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On James Hyde’s example of non-orderable subgroup
of Homeo(D, aD)

Michele TRIESTINO

Abstract. In Ann. Math. 190 (2019), 657-661, James Hyde presented the first example
of non-left-orderable, finitely generated subgroup of Homeo(D, D), the group of homeo-
morphisms of the disk fixing the boundary. This implies that the group Homeo(D, dD)
itself is not left-orderable. We revisit the construction, and present a slightly different
proof of purely dynamical flavor, avoiding direct references to properties of left-orders. Our
approach allows to solve the analogue problem for actions on the circle.

Mathematics Subject Classification (2020). Primary: 37C85; Secondary: 37E05, 37EIO,
37E20.

Keywords. One-dimensional actions, Klein bottle group, groups of planar homeomorphisms.

1. Introduction

Let Homeo(D, dD) denote the group of homeomorphisms of the disk D which
fix the boundary dD. In [Hyd] James Hyde gave a bright proof of the fact that
Homeo(D, dD) is non-left-orderable, solving a fundamental question about this
group: it is different, even at algebraic level, from the group of homeomorphisms
of the real line. Indeed, it is a classical fact (attributed to Conrad [Con]) that
a countable group is left-orderable if and only if it admits a faithful action
on the real line by orientation-preserving homeomorphisms, and by Burns—Hale
Theorem, a group is left-orderable if and only if all finitely generated subgroups
are; see Clay and Rolfsen [CR]. In these terms, the result of James Hyde can be
stated as follows:

Theorem 1 (Hyde). There exists an explicit finitely generated subgroup G of
Homeo(D, 0D) which does not embed into the group of orientation-preserving
homeomorphisms of the real line Homeoy (R).
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Confirming the above-mentioned idea that Homeo(D,dD) owns a “higher-
dimensional algebraic structure”, we extend the result of Hyde to actions on the
eirele,

Theorem 2. There exists an explicit finitely generated subgroup G of
Homeo(D, dD) which does not embed into the group of homeomorphisms of
the circle Homeo(S!').

This is done by rewriting the proof of Hyde in terms of one-dimensional
actions, with minor changes. Instead of the nice algebraic bounds used in [Hyd]
(which would correspond to bounds on displacement functions of elements in the
group), we use the commutation relations in the group defined by Hyde, and the
classifications of actions of the Klein bottle group. Note also that the group G
that we consider for Theorem 2 is slightly different (but it contains Hyde’s group
as a subgroup).

2. Preliminaries on actions on the real line

In the following, all actions on the real line will be assumed to be by
orientation-preserving homeomorphisms, unless explicitly mentioned. The reader
who is familiar with groups acting on the real line can skip this part, as all
results presented here are classical.

It will be important to have a precise picture of possible faithful actions on R
of the groups

2> =(fg|fef ' =g) ad K=(fg|fef =g7")

The group K is the classical Klein bottle group. Up to restrict the action to some
invariant interval, we can assume that our actions have no global fixed points.
In the following, we will write f and g for the generators of the groups Z?2
and K, as above.

Denote by Fix(g) = {x € R | g(x) = x} the set of fixed points of g,
and observe that for any homeomorphisms f and g € Homeoy(R), one has
Fix(g) = Fix(g™!) and Fix(fgf~!) = f(Fix(g)). This implies that for any action
of either Z2? or K on the real line, the set of fixed points Fix(g) is preserved
by f.

Lemma 3. For any faithful action of either Z?> or K on the real line without
global fixed points, if Fix(g) # @ then Fix(f) = g.

In other terms, for any action of either 72 or K on the real line, if both
generators [ and g have fixed points, then the action has a global fixed point.
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Proof. Assume by contradiction Fix(f) # @. Given x € Fix(g), then {f"(x)}nez
accumulates on some point p € Fix(f). Observe that by f -invariance of Fix(g),
we have {f”(x)} C Fix(g). Moreover Fix(g) is closed, so we must also have
p € Fix(g). This gives a point p which is fixed by both f and g, and hence by
the whole group. This gives the desired contradiction. O

In the case of the group K, the condition Fix(g) # @ is always satisfied.

Lemma 4. For any action of K on the real line, we always have Fix(g) # &.
Moreover, one has the inclusion Fix(f) C Fix(g).

Proof. We assume for contradiction Fix(g) = &, and without loss of generality we
can assume g(x) > x for every x € R (otherwise we consider the inverse g~!).
Therefore gf~!(x) > f~!(x) for every x € R. As f preserves orientation,
this implies fgf~!(x) > x for every x € R, and consequently the relation
fef~! = g7 implies g~!(x) > x, which is in contradiction with our assumption.
The second assertion follows from the proof of Lemma 3. O

We can now describe all possible faithful actions of either Z2 or K on the
real line without global fixed points, with the condition Fix(g) # @. This is not
strictly needed for the rest of the text, but it helps the reader to make a picture
of the dynamics under consideration.

Lemma 5. Consider an action of either 72 or K on the real line without global
fixed points, with the condition Fix(g) # @. Then the action is C° conjugate to
an action obtained from the construction below.

Assume f(x) =x+1 or f(x) =x—1. Given x € R, consider the interval |
joining the points x and f(x). Given any orientation-preserving homeomorphism
h:1 — I, there exists a unique orientation-preserving homeomorphism g which
satisfies gl = h and fgf™! = g€, where € € {—1,+1} is chosen accordingly
to the group that is acting (€ =1 in case of Z* and € = —1 in case of K).

Proof. The fact that g is uniquely defined by the homeomorphism A : 1 — I is
because one must have

glenay = f*hE 7"y

after the relation in the group.

Reversely, by Lemma 3, we have that f has no fixed point and thus f
is C° conjugate to either x — x + 1 or x ~ x — 1. Take then any x € Fix(g),
and observe that also f(x) € Fix(g), so that the restriction g|; defines an
orientation-preserving homeomorphism of 7/, where / is the interval joining x

and f(x). O
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3. Preliminaries on actions on the circle

We keep the assumption that actions preserve the orientation. Given an
orientation-preserving homeomorphism f : S! — S!, we denote by rot(f) € R/Z
its rotation number, which equals

rot(f) = u[0, £(0)),

for any f-invariant Borel probability measure . We will use the following
classical facts (see, e.g., Ghys [Ghy]):

e rot(f) =0 if and only if f has a fixed point;
e the rotation number is a conjugacy invariant (that is, rot(hfh~') = rot(h));

e for any amenable group G, rot: G — R/Z defines a group homomorphism
(in particular, rot(f") = nrot(f)).

Given an action of K = (f,g | fgf~' = g~!) on the circle, the conjugacy-
invariance of the rotation number gives

rot(g) € {0, 1},

therefore g2 always has a fixed point. We will need an improved version of this
fact:

Lemma 6. Consider a faithful action of K on the circle, with Fix(f) # @.
Then Fix(f) C Fix(g?). As a consequence, for any connected component I of
S\ Fix(f) one has that Fix(g?) N1 is infinite.

Proof. By assumption, both f and g? have fixed points. Observe that the
subgroup Ko of K generated by f and g2 is isomorphic to K. In particular it
is amenable, and it preserves a Borel probability measure on S!, whose support
is contained in Fix(f) N Fix(g?), which is thus nonempty. As a consequence, we
have that the subgroup K, generated by f and g2 acts on the circle S! with
a global fixed point. Therefore the action of K, reduces to an action on the real
line (identified with the complement of a global fixed point), to which we can
apply Lemma 4. O
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4. Choice of generators

Consider the following one-parameter families of planar homeomorphisms:

a'(x,y) =(x+t,y),
b (x,y) =(x,y+1),
c'(x,y) = (x,y + tyo(x)),

where t € R and yp : R — R is the 1-periodic function such that

—4x+1 if x €[0,1/2),
(1) yo(x) =
4x —3 if x € [1/2,1).

We fix
o = al/”, B = b1/12’ y = c1/168

We also introduce the planar homeomorphism
§(x,y) = (8o(x), ),

where §p : R — R is the orientation-preserving homeomorphism of the real line
such that §o(x + 1/2) = 8;'(x) + 1/2 and

X if x €[0,1/3),

N =

bo(x) = {
2x — 3 if x €[1/3,1/2).

Observe that we also have the relation pp(x + 1/2) = —ypo(x). See Figure 1 for
the graphs of these two functions.

We let H = (o, B,7,8) denote the subgroup of Homeo(R?) generated by
these four homeomorphisms.

5. Properties

It is clear that the four generators of H display bounded displacement. More
precisely, one checks that

Is(x,y) — (x,y)]| <1/3 for every (x,y) € R? and s € {a, B, v, 8}.
Choosing then the identification

R? —» [-m/2,7/2)?
(x, y) — (arctan x, arctan y)
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Ficure 1
Graphs of yo (left) and &g (right)

we can see the four homeomorphisms as elements of the group Homeo(/?,d12)
of homeomorphisms of the square which fix the boundary (which is clearly
isomorphic to Homeo(D, dD)).

We first compute

Ix if x €[0,4/12),

(2) §(x)=qx -1 if x €[4/12,5/12),
4x —3 if x €[5/12,1/2).

We record the following basic but important properties:

e [ commutes with every other homeomorphism «,y, and §;

e oSpaS=y1;
o afa 6 =4"1;
o all the elements g := a¥§~2y82a~* (for k € Z) pairwise commute.

Observe that o'? commutes with both § and y, so we have gy = gry1» for
every k € Z. We also have the following key relation:

Lemma 7. We have the relation

11
1_[ gk = b1/24
k=0
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and thus
11
[1ek=
k=0

Proof. We set t = 1/168. We first check that

go(x,y) = §72y8%(x,») = (%,7 + tyo(5))

and therefore
gk (x,y) = a¥goa ¥ (x,y) = (x,y + tyo(83(x - rk‘z“)))
We deduce

3) ﬁgk = (x,y+ti;/o(8§(x—{‘—2)))-

k=0 k=0

Claim. For every x € R, we have
11
> n(Bx-%)) =7
k=0

Proof of Claim. Note that the function ¢(x) = YL, %o (82( — ﬁ)) is 1/12-
periodic and differentiable at every x € (0,1/12). Given x € (0,1/12), we write
x¢=x—% and yx = 82(x). Then

11
¢'(x) =Y 7o) () ().
k=0

Observe that:

e the derivative of yo is constant on both intervals (0,1/2) and (1/2,1),
which are preserved by §2;

e the derivative of 87 is constant on any interval of the form (£, %tL), k € Z.

Then, by close inspection of the values of these derivatives, by means of the

expressions (1) and (2), one finds that
Px)=—44-L+14+4)+4(d+1+4-)=0.

Therefore ¢ is constant and it is enough to compute its value at the point O:
4

#(0) =2((Z(—% + 1))—4- i3 +2) =7

k=1

(this can be done by evaluating the composition y 082 from the expressions (1)
and (2) of y, and 82, respectively). a
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After the claim and the expression (3), we have
11
1_[ gr = (x,y+71) = p7t = p7/168 _ p1/24 O
k=0

6. On actions on the real line

Proposition 8. For any faithful action of H on R and connected component 1
of R\ Fix(«), we have that Fix(8) N1 is infinite.

Proof. We let I C R be a connected component of R \ Fix(«). Observe that
Fix(a®) = Fix(a) for every k # 0. The relations a®ya™° = y~! and a%a0 = §~!
imply (by Lemma 4) that both y and & preserve I and have fixed points
inside /. This also implies that for every k € Z, the element g = a*¥§2y82a*
preserves / and has fixed points in /. We have already observed that the subgroup
A = (go,...,g11) < H is abelian. Applying Lemma 3 to the action of A on
I = R, by an inductive argument on the rank, we deduce that A admits a global
fixed point in /. By Lemma 7, we have B € A, so that B fixes a point in /.
As o and B commute, we actually see that B has infinitely many fixed points
in I. O

7. On actions on the circle

Lemma 9. For any faithful, orientation-preserving action of H on S', one has

Fix(B) # @.

Proof. As explained in Section 3, the relation a®ya=% = y~! implies that y? has
a fixed point, and so does every conjugate g,%. In terms of rotation number, this
gives rot(g7) = 0. Using Lemma 7, we get rot(f) = Y eo rot(g7) = 0 (recall
that the function rotation number is a homomorphism in restriction to amenable
groups). We conclude that f has a fixed point. O

1

Proposition 10. Consider any faithful action of H on S!' with Fix(a) # @. For
any connected component I of S!'\ Fix(a), we have that Fix(B) NI is infinite.

Proof. Given a faithful action of H on the circle, we deduce from the relations
abya=® = y~! and Lemma 6 that Fix(a) C Fix(y2) N Fix(6?). Therefore, every
g,% preserves any connected component I of S!\ Fix(a), and we conclude
as in Proposition 8, considering the abelian subgroup (g3,...,g?,), which
contains f. O
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8. Involution and conclusion

Next, let n(x,y) = (y,x) be the involution exchanging the two axes, and
define 7 = nyn and § = n8n. Observe that n normalizes Homeo(/2,d/2), and
that nan = B.

We shall first give a proof of Theorem 1, although it is a formal consequence
of Theorem 2.

Proof of Theorem 1. Let H = (a,B,y,8) be as above. Let I C R\ Fix(x) be a
connected component. After Proposition 8, there exists a connected component J
of R\ Fix(8) which is contained in /. On the other hand, applying Proposition 8
to the group H = (a, B,7.8), we deduce that for any faithful action of H on the
real line, for every connected component J of the complement of Fix(8) in R,
we must have that Fix(w) N J is infinite. From this, we conclude that there can be
no faithful action of the group G = (H, H) on R. Observe that by construction,
we have G < Homeo(/?2,91?). This proves Theorem 1. O

Proof of Theorem 2. First of all, we note that for Theorem 2, it suffices
to find a finitely generated subgroup G which does not act on the cir-
cle by orientation-preserving homeomorphisms. Indeed, all the generators
a,b’,y,&,?,g € Homeo(R?) admit a “square root” in Homeo(D,dD), that is,
an element whose square gives the generator. It is then enough to work with
the group G generated by the square roots, because for every homeomorphism
f :S! — S!, the square f? preserves the orientation, so that for any represen-
tation p: G — Homeo(S!), we will have the inclusion p(G) C Homeoy (S).
Now, for any faithful action of G on the circle, applying Lemma 9 to both
H and H, we deduce that both 8 and o have fixed points. Thus we can apply
Proposition 10 and conclude as for the proof of Theorem 1. O
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