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Genericity of pseudo-Anosov mapping classes,
when seen as mapping classes

Viveka ErLANDssoN, Juan Souto and Jing Tao

Abstract. We prove that pseudo-Anosov mapping classes are generic with respect to certain
notions of genericity reflecting that we are dealing with mapping classes. More precisely, we
consider a number of functions p on the mapping class group, and show that the proportion
of pseudo-Anosov mapping classes with p-value at most R tends to 1 as R tends to
infinity. The functions we consider include measuring the complexity of mapping classes
using quasi-conformal distortion or Lipschitz distortion. We present a uniform approach to
this problem using geodesic currents.

Mathematics Subject Classification (2020). Primary: 37E30; Secondary: 30F60, 57M50.

Keywords. Mapping class groups, geodesic currents, Teichmiiller spaces.

1. Introduction

Throughout this paper let ¥ be a complete orientable hyperbolic surface of
finite area, with genus g and r punctures. We exclude the case of (g,r) # (0,3)
so that the mapping class group Map(X) of X is infinite.

Thurston’s classification asserts that elements in Map(X) fall into three
categories: finite order, reducible, and pseudo-Anosov. However, it seems that from
any reasonable point of view most elements are pseudo-Anosov. For example,
Maher [Mahl] proved that, with few assumptions, random walks on the mapping
class group give rise to pseudo-Anosov elements with asymptotic probability
one. This result was later enhanced and generalized by Maher himself and
others [Mah3, MaT, Riv, Sis, TT].

We will however care about another notion of genericity: if p : Map(X) — Rxg
is a proper positive function, then we say that a set X C Map(X) is generic with
respect to p, or p-generic for short, if we have

L IBARNX|
R-co  |BP(R)|
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where BP(R) = {¢ € Map(X) with p(¢) < R}. Here properness of p just means
that BP(R) is a finite set for all R. A negligible set is one whose complement
is generic.

Maybe the first function that comes to mind is the word length with respect
to a finite generating set G of Map(X), and Cumplido and Wiest [CuW] proved
that indeed the set of pseudo-Anosov elements is not negligible in this sense. For
braid groups equipped with the Garside’s generating set, Caruso and Wiest [CaW]
showed that it is also generic. But beyond this case, genericity of pseudo-Anosov
elements remain open for word lengths.

However, one can make the case that the word length, while being related
to the group theory of the mapping class group, has little to do with the fact
that the mapping class group consists of mapping classes. To illustrate this point
identify SL, Z with the mapping class group of the once punctured torus and
note that the two matrices

[ 5904283700961130691  4322235651404355330 (1 99
—\ 2161117825702177665 1582048049556775361 |\ 0 1

have the same word length, namely 99, with respect to the standard generating
set of SL, Z. Arguably, it would be more natural to say that M is farther from
the identity than N . Not only because the coefficients of M are much larger
than those of N but, more importantly, because the map induced by M on the
torus distorts both the metric and conformal structure much more dramatically
than the map induced by N .

Our goal is to prove that pseudo-Anosov mapping classes are p-generic with
respect to a number of functions on Map(X) measuring the complexity of mapping
classes when seen as mapping classes. More precisely, given f € Diff(X), denote
by K(f) the quasi-conformal distortion of f, and by Lip(f) the Lipschitz
constant of f. Also denote by ¢(-,-) the geometric intersection number between
two multicurves. We show:

Theorem 1.1. The set of pseudo-Anosov mapping classes is generic with respect
to any one of the functions:

(1) px(¢) =inf{K(f) where f € Diff(X) represents ¢}.

(2) pLip(¢) = inf{Lip(f) where f € Diff(X) represents ¢}.

(3) po,n(@) = (p(0),n), where o and n are filling multicurves.

Remark. Note that, although amazingly it is not formally stated in the paper, the

claim for pg(¢) in Theorem 1.1 was obtained by Maher in [Mah2]. Unfortunately,
we were unaware of this fact until we finished writing our paper. Both the
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argument in [Mah2] and ours have the same starting point, namely an earlier,
again not formally stated, result from [Mahl]. However, after that starting point,
the arguments use different methods and techniques. We will return to this at the
end of the introduction.

We sketch now the proof of Theorem 1.1. We begin by addressing the reason
why we are including pg,, at all among the functions in Theorem 1.1. There are a
few reasons. First, both quantities pgx(¢) and prLip(¢) can be estimated in terms
of pg,y. Second, there is the maybe not very important observation that, after
identifying SL, Z with the mapping class group of a punctured torus, the £;-
norm on SL, Z agrees with ps, where o is the union of the two simple curves
representing the standard generators of homology. However, the main reason to
consider pg,, is that it is the more natural quantity from the point of view of
proofs.

In fact, if we denote by C(X) the space of geodesic currents on ¥ endowed
with the weak-* topology, and consider multicurves as currents, then what we
will actually prove is the following theorem:

Theorem 1.2. Let R C Map(X) be the set of non-pseudo-Anosov mapping classes
and let yo C X be a filling multicurve. Then we have

_ |{¢ € R with F(¢(v0)) < L}
Lll,n;o ] 6g—6+2r =il

for every continuous homogenous function F : C(X) — Rso which, for every
compact A C X, is proper when restricted on the set C4(X) of currents supported
by A.

Recall that a function F : C(X) — R is homogenous if F(t-1) =1t-F(A) for
every t >0 and A € C(¥). Note also that for ¥ open, the properness condition
we impose on F is much weaker it being proper on C(X). For example, if 7
is a filling multicurve then F(-) = ¢(-,n) is not proper on C(X) but is proper
on C4(X) for any A. Theorem 1.1 follows when we apply Theorem 1.2 to the
corresponding functions combined with the fact, see [ESI, Sap], that

(L.1) lm nt |9 Mn () with Fpon) <L _

for any F as in Theorem 1.2.

The starting point of the proof of Theorem 1.2 is a result of Maher [Mahl]
asserting that the set R C Map(X) of non-pseudo-Anosov mapping classes is the
union, for each k, of k-isolated points (that is, points which are at distance at
least k from any other element of R) together with the union of finitely many
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sets, each one of which consists of mapping classes at relative distance L(k)
around the centralizer of some mapping class. Here the relative distance is the
semi-distance on Map(X) arising, with the help of a base point, from its action
on the curve complex. It follows that proving that R is negligible boils down to
proving (1) that the set Z C R of k-isolated points has low density and (2) that
sets of mapping classes with small relative distance of centralizers of elements
are negligible. Rephrasing this in terms of measures (on the space of currents) it
suffices to prove (1) that

(1.2) dim hm ey 2 S o0 = O
pELy
and (2) that
, 1
(1.3) Am e > 8160 =0

¢€Nrei(c(¢0)aR)

for ¢o € Map(X) non-central. Here §, is the Dirac measure centred on x and
the convergence takes place with respect to the weak-*-topology. We get (1.3)
from the fact that any limit is absolutely continuous to the Thurston measure — an
immediate consequence of for example Proposition 4.1 in [ESI] — and of the fact
that the set of limits of sequences of the form (¢;(yo)) with ¢ € Nel(C(¢ho), R)
has vanishing Thurston measure. To establish (1.2) we use again that any limit
is absolutely continuous with respect to the Thurston measure, but this time we
have to use Masur’s result [Mas2] on the ergodicity of the Thurston measure with
respect to the action of the mapping class group.

Remark. Maher’s proof in [Mah2] of Theorem 1.1 also relies on the decomposition
of R as the union of Z; and finitely many sets consisting of mapping classes
at bounded relative distance from the centralizer of some mapping class. At this
point the two arguments diverge. While we rely on the fact that every limit
of (1.2) and (1.3) is absolutely continuous with respect to the Thurston measure,
Maher makes use of a rather sophisticated lattice counting result of Athreya—
Bufetov—Eskin—Mirzakhani [ABEM]. Similarly, while we rely on the ergodicity
of the Thurston measure, that is the ergodicity of the Teichmiiller flow, Maher
relies on the mixing property of that flow. We might be partial, but we believe
that our argument is not only different but also simpler than that of Maher.

Remark. As it is the case for Maher’s argument, all the results here hold with
unchanged proofs if we replace the set R of non-pseudo Anosov elements by
any set of elements for which there is a uniform upper bound for the translation
length in the curve complex.
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2. Maher’s theorem

As we already did in the introduction, we denote by R the set of all non-
pseudo-Anosov mapping classes of Map(X). We also fix an arbitrary finite
generating set G for Map(X) and let dg be the induced left-invariant distance:

dg(¢,¥) = word length with respect to G of ¥ ~1¢.
Given k > 0 let
Tk = {¢ € R with dg(¢,¢’) > k for all ¢’ € R\ {#}}

be the set of elements in R which do not have any other elements in R within
distance less than k. We denote the complement of Z; by

Dy = R\ L.

The notations are chosen to suggest that Z; consists of k -isolated points and that
Dy consists of k-dense points.

Recall that distances in the definition of Z; (and thus in that of D as well)
are measured with respect to the distance dg. We stress that this is the case
because we will also be working with another distance, or rather a semi-distance,
namely the relative distance

drei (@, V) = de(z) (¢ (o). V(o))

where d¢(z)(-,-) denotes the distance in the curve complex C(X), and where g
is a fixed but otherwise arbitrary simple essential curve in 2. Note that dre(:, )
is not a proper metric.

Armed with this notation we can state Maher’s theorem:

Theorem 2.1 (Maher). For every k, there is a finite set of non-central mapping
classes F C Map(X) \ C(Map(X)) and some L > 0 such that

D ¢ |J{v e Map(D) with da(y,C(9) < L},
PpeF

where C(¢) is the centralizer of ¢ in Map(X) and C(Map(X)) is the center of
Map(Z).

We remark that Map(X, ) has trivial center if (g,r) ¢ {(1,1),(1,2),(2,0)}.
Although it is proved and used in [Mahl] (see the discussion at the beginning of
Section 5 in said paper), Theorem 2.1 is not explicitly stated therein. Hence we
discuss how to deduce it from the stated results here:
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Proof. First, suppose that Map(X) is center free. Then, from the very definition
of Dy, we get that there is a finite subset F C Map(X) with

(2.1) D C | JRNR).
PEF

To see this, note that one can take F to be all non-trivial elements in the ball
of radius k£ around the identity with respect to dg.

Now, Theorem 4.1 in [Mahl] implies that for each ¢ € F there is some L
such that

RNR¢ C {Y € Map(X) with drei(¥, C(¢)) < L}.

This theorem applies because the mapping class group is weakly relatively
hyperbolic with relative conjugacy bounds [Mahl, Theorem 3.1] and because
R consists of elements conjugated to elements of bounded relative length [Mahl,
Lemma 5.5]. This concludes the discussion of Theorem 2.1 if Map(X) is center
free.

In the presence of a non-trivial center the argument is almost the same: Note
that R = R¢ for every central element and hence the only change to the above
argument is that one has to take F to be the set of all non-central elements in
the ball of radius k around the identity with respect to dg. O

3. Currents

In this section we recall a few facts about the space of geodesic currents
on X. We then describe the (projective) accumulation points of sequences of
the form (¢;(yo)) where yo is an essential multicurve and where (¢;) is a
sequence of mapping classes at bounded relative distance of the centralizer of
some ¢ € Map(X). Recall that a multicurve is a finite union of (disjoint or
not, simple or not) primitive essential curves in X. We say that a multicurve is
filling if its geodesic representative cuts the surface into a collection of disks and
once-punctured disks.

Properties of the space of currents. Let ¥ be a compact surface with interior
¥ = X\ 0%, endowed with an arbitrary hyperbolic metric with totally geodesic
boundary. We suggest the reader to think, in a first reading, that ¥ = X; that
is, X is closed.

Geodesic currents on X are fundamental group invariant Radon measures
on the space of geodesics on the universal cover of ¥. However, that they are
such measures will not really be relevant here — what is more important for our
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purposes are the properties the space C(X) of currents have (when endowed with
the weak-*-topology). We list the facts about C(X) that we will use:

(D
2

3)

4)

®)

(6)

C(X) is a locally compact metrizable topological space.

C(X) is a cone as a topological vector space, meaning in particular that
there are continuous maps

C(X) xCUE) » C(X), (A,p)—>A+pu,

R0 X C(E) = C(X), (t,A) —~>tA
satisfying the usual associativity, commutativity and distributivity properties
as in vector spaces.

The set {y closed geodesic in X} is a subset of C(X) and in fact the set
R4 - {y closed geodesic in X}

of weighted closed geodesics is dense in C(X).

The inclusion of the set of weighted simple geodesics into C(X) extends to
a continuous embedding of the space ML(X) of measured laminations into
C(X).

There is a continuous bilinear map
1:C(E)xC(X) = Rxp
such that ¢(y,y’) is nothing other than the geometric intersection number

for all closed geodesics y,y’.

The mapping class group acts continuously on C(X) by linear automorphisms.
Moreover, the inclusion of the set of closed geodesics into C(X) is equivariant
with respect to this action.

Moreover, for every compact A C X, let C4(X) C C(XZ) be the subcone consisting
of the currents supported by A. Then the following holds:

(7)

(8)

The set {A € C4(X) with ¢«(A,n) < L} is compact for every L > 0 and every
filling multicurve 7. In particular, the image PC4(X) of C4(X) in the space

PC(Z) = (C(2) \ {0})/Rx0

of projective currents is compact.

For every multicurve y, there is a compact A C X such that
Map(X) - yo C Ca(3).

In particular, every sequence (¢;) in Map(X) contains a subsequence (¢;;)
such that the limit lim; o ¢i; (yo) exists in PC(X).
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Currents were introduced by Bonahon in [Bonl, Bon2] and all the facts here can
be found in a more or less transparent way in these papers. In the case of closed
surfaces, [AL] is a very readable account of currents, measured laminations, and
the relation between them. Finally, we hope that the presentation of currents,
for both open and closed surfaces, in the forthcoming book [ES3] will also be
similarly readable.

Accumulation points of thickened centralizers. It will be important later on to
know that projective accumulation points, in the space of currents, of sequences
of the form (¢;(yo)) where yq is a multicurve and with

¢i € Neel(C(9), L) = {¥ € Map(Z) with drei(¥, C(¢)) < L}

are very particular:

Proposition 3.1. Let ¢ € Map(X) \ C(Map(X)) be a non-central mapping class,
let (¢n) be a sequence of pairwise distinct elements in Nii(C(9), L), and let
vo be a filling multicurve. If the sequence (¢n(yo)) converges projectively to a
uniquely ergodic measured lamination A, then ¢(1) is a multiple of A.

Recall that a measure lamination A is uniquely ergodic if every measured
lamination p with ¢(A, ) = 0 is a multiple of A.

The proof of the proposition will make use of the following lemma. Note
that the lemma requires that X is not the once-punctured torus or the 4-times
punctured sphere. After the proof of the lemma, we will explain how to deal with
those cases as well (see Remark 3.3).

Lemma 3.2. Suppose X is not the once-punctured torus or the 4-times punctured
sphere. Let yo C £ be a filling multicurve and (¢,) and (V) be sequences of
mapping classes with die1(¢n, Yn) < L. Given any simple multicurve o, suppose
that the sequences (¢n(yo)) and (¥, (a)) converge projectively to A,A' € PC(X),
respectively. If (¢n) consists of pairwise distinct elements, then there is a chain

A=2Xo, A A=A

of measured laminations with ((A;,A;j+1) =0 forall i =0,...,k—1.

Proof. Assume that (¢,(v0)) and (¥, («)) converge projectively to A,A’ € PC(Z).
Abusing notation consider A and A’ not only as projective currents but also as
actual currents. The assumption that the sequences (¢,(y9)) and (¥, («)) converge
projectively to A,A” € PC(X) implies that there are bounded sequences (¢,) and
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(¢;,) consisting of positive numbers and such that
A= lir?l €ndn (o), A = li;n €n¥n(@).

The assumptions that (¢,) consists of pairwise distinct elements and that yq is
filling implies that the sequence (¢,(yo)) is not eventually constant, and thus that
€n — 0.

Let oy be the base point in C(X) used to define dy. The assumption that
drel(@n, ¥n) < L implies that for all »n there is a chain of simple multicurves

dn (o) = P, B2, ... BET = Y (o)

with (B, Bi+1) =0 for all i = 1,...,L and all n. Also, there is a chain of
simple multicurves

oy, X1, ...,0 =
with (e, @;41) =0 for all i =0,...,m — 1. By setting B+ = y,(0;) and
k=L+14+m, we get a chain of simple multicurves

Pn(@0) = Br, B2,.... Bk = Un(@)

with for «(8},Bit) =0 forall i =1,...,k—1 and all n.
Projective compactness of the space of currents (or rather of measured
laminations) implies that passing to a subsequence we may assume that there

are bounded positive sequences (€)), ..., (e,’g) such that
lim Bl =1 #0

exists in the space ML(X) of measured lamination. We may also assume without
loss of generality that € = ¢/ and thus that Az = A’. The claim will follow
when we show that

t(A, A1) = 1(A1,A2) = t(Az, A3) = -+ = t(Ag—1,Ak) = 0.
To do so, first note that
(A Ay) = limen - €, - ((¢n(0), By)
(3.1) = lim ey - €, * 1(¢n (v0). #n (2t0))
= 1i’§11€n -€) +1(y0,00) =0,

where the last equality follows from the fact that the sequence (e.) is bounded
while (e,) tends to 0. The proof of the other equalities is even simpler: since
the curves B. and B.*! are disjoint for all n and i we have

(i, i) =lime, -7 (B, B,F1) = 0.

This finishes the proof of the lemma. O
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Remark 3.3. A key point in the proof of the Lemma 3.2 is that there is a chain
of simple multicurves from ¢,(x) to ¥,(«) such that consecutive curves are
disjoint. Such a chain does not exist for the once-punctured torus X;; or the
4-times punctured sphere X 4. For these surfaces, we can find a chain of simple
multicurves

dnlo) = Ba, B2, BE = V(@)

with

i 1 for Z;,1, .
l(ﬁ;"ﬁ;—*.])-——‘{ 2 for 204 l=1,..,,k—1,

Let A = lim, €,¢,(B8,) and A; = lim, e,‘,ﬂ,‘, If we assume that A is uniquely
ergodic, then we can still derive the conclusion of the lemma: namely, the chain

A=2Ao,A1,..., Ag = A

satisfies ¢(A;,Ai+1) = 0. To see this, note that €, — 0 and that each (€!) is
bounded. By the same argument as in Equation 3.1, ¢«(A,A;) =0 since €, — 0.
Now since A is uniquely ergodic, ¢(A,A;) = 0 implies A; is a multiple of A.
In particular, A; is uniquely ergodic, and thus the sequence €, — 0. Using this,
we get that

t(A1,A2) = lillzne,l, €2yt v3) =0.

2

' —

By the same argument as above, A, is uniquely ergodic and hence €
Continuing this way yields the result.

We are ready to prove the proposition.

Proof of Proposition 3.1. Take for all n some V¥, € C(¢) with die)(dn, ¥n) < L.
Let o be any simple multicurve and let 8 = ¢(«). Compactness of PML(X)
implies that, up to passing to a subsequence, we may assume that the limits

A =limyn(@) and A" =limyy(B)

exist in PC(X).
From Lemma 3.2 and from Remark 3.3, there is a chain of measure laminations

A=2Xo,A1,...,Ar =4

with ¢(A;,A;41) =0 for i =1,...,k— 1. There is a similar chain from A to 1”.

Recall now that Ag = A is uniquely ergodic. Since t(Ag,A;) = 0, we get
that A; is a multiple of A and thus uniquely ergodic. Then, since t(A;,42) =0,
we get that A, is a multiple of A; and thus of A and uniquely ergodic and so
on. Iteratively we get that A’ is a multiple of A. Using the chain from A to A”,
we also get that A” is a multiple of A.
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Finally, since B = ¢(«) and vy, € C(¢), we have that, projectively,
¢(A) = lim ¢(Yn(@) = lLim yn(d(@) = lim yn(B) = 2".

This implies that A is projectively fixed by ¢, so ¢(4) is a multiple of A as
claimed. d

4. A technical result

The reason why we stressed earlier that C(X) is metrizable and locally compact
is that these are the properties needed to work as customary with the weak-*-
topology on the space of measures! on C(X). In fact, to establish Theorem 1.2
we will prove that the measures

1
R _ 1
“4.1) Myo,L = Teg—6+2r 8%:#()’0)

PER
converge when L — oo to the trivial measure. Here we consider the weighted
multicurve %¢(Vﬂ) as a current and denote by § }o(0) the Dirac measure on
C(X) centered therein.
In [ES1, EPS, EU] we considered a closely related family of measures and
proved that the limit

) 1
4.2) C -mm = Llingo 168—6+2r Z 8%¢(V0)'
¢$<Map(Z)

exists (see also [ES3]). Here C = C(yo) is a positive real number and mmy,
is the Thurston measure on C(X). Recall that the Thurston measure is a Radon
measure supported on the space ML(X) of measured laminations. The Thurston
measure can be constructed either as a scaling limit [Mirl, ES3] or using the
symplectic structure on ML(X). See [MT] for a discussion of both points of
view.

We only need the following facts about the Thurston measure. The action of

Map(Z) A (ML(Z), mm)

preserves the measure and is ergodic [Mas2]. The action is also almost free in
the sense that the fixed point set of every non-central element in Map(X) has
vanishing Thurston measure (since the fixed point set has lower dimension). Note
that the central elements of Map(X) act trivially on ML(X).

1This is also the reason why we didn’t encourage the reader to think of currents as measures,
because it is a well-established fact that thinking of “the weak-*-topology on the space of measures

on the space of measures endowed with the weak-*-topology” leads the unprepared reader to tremors,
shaking and cold sweats.
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In this section we prove:

Proposition 4.1. Let yo C X be a filling multicurve. The family of measures
(m;f)’ L) L>1 IS precompact with respect to the weak-*-topology on the space of
Radon measures on C(X). Moreover for any sequence L, — oo such that the
limit

m = lim m®

n—>o00 VO:Ln

exists, one has that

Z ¢*m < -C * MThy

¢€Map(X)
where C is as in (4.2).

We start by proving that the family of measures in Proposition 4.1 is precompact
and that any limit must be uniformly continuous with respect to my.

. R . .
Lemma 4.2. The family of measures (m] ), . is precompact with respect
to the weak-*-topology on the space Radon measures on C(X). Moreover, any
accumulation point is absolutely continuous with respect to the Thurston measure.

Proof. The measure mﬁ)’ ; is bounded from above for all L by the measure
1
(4.3) Myo.l = Teg—6+2r Z 84 otv0)-
¢peMap(Z)

From the existence of the limit (4.2) we get

4.4) limsupffdm;z’ll < limsup/fdmyo,L = [ -ffquhu < 00

for every continuous function f :C(X) — R with compact support. This implies
that the family (mz,%), ;)L>1 is bounded and thus precompact in the weak-*-
topology. Moreover, (4.4) implies that any accumulation point of mfo, ;. is bounded
from above by C-myy, and hence is absolutely continuous to the Thurston measure,

as we had claimed. O

Note that the same argument also proves that both families

1 1
Iy Dr  _
Myo,L = Tog—6+2r Z Story and my = [ 68—6+2r BT
deL PEDy
are precompact and that any limit when L — oo is absolutely continuous with
respect to the Thurston measure. Here Z; and Dy are, as before, the subsets of
R consisting of k-isolated points and k-dense points, respectively.
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We can from now on fix a sequence (L,) with L, — oo such that the
following limits all exist:

. R
Myo = 10 M6, Ly
Tk — 13 Tk
(4.5) My = nli,ngomro,L ’ and
D — 13 Dk
Myy = nll,rgom}'o,Ln'

Since R is the disjoint union of Z; and Dy they automatically satisfy that
R D
My, = myk +m) k.
Our next goal is to prove that the second of these limits is O:

Lemma 4.3. We have m,* = 0.

Proof. By Maher’s Theorem 2.1 it is enough to prove that, for any non-central
¢o € Map(X) and any R > 0, the trivial measure is the only accumulation point
when L — oo of the family of measures

1
N
Myo,L = Teg—6+2r Z S%qﬁ(yo)'
$EN1(C(do),R)

Well, each m% .. is bounded by the measure m,,,; given by (4.3) and hence any
such accumulation point m’ = lim,_, m% 1, is bounded by C -mmpy, by (4.2).
The claim will then follow when we say that the support of m’ is contained in
a set of vanishing Thurston measure.

First, the support of the limiting measure m’ is contained in the set of
accumulation points of sequences (x,) where x, is in the support of m% Ln
that is, a multiple of ¢,(yo) for some ¢, € Me1(C(dg), R). On the other hand,
since the set of uniquely ergodic lamination has full m,,-measure [Masl], we
also get that m’ is supported by uniquely ergodic laminations. It thus follows
from Proposition 3.1 that m’ is supported by the set of measured laminations
projectively fixed by ¢o. Since this set has vanishing m,-measure we get that
m’ is trivial, as we needed to prove. L]

As a final step towards the proof of Proposition 4.1 we establish an equivariance
property for the limits of the measures m> ; :

Lemma 4.4. We have ¢x(my,) = limpsoom, )  for all ¢ € Map(E).
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Proof. Noting that the set R is closed under conjugation we get that R¢ = ¢R.
This means that

% S b - )
Mo(yo)Ln = T 6g—6+2r Fvo(ro) = Toeg—6+2r v o)
PreER YveERP
S ) b )
— Je6g—6+2r +¥ (o) ~ T 6g—6+2r $¢v (o)
vEPR YeR
1 1
— [o6g—6+2r Z P (511:1!’(70)) = Px (Lﬁg—6+2r 43 1!’()/0))
PYeER YeR
- ¢* ( Y0, Ln)
The claim follows now from (4.5) and the continuity of the action of Map(X)
on the space of currents. O

We are ready to prove the proposition:

Proof of Proposition 4.1 Recall that Lemma 4.2 asserts that the given family of
measures is precompact and hence we can assume that we are given a sequence
(L,) with L, — oo such that the limit

% R
m, = lim m
O (B

exists. To prove Proposition 4.1 it will suffice to show, with C as in (4.2), that
for every finite set Z C Map(X) we have

> palimy,) < C -t

pez
Fixing such a finite set Z choose
k > 2-max{dg(id, ) where ¢ € Z}.
Lemma 4.4 and Lemma 4.3 imply, respectively, the first and last of the following
equalities:
_ . R — 1 R — 1i Iy
D pelmy) = 3 lim gy, = lim D om,, = lm > mt )
$eZ peZ pez pez

Moreover, from the choice of k we get that Zy¢ NZ¢' = @ for any two distinct
¢,¢’ € Z and we can thus rewrite

qu&(y()) Ly = Lﬁg 6+2r Z Z 8.1 11’45()/0) 6g L 6g—6+2r Z Z 81—1//(70)

PeZ PEZ YET) pEZY el

1
— [ 6g—6+2r Z Sﬁwyo)‘
" ve U Zxo
PpeZ
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It thus follows that

1
Ik
m¢(yo),Ln5L6g—6+2r Z 5%1&(;«))
n

peZ YeMap(X)

and hence that

. 1
Z ¢*(my0) = nll{go z&m Z 811_”¢(y0) =C * MThu-
¢ez n $peMap(Z)

We are done. O

5. Proofs of the theorems

We are now ready to prove the main results.

Theorem 1.2. Let R C Map(X) be the set of non pseudo-Anosov mapping classes
and let yo C X be a filling multicurve. Then we have

|ig € R with F(p(n) < L}]
ngr;o ] 68—6+2r =0

for every continuous homogenous function F : C(X) — Rso which, for every
A C X compact, is proper when restricted on the set C4(X) of currents supported
by A.

Proof. The claim will follow easily once we prove that

(5.1) Jim mip =
with m%,L as in (4.1). Since this family of measures is precompact by

Proposition 4.1, it suffices to prove that 0 is the only accumulation point when
L — 0. So let (L,) be a sequence tending to oo and such that the limit

; R
my, = lim m
0T e Yosln

exists. By Lemma 4.2 m,, is absolutely continuous with respect to myy. This
means that there is a function (the Radon-Nikodym derivative) « : C(X) — Rxg
with the property that

[ FQOdmy () = f FO k@ dmm (@)
C(X) Cc(®)

for any continuous compactly supported function f on the space of currents.
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Proposition 4.1 asserts that the measure } ,cpap(x) $xMy, is not only finite,
but actually bounded by a multiple C -mm,, of the Thurston measure. In terms
of the function «, this implies that

(5.2) Z k(¢(¢)) < C for mpy-almost every ¢ € C(X).
¢€Map(X)

We claim that this implies that «({) = 0 almost surely:
Claim. «(¢) = 0 almost surely with respect to the Thurston measure.

In a nutshell, the claim follows from the fact that ergodic actions of discrete
groups on non-atomic measure spaces are recurrent (the condition on the measure
being non-atomic is just there to rule out actions with only one orbit). In any
case, we give a direct argument to prove the claim:

Proof of the Claim. If the claim fails to be true, then there is a positive my,-
measure set U C C(X) with «({) > € > 0 for every ¢ € U . Noting that the action
Map(X) ~ C(Z) is almost free we get from (5.2) that, for almost every ¢ € U,

#{¢ € Map(Z) with ¢(¢) e U} < %

It follows that there is a set V C U of positive Thurston measure such that the
set
Z = {¢ e Map(Z) with ¢(V)NU # @}

is finite. Now, since the action is essentially free we can in fact find W C V
of positive Thurston measure with W N¢(W) = @ for all ¢ ¢ C(Map(X)).
This contradicts the ergodicity of the action of the mapping class group
on (ML(X), Mmy)- O

The claim implies that the limiting measure vanishes, that is m,, = 0,
establishing (5.1). We can now conclude the proof: let F : C(X) — R be
as in the statement and note that

[{y € R-yo with F(y) < L} - {¢ € R with F (+¢(y0)) < 1}|
] 68—6+2r - 1,68—6+2r

=mR ({FO) < 1))

and by (5.1) together with the fact that {F(-) < 1} is compact we have that

LIi_)n;lom%’L({F(-) <1}) =0. O

Finally, we prove Theorem 1.1. Recall that for f € Diff(X), K(f) and Lip(f)
are respectively the quasi-conformal distortion and Lipschitz constant of f.
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Theorem 1.1. The set of pseudo-Anosov mapping classes is generic with respect
to any one of the functions:
(1) pk(¢) =inf{K(f) where f € Diff(X) represents ¢}.

(2) pLip(¢) = inf{Lip(f) where f € Diff(X) represents ¢}.
(3) poy(@) = t(¢(0),n), where o and n are filling multicurves.

Proof. We start by proving that the set of pseudo-Anosov mapping classes is
Pa,n-generic for filling multicurves o and n. Well, the function

C(X) = Rxo, A>1(A,n)

is continuous and proper on the set C4(X) of currents supported by compact
sets A C X. We thus get from Theorem 1.2 that

_ |{p e R with «(¢(0), n) < L}]
(5.3) LIEEO [.68—6+2r =0
On the other hand we get from [Sap] or [Mir2] (see also [ES2, ES3]) that

(¢ € Map(S) with «($(0).n) < L}
o4 lmint . Lo—oTar |

= const(o, n) > 0.

Since pg,n(¢) = t(¢(0), n) we get from (5.3) and (5.4) that

i ¢ R with pon(@ < L}
L—o [{¢ € Map(Z) with p,y(¢) < L}|
This shows the set of pseudo-Anosov mapping classes is generic with respect to
pU,'l] U
We consider now genericity with respect to prj,. Fix once and for all a filling
multicurve o. Although it does not really matter, we could for example assume
that o is a marking in the sense of [MM]. We need the following fact:

Fact 1. There is C = C(X,0) > 1 with

1
roll PLip(@) = po,o(P) < C - pLip($)

for all ¢ € Map(X).

Fact 1 is well known but, for the convenience of the reader, we will comment
on its proof once we are done with Theorem 1.1. From Fact 1 we get that

[{# € R with prip(¢) < L}| < [{¢ € R with ps,e(¢) < CL}|

|{¢ € Map() with puip(¢) < L}| > H¢ € Map(Z) with po,0(9) < é}l |
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We thus get from (5.3) and (5.4) that

i {9 € R with pLip(@) < L}[
Lo [{¢ € Map(E) with prip(p) < L}
as we had claimed.

The genericity with respect to px follows by the same argument when we
replace Fact 1 by the following also well-known fact:

Fact 2. There is C = C(X) > 1 with

|

= PLp(@) < pr(#) = C - pLip(9)?

for all ¢ € Map(X).

We have proved Theorem 1.1. g

We comment now on the proofs of the two facts used in the proof above. By
properties (7) and (8) of the space of currents, we have that for any other filling
multicurve o’ there is a constant Cy; = C;(X,0,0") with

1
(5.5) C—lt(o,q&(a)) < {x(¢(0")) < Cii(o, ¢(0)),
where £x(:) is the hyperbolic length function. Choosing o’ to be a short marking
in the sense of [LRT], we get from Theorem 4.1 in that paper that there is a
constant C, = C»2(X,0’) such that

1

(5.6) G

tx(0) < pLip(®) < Calx(0”)
Fact 1 follows, with C = C; - C;, from these two inequalities.

A similar argument, replacing results from [LRT] by results from [Raf], yields
Fact 2. Alternatively one can directly refer to Theorem B in [CR].

For the reader who feels cheated by a proof which only consists of a sequence
of references, we sketch a more direct proof of Fact 1 and Fact 2. Suppose X
is closed. By the Arzeld—Ascoli theorem, there is a Lipschitz map f on X
representing ¢ with L = ppip(¢p). By Teichmiiller’s theorem, there is a unit-area
quadratic differential ¢ on ¥ and a map g representing ¢, such that px(¢) = Lﬁ,
where L, is the Lipschitz constant of g with respect to the singular Euclidean
metric induced by q. Moreover, L, is the minimal Lipschitz constant of all maps
on ¢ representing ¢. By compactness of X, the g-metric and the hyperbolic
metric on X are bilipschitz equivalent. By compactness of the space of unit-area
quadratic differentials, this bilipschitz equivalence is uniform. Therefore, there is
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a constant B depending only on ¥ such that

—l-L f <Lg <BLy.
B
This obtains Fact 2 with C = BZ.

Let o be a filling multicurve which we realize by a g-geodesic. Because o
is filling, it cannot be entirely g-vertical. Compactness of the space of unit-area
quadratic differentials implies that in fact the horizontal length of ¢ is a definite
proportion of its total length. Under the map g, the ¢-horizontal direction gets
stretched by the factor L, , so the g-length of ¢(o) grows proportionally to L.
By comparing to the hyperbolic metric and using compactness of X again, we
get Equation (5.6) with 0 = o’. We still have (5.5) (with 0 = ¢’). This shows
Fact 1.

For the general case, losing compactness of ¥ means losing bilipschitz
equivalence between the ¢g-metric and the hyperbolic metric. However, the
argument we just sketched can be modified to take care of this issue and we refer
to the above listed references for the details.
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