) Tout zéro-cycle sur X de degré au moins égal a 10 est rationnellement
équivalent a un zéro-cycle effectif.

Démonstration. On va systématiquement appliquer le théoreme 2.9(b).

On peut le faire car la propriété de R-densité vaut pour les surfaces cubiques
lisses sur tout corps k de caractéristique zéro (Proposition 2.1).

On pourrait aussi observer que d’apres la proposition 2.11, pour le théoreme a
démontrer, on peut supposer le corps k fertile, ensuite invoquer le fait bien connu
qu'une surface cubique lisse est géométriquement rationnelle et donc géomé-
triquement rationnellement connexe, et enfin appliquer le théoréme 2.2. Cette
méthode sera utile dans I’étude des surfaces de del Pezzo de degré 2 et de
degré 1.

Soit z un zéro-cycle effectif de degré d > 1. Soit n le plus petit entier tel
que d +2<3n(n+1)/2+1. On a donc

3n(n—1)/2+1<d +2

soit encore
3n(n—1)/2 <d.

D’apres le théoréme 2.9(b), quitte & remplacer z par un zéro-cycle effectif ration-
nellement équivalent encore noté z et @ par un point rationnel rationnellement
équivalent encore noté @, on peut supposer qu’il existe une courbe lisse géomé-
triquement connexe I' dans le systtme linéaire |—nK| contenant le zéro-cycle z
et le point rationnel Q.



Zéro-cycles 465
Ona g(I') = pa(I') =3n(n-1)/2+1. Si 'on a
d—1>3nn-1)/2+1,

alors le zéro-cycle z — Q est rationnellement équivalent sur I', donc sur X, a
un zéro-cycle effectif de degré d — 1.
La condition est satisfaite sauf si

3n(n—1)/2 <d <3n(n—1)/2 + 1.

Considérons le cas d = 3n(n —1)/2 + 1. Ici pys(T") = d. Dans ce cas, on
fixe un autre point rationnel R € X(k), distinct de @, non dans le support de
z, et non situé sur une des droites de X, et on exige

d+14+3+1<3n(n+1)/2+1.
Ceci est possible si
3n(n—1)/2+6<3nn+1)/2+1

soit encore n > 2.

On considére I’éclatement p: Y — X en le point R, la courbe exceptionnelle
E C Y, et le faisceau inversible p*(—nK) —2FE sur Y. La surface Y est une
surface de del Pezzo de degré 2. Le faisceau anticanonique sur Y est donné par
p*(—K)— E. Il est ample, son double p*(—2K)—2E est tres ample. Le systeme
linéaire |p*(—K)| sur Y correspond au morphisme Y — X, ceci implique que
pour tous entiers a > 0 et b > 1, le faisceau inversible ap*(—K)+b(p*(—K)—E)
est ample, et que le faisceau inversible ap*(—K)+2b(p*(—K)—E) est trés ample.
On peut aussi établir ces divers énoncés de trés-amplitude par une application
de [Rei, Thm. 1].

Sur la surface Y, le théoréme de Riemann-Roch pour le faisceau

L = p*(—nK) —2E = —nKy + (n — 2)E,

le théoreme de dualité de Serre et le théoreme d’annulation de Kodaira donnent
alors, pour n > 2,

KoY, p*(—nK) —2E) = 3n(n +1)/2 - 2.

Pour n > 2, le systéme linéaire |p*(—nK) —2E| définit donc un plongement de
la surface Y dans un espace projectif PV avec N = 3n(n + 1)/2 — 3, espace
projectif qu’elle engendre. Comme on a d +1 =3n(n—1)/2+42 <3n(n+1)/2-3,
le théoreme 2.9(b) assure I’existence dans le systéme linéaire |p*(—nK) — 2E]|
d’une courbe I" C Y projective, lisse et géométriquement intégre, et qui contient
un zéro-cycle effectif z; rationnellement équivalent a p*(z) sur Y et un point
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rationnel Q; rationnellement équivalent au point p*(Q). Le genre de cette courbe
est 3n(n —1)/2. Le zéro-cycle z; — Q, est de degré 3n(n — 1)/2. Il est donc
rationnellement équivalent, sur I', et donc sur Y, & un zéro-cycle effectif de degré
d — 1. Le zéro-cycle p*(z) — p*(Q) sur Y est donc rationnellement équivalent
a un zéro-cycle effectif, et il en est donc de méme de son image directe z — Q
sur X.

Considérons le cas d = 3n(n —1)/2 et p, = d + 1. On s’intéresse au cas
d >4 et donc n > 3.

Dans ce cas on va fixer un couple de points rationnels R et S suffisamment
général, et imposer un point double en chacun de ces points, ce qui impose
6 conditions linéaires pour le systéme linéaire |—nK|. Voici comment faire cela
formellement.

Soit p:Y — X I'éclaté de X en R et S, et soient Ex C Y, resp. Egs CY
les courbes exceptionnelles. La surface Y est une surface de del Pezzo de degré 1.

Sur cette surface, le faisceau inversible —Ky = p*(—K)— Er— Egs est ample
et le faisceau inversible —3Ky est trés ample [Koll, Chap. III, Prop. 3.4].

Pour n > 3, le faisceau inversible

p*(—nK) —2Eg —2Es = —nKy + (n —2)Eg + (n —2)Es

sur Y est trés ample, comme on voit en utilisant [Rei, Thm. 1].

En utilisant le théoréme de Riemann-Roch pour le faisceau inversible
p*(—nK) —2Eg —2Eg sur Y, la dualité de Serre et le théoréme d’annulation
de Kodaira, pour n > 3 on obtient

RO(Y, p*(—nK) —2Eg — 2Es) = 3n(n + 1)/2—5.

Pour n > 3, le systéme linéaire |p*(—nK) —2ERr —2Eg| définit un plongement
de ¥ dans PV avec N = 3n(n+1)/2—6, dont I’'image engendre projectivement
Py,
On a
d+1+1<3n(n+1)/2-5

c’est-a-dire
3n(n—1)/2<3nn+1)/2-7,

puisque I’'on a n > 3.

D’aprés le théoréme 2.9(b), il existe un zéro-cycle effectif z’ sur Y rationnel-
lement équivalent 2 p*(z) sur Y, un point rationnel Q' € Y(k) rationnellement
équivalent 2 p*(Q) sur Y et une courbe I' C ¥ géométriquement integre et lisse
sur Y dans le systtme linéaire |p*(—nK)—2Eg —2Eg| qui contient le support
de z’ et le point Q’. Le genre de cette courbe est d —1, et le zéro-cycle z/ — Q'
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est donc rationnellement €quivalent sur I' a un zéro-cycle effectif, il en est donc
de méme pour z — Q sur X.

En conclusion, tout zéro-cycle z effectif de degré d au moins égal a 4 sur
X est rationnellement équivalent 2 un zéro-cycle z; + rQ, avec z; effectif de
degré au plus 3.

Ceci établit le point (a). On notera que le choix du point rationnel Q est
arbitraire. Les points (b) et (c) sont des conséquences évidentes de (a).

Il y a une classe standard ¢ dans CHy(X) de degré 3, celle découpée par
une droite définie sur k quelconque mais non située sur la surface X. Comme
X possede des points rationnels, et que ces points sont denses pour la topologie
de Zariski, on peut trouver une telle droite qui découpe sur X trois points
rationnels distincts. Si P est un point fermé de degré 2 non situé sur une droite
de la surface, alors la droite qu'elle définit découpe sur X une somme P + p
avec p point rationnel, et P + p est dans la classe £, donc équivalent a la
somme de trois points rationnels alignés. Si P est situé sur une droite D de
la surface, alors P est rationnellement équivalent sur D donc sur X a 2Q
pour tout point rationnel Q de la droite. En résumé, tout point fermé P de
degré 2 sur X est rationnellement équivalent & un zéro-cycle a +b +c —d avec
a,b,c,d points rationnels. Les résultats (d) et (e) s’obtiennent alors formellement
a partir de (a).

Démontrons (f). D’apres la proposition 2.11, on peut supposer k fertile. Le plus
petit entier d pour lequel il existe un entier naturel n avec 3n(n—1)/2+1 <d-3
et d+3+1<3n(n+1)/2+1 est d =13, qui correspond & n = 3.

Considérons un zéro-cycle z — P avec z effectif de degré d = 13 et P un
point fermé de degré 3. Le théoreme 2.9(b) montre |’existence d’un zéro-cycle
effectif z’ rationnellement équivalent 2 z, d’un zéro-cycle effectif P’ de degré 3
rationnellement équivalent 2 P, et d’une courbe lisse géométriquement intégre
I’ C X dans le systeme linéaire |-3K| de genre g = 10 contenant le support de
z' et celui de Q’. Le théoréme de Riemann-Roch sur I' assure alors 1’existence
d’un zéro-cycle effectif de degré 10 rationnellement équivalent sur I', donc sur
X,az-P.

Soit z un zéro-cycle quelconque sur X de degré au moins 10. D’apres (d), soit
il est rationnellement équivalent & un zéro-cycle effectif, soit il est rationnellement
équivalent a une différence z; — P avec P point fermé de degré 3 et z; zéro-cycle
effectif de degré au moins 13. D’aprés (a), le zéro-cycle z; est rationnellement
équivalent a z, +rQ avec Q point rationnel, r > 0, et z zéro-cycle effectif de
degré 13. Ainsi z est rationnellement équivalent a rQ + z; — P avec z; effectif
de degré 13. Et on a vu ci-dessus que, pour un tel z;, le zéro-cycle z; — P est
rationnellement équivalent a un zéro-cycle effectif. a
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Remarque 3.4. Dans [CTC], pour une surface fibrée en coniques relativement
minimale au-dessus de la droite P}c, notant r le nombre de fibres géométriques
singuliéres de la fibration X — P, nous montrons que tout zéro-cycle sur X
de degré au moins max(0, [r/2] — 1) est rationnellement équivalent a un zéro-
cycle effectif. Une autre démonstration, plus conceptuelle, fut plus tard obtenue
par P. Salberger [Sa]. La démonstration de [CTC] requiert des discussions sur la
décomposition possible des courbes obtenues dans un systeme linéaire. Il n’est pas
clair si on pourrait utiliser la méthode du § 2 pour simplifier cette démonstration.

Remarque 3.5. L'analogue du théoréme 3.3 est connu pour les surfaces de del
Pezzo X de degré 4 avec un point rationnel. Dans ce cas on a mieux. Par
éclatement d’un k-point non situé sur les droites de X, on obtient une surface
cubique Y fibrée en coniques au-dessus de P}, avec 5 fibres géométriques
dégénérées. Le théoreme de [CTC] donne alors que tout zéro-cycle sur Y de
degré au moins 1 est rationnellement équivalent & un zéro-cycle effectif. Ceci
vaut donc aussi pour une surface de del Pezzo X de degré 4 possédant un point
rationnel (I’existence d’un tel point suffit pour que les point rationnels soient
denses pour la topologie de Zariski sur X).

4. Surfaces de del Pezzo de degré 2

4.1. Surfaces de del Pezzo de degré 2 avec un zéro-cycle de degré 1. On suit
la méthode de Coray pour les surfaces cubiques [Corl], avec la flexibilité donnée
par le théoreme 2.9(a).

Théoréme 4.1. Soient k un corps de caractéristique zéro et X une k-surface
de del Pezzo de degré 2. Si X posséde un zéro-cycle de degré I, elle posséde un
point fermé de degré 1, ou 3, ou 7.

Démonstration. Une telle surface X posséde des points dans des extensions
quadratiques du corps de base k, puisque c’est un revétement double de P2,
donné par le systeme linéaire associ€ a —K. Soit Q un point de degré 2 sur
X . Supposons donné un point fermé de degré d impair. On peut supposer d
minimal avec cette propriété. Si d = 1, on a un point rationnel. Supposons donc
d>3.

D’apres la proposition 2.11, on peut supposer le corps k fertile. Les seuls
faisceaux inversibles évidents sur X sont les faisceaux —nK. Ils sont amples
pour n > 1, et trés amples pour n > 2, par exemple par [Rei, Thm. 1]. Soit
n>2.0na

h*(nK) = h°((1 + n)K) = 0,
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car le faisceau inversible —K est ample. Comme —K est ample, on a
h'(nK) =h'((1 +n)K) =0

d’apres le théoréme d’annulation de Kodaira. Le théoréeme de Riemann-Roch sur
la surface X donne alors

h(-nK) = (-nK.(-nK = K))/2+ 1 =n*>+n + 1.

Pour tout entier n > 1, le faisceau inversible —nK est ample et ses sections
définissent un morphisme X — Pf"‘” d’image de dimension au moins 2,
engendrant projectivement Pzz"'" .

Pour T" une courbe projective et lisse dans le syt¢eme linéaire |—nK|, on a

g(T) = p,(T) = (-nK.—nK+K)/2+1=n*>—n+1.

Une telle courbe I' contient un zéro-cycle (effectif) de degré (—nK).(—K) = 2n
obtenu par intersection avec 1’image réciproque d’une droite de P,%.
Notons (n+1)2—(n+1)+1=n?+n+1. Soit n > 1 I'unique entier tel que

g=n’-n+1<d<n>+n+1.
Supposons d’abord
— 2 2
g=n“—-n+l<d<n“"+n-2.

Comme on a d +2 < n?+n, le théoréme 2.9(a) garantit I’existence d’une courbe
I' projective, lisse, géométriquement connexe dans le systeme linéaire |—nK]|,
possédant un zéro-cycle effectif de degré d et un point de degré 2. Comme d
est impair, on n"a pas d =n?—-n+2,doncona n?—n+3<detd-2>g.Le
théoréeme de Riemann-Roch sur la courbe I' assure I’existence d’un zéro-cycle
effectif de degré d —2 sur I', donc sur X, ce qui est une contradiction avec
I’hypothése d minimal.

On ne peut avoir d = n? +n, car d est impair. Il reste donc a considérer les
cas d=n2+n—-letd=n*-n+1=g.

Considérons le cas d = n?+n—1. Le théoréme 2.9(a) établit I’existence d’une
courbe ' projective, lisse, géométriquement connexe sur k de genre g = n?—n+1
contenant un zéro-cycle effectif de degré d = n? +n—1. Comme on a remarqué
ci-dessus, cette courbe contient aussi un zéro-cycle de degré 2n. Comme n?+n—1
et 2n sont premiers entre eux, cette courbe posseéde un zéro-cycle de degré 1.
Par le théoréeme de Riemann-Roch sur la courbe I', elle posséde un zéro-cycle
effectif de degré n>2 —n +1.Ona n>—n+1 <n?+n—1 si et seulement si
n>1,ie. d > 5. 8Si donc d n'est pas égal a 3, on trouve sur I' et donc
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sur X un zéro-cycle effectif de degré impair plus petit que d, ce qui est une
contradiction avec I’hypothése d minimal.

Il reste & considérer le cas g = n?—-n+1 =d. On a un point fermé de
degré d > 3. Comme k est fertile, on peut choisir un point k -rationnel général
m dans P% et son image réciproque M par le morphisme X — Pf. C’est un
point fermé de degré 2. On considére p : ¥ — X 1’éclaté de X en le point
M, on note E C Y le diviseur exceptionnel, et on considere sur Y le systeme
linéaire |p*(—nK) — 2E|. Ses sections correspondent aux courbes du systéme
linéaire |-nK| sur X qui ont un point double en le point fermé M, ce qui
impose 6 conditions linéaires. On a donc A°(Y, p*(—nK) —2E) > n? +n —5.

Lemme 4.2. Pour n > 3, le faisceau inversible p*(—nK) —2E est trés ample,
et Uon a h°(Y, p*(—nK) —2E) =n%? 4+ n—->5.

Démonstration. Soit D ~ P,{, la droite paramétrant les droites de P,Zc passant
par m. A tout point de X non au-dessus de m on associe sa projection dans
PI% puis le point de D correspondant a la droite joignant cette projection a m.
L’application rationnelle de X vers D ainsi définie s’étend en un morphisme
Y — D dont le systeme linéaire associ€¢ est donné par le faisceau inversible
p*(—K) — E. On sait que le faisceau inversible —2K sur X est trés ample,

définissant un plongement X  P¥. On a un plongement
Y < (P! x X) — (P! xPY)

défini par p*(—K) — E pour la projection vers P! et par p*(—-2K) pour la
projection vers X C PV . Il s’en suit que pour tout couple d’entiers a > 1,b > 1
le faisceau inversible a(p*(—K) — E) + bp*(—=2K) est trés ample.

En particulier, pour n = 4, le faisceau inversible p*(—nK) — 2E est trés
ample sur Y, et comme p*(—K) correspond & un morphisme ¥ — X — P2,
ceci implique que pour tout n > 4, le faisceau inversible p*(—nK)—2E est trés
ample sur Y.

Procédant comme dans le lemme 3.2, pour n > 4, on montre

h' (Y, p*(—nK) —2E) =0, h'(Y, p*(—nK) —2E) =0,
puis h°(Y, p*(—nK) —2E) =n?>+n—5. O

Sil'lonad<n?+n-6, cest-a-dire n2—n+1 < n?+n—6, c’est-a-
dire n > 3, c’est-a-dire si on exclut d = 3 et d = 7, le théoréme 2.9(a)
assure l’existence d’une courbe I' géométriquement connexe et lisse dans le
systéme linéaire |p*(—nK)—2E| sur Y contenant un zéro-cycle effectif de degré
d = n*—n+1. Cette courbe satisfait g(I') = p,(I") = n> —n—1. Elle contient un
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zéro-cycle de degré 2n. Comme d =n?—n+1 et 2n sont premiers entre eux,
I' contient un zéro-cycle de degré 1. Par le théoréeme de Riemann-Roch sur I',
elle contient un zéro-cycle effectif de degré n? —n — 1, impair et strictement
plus petit que d = n? —n + 1, ce qui est une contradiction avec I’hypothése d

minimal.
N’ont donc été exclus de ce processus de descente des degrés impairs que les
degrés 1, 3, ou 7. O

Remarque 4.3. Comme annoncé dans [KM, Remark19], pour une surface de del
Pezzo de degré 2, on ne peut exclure la possibilité d’existence d’un point de
degré 3 en I’absence de point rationnel. Je détaille ici 1’argument qui m’a été
indiqué par J. Kolldr. Sur un corps k convenable de caractéristique zéro, on
peut trouver dans Pi une conique lisse C(u,v,w) = 0 et une quartique lisse
Q(u,v,w) = 0 dont l'intersection consiste en la réunion d’un point fermé de
corps résiduel K degré 3 sur k et d’un point fermé de corps résiduel L de
degré 5 sur k. En particulier cette intersection ne contient pas de point rationnel.

Soit F = k(t) le corps des fonctions rationnelles en une variable. La quartique
de P2 définie par aC(u,v,w)? —tQ(u,v,w) = 0 est lisse, car elle se spécialise
en t = oo en une quartique lisse. On considére la surface de del Pezzo X de
degré 2 sur F définie par 1’équation multihomogene

z2 —aC(u,v, w)2 +tQWu,v,w) =0.

Supposons qu’elle ait un point sur F. Par congruences modulo ¢, on voit que
I’on devrait avoir une solution non triviale pour C(u,v,w) = 0 = Q(u,v, w)
dans k, ce qui n’est pas. Ainsi X(F) = 0. Il est par contre clair que X possede
un point sur I’extension cubique K(¢)/F et un point sur I’extension quintique
L)/ F, avec C(u,v,w) =0=0(u,v,w) et z=0.

On peut aussi faire des variantes avec F' = k((¢)) le corps des séries formelles.
Dans la situation paralléle des surfaces fibrées en coniques sur PL avec 6 fibres
géométriques dégénérées, des exemples analogues avec F un corps p-adique
avaient été construits dans [CTC, §5].

4.2. Surfaces de del Pezzo de degré 2 avec un point rationnel.

Théoreme 4.4. Soient k un corps de caractéristique zéro et X une surface de
del Pezzo de degré 2 sur k possédant un point rationnel.

(a) Soit Q € X(k) un point rationnel. Tout zéro-cycle effectif de degré au moins
6 sur X est rationnellement équivalent a un zéro-cycle effectif z; +rQ avec
r>0 et zy effectif de degré au plus 6.
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(b) Tout zéro-cycle de degré positif ou nul est rationnellement équivalent a une
différence zy — z, avec zy effectif et z, efffectif de degré au plus 6.

(c) Tout zéro-cycle de degré zéro est rationnellement équivalent a la différence
de deux cycles effectifs de degré 6.

(d) Tout zéro-cycle de degré au moins égal a 43 est rationnellement équivalent
a un zéro-cycle effectif.

Démonstration. On va systématiquement appliquer le théoréme 2.9(b). A la diffé-
rence du cas des surfaces cubiques lisses (Théoréeme 3.3), en présence d’un
k -point sur la surface de del Pezzo de degré 2, la k -unirationalité et la propriété
de densité ne sont pas connues dans tous les cas [Man2, STVA]. En outre, pour
ces surfaces, on n’a pas €tudié la propriété de R-densité. On va donc utiliser ici
la proposition 2.11, qui permet de supposer le corps k fertile, et le théoreme 2.2.

Soit n > 1. 0On a h®(—nK) = n?2+n+1, et si I' est une courbe géo-
métriquement connexe lisse dans le systtme linéaire | — nK|, alors
g(I") = pa(T) = n?2 —n + 1. Pour tout n > 1, le systétme linéaire | — nK|
définit un morphisme de X dans un espace projectif d’image de dimension au
moins 2. Pour n > 2, c’est un plongement.

Soit z un zéro-cycle effectif de degré d > 1. Soit n le plus petit entier tel
que d +2<n’+n+1.0nan’>—n<d.

D’aprés le théoreme 2.9(b), quitte a remplacer le zéro-cycle effectif z
par un zéro-cycle effectif rationnellement équivalent encore noté z et Q par
un point rationnel rationnellement équivalent encore noté @, comme on a
h°(—nK) > d +2, on peut supposer qu’il existe une courbe lisse géométriquement
connexe I' dans le syst¢eme linéaire |—nK| contenant le zéro-cycle z et le point
rationnel Q.

Sil'ona n“—n+1<d-—1, alors le zéro-cycle z — Q est rationnellement
équivalent sur I', donc sur X, a un zéro-cycle effectif de degré d — 1.

La condition est satisfaite sauf si

2

n>—n<d<n*+n+l.

Considérons le cas d = n?> —n + 1. Ici p,(I') = d. Dans ce cas, on fixe
un autre point rationnel R € X(k), distinct de Q, non dans le support de z, et
situé ni sur une des courbes exceptionnelles de X ni sur le lieu de ramification

du revétement double X — P,2c défini par le systéme linéaire | — K|. Quitte a
remplacer par des cycles effectifs rationnellement équivalents, on cherche une
courbe I' géométriquement intégre dans le systeme linéaire | —nK| contenant

le point Q, le support de z, et possédant un k-point double en R, pour faire
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baisser le genre géométrique de 1. On veut donc
d+1+3+1<n*+n+1,

avec d =n* —n+1, soit n>2 et d > 3.

Voici comment faire cela précisément. On considere 1’éclatement p: Y — X
en le point R, la courbe exceptionnelle E C Y, et le faisceau inversible
p*(—nK) —2E sur Y. La surface Y est une surface de del Pezzo de degré 1.
D’aprés le lemme 4.2, pour tout couple d’entiers ¢ > 1,6 > 1 le faisceau
inversible a(p*(—K) — E) + bp*(—2K) est trés ample sur Y. Ainsi pour tout
n > 3, le faisceau inversible p*(—nK)—2E est trés ample sur Y. On applique
ensuite le théoréme 2.9(b) & Y, au plongement de Y défini par p*(—nK) —2E
au point Q1 = p~1(Q) et au zéro-cycle effectif z; = p*(z). On trouve ainsi
une courbe 'y C Y géométriquement connexe, lisse, et contenant un k-point Q»
rationnellement équivalent a Q; sur ¥ et un zéro-cycle effectif z, rationnellement
équivalent 2 z; sur Y. En utilisant le théoréme de Riemann-Roch sur Y, on
montre p,(I';) =n%?—n =d —1. Par Riemann-Roch sur la courbe I'y, on trouve
un zéro-cycle effectif z3 rationnellement équivalent sur I'y & z; — Q,, donc
rationnellement équivalent & z; — @ sur Y. Alors le zéro-cycle effectif p.(z3)
de degré d — 1 est rationnellement équivalent a z — Q sur X.

Considérons le cas d =n?—n. On a p,(T') = d + 1. Dans ce cas, choisissons
un couple de k -points étrangers au support de z, a @, aux courbes exceptionnelles
de premiere espéce sur X et au lieu de ramification.

Quitte a remplacer Q et z par des cycles effectifs rationnellement équivalents,
on cherche une courbe I" géométriquement intégre dans le syst¢me linéaire |—nK]|
contenant le point @, le support de z, et sur laquelle les points R et S sont
doubles, afin de faire baisser le genre géométrique de 2. Il faut pour cela

d+1+6+1<n?+n+1,

avec d = n? —n. On doit donc avoir n >3 et d > 6.

Voici comment faire cela précis€ément. Choisissons le couple R, S stable par
I’involution associée au revétement double X — P,Zc défini par | — K]|.

On considére I’éclatement p : ¥ — X en ces points R et §, les courbes
exceptionnelles Egr, Es C Y introduites par 1’éclatement, et le faisceau inversible
p*(—nK) —2EgR —2Eg sur Y. D’aprés le lemme 4.2, pour n > 3, ce faisceau
inversible est trés ample sur Y.

On applique ensuite le théoréme 2.9(b) a Y, au plongement de Y défini
par p*(—nK) — 2ERr — 2Eg au point Q1 = p~1(Q) et au zéro-cycle effectif
z; = p*(z). On trouve ainsi une courbe I'; C Y géométriquement connexe, lisse,
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et contenant un k-point @, rationnellement équivalent a Q; sur Y et un zéro-
cycle effectif z, rationnellement équivalent 2 z; sur Y . En utilisant le théoréeme de
Riemann-Roch sur Y, on montre p,(I';) = n?—n—1 = d —1. Par Riemann-Roch
sur la courbe I'y, on trouve un zéro-cycle effectif z3 rationnellement équivalent
sur I'y & z; — Q», donc rationnellement équivalent a z; — Q¢ sur Y. Alors le
zé€ro-cycle effectif p.(z3) de degré d —1 est rationnellement équivalent a2 z — Q
sur X.
Ceci établit (a). Les énoncés (b) et (c) sont des conséquences immédiates.

Montrons (d). Soit z un zéro-cycle quelconque de degré d > 0. D’apres (b), il
est rationnellement équivalent a z; —z, avec z; effectif et z, effectif de degré 6.

Le plus petit entier d pour lequel on a n?—n+1 <d—6 et d+6+1 < n?+n+1
est d = 49, avec n = 7. On considere d’abord le cas ol le zéro-cycle effectif
z; est degré d = 49. On utilise I’hypothese k fertile et le théoréme 2.9(b).
Quitte a remplacer les zéro-cycles effectifs z; et z, par des zéro-cycles
effectifs rationnellement équivalents, dans le systeme lin€aire | — 7K| qui vérifie
h°(=7K) = n?+n+1 =57 > 494641 on trouve une courbe I géométriquement
irréductible et lisse de genre n? —n + 1 = 43 qui contient les supports de z;
et zz. Le zéro-cycle z; —z; de degré 43 est rationnellement équivalent sur I,
donc sur X a un zéro-cycle effectif.

Ceci implique que tout zéro-cycle z; —zp sur X avec z; effectif de degré
d > 49 et z, effectif de degré 6 est rationnellement équivalent a un zéro-cycle
effectif.

Ainsi tout zéro-cycle z sur X de degré au moins égal a 43 est rationnellement
équivalent a un zéro-cycle effectif. O

Remarque 4.5. La démonstration établit que pour Q € X(k) donné, tout zéro-
cycle effectif de degré d > 1 sur X est rationnellement équivalent a z; + Q
avec z; zéro-cycle effectif, si d ¢ {1,2,3,6}.

S. Surfaces de del Pezzo de degré 1

Théoréme 5.1. Soit X/k une surface de del Pezzo de degré I

(@) Soit Q € X(k) un point rationnel. Tout zéro-cycle effectif de degré au moins
21 sur X est rationnellement équivalent a un zéro-cycle effectif z; + rQ
avec r > 0 et zy effectif de degré au plus 21

(b) Tout zéro-cycle de degré positif ou nul est rationnellement équivalent a une
différence z, — z; avec zi effectif et z, effectif de degré au plus 21
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(c) Tout zéro-cycle de degré zéro est rationnellement équivalent a la différence
de deux cycles effectifs de degré 21

(d) Tout zéro-cycle sur X de degré au moins égal a 904 est rationnellement
équivalent a un zéro-cycle effectif.

Démonstration. On va systématiquement appliquer le théoréme 2.9(b). On dispose
ici automatiquement d’un k-point P, le point fixe du systéme linéaire | — K|,
qui satisfait h°(—K) = 2. Pour tout n > 2, le systéme linéaire | —nK| est sans
point base [Koll, Chap. III, Prop. 3.4], et son image est de dimension 2. Pour
tout n > 3, le faisceau inversible —nK est trés ample.

On ne connait en général pas la k-unirationalité, la propriété de densité, et
encore moins la propriété de R-densité. On va donc utiliser la proposition 2.11,
qui permet de supposer le corps k fertile, et le théoréeme 2.2.

Soit n > 1.0n a A% —nK) = n(n +1)/2+1, et si I" est une courbe
géométriquement connexe lisse dans le systeme linéaire | —nK|, alors g(I') =
pa(D)y=nn-1)/2+1.

Soit z un zéro-cycle effectif de degré d > 2. Soit n le plus petit entier tel
que d+2<nm+1)/24+1.0nanr—-1)/2<d et n>2.

D’aprés le théoréeme 2.9(b), sous ’hypotheése d +2 < n(n +1)/2 + 1 et

~

n > 3, quitte a remplacer le zéro-cycle effectif z par un zéro-cycle effectif
rationnellement équivalent encore noté z, étranger a P, et O par un point
rationnel rationnellement équivalent encore noté Q, étranger aux précédents, on
peut supposer qu’il existe une courbe lisse géométriquement connexe I' dans le
systéme linéaire |—nK| contenant le zéro-cycle z et le point rationnel Q.
Sil'onan(n—1)/2+1<d-1, alors le zéro-cycle z— Q est rationnellement
équivalent sur I', donc sur X, & un zéro-cycle effectif de degré d — 1.

La condition est satisfaite sauf si

nn—1)/2<d<nn-1)/2+ 1.

Considérons le cas d =n(n—1)/2+ 1. Ici p,(I') = d. Quitte a remplacer z
et Q par des cycles effectifs rationnellement équivalents, on cherche une courbe
I' géométriquement intégre dans le systtme linéaire | — nK| contenant Q, le
support de z, et possédant un k-point double en un point rationnel P étranger
aux précédents, pour faire baisser le genre géométrique de 1. On veut donc

d+14+3+1=<nn-1)/2+1,

avec d = n(n —1)/2+ 1, soit n > 4 et d > 7. On considére 1’éclatement
p:Y — X en précisément le point P point fixe du systeme linéaire anticanonique,
la courbe exceptionnelle E C Y, et le faisceau inversible p*(—nK)—2E sur Y.
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Le systme linéaire |p*(—K) — E| sur Y définit un morphisme ¥ — P;
correspondant au pinceau de courbes de genre arithmétique 1 définies par —K
sur X, surface de del Pezzo de degré 1. Sur X, tout systeme linéaire |—nK| avec
n > 2 définit un morphisme dans un espace projectif, d’image de dimension 2.
On conclut que sur Y, les sections de tout faisceau inversible de la forme
p*(—nK) + m(p*(—K) — E) avec n > 2 et m > 1 définissent un morphisme
de Y dans un espace projectif d’image de dimension 2. Ainsi, pour n > 3, les
sections du faisceau inversible p*(—nK)— 2E définissent un morphisme de Y
dans un espace projectif d’image de dimension 2.

Comme le groupe des sections de —nK sur X ayant un point double en
P s’injecte dans le groupe des sections de p*(—nK) — 2E sur Y, on a, sous
I’hypotheése n > 4 ou encore d > 7,

RO(Y, p*(—nK) —2E) >n(n—1)/2+1-3>d +2.

Par ailleurs le genre de toute courbe géométriquement connexe lisse dans le
systéme linéaire |p*(—nK) —2E)| est égal & (n*> —n)/2 =d — 1.

D’aprés le théoréme 2.9(b), sous I’hypothése n > 3, quitte a remplacer le
zéro-cycle effectif p*(z) par un zéro-cycle effectif rationnellement équivalent z;,
étranger a p*(Q), et p*(Q) par un point rationnel Q; € Y (k) rationnellement
équivalent, il existe une courbe lisse géométriquement connexe I" dans le systeme
linéaire |p*(—nK) — 2E| contenant le zéro-cycle z; et le point rationnel Q;.
Cette courbe est de genre d —1. On trouve donc sur elle un zéro-cycle effectif de
degré d — 1 rationnellement équivalent a z; — Q. L'image directe sur X donne
un zéro-cycle effectif de degré d — 1 rationnellement équivalent 2 z — Q.

Considérons le cas d = n(n —1)/2. Ici p,(I') = d + 1. Dans ce cas, on
va fixer deux autres points rationnels R,S € X(k), distincts de Q. Quitte a
remplacer par des cycles effectifs rationnellement équivalents, on cherche une
courbe I' géométriquement inteégre dans le systeme linéaire | —nK| contenant
les point Q, le support de z, et sur laquelle les points R et S sont doubles,

pour faire baisser le genre géométrique de 2. Il faut pour cela
d+14+6+1<nn+1)/2+1,

avec d = n(n —1)/2. On doit donc avoir n > 6 et d > 15.

On considére 1’éclatement p : ¥ — X en les points R et S, les courbes
exceptionnelles Egr,Es C Y, et le faisceau inversible p*(—nK) —2Er —2Eg
sur Y.
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Lemme 5.2. Soient k un corps et X une k-variété projective. Soit f : X — P"
un k-morphisme, Z C P} son image schématique. Soit Y — X [’éclaté de
X en un k-point lisse m € X(k), et soit E C Y le diviseur exceptionnel.
Si f:X — Z est étale dans un voisinage de m, alors le systeme linéaire
| f*(Oprn(1)) ® Oy (—E)| sur Y est sans point base.

Démonstration. Pour établir cela, on peut supposer k algébriquement clos. Il
suffit alors d’utiliser le fait qu’au point m le morphisme f sépare les points
infiniment voisins. O

Sur la surface de del Pezzo X de degré 1, le systéme linéaire | —2K| définit
un morphisme f : X — PI,3’c d’image de dimension 2. Comme on a supposé
car(k) = 0, ce morphisme est génériquement étale. Soit S € X(k) un point ol
f est étale. Soit gg : Xg — X 1’éclatement au point S et Es C Xs la courbe
exceptionnelle. D’apres le lemme 5.2, le systéme linéaire |g5(—2K) — Eg| est
sans point base et définit un morphisme surjectif Xg — P,zc. Tout multiple de
g5(—2K) — Es € Pic(Xs) est sans point base et définit un morphisme d’image
de dimension 2.

Pour le point R annoncé plus haut on va choisir le point P qui est le point
base du systeme linéaire | — K| sur X. Soit gp : Xp — X I’éclaté de X en P
et Ep C Xp la courbe exceptionnelle.

On a vu ci-dessus que gp(—K) — Ep définit un morphisme Xp — P!. Tout
multiple de gp(—K) — Ep définit donc un morphisme.

Rappelons que pour n > 2, le systéme linéaire | —nK| sur X est sans point
base.

Soit Y le produit fibré Xp et Xg au-dessus de X . C’est I'éclaté p:Y — X
de X en P et S.On note encore Ep et Eg les diviseurs exceptionnels dans Y .
Toute combinaison linéaire a coefficients entiers (a, b, c)

a(p*(—=2K) — Es) + b(p*(—=K) — Ep) + ¢(p*(—K))

avec a > 0,b >0 et ¢ =0 ou ¢ > 2 définit un systeéme linéaire sans point
base sur Y, d’image de dimension 2. Ainsi pour n = 6 et pour n > 8§, le
systeme linéaire |p*(—nK) —2Es —2Ep| définit un systeme lin€aire sans point
base sur Y, d’image de dimension 2.

D’aprés le théoreme 2.9(b), sous I’hypothése n > 8, quitte a remplacer le
zéro-cycle effectif p*(z) par un zéro-cycle effectif rationnellement équivalent z;,
étranger a p*(Q), et p*(Q) par un point rationnel Q; € Y (k) rationnellement
équivalent, il existe une courbe lisse géométriquement connexe I'; dans le systeme
linéaire |p*(—nK) — 2E| contenant le zéro-cycle z; et le point rationnel Q;.
Cette courbe est de genre d — 1. On trouve donc sur elle un zéro-cycle effectif de
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degré d — 1 rationnellement équivalent a z; — Q. L'image directe sur X donne
un zéro-cycle effectif de degré d — 1 rationnellement équivalent a z — Q.

La condition n > 7 équivaut ici a d = n(n —1)/2 > 21.

Ceci établit (a). Les énoncés (b) et (c) sont des conséquences immédiates.

Montrons (d). Soit z un zéro-cycle quelconque de degré d > 0. D’apres (b), il
est rationnellement équivalent & z; —z, avec z; effectif et z, effectif de degré 21.

Le plus petit entier d pour lequel on a n(n — 1)/2 + 1 < d — 21 et
d+21+1<nn+1)/2+1 est d =925, avec n = 43.

On considere d’abord le cas ot le zéro-cycle effectif z; est degré d = 925.
On utilise I’hypothese k fertile et le théoreme 2.9(b). Quitte a remplacer les zéro-
cycles effectifs z; et zp par des zéro-cycles effectifs rationnellement équivalents,
dans le systtme linéaire | — 43K| qui vérifie h°(—43K) = n(n + 1)/2 +1 =
947 on trouve une courbe I' géométriquement irréductible et lisse de genre
nn—1)/2+1 =904 qui contient les supports de z; et z». Le zéro-cycle z; —z;
de degré 904 est rationnellement équivalent sur ', donc sur X a un zéro-cycle
effectif.

Ceci implique que tout zéro-cycle z; — z; sur X avec z; effectif de degré
d > 925 et z, effectif de degré 21 est rationnellement équivalent a un zéro-cycle
effectif.

Ainsi tout zéro-cycle z sur X de degré au moins égal a 904 est rationnellement
équivalent a un zéro-cycle effectif. O

Remarque 5.3. La démonstration établit que, pour Q € X(k) donné, tout zéro-
cycle effectif de degré d > 1 sur X est rationnellement équivalent a z; + Q
avec z; zéro-cycle effectif, si 'on a d ¢ {1,2,3,4,6,10,15,21}. Il est trés
vraisemblable que 1’on pourrait éliminer le cas d = 21. Ce serait le cas si avec
les notations de la démonstration ci-dessus on savait que le systtme linéaire
|p*(—=7K) —2Es —2Ep| sur Y est sans point base.

Si 'on pouvait éliminer le cas d = 21, alors au point (d) on pourrait
remplacer 904 par 466.

6. Surfaces géométriquement rationnelles

Soient k un corps et X une k-surface projective et lisse géométriquement
rationnelle. Le théoreme d’Enriques-Manin-Iskovskikh [Isk] et Mori dit qu’une
telle surface k-minimale est k-isomorphe soit a une surface projective et lisse
fibrée en coniques (génériquement lisses) relativement minimale au-dessus d’une
conique lisse, soit a une surface (lisse) de del Pezzo. Une surface de del Pezzo
X est une surface dont le faisceau anticanonique —K est ample.
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Pour une surface fibrée en coniques relativement minimale X — C au-
dessus d’une conique lisse, les fibres générales sont des coniques lisses. Les
fibres singulieres Xp sont formées de deux droites conjuguées se rencontrant
transversalement au-dessus d’un point fermé séparable P.

Théoreéeme 6.1. Soient k un corps de caractéristique zéro et X une k-surface
projective, lisse, géométriquement rationnelle. Il existe un entier N(X), qui ne
dépend que de la géométrie de X sur une cloture algébrique de k, tel que si
X posséde un zéro-cycle de degré I, alors X posséde des points fermés dont
les degrés sont inférieurs ou égaux a N(X) et sont premiers entre eux dans leur
ensemble. Notant Ky la classe canonique de X, on peut prendre

N(X) = max(10, |4 — (Kx.Kx)/2]).

Démonstration. Considérons d’abord le cas d’une surface de del Pezzo. Soit
d = (K.K) son degré. Une telle surface posseéde un zéro-cycle effectif de degré
d.Ona l<d <9. Supposons que X posséde un zéro-cycle de degré 1. Pour
d > 5, c’est un résultat classique qu’alors X possede un point rationnel: pour
d = 5,7 il existe toujours un point rationnel [Manl, VA]. Pour d = 8, I’existence
d’un zéro-cycle de degré 1 implique que toute classe dans le groupe de Picard
géométrique invariante sous 1’action du groupe de Galois de k est dans I’image
du groupe de Picard de X . La moitié de la classe anticanonique de X définit
alors un plongement de X dans Pz dont I’image est une quadrique. On se raméne
ainsi 2 I’énoncé pour les quadriques de P3, pour lesquelles le résultat est un cas
particulier du théoréme de Springer [Spr] pour les quadriques quelconques. Pour
d =9, X est une surface de Severi-Brauer. Le cas d = 6 est plus subtil. On
peut I’établir en utilisant le théoréme de Manin [Man2, Chap. IV, Thm. 30.3.1]
que X contient un ouvert qui est un espace principal homogene sous un k -tore.

Pour d = 4, I'existence d’un point rationnel fut établie par Coray [Cor2]. On
laisse au lecteur le soin de simplifier [Cor2] suivant la méthode de cet article. Pour
d = 4, X est une intersection de deux quadriques dans Pz. Par des méthodes
élémentaires, M. Amer (non publi€¢) et A. Brumer [Bru] montrérent ensuite que,
pour tout entier naturel m, toute intersection de deux quadriques dans P}’ qui
posséde un point dans une extension de k de degré impair posséde un point
rationnel.

Dans tous ces cas, on peut prendre N(X) = 1.

Pour d = 3, le théoréme de Coray [Corl] repris au paragraphe 3.1 ci-dessus
donne un point dans une extension de degré 1, 4 ou 10 et dans une extension de
degré 1 ou 3. On peut prendre N(X) = 10.

Pour d = 2, le théoréme 4.1 donne un point dans une extension de degré 1,
3 ou 7 et dans une extension de degré 1 ou 2. On peut prendre N(X) = 7.
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Toute surface de del Pezzo de degré 1 possede un point rationnel canonique,
le point fixe du systéme linéaire anticanonique. Ici N(X) = 1.

On vérifie facilement que si ¥ — X est un k-morphisme birationnel de k-
variétés projectives, lisses, géométriquement connexes, si X satisfait la propriété
ci-dessus avec N(X), alors Y satisfait la propriété avec N(Y) = N(X). Par
ailleurs, si ¥ — X est un k-morphisme birationnel de surfaces projectives et
lisses, qui géométriquement est obtenu par éclatements successifs de s points,
alors (Ky.Ky) = (Kx.Kx) —s. Si donc on peut prendre pour N(X) la fonction
de Ky indiquée a la fin du théoréme, alors on peut prendre pour N(Y) cette
fonction de Ky.

Soit donc désormais X wune k-surface projective, lisse, géométriquement
rationnelle, k-minimale, possédant un zéro-cycle de degré 1. On a déja établi
I’énoncé avec N(X) = 10 pour les surfaces de del Pezzo. Considérons maintenant
le cas d’une surface X fibrée en coniques relativement minimale au-dessus d’une
conique C lisse. Comme X, la courbe C posséde un zéro-cycle de degré 1, et
donc C ~ P}c. La surface X possede donc un point fermé de degré 1 ou 2. Si
on note r le nombre de fibres géométriques singulieres de la fibration X — P!,
onar =8—(K.K). Dapres [CTC, Thm. B], si X posseéde un point fermé de
degré impair, alors X possede un point fermé de degré impair au plus égal a
max(1, [r/2]), valeur que 'on prend pour N(X). O

Théoréme 6.2. Soit X une k-surface projective, lisse, géométriquement ration-
nelle, sur un corps k de caractéristique zéro. Supposons que X posséde un point
k -rationnel. Soit Ky la classe canonique de X . Il existe un entier M(X), qui
ne dépend que de la géométrie de X sur une cloture algébrique de k, tel que
tout zéro-cycle de degré au moins M(X) est rationnellement équivalent a un
zéro-cycle effectif. En particulier, le groupe de Chow des zéro-cycles est engendré
par les points fermés de degré au plus M(X). Notant Ky la classe canonique
de X, on peut prendre

M(X) = max(904, |3 — (Kx.Kx)/2]).

Démonstration. On vérifie que si X — Y est un k-morphisme birationnel de
k -surfaces projectives et lisses géométriquement connexes, et s’il existe un tel
entier M(Y) avec la propriété ci-dessus pour Y, alors on a la méme propriété
pour X avec M(X) = M(Y). Par ailleurs la fonction de (Kx.Ky) indiquée
dans le théoréme est non décroissante par éclatement. On peut donc supposer la
surface X k-minimale.
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Pour les surfaces fibrées en coniques au-dessus de P,lc , relativement minimales
avec r fibres géométriques singulieres, d’aprés [CTC, Thm. B] on peut prendre
M(X) = max(0, |[r/2] —1).

On sait que toute k-surface de del Pezzo de degré au moins égal a 5 avec un
point rationnel est k -birationnelle & un espace projectif [Manl, VA]. Dans ce cas,
on peut donc prendre M(X) = 0. Pour les surfaces de del Pezzo dont le degré
est 4, on peut prendre M(X) = 1: par éclatement d’un k -point non situé sur les
16 droites, on se raméne a un fibré en coniques avec r <5 fibres géométriques
singuliéres, et on peut appliquer le résultat général ci-dessus. Pour les surfaces
de del Pezzo de degré 3, le théoréme 3.3 donne M(X) = 10. Pour les surfaces
de del Pezzo de degré 2, le théoréme 4.4 donne M(X) = 43. Pour les surfaces
de del Pezzo de degré 1, le théoréme 5.1 donne M(X) = 904. O

Remarque 6.3. Il resterait a éliminer 1’hypothése d’existence d’un point rationnel
dans le théoréme 6.2, ce qui impliquerait le théoreme 6.1 avec I’estimation sans
doute trop grossiere N(X) = M(X) + 1.

7. Surfaces cubiques sans point rationnel

Soit k un corps de caractéristique zéro. Soit X C Pi une surface cubique
lisse. Comme rappelé plus haut, si la surface cubique lisse X posseéde un point
rationnel, alors elle est k-unirationnelle et I’ensemble X(k) de ses points k-
rationnels est dense dans X pour la topologie de Zariski. Il est donc facile de
trouver 3 points rationnels sur X qui ne sont pas alignés dans P;’;. Le théoréme
suivant est une réponse partielle a la question posée a la fin de I’introduction du
récent article [Ma].

Théoreme 7.1. Soit X C P,?; une surface cubique lisse sur un corps k de
caractéristique nulle, sans point rationnel. Si tout point fermé de degré 3 sur X
est découpé par une droite de P3, alors & toute droite générale de P,,3C on peut
associer une surface de del Pezzo de degré 1 sur k dont les points k-rationnels
ne sont pas denses pour la topologie de Zariski, et donc qui en particulier n’est
pas k -unirationnelle.

Un point de degré 3 découpé par une droite sera dit “aligné”.
Démonstration. Comme X (k) = @, on n’a pas non plus de point quadratique sur

X . Soient k une cloture algébrique de k et G = Gal(k/k). On note X = X xik.
Soit D C P? une droite qui ne rencontre aucune des 27 droites de X.
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Le pinceau L ~ P}c des plans de P% contenant D découpe donc sur X soit
une cubique lisse, soit une cubique avec une unique singularité.

Soit 0 = XN D. C’est un point fermé de degré 3, qui sur k correspond 2 3
points dont aucun n’est situé sur une droite de X . Soit ¢ = ¥ — X I’éclaté de X
en P. Soit R C Y le diviseur exceptionnel. Sur k, ceci donne naissance 2 trois
courbes R;, chacune isomorphe 2 une droite projective sur k. La famille des plans
passant par L définit un morphisme p:Y — L dont les fibres sont précisément
les cubiques mentionnées ci-dessus. En particulier la fibration Y x; k — P% est
relativement minimale.

Sur k, le morphisme p admet une section, car le diviseur exceptionnel ¢~ (P)
se découpe en trois courbes isomorphes P% que p applique isomorphiquement
sur P%.

Chaque fibre Y,, = p~!(m) au-dessus d’un k-point m € L(k) contient le
point fermé Q. Supposons Y, lisse. Le théoreme de Riemann-Roch sur la courbe
Y, qui est de genre 1, montre qu’un point fermé Q € Y, qui est de degré 3 est
aligné sur Y,, C X si et seulement si le diviseur Q — P, qui est de degré zéro,
a une classe nulle dans Pic(Y,,).

Si donc il existe une classe de degré 3 dans Pic(Y,;) qui est distincte de la
classe de Q, alors il existe sur Y, , et donc sur X, un point fermé de degré 3
non aligné.

Soit F = k(L), resp. E = k(L) le corps des fonctions rationnelles sur L,
resp. sur Lz. Soit Y,/ F la fibre générique de p. Soit W), /F la jacobienne de
la courbe Y;. C’est une courbe elliptique sur F. Soit W — P,t le modele propre
régulier minimal de W, /F (existence: [Sha, Chap. 7]; unicité: [Sha, Chap. 8]).

Je dis qu’alors Wg — P% est le modele propre régulier minimal de la E-
courbe elliptique W, xr E. La minimalit€ est le point non évident. Faute d’avoir
trouvé une référence dans la littérature, je donne une démonstration. Supposons
que Wz contienne une courbe exceptionnelle de premiére espece D, donc lisse
de genre zéro et satisfaisant (D;.D;) = —1, contenue dans une fibre. Supposons
que cette courbe admet une conjuguée D, sous Galois qui la rencontre, et donc
est contenue dans la méme fibre géométrique. Alors

(D1 + D2)* = (D1)* + (D2)* + 2(D1.D;) = —2 + 2(D1.D3) = 0,

donc, vu les propriétés de la forme d’intersection sur une fibre, qui est semi-
définie négative [Sha, Chap. 6, p. 91], on a (D; + D3)? =0, et D; + D, est
un multiple rationnel de la fibre contenant D; et D,. Cette fibre contient une
composante de multiplicité 1, comme on voit par intersection avec la section nulle
de Wy — P%. Ainsi la fibre est Dy + D5, et I'on a (D1.D») = 1. Mais ceci
n’est pas possible, car le genre géométrique des fibres serait zéro. On voit donc
que les divers conjugués de D; sont dans des fibres distinctes. Mais alors leur
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somme définit un diviseur sur la k-variété W que le critere de Castelnuovo [Sha,
Chap. 6, p. 102] permet de contracter, contredisant le fait que W — P,lc est
minimal.

Comme Y, xr E possede les points E -rationnels correspondant aux courbes
R;, le choix d’une de ces courbes R; définit un E-isomorphisme de courbes:
Wy xr E >~ Yy, xF E. Vu l'unicité des modeles réguliers propres minimaux pour
les courbes lisses de genre au moins 1 [Sha, Chap. 8], on voit qu’il existe un
P_-1somorphlsme W xix k — Y x k induisant I’isomorphisme donné sur les
ﬁbres génériques.

Ainsi la k-variété W x;k est isomorphe 2 1’éclaté d’une surface cubique lisse
en 3 k -points alignés. Ceci montre déja que W est une k -surface projective et lisse
géométriquement rationnelle dont le faisceau canonique K satisfait (K.K) = 0.

La section nulle M de W — L correspond sur k 2 I’éclatement d’un k -point
de X non situé sur une droite de X, elle satisfait (M.M) = —1. On peut donc
la contracter. On obtient une surface W’ qui est I’éclatée de la surface X en
deux k -points non situés sur les 27 droites, et dont le faisceau canonique satisfait
(K.K) = 1. Pourvu que I’on ait pris la droite D initiale dans un ouvert de Zariski
non vide convenable de la grassmannienne des droites de P,3C, la surface W’ est
géométriquement 1’éclatée de la surface cubique en un couple général de points
de X, et donc est une surface de del Pezzo de degré 1.

Soit m € L(k) un point a fibre Y, lisse. La jacobienne de Y,, est la fibre
W,, de W — L en m.

On a la suite exacte bien connue faisant intervenir groupes de Picard et groupes
de Brauer:

0 — Pic(Y,,) — Pic(Y )¢ — Br(k) — Br(Yy,).

Comme Y,, posséde un point dans une extension de degré 3 de k, cette suite
induit une suite exacte

0 — Pic(Yp) = Pic(Ym)® — Br(k)[3]

ou A[n] désigne le sous-groupe de n-torsion d’un groupe abélien A. Sur les
classes de degré zéro, cette suite exacte induit une suite exacte

0 — Pic®(Y,,) = Pic®(¥ m)® — Br(k)[3].

Le groupe Pic®(Y,,)C est le groupe Wy, (k) des k-points de la k -courbe elliptique
W,,. Si la fleche induite W, (k) — Br(k)[3] a un noyau non trivial, alors on a
Pic®(Y,,) # 0. Si z est un élément non nul dans Pic®(Y,,), alors la classe Q +z
est une classe de degré 3, rationnellement équivalente a2 un zéro-cycle effectif de
degré 3 par le théoréme de Riemann-Roch sur Y,,, définissant un point fermé de
degré 3 non rationnellement équivalent a Q sur Y,,, et donc non aligné.
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La fleche W,(k) — Br(k)[3] a un noyau non trivial si W, (k) # Wy, (k)[3].

Si pour aucun m € L(k) a fibre lisse cette condition n’est satisfaite, les k-
points de W sont contenus dans la réunion des fibres singuli¢res de W — P}c
et du fermé de W qui sur l'ouvert de lissité correspond au schéma défini par
la 3-torsion. En particulier, les k-points ne sont pas denses pour la topologie de
Zariski sur W, qui est une surface de del Pezzo de degré 1. O

Remarque 7.2. Si le corps k est fertile, par exemple si k est un corps p-adique,
alors pour toute surface de del Pezzo de degré 1, I’ensemble W(k), qui est non
vide, est dense pour la topologie de Zariski. Dans ce cas on a donc des points
fermés de degré 3 non alignés sur toute k-surface cubique lisse.

Ceci est en fait facile a voir directement. Soit U C Gr(l,P;’;) I’ouvert formé
des droites qui rencontrent X géométriquement en trois point distincts. Soit
V c Sym>X louvert lisse, intdgre, correspondant aux ensembles de 3 points
géométriques distincts. On a un k-plongement fermé de U, de dimension 4,
dans V, de dimension 6, identifiant U(k) avec les triplets de points géométriques
distincts alignés. 'image de U(k) dans V(k) définit des k-points, lisses, de U.
Ainsi V(k) est non vide, et donc, si k est fertile, les points de V(k) sont denses
pour la topologie de Zariski sur V, et il en existe hors de U .

Remarque 7.3. C’est une question ouverte si pour toute surface de del Pezzo de
degré 1 sur un corps k de caractéristique z€ro, les points rationnels sont denses
pour la topologie de Zariski. On consultera [SvL] pour des résultats partiels.
Plus généralement, c’est aussi une question ouverte si, pour une famille lisse non
géométriquement isotriviale W — P}c de fibre générique une courbe elliptique,
les points rationnels sont denses pour la topologie de Zariski. Ces problemes sont
ouverts déja pour k le corps Q des rationnels.

Remarque 7.4. Soit k = Q. Soient p,g deux nombres premiers distincts, et
distincts de 3. Soit C C P%) la cubique lisse sur Q définie par 1I’équation

x>+ pqy® +4¢°2° =0.

On a C(Q,) =@, donc C(Q) = 0. La courbe jacobienne J de C est donnée
par
x2+y3+pz2=0.

N

Si p est congru a2 5 modulo 9, on sait [Mor, Chap. 15, Thm. 3] que l'on a
J(@Q@) = 0. Comme on a Pic’(C) c J(Q), ceci implique Pic’(C) = 0. En
utilisant le théoreme de Riemann-Roch sur la courbe C, on en déduit que
tout point fermé de degré 3 sur C est aligné. Ceci répond a une question de
C. Shramov.
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La démonstration du théoréme suivant est entierement parallele a celle du
théoreme 7.1 et est laissée au lecteur.

Théoreme 7.5. Soit X une surface del Pezzo de degré 2 sur un corps k de
caractéristique nulle, sans point rationnel. Si tout point fermé de degré 2 sur X

est image réciproque d’un point rationnel de Plzc via le morphisme anticanonique
X — P,ZC, alors il existe une surface de del Pezzo de degré 1 sur k dont les
points k -rationnels ne sont pas denses pour la topologie de Zariski, et donc qui
en particulier n’est pas k -unirationnelle.
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