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Genericity of pseudo-Anosov mapping classes,
when seen as mapping classes

Viveka Erlandsson, Juan Souto and Jing Tao

Abstract. We prove that pseudo-Anosov mapping classes are generic with respect to certain

notions of genericity reflecting that we are dealing with mapping classes. More precisely, we

consider a number of functions p on the mapping class group, and show that the proportion

of pseudo-Anosov mapping classes with p-value at most R tends to 1 as R tends to

infinity. The functions we consider include measuring the complexity of mapping classes

using quasi-conformal distortion or Lipschitz distortion. We present a uniform approach to

this problem using geodesic currents.

Mathematics Subject Classification (2020). Primary: 37E30; Secondary: 30F60, 57M50.

Keywords. Mapping class groups, geodesic currents, Teichmüller spaces.

1. Introduction

Throughout this paper let S be a complete orientable hyperbolic surface of
finite area, with genus g and r punctures. We exclude the case of (g, r) ^ (0, 3)

so that the mapping class group Map(E) of S is infinite.
Thurston's classification asserts that elements in Map(E) fall into three

categories: finite order, reducible, and pseudo-Anosov. However, it seems that from

any reasonable point of view most elements are pseudo-Anosov. For example,
Mäher [Mahl] proved that, with few assumptions, random walks on the mapping
class group give rise to pseudo-Anosov elements with asymptotic probability
one. This result was later enhanced and generalized by Maher himself and

others [Mah3, MaT, Riv, Sis, TT],
We will however care about another notion of genericity: if p : Map(E) -a- M>0

is a proper positive function, then we say that a set X C Map(E) is generic with

respect to p, or p -generic for short, if we have

\Bp(R) n x\
R->oo \BP(R)\
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where BP(R) {<p e Map(S) with p(<p) < R}. Here properness of p just means
that BP(R) is a finite set for all R. A negligible set is one whose complement
is generic.

Maybe the first function that comes to mind is the word length with respect
to a finite generating set Q of Map(S), and Cumplido and Wiest [CuW] proved
that indeed the set of pseudo-Anosov elements is not negligible in this sense. For
braid groups equipped with the Garside's generating set, Caruso and Wiest [CaW]
showed that it is also generic. But beyond this case, genericity of pseudo-Anosov
elements remain open for word lengths.

However, one can make the case that the word length, while being related

to the group theory of the mapping class group, has little to do with the fact
that the mapping class group consists of mapping classes. To illustrate this point
identify SL2 Z with the mapping class group of the once punctured torus and

note that the two matrices

have the same word length, namely 99, with respect to the standard generating
set of SL2 Z. Arguably, it would be more natural to say that M is farther from
the identity than N. Not only because the coefficients of M are much larger
than those of N but, more importantly, because the map induced by M on the

torus distorts both the metric and conformai structure much more dramatically
than the map induced by N.

Our goal is to prove that pseudo-Anosov mapping classes are p-generic with
respect to a number of functions on Map(E) measuring the complexity of mapping
classes when seen as mapping classes. More precisely, given / e Diff(E), denote

by K( f) the quasi-conformal distortion of /, and by Lip(/) the Lipschitz
constant of /. Also denote by r(-, •) the geometric intersection number between

two multicurves. We show:

Theorem 1.1. The set of pseudo-Anosov mapping classes is generic with respect
to any one of the functions:

(1) Pk(4>) inf{^(/) where f e Diff(E) represents f}.
(2) Pupif) inf{Lip(/) where f e Diff(S) represents fi\.
(3) Po,n(4>) — rj), where a and rj are filling multicurves.

Remark. Note that, although amazingly it is not formally stated in the paper, the

claim for Pk(4>) in Theorem 1.1 was obtained by Maher in [Mah2]. Unfortunately,
we were unaware of this fact until we finished writing our paper. Both the

4322235651404355330

1582048049556775361
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argument in [Mah2] and ours have the same starting point, namely an earlier,

again not formally stated, result from [Mahl], However, after that starting point,
the arguments use different methods and techniques. We will return to this at the

end of the introduction.

We sketch now the proof of Theorem 1.1. We begin by addressing the reason

why we are including pa^ at all among the functions in Theorem 1.1. There are a

few reasons. First, both quantities PkW) and pupUf') can be estimated in terms

of pa^. Second, there is the maybe not very important observation that, after

identifying SL2 Z with the mapping class group of a punctured torus, the l\ -

norm on SL2 Z agrees with p„.a where a is the union of the two simple curves

representing the standard generators of homology. However, the main reason to
consider pCTjJ) is that it is the more natural quantity from the point of view of
proofs.

In fact, if we denote by C(£) the space of geodesic currents on £ endowed

with the weak-* topology, and consider multicurves as currents, then what we

will actually prove is the following theorem:

Theorem 1.2. Let 1Z c Map(£) be the set of non-pseudo-Anosov mapping classes

and let yo C £ be a filling multicurve. Then we have

lim
\{<PeKwith F(cp(y0))<L}\

L-±oo p6g-6+2r

for every continuous homogenous function F : C(£) —> M>o which, for every

compact A c £, is proper when restricted on the set Ca (S) of currents supported
by A.

Recall that a function F : C(£) -> R is homogenous if F(t • A) t F(X) for

every t > 0 and A e C(£). Note also that for £ open, the properness condition

we impose on F is much weaker it being proper on C(£). For example, if r]

is a filling multicurve then F(-) if, rj) is not proper on C(£) but is proper
on C/i(£) for any A. Theorem 1.1 follows when we apply Theorem 1.2 to the

corresponding functions combined with the fact, see [ESI, Sap], that

„ 1N \{fe Map(£) with F(<p(y0)) < L}\
(1.1) lim inf — ——— > 0

L-»-oo p6g-6+2r

for any F as in Theorem 1.2.

The starting point of the proof of Theorem 1.2 is a result of Mäher [Mahl]
asserting that the set 7Z C Map(£) of non-pseudo-Anosov mapping classes is the

union, for each k, of A-isolated points (that is, points which are at distance at

least k from any other element of 72) together with the union of finitely many
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sets, each one of which consists of mapping classes at relative distance L(k)
around the centralizer of some mapping class. Here the relative distance is the

semi-distance on Map(E) arising, with the help of a base point, from its action

on the curve complex. It follows that proving that 1Z is negligible boils down to

proving (1) that the set 2* C 72 of k -isolated points has low density and (2) that

sets of mapping classes with small relative distance of centralizers of elements

are negligible. Rephrasing this in terms of measures (on the space of currents) it
suffices to prove (1) that

(1.2) lim lim ——S i -, 0,^ ' Ic^ooL^oo L6S-6+2r Z_, t^Yo)
fiel/c

and (2) that

^•3-) L-^o L6g~6+2r ^ ^(zo) 0

06A/"rel(C(0o).Ä)

for 0o e Map(S) non-central. Here 8X is the Dirac measure centred on x and

the convergence takes place with respect to the weak-*-topology. We get (1.3)
from the fact that any limit is absolutely continuous to the Thurston measure - an

immediate consequence of for example Proposition 4.1 in [ESI] - and of the fact

that the set of limits of sequences of the form (0i(fo)) with 0 e Arei(C(0o), R)
has vanishing Thurston measure. To establish (1.2) we use again that any limit
is absolutely continuous with respect to the Thurston measure, but this time we
have to use Masur's result [Mas2] on the ergodicity of the Thurston measure with

respect to the action of the mapping class group.

Remark. Maher's proof in [Mah2] of Theorem 1.1 also relies on the decomposition
of H as the union of 2* and finitely many sets consisting of mapping classes

at bounded relative distance from the centralizer of some mapping class. At this

point the two arguments diverge. While we rely on the fact that every limit
of (1.2) and (1.3) is absolutely continuous with respect to the Thurston measure,
Maher makes use of a rather sophisticated lattice counting result of Athreya-
Bufetov-Eskin-Mirzakhani [ABEM], Similarly, while we rely on the ergodicity
of the Thurston measure, that is the ergodicity of the Teichmüller flow, Maher
relies on the mixing property of that flow. We might be partial, but we believe

that our argument is not only different but also simpler than that of Maher.

Remark. As it is the case for Maher's argument, all the results here hold with
unchanged proofs if we replace the set R of non-pseudo Anosov elements by

any set of elements for which there is a uniform upper bound for the translation

length in the curve complex.
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2. Maher's theorem

As we already did in the introduction, we denote by TZ the set of all non-

pseudo-Anosov mapping classes of Map(E). We also fix an arbitrary finite

generating set G for Map(S) and let dg be the induced left-invariant distance:

dg(fi,f) — word length with respect to G of

Given k > 0 let

Ik e TZ with dg(cp, cj)') > k for all f' e TZ \ {0}}

be the set of elements in TZ which do not have any other elements in TZ within
distance less than k. We denote the complement of lk by

TZ \ Ik

The notations are chosen to suggest that Ik consists of k -isolated points and that

Vk consists of k-dense points.
Recall that distances in the definition of Ik (and thus in that of Vk as well)

are measured with respect to the distance dg. We stress that this is the case

because we will also be working with another distance, or rather a semi-distance,

namely the relative distance

^relWb VO dces){<P(oio), if(<Xo))

where dc(s)Or) denotes the distance in the curve complex C(E), and where a0

is a fixed but otherwise arbitrary simple essential curve in E. Note that drei(-, •)

is not a proper metric.
Armed with this notation we can state Maher's theorem:

Theorem 2.1 (Maher). For every k, there is a finite set of non-central mapping
classes F C Map(E) \ C(Map(E)) and some L > 0 such that

Vk c (J {t/r e Map(E) with drsi(f,C((p)) < l|,

where C(cp) is the centralizer of <f> in Map(E) and C(Map(E)) is the center of
Map(E).

We remark that Map(E?;r) has trivial center if (g,r) {(1,1), (1,2), (2,0)}.
Although it is proved and used in [Mahl] (see the discussion at the beginning of
Section 5 in said paper), Theorem 2.1 is not explicitly stated therein. Hence we
discuss how to deduce it from the stated results here:
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Proof. First, suppose that Map(2) is center free. Then, from the very definition
of T>k, we get that there is a finite subset T C Map(2) with

To see this, note that one can take T to be all non-trivial elements in the ball
of radius k around the identity with respect to dg.

Now, Theorem 4.1 in [Mahl] implies that for each cp e T there is some L
such that

This theorem applies because the mapping class group is weakly relatively
hyperbolic with relative conjugacy bounds [Mahl, Theorem 3.1] and because

7Z consists of elements conjugated to elements of bounded relative length [Mahl,
Lemma 5.5]. This concludes the discussion of Theorem 2.1 if Map(2) is center

free.

In the presence of a non-trivial center the argument is almost the same: Note
that TZ — 7Z(p for every central element and hence the only change to the above

argument is that one has to take T to be the set of all non-central elements in
the ball of radius k around the identity with respect to dg.

In this section we recall a few facts about the space of geodesic currents

on 2. We then describe the (projective) accumulation points of sequences of
the form (<pi(yo)) where yo is an essential multicurve and where ((pi) is a

sequence of mapping classes at bounded relative distance of the centralizer of
some (p e Map(2). Recall that a multicurve is a finite union of (disjoint or

not, simple or not) primitive essential curves in 2. We say that a multicurve is

filling if its geodesic representative cuts the surface into a collection of disks and

once-punctured disks.

Properties of the space of currents. Let 2 be a compact surface with interior
S S \ 32, endowed with an arbitrary hyperbolic metric with totally geodesic

boundary. We suggest the reader to think, in a first reading, that 2=2; that

is, 2 is closed.

Geodesic currents on 2 are fundamental group invariant Radon measures

on the space of geodesies on the universal cover of 2. However, that they are

such measures will not really be relevant here - what is more important for our

(2.1)

TZ H 7Z(p C {f e Map(2) with C{<p)) < L).

3. Currents
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purposes are the properties the space C(£) of currents have (when endowed with
the weak-*-topology). We list the facts about C(£) that we will use:

(1) C(£) is a locally compact metrizable topological space.

(2) C(£) is a cone as a topological vector space, meaning in particular that

there are continuous maps

C(£) x C(£) -> C(£), (A, fi) A + fi,
M>o x C(£) —> C(£), (t, A) t—> tk

satisfying the usual associativity, commutativity and distributivity properties
as in vector spaces.

(3) The set {y closed geodesic in £} is a subset of C(£) and in fact the set

M+ • {y closed geodesic in X}

of weighted closed geodesies is dense in C(£).

(4) The inclusion of the set of weighted simple geodesies into C(£) extends to

a continuous embedding of the space Af£(£) of measured laminations into

£(£).
(5) There is a continuous bilinear map

i : F(£) x C(£) —> R>o

such that £ (y, y') is nothing other than the geometric intersection number

for all closed geodesies y, y'.
(6) The mapping class group acts continuously on C(£) by linear automorphisms.

Moreover, the inclusion of the set of closed geodesies into C(£) is equivariant
with respect to this action.

Moreover, for every compact A c £, let dU(£) c C(£) be the subcone consisting
of the currents supported by A. Then the following holds:

(7) The set {A e with i(A, r/) < L} is compact for every L > 0 and every
filling multicurve rj. In particular, the image PCa ('S) of CaÇE) in the space

PC(S) (C(£) \ {0})/R>o

of projective currents is compact.

(8) For every multicurve y0 there is a compact A c £ such that

Map(£) • y0 cCA(Z).

In particular, every sequence (<?>j) in Map(£) contains a subsequence (0q.)
such that the limit limy^œ <pij (y0) exists in PC(£).
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Currents were introduced by Bonahon in [Boni, Bon2] and all the facts here can
be found in a more or less transparent way in these papers. In the case of closed

surfaces, [AL] is a very readable account of currents, measured laminations, and

the relation between them. Finally, we hope that the presentation of currents,
for both open and closed surfaces, in the forthcoming book [ES3] will also be

similarly readable.

Accumulation points of thickened centralizers. It will be important later on to
know that projective accumulation points, in the space of currents, of sequences
of the form (ipl (yo)) where y0 is a multicurve and with

<t>i e Arei(C(</>), L) {\jf e Map(£) with dK\(f, C(cp)) < L}

are very particular:

Proposition 3.1. Let e Map(£) \C(Map(£)) be a non-central mapping class,

let ((pn) be a sequence of pairwise distinct elements in A'rei(C(</>), L), and let

yo be a filling multicurve. If the sequence (fin(yo)) converges projectively to a

uniquely ergodic measured lamination X, then <fi(X) is a multiple of X.

Recall that a measure lamination X is uniquely ergodic if every measured

lamination p, with i(X,p) 0 is a multiple of A.

The proof of the proposition will make use of the following lemma. Note
that the lemma requires that £ is not the once-punctured torus or the 4-times

punctured sphere. After the proof of the lemma, we will explain how to deal with
those cases as well (see Remark 3.3).

Lemma 3.2. Suppose £ is not the once-punctured torus or the 4-times punctured
sphere. Let yo C £ be a filling multicurve and (<pn) and (fi„) be sequences of
mapping classes with dre\(<pn, fin) < L. Given any simple multicurve a, suppose
that the sequences (fn(yo)) and (fn(a)) converge projectively to À, X' e PCfE),
respectively. If (<pn) consists of pairwise distinct elements, then there is a chain

X Ao, Ai,..., A* — A

of measured laminations with i(Xi, A,-+i) 0 for all i 0,..., k — 1.

Proof. Assume that (0«(yo)) and (fin(a)) converge projectively to A, A' PCfZ).
Abusing notation consider A and A' not only as projective currents but also as

actual currents. The assumption that the sequences (0n(yo)) and (j/n(a)) converge
projectively to A, A' e PCfL) implies that there are bounded sequences (en) and
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(<e'n) consisting of positive numbers and such that

A lime„0„(yo). A' lime'ntn(a).
n n

The assumptions that (</>„) consists of pairwise distinct elements and that yo is

filling implies that the sequence (</>«(yo)) is not eventually constant, and thus that

en -»0.
Let a0 be the base point in C(£) used to define d:t\. The assumption that

drei(0M. fn) < A implies that for all « there is a chain of simple multicurves

0«(a<>) ßn'ßn'---'ßn+l tn{Uo)

with i(ß'n, /3^+1) 0 for all i 1,...,L and all n. Also, there is a chain of
simple multicurves

ao,Q!i,... ,0Lm — a

with i(cq,cq+i) =0 for all i 0, — 1. By setting ß„+1+l Vn(«i) and

A L + 1 + m, we get a chain of simple multicurves

<Pn(ao) ßn, ßn' ' ßn ^nipi)

with for L(ß'n,ß'n+1) 0 for all i 1,..., k — 1 and all n.
Projective compactness of the space of currents (or rather of measured

laminations) implies that passing to a subsequence we may assume that there

are bounded positive sequences (e^),..., (e^) such that

lim ehßn ^ 0

exists in the space A4£(£) of measured lamination. We may also assume without
loss of generality that e'n and thus that A^ A'. The claim will follow
when we show that

t(A, Ai) r (A i, A2) t(A2, A3) • • t(Afc_i, Afc) 0.

To do so, first note that

t(A,Ai) limn „ -i((/>n(Yo),ßn)

(3.1) 'imn • el L(<pn(y0),<pn(a0))

lime„ • el t(yo,«o) 0,

where the last equality follows from the fact that the sequence (el) is bounded

while (en) tends to 0. The proof of the other equalities is even simpler: since

the curves ßln and ßln+1 are disjoint for all n and i we have

t(A/,Af+i) Hmel e'n+1 i(ß'n,ß'n+1) =0.

This finishes the proof of the lemma.
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Remark 3.3. A key point in the proof of the Lemma 3.2 is that there is a chain

of simple multicurves from fn(a0) to t//„(a) such that consecutive curves are

disjoint. Such a chain does not exist for the once-punctured torus Sip or the

4-times punctured sphere So,4 • For these surfaces, we can find a chain of simple
multicurves

M<Xo) ßn,ßl,---,ßn fn(a)

with

'(A4+,) ji
Let A \imnn<pn(ßn) and A,- \imne'nß'n. If we assume that A is uniquely
ergodic, then we can still derive the conclusion of the lemma: namely, the chain

A Ao, Ai,..., Afc A'

satisfies t(A,-,A,-+i) — 0. To see this, note that e„ —> 0 and that each (e'n) is
bounded. By the same argument as in Equation 3.1, t(A, Ai) =0 since e„ -> 0.
Now since A is uniquely ergodic, t(A,Ai) 0 implies Ai is a multiple of A.

In particular, Ai is uniquely ergodic, and thus the sequence e* -» 0. Using this,

we get that

t(Ai,A2) lime* • t2n i(y„\ yl) 0.

By the same argument as above, A2 is uniquely ergodic and hence e% -4-0.
Continuing this way yields the result.

We are ready to prove the proposition.

Proof of Proposition 3.1. Take for all n some ipn e C(f) with dTe\((j>n, fn) < L.
Let a be any simple multicurve and let ß f (a). Compactness of PM£(T.)
implies that, up to passing to a subsequence, we may assume that the limits

A'= limilrn(pi) and A" lim d/n(ß)
n n

exist in PC (S).
From Lemma 3.2 and from Remark 3.3, there is a chain of measure laminations

A Ao,Ai,..., Afc —A

with t(Aj, Aj+i) 0 for i 1,..., k — 1. There is a similar chain from A to X".
Recall now that Ao A is uniquely ergodic. Since l(Xq, A i 0, we get

that Ai is a multiple of A and thus uniquely ergodic. Then, since t(Ai, A2) 0,

we get that A2 is a multiple of Ai and thus of A and uniquely ergodic and so

on. Iteratively we get that A' is a multiple of A. Using the chain from A to A",
we also get that A" is a multiple of A.
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Finally, since ß 0(a) and \J/n e C(0), we have that, projectively,

0(A') lim lim ^«(0(0;)) lim fn(ß) A".
n—>00 v 7 n—^00 x 7 n-+oo

This implies that A is projectively fixed by 0, so 0(A) is a multiple of A as

claimed.

4. A technical result

The reason why we stressed earlier that C(£) is metrizable and locally compact
is that these are the properties needed to work as customary with the weak-*-

topology on the space of measures1 on C(£). In fact, to establish Theorem 1.2

we will prove that the measures

(4-1) mYO,L j^6g-6+2r E ^r0(yo)

converge when L -* 00 to the trivial measure. Here we consider the weighted
multicurve j<p(yo) as a current and denote by the Dirac measure on

C(£) centered therein.

In [ESI, EPS, EU] we considered a closely related family of measures and

proved that the limit

(4.2) C mum 2, L6g-6+2r E 8if(yor
0sMap(S)

exists (see also [ES3]). Here C C(y0) is a positive real number and m-mu

is the Thurston measure on C(£). Recall that the Thurston measure is a Radon

measure supported on the space AI£(£) of measured laminations. The Thurston

measure can be constructed either as a scaling limit [Mirl, ES3] or using the

symplectic structure on Af£(£). See [MT] for a discussion of both points of
view.

We only need the following facts about the Thurston measure. The action of

Map(£) r> (A4£(£), mihu)

preserves the measure and is ergodic [Mas2], The action is also almost free in
the sense that the fixed point set of every non-central element in Map(£) has

vanishing Thurston measure (since the fixed point set has lower dimension). Note

that the central elements of Map(£) act trivially on _A4£(£).

'This is also the reason why we didn't encourage the reader to think of currents as measures,
because it is a well-established fact that thinking of "the weak-*-topology on the space of measures
on the space of measures endowed with the weak-*-topology" leads the unprepared reader to tremors,
shaking and cold sweats.
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In this section we prove:

Proposition 4.1. Let yo c S be a filling multicurve. The family of measures

(mYti l)l>\ ',s ptecompact with respect to the weak-*-topology on the space of
Radon measures on C(E). Moreover for any sequence Ln —> oc such that the

limit

exists, one has that

where C is as in (4.2).

m lim
n->CO Vo'L"

y, 4>* m < C • rttihu

0eMap(E)

We start by proving that the family of measures in Proposition 4.1 is precompact
and that any limit must be uniformly continuous with respect to rtfmu •

Lemma 4.2. The family of measures (m^ L)L>1 is precompact with respect
to the weak-*-topology on the space Radon measures on C(£). Moreover, any
accumulation point is absolutely continuous with respect to the Thurston measure.

Proof The measure L is bounded from above for all L by the measure

mY0,L — ^6g-6+2r X! ^x</>(Yo)'

0sMap(E)

From the existence of the limit (4.2) we get

(4.4) lim sup j fdm^o L < lim sup j fdmVOtL C J fdmihu < oo

for every continuous function / : C(L) -> M with compact support. This implies
that the family (m l)l>i is bounded and thus precompact in the weak-*-

topology. Moreover, (4.4) implies that any accumulation point of mfi L is bounded

from above by C -mihu and hence is absolutely continuous to the Thurston measure,
as we had claimed.

Note that the same argument also proves that both families

YO,L p6g—6+2r X ^r0(ro) anC* mYo,L pèg-6+2r X ^r0(ro)
ipelg <t>eVk

are precompact and that any limit when L -» oo is absolutely continuous with

respect to the Thurston measure. Here 21 and are, as before, the subsets of
1Z consisting of k -isolated points and k -dense points, respectively.
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We can from now on fix a sequence (Ln) with Ln oo such that the

following limits all exist:

(4-5) myo }œmyk0,Ln' and

1 m^k T

Since 71 is the disjoint union of Tk and Vk they automatically satisfy that

%0 +Vtfo-

Our next goal is to prove that the second of these limits is 0 :

Lemma 4.3. We have rti^f 0.

Proof. By Maher's Theorem 2.1 it is enough to prove that, for any non-central

0o ^ Map(E) and any R > 0, the trivial measure is the only accumulation point
when L -» oo of the family of measures

M _
1

»

myO'L ~ L6g-6+2r 2—j r^(fo)'
<psß/Ki(C(<t>o),R)

Well, each m^ L is bounded by the measure myo,L given by (4.3) and hence any
such accumulation point m' Ln is bounded by C • mn,u by (4.2).
The claim will then follow when we say that the support of m' is contained in
a set of vanishing Thurston measure.

First, the support of the limiting measure m' is contained in the set of
accumulation points of sequences (xn) where xn is in the support of Ln,
that is, a multiple of (pn(Yo) for some <pn e Arei(C(0o), R)- On the other hand,

since the set of uniquely ergodic lamination has full mjhu -measure [Masl], we
also get that m' is supported by uniquely ergodic laminations. It thus follows
from Proposition 3.1 that m' is supported by the set of measured laminations

projectively fixed by 4>q Since this set has vanishing mihU -measure we get that
m' is trivial, as we needed to prove.

As a final step towards the proof of Proposition 4.1 we establish an equivariance

property for the limits of the measures m7^ L :

Lemma 4.4. We have - lim^oo ^ Ln for all cp e Map(S).
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Proof. Noting that the set 12 is closed under conjugation we get that 72<p cplZ.

This means that

m<t>(yo),Ln ~ p6g—6+2r E ^rW(yo) ~ p6g-6+2r E ^zf(Yo)
\lre.Tl \lreTltt>

~ p6g-6+2r
122 ^z^(yo) ~ p6g-6+2r 12 ^

z't'fiYo)
i/r eTZ

~ p6g-6+2r 12 (^r^(yo)) ~~ ^* L6g-6+2r 12 ^rvHyo))
i/re7J V x^eTZ

<P* (mm,Ln)

The claim follows now from (4.5) and the continuity of the action of Map(E)
on the space of currents.

We are ready to prove the proposition:

Proof of Proposition 4.1. Recall that Lemma 4.2 asserts that the given family of
measures is precompact and hence we can assume that we are given a sequence

(Ln) with Ln -> oo such that the limit

myn lim mlfyo n-s-oo y°'Ln

exists. To prove Proposition 4.1 it will suffice to show, with C as in (4.2), that

for every finite set Z c Map(S) we have

(p*(mY0) < C -m-ihu.
<pez

Fixing such a finite set Z choose

k >2 - max{Jg(id, f where f e Z}.

Lemma 4.4 and Lemma 4.3 imply, respectively, the first and last of the following
equalities:

E E „I <(*,),/.„ „l E m*(yo),Ln Ä E ml\y0),Ln-
(f)EZ (f)EZ (J)EZ (f)EZ

Moreover, from the choice of k we get that H 2k4>' — 0 f°r ail>' two distinct

(p,f e Z and we can thus rewrite

E m<Hyo),Ln 6g—6+2r E E ^
z^l"t>(Vo) 6g-6 +2r E E ^VTyo)

<t>Z (psZx/relk ^n </>eZ i/reliçtp

E «X,i 6g—6+2r Ttt^Zyo)'
H U Ik<fi
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It thus follows that

^i mHY0),Ln — j 6g—6+2r
<l>eZ ^« ^eMap(E)

and hence that

^^(myo)<nlim *+2, E ^(yo) C • niThu.
<t>e Z u» 0sMap(S)

We ai'e done.

5. Proofs of the theorems

We are now ready to prove the main results.

Theorem 1.2. Let 71 c Map(S) be the set of non pseudo-Anosov mapping classes

and let yo CE be a filling multicurve. Then we have

\{<P g ^ with F(4>(y0)) < L}\
L-+oo L6g-6+2r

for every continuous homogenous function F : C(E) —> E>0 which, for every
A c S compact, is proper when restricted on the set CU(£) of currents supported

by A.

Proof. The claim will follow easily once we prove that

(5.1) hm rn^ L 0
L-»-oo ,u

with m^o L as in (4.1). Since this family of measures is precompact by

Proposition 4.1, it suffices to prove that 0 is the only accumulation point when

L -» oo. So let (L„ be a sequence tending to oo and such that the limit

m7n limro oo Yo'L"

exists. By Lemma 4.2 myo is absolutely continuous with respect to m-|hu. This

means that there is a function (the Radon-Nikodym derivative) ic : C(S) -> M>0

with the property that

f m)dxnyo(Ç)=f m-iciOdrn^)
JC(£) 4C(S)

for any continuous compactly supported function / on the space of currents.
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Proposition 4.1 asserts that the measure X^sMapCS) is not on'y finite,
but actually bounded by a multiple C -mihu of the Thurston measure. In terms

of the function k, this implies that

(5.2) E K((j)(X)) < C for mihu-almost every f e C(£).
0eMap(£)

We claim that this implies that k(£) 0 almost surely:

Claim. k{'Ç) 0 almost surely with respect to the Thurston measure.

In a nutshell, the claim follows from the fact that ergodic actions of discrete

groups on non-atomic measure spaces are recurrent (the condition on the measure

being non-atomic is just there to rule out actions with only one orbit). In any

case, we give a direct argument to prove the claim:

Proof of the Claim. If the claim fails to be true, then there is a positive mmu -

measure set U c C(Z) with k('Q > e > 0 for every Ç £ U. Noting that the action

Map(E) C(E) is almost free we get from (5.2) that, for almost every (el/,

#{f £ Map(E) with f(f) £ U) < —.

It follows that there is a set V c U of positive Thurston measure such that the

set

Z {f £ Map(E) with <p{V) ni/^0}
is finite. Now, since the action is essentially free we can in fact find W c V

of positive Thurston measure with W d <p(W) 0 for all <p £ C(Map(E)).
This contradicts the ergodicity of the action of the mapping class group
on (yW£(E),mThu).

The claim implies that the limiting measure vanishes, that is mKo 0,

establishing (5.1). We can now conclude the proof: let F : C(E) -* 1R>0 be

as in the statement and note that

\{y £ H Yo with F(y) < L}\ ^
\{</> £ TZ with F (^(yo)) < l}|

J^6g-6+2r — j^6g-6+2r

ml>L{{F(-)< 1})

and by (5.1) together with the fact that \F(-) < 1} is compact we have that

({/(•) < 1}) 0.

Finally, we prove Theorem 1.1. Recall that for / e Diff(E), K(f) and Lip(/)
are respectively the quasi-conformal distortion and Lipschitz constant of f.
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Theorem 1.1. The set of pseudo-Anosov mapping classes is generic with respect
to any one of the functions:

(1) pk(<P) =inf{AT(/) where / Diff(E) represents cp].

(2) Pup(0) inf{Lip(/) where / e Diff(E) represents (p).

(3) p<T^(0) i(cp(<j), rj), where a and rj are filling multicurves.

Proof. We start by proving that the set of pseudo-Anosov mapping classes is

pa,n -generic for filling multicurves a and r\. Well, the function

C(S) —> R>o, A I—r i(A, vf)

is continuous and proper on the set CU(£) of currents supported by compact
sets A c S. We thus get from Theorem 1.2 that

\{<t> eft with < L}\
(5.3) lim — —r — 0v ' L-»oo L6g-6+2r

On the other hand we get from [Sap] or [Mir2] (see also [ES2, ES3]) that

,• • r
I fa e Map(S) with < L}| ^ „(5-4) ]Lf L6g-6+2r

1 COnSt(ff' 1) > 0.

Since pa,n (<P) rj) we get from (5.3) and (5.4) that

\{<p e n with pa,n(<P) < L}\
lim I. I - 0.

L-*oo |{0 g Map(E) with pa,ri(4>) < E}|

This shows the set of pseudo-Anosov mapping classes is generic with respect to

Pa,t]

We consider now genericity with respect to pup. Fix once and for all a filling
multicurve o*. Although it does not really matter, we could for example assume

that a is a marking in the sense of [MM], We need the following fact:

Fact 1. There is C C(E,cr) > 1 with

' PLipO/O < Pu,cr(,<P) 5 C • PLip (</-')

for all f e Map(E).

Fact 1 is well known but, for the convenience of the reader, we will comment

on its proof once we are done with Theorem 1.1. From Fact 1 we get that

\{<p 71 with PLip(0) < L}\ < \{(p e TZ with pa,a{(p) < CL}|

e Map(E) with pup(<P) < L)\ cp e Map(E) with pa,a{<P) ê}
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We thus get from (5.3) and (5.4) that

[{<£ K with |Oup(0) < L}\
lim I L-rj — 0,

l^oo \ {(p e Map(E) with pup(<p) < L}|

as we had claimed.

The genericity with respect to pk follows by the same argument when we

replace Fact 1 by the following also well-known fact:

Fact 2. There is C C(E) > 1 with

• PLipWO2 < Pk(4>) < C puP(4>)2

for all (j> 6 Map(E).

We have proved Theorem 1.1.

We comment now on the proofs of the two facts used in the proof above. By
properties (7) and (8) of the space of currents, we have that for any other filling
multicurve a' there is a constant C\ Ci(E,ct,a') with

(5.5) -^(o\0(cr)) < < Cu(a,<f>(a)),
Ei

where fs(-) is the hyperbolic length function. Choosing a' to be a short marking
in the sense of [LRT], we get from Theorem 4.1 in that paper that there is a

constant C2 C2(E,ct') such that

(5.6) T^E(a') < pupi'P) < C2fs(a')
02

Fact 1 follows, with C Ci C2, from these two inequalities.
A similar argument, replacing results from [LRT] by results from [Raf], yields

Fact 2. Alternatively one can directly refer to Theorem B in [CR].
For the reader who feels cheated by a proof which only consists of a sequence

of references, we sketch a more direct proof of Fact 1 and Fact 2. Suppose E

is closed. By the Arzelâ-Ascoli theorem, there is a Lipschitz map / on S

representing (p with Lf pup('P) • By Teichmiiller's theorem, there is a unit-area

quadratic differential q on E and a map g representing <p, such that Pk(4>) L2g,

where Lg is the Lipschitz constant of g with respect to the singular Euclidean

metric induced by q. Moreover, Lg is the minimal Lipschitz constant of all maps

on q representing (p By compactness of E, the 4-metric and the hyperbolic
metric on E are bilipschitz equivalent. By compactness of the space of unit-area

quadratic differentials, this bilipschitz equivalence is uniform. Therefore, there is
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a constant B depending only on S such that

—Lf < Lg < BLf.

This obtains Fact 2 with C B2.

Let a be a filling multicurve which we realize by a g-geodesic. Because a
is filling, it cannot be entirely q -vertical. Compactness of the space of unit-area

quadratic differentials implies that in fact the horizontal length of a is a definite

proportion of its total length. Under the map g, the g-horizontal direction gets

stretched by the factor Lg, so the g-length of (p(v) grows proportionally to Lg.
By comparing to the hyperbolic metric and using compactness of S again, we

get Equation (5.6) with a — a'. We still have (5.5) (with a a'). This shows

Fact 1.

For the general case, losing compactness of S means losing bilipschitz
equivalence between the -metric and the hyperbolic metric. However, the

argument we just sketched can be modified to take care of this issue and we refer

to the above listed references for the details.
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