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On James Hyde's example of non-orderable subgroup
of Homeo(Z), 3D)

Michèle Triestino

Abstract. In Ann. Math. 190 (2019), 657-661, James Hyde presented the first example

of non-left-orderable, finitely generated subgroup of Homeo(D, 3D), the group of homeo-

morphisms of the disk fixing the boundary. This implies that the group Homeo(Z), 3D)

itself is not left-orderable. We revisit the construction, and present a slightly different

proof of purely dynamical flavor, avoiding direct references to properties of left-orders. Our

approach allows to solve the analogue problem for actions on the circle.

Mathematics Subject Classification (2020). Primary: 37C85; Secondary: 37E05, 37E10,

37E20.
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1. Introduction

Let Homeo( D, 3D) denote the group of homeomorphisms of the disk D which
fix the boundary 3D. In [Hyd] James Hyde gave a bright proof of the fact that

Homeo(/J,9D) is non-left-orderable, solving a fundamental question about this

group: it is different, even at algebraic level, from the group of homeomorphisms
of the real line. Indeed, it is a classical fact (attributed to Conrad [Con]) that

a countable group is left-orderable if and only if it admits a faithful action

on the real line by orientation-preserving homeomorphisms, and by Burns-Hale
Theorem, a group is left-orderable if and only if all finitely generated subgroups

are; see Clay and Rolfsen [CR], In these terms, the result of James Hyde can be

stated as follows:

Theorem 1 (Hyde). There exists an explicit finitely generated subgroup G of
Homeo(D, 3D) which does not embed into the group of orientation-preserving
homeomorphisms of the real line Homeo+ (R.).
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Confirming the above-mentioned idea that Homeo(Z), 3D) owns a "higher-
dimensional algebraic structure", we extend the result of Hyde to actions on the

circle.

Theorem 2. There exists an explicit finitely generated subgroup G of
Homeo(D, 3D) which does not embed into the group of homeomorphisms of
the circle Homeo(§1).

This is done by rewriting the proof of Hyde in terms of one-dimensional

actions, with minor changes. Instead of the nice algebraic bounds used in [Hyd]
(which would correspond to bounds on displacement functions of elements in the

group), we use the commutation relations in the group defined by Hyde, and the

classifications of actions of the Klein bottle group. Note also that the group G

that we consider for Theorem 2 is slightly different (but it contains Hyde's group
as a subgroup).

2. Preliminaries on actions on the real line

In the following, all actions on the real line will be assumed to be by

orientation-preserving homeomorphisms, unless explicitly mentioned. The reader

who is familiar with groups acting on the real line can skip this part, as all
results presented here are classical.

It will be important to have a precise picture of possible faithful actions on R
of the groups

[fig I fgf~l g) and K (fig \ fgf~x g-1).

The group K is the classical Klein bottle group. Up to restrict the action to some

invariant interval, we can assume that our actions have no global fixed points.
In the following, we will write / and g for the generators of the groups Z2

and K, as above.

Denote by Fix(g) {x e R | g(x) x} the set of fixed points of g,
and observe that for any homeomorphisms / and g e Homeo+(R), one has

Fix(g) Fix(g-1) and Fix(/g/_1) /(Fix(g)). This implies that for any action

of either I? or K on the real line, the set of fixed points Fix(g) is preserved

by /•
Lemma 3. For any faithful action of either Z2 or K on the real line without

global fixed points, if Fix(g) ^ 0 then Fix(/) 0.
In other terms, for any action of either I? or K on the real line, if both

generators f and g have fixed points, then the action has a global fixed point.
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Proof. Assume by contradiction Fix(/) 0. Given a: e Fix(g), then {fn(x)}nez
accumulates on some point p e Fix(/). Observe that by / -invariance of Fix(g),
we have {/"(x)} c Fix(g). Moreover Fix(g) is closed, so we must also have

p e Fix(g). This gives a point p which is fixed by both / and g, and hence by
the whole group. This gives the desired contradiction.

In the case of the group K, the condition Fix(g) ^ 0 is always satisfied.

Lemma 4. For any action of K on the real line, we always have Fix(g) 0.
Moreover, one has the inclusion Fix(/) C Fix(g).

Proof We assume for contradiction Fix(g) 0, and without loss of generality we

can assume g(x) > x for every rel (otherwise we consider the inverse

Therefore gf~l (x) > f~1(x) for every x M. As / preserves orientation,
this implies fgf~x{x) > x for every x e R, and consequently the relation

fgf~l — g~l implies g~'(x) > x, which is in contradiction with our assumption.
The second assertion follows from the proof of Lemma 3.

We can now describe all possible faithful actions of either Z2 or K on the

real line without global fixed points, with the condition Fix(g) ^ 0. This is not

strictly needed for the rest of the text, but it helps the reader to make a picture
of the dynamics under consideration.

Lemma 5. Consider an action of either Z2 or K on the real line without global
fixed points, with the condition Fix(g) f 0. Then the action is C° conjugate to

an action obtained from the construction below.

Assume /(x) x + 1 or /(x) x — 1. Given x e M, consider the interval I
joining the points x and f(x). Given any orientation-preserving homeomorphism
h : I -* I, there exists a unique orientation-preserving homeomorphism g which

satisfies g|/ h and fgf~l ge, where e e {—1,+1} is chosen accordingly
to the group that is acting (e 1 in case of Z2 and e — 1 in case of K).

Proof. The fact that g is uniquely defined by the homeomorphism h : I -* I is

because one must have

g\f{I)=fnh^rn\fn{I)
after the relation in the group.

Reversely, by Lemma 3, we have that / has no fixed point and thus /
is C° conjugate to either xki+1 orxK>x—1. Take then any x e Fix(g),
and observe that also /(x) e Fix(g), so that the restriction g\j defines an

orientation-preserving homeomorphism of I, where I is the interval joining x
and /(x).
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3. Preliminaries on actions on the circle

We keep the assumption that actions preserve the orientation. Given an

orientation-preserving homeomorphism / : S1 -> S1, we denote by rot(/) e M/Z
its rotation number, which equals

rot(/)

for any / -invariant Borel probability measure p. We will use the following
classical facts (see, e.g., Ghys [Ghy]):

• rot(/) 0 if and only if / has a fixed point;

• the rotation number is a conjugacy invariant (that is, rot(hfh"1) rot(/z) );

• for any amenable group G, rot : G -» M/Z defines a group homomorphism
(in particular, rot(/") n rot(/)).

Given an action of K (f, g \ fgf~l g-1) on the circle, the conjugacy-
invariance of the rotation number gives

rot(g) e {0, |},

therefore g2 always has a fixed point. We will need an improved version of this
fact:

Lemma 6. Consider a faithful action of K on the circle, with Fix(/) f 0.
Then Fix(/) C Fix(g2). As a consequence, for any connected component I of
S1 \ Fix(/) one has that Fix(g2) fl I is infinite.

Proof By assumption, both / and g2 have fixed points. Observe that the

subgroup K0 of K generated by / and g2 is isomorphic to K. In particular it
is amenable, and it preserves a Borel probability measure on S1, whose support
is contained in Fix(/) D Fix(g2), which is thus nonempty. As a consequence, we
have that the subgroup Ko generated by / and g2 acts on the circle S1 with
a global fixed point. Therefore the action of K0 reduces to an action on the real

line (identified with the complement of a global fixed point), to which we can

apply Lemma 4.
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4. Choice of generators

Consider the following one-parameter families of planar homeomorphisms:

a'(x,y) (x + t, y)

b'(x,y) (x,y + t),
c'(x,y) (x, y + ty0(x)),

where tel and y0 : M —> M is the 1 -periodic function such that

[-4x + l if xe [0,1/2),

I

4jc — 3 if x e [1/2,1).
(1) Yo(x)

We fix

ß=bl'n, y c1/168.

We also introduce the planar homeomorphism

8(x,y) (S0(x),y),

where S0 : M -* M is the orientation-preserving homeomorphism of the real line

V

jx if x [0,1/3),

12x — I if x [1/3,1/2).

such that <5q(x + 1/2) S01(x) + 1/2 and

S0(x)

Observe that we also have the relation y0(x + 1/2) -yo(x). See Figure 1 for
the graphs of these two functions.

We let H — (a, ß, y, S) denote the subgroup of HomeotE2) generated by
these four homeomorphisms.

5. Properties

It is clear that the four generators of H display bounded displacement. More

precisely, one checks that

||s(x,)>) - (x, y)|| < 1/3 for every (x,y) e M2 and s e {a, ß, y, 8}.

Choosing then the identification

R2 -> [—7r/2,7r/2]2

(x,y) (arctan x. arctan y)
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Figure 1

Graphs of yo (left) and <5q (right)

we can see the four homeomorphisms as elements of the group Homeo(/2, 3/2)
of homeomorphisms of the square which fix the boundary (which is clearly
isomorphic to Homeo(D, 3D)).

We first compute

i

(2) S2(x)

if x e [0,4/12),

if x e [4/12,5/12),

4x — I if x e [5/12,1/2).

We record the following basic but important properties:

• ß commutes with every other homeomorphism a,y, and 8;

• a6ya~6 y~l ;

• a68a~6 8"1 ;

• all the elements gk := ak8~2y82a~k (for k e Z) pairwise commute.

Observe that a12 commutes with both 8 and y, so we have gk — gk+12 for

every k I. We also have the following key relation:

Lemma 7. We have the relation

11

ri«-bi/24
k=0
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and thus

n si=ß-
k=0

Proof. We set t 1/168. We first check that

go(x,y) S~2yS2(x,y) (x, y + ty0(S%(x)))

and therefore

gk(x,y) akg0a~k(x, y) (x, y + ty0(sjj(x - -fe

We deduce

11 / 11 \
(3) (*• > + (*-«))

k=0 V k=0 '
Claim. For every xel,we have

l>o(*o(*-n)) 7.

k=0

Proof of Claim. Note that the function £>(x) Xat=o yo^o(x ~~ fîi) 's 1/12-

periodic and differentiable at every x e (0,1/12). Given x 6 (0,1/12), we write

xk x - JÏ and yk &l{xk). Then

il
<p'(x) J2 Yo(yk)(ßl)'(xk).

k=o

Observe that:

• the derivative of y0 is constant on both intervals (0,1/2) and (1/2,1),
which are preserved by 8% ;

• the derivative of 8% is constant on any interval of the form k e Z.
Then, by close inspection of the values of these derivatives, by means of the

expressions (1) and (2), one finds that

<p'(x) -4 (4 • 1 + 1 + 4) + 4 (4 + 1 + 4 1) 0.

Therefore cp is constant and it is enough to compute its value at the point 0:

m 2((E(-è + 0) - * A+2) i
(this can be done by evaluating the composition y0 ° <5q from the expressions (1)
and (2) of yo and 8$, respectively).
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After the claim and the expression (3), we have

Y\gk {x,y + lt)=blt Z>7/168 Z>1/24.

k=0

6. On actions on the real line

Proposition 8. For any faithful action of H on M and connected component I
of M \ Fix(a), we have that Fix(/3) n I is infinite.

Proof. We let / c R be a connected component of 1 \ Fix(a). Observe that

Fix(a^) Fix(a) for every k ^ 0. The relations cr6ya~6 y_1 and a6Sa~6 <5_1

imply (by Lemma 4) that both y and 8 preserve I and have fixed points
inside I. This also implies that for every k e Z, the element gk ak8~2y82a~k

preserves I and has fixed points in /. We have already observed that the subgroup
A (go, • • • ,£Ti) < Fl is abelian. Applying Lemma 3 to the action of A on

I ^ M, by an inductive argument on the rank, we deduce that A admits a global
fixed point in /. By Lemma 7, we have ß e A, so that ß fixes a point in I.
As a and ß commute, we actually see that ß has infinitely many fixed points
in I.

7. On actions on the circle

Lemma 9. For any faithful, orientation-preserving action of H on S1, one has

Fix(j8) 0.

Proof. As explained in Section 3, the relation a6ya~6 y~1 implies that y2 has

a fixed point, and so does every conjugate g2k. In terms of rotation number, this

gives rot(g%) 0. Using Lemma 7, we get mt(ß') X^tLo rot0>jfc) 0 (recall
that the function rotation number is a homomorphism in restriction to amenable

groups). We conclude that ß has a fixed point.

Proposition 10. Consider any faithful action of H on S1 with Fix(cf) 0. For

any connected component I of S1 \ Fix(a), we have that Fix(/3) n I is infinite.

Proof. Given a faithful action of H on the circle, we deduce from the relations

a^yot"6 y~~' and Lemma 6 that Fix(a) c Fix(y2) fl Fix(<S2). Therefore, every

gk preserves any connected component I of S1 \ Fix(a), and we conclude

as in Proposition 8, considering the abelian subgroup (g^, g\f), which
contains ß.
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8. Involution and conclusion

Next, let r)(x,y) (y, x) be the involution exchanging the two axes, and

define y tjyr) and 8 r]8r]. Observe that rj normalizes Homeo(/2, 9/2), and

that par] — ß.
We shall first give a proof of Theorem 1, although it is a formal consequence

of Theorem 2.

Proof of Theorem 1. Let H — (a,ß,y,8) be as above. Let / c M \ Fix(a) be a

connected component. After Proposition 8, there exists a connected component J
of M \ Fix(yS) which is contained in I. On the other hand, applying Proposition 8

to the group H (a, ß. y, 8), we deduce that for any faithful action of H on the

real line, for every connected component J of the complement of Fix(yß) in M,
we must have that Fix(cc) n J is infinite. From this, we conclude that there can be

no faithful action of the group G {H, H) on M. Observe that by construction,

we have G < Homeo(/2, 3/2). This proves Theorem 1.

Proof of Theorem 2. First of all, we note that for Theorem 2, it suffices

to find a finitely generated subgroup G which does not act on the circle

by orientation-preserving homeomorphisms. Indeed, all the generators

a,ß,y,8,y,8 Homeo(M2) admit a "square root" in Homeo(Z), 3D), that is,

an element whose square gives the generator. It is then enough to work with
the group G generated by the square roots, because for every homeomorphism

/ : S1 -> S1, the square f2 preserves the orientation, so that for any representation

p : G -> HomeofS1), we will have the inclusion p(G) c Homeo+(§1).
Now, for any faithful action of G on the circle, applying Lemma 9 to both

H and H, we deduce that both ß and a have fixed points. Thus we can apply

Proposition 10 and conclude as for the proof of Theorem 1.
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