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On the discreteness of states accessible via
right-angled paths in hyperbolic space

Pablo Lessa and Ernesto GArcia

Abstract. We consider the control problem where, given an orthonormal tangent frame in
the hyperbolic plane or three dimensional hyperbolic space, one is allowed to transport
the frame a fixed distance r > 0 along the geodesic in direction of the first vector, or
rotate it in place a right angle. We characterize the values of r > 0 for which the set of
orthonormal frames accessible using these transformations is discrete.

In the hyperbolic plane this is equivalent to solving the discreteness problem (see
[Gil2] and the references therein) for a particular one parameter family of two-generator
subgroups of PSL;(R). In the three dimensional case we solve this problem for a particular
one parameter family of subgroups of the isometry group which have four generators.

Mathematics Subject Classification (2020). Primary: 30F35, 20H10; Secondary: 22E40.

Keywords. Fuchsian groups, Kleinian groups, discreteness problem.

1. Introduction

Imagine a robot which can move forward a fixed distance and rotate in place
a right angle. Which states are accessible for such a system from a given initial
position and orientation?

It is clear that, if placed on the Euclidean plane, the robot is constrained to
move on a square grid. The attainable states (position and orientation) for the
robot are the vertices of the grid and the four orientations parallel to the edges.

However, if we imagine the robot constrained to move on the surface a sphere,
it is simple to see that the accessible states may form either a finite or infinite
set, depending on the relationship between the distance the robot is allowed to
advance and the diameter of the sphere.

To formalize this consider the unit sphere S? centered at the origin in R?3.
Fixing any point p € §2 and unit tangent vector v at p to represent the initial
state of the robot, we may identify the space of possible states with the group
of rotations SO(3) via the mapping R +— (Rp, Rv).
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With this identification the set of accessible states corresponds to the subgroup
G, of SO(3) generated by the two elements R and A,, where R is the unique
rotation fixing p and rotating v a clockwise right angle, and A, is the unique
rotation advancing (p,v) a distance r along the geodesic (great circle) with
initial speed v.

In particular, the set of accessible states is finite if and only if G, is a finite
subgroup of SO(3).

The finite subgroups of SO(3) are well known (see for example [Arm, Chapter
19]) and their classification implies that G, is discrete if and only if r = nx/2
for some integer n.

In what follows we answer the above question in the hyperbolic plane H?2,
and also in three dimensional hyperbolic space H?3.

1.1. Statements. Fix an orientation on H? and let Isom™(H?) be its group
of orientation preserving isometries. As in the spherical case we fix an initial
point p € H? and a unit tangent vector v € T,H? which represent the initial
position and orientation of the robot. The set of states is identified with the group
Isom™ (H?) via the mapping g — (g(p), Dpg(v)).

Let R be the clockwise rotation by a right angle fixing p, and A, be the
translation of distance r along the positive direction of the geodesic with initial
condition v.

The set of accessible states is the orbit of v under the group G, generated
by R and A,. For r > 0 this set is always infinite, but we are interested in
whether it is discrete or not.

We will use acosh(x) = log(x + +/x2—1) to denote the inverse hyperbolic
cosine function.

Our main result is the following:

Theorem 1. Let rs < rg < --- be the sequence where r, = acosh(l + 2cos(3L))
is the side of the (unique up to isometry) regular n-gon with interior right angles
in H?, let roo = nEToo rn = acosh(3), and let G, be the group generated by R
and A, (as defined above).

Then G, is discrete if and only if r € {r, : n > 5} U [ro0, +00). For all other
values of r the group G, is dense in Isom™ (H?).

Using the Poincaré Polygon Theorem we will show in Section 3.1 that for
n > 5 the group G,, acts with a fundamental domain given by a triangle with
angles n/4,7/4,2n/n.

In Section 3.2 we will show that when r > ro, the group G, preserves a
embedded tree of degree 4, which in particular shows that G, is discrete.
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In Sections 3.3 and 3.4 we show that in the remaining cases G, is not discrete,
using Jgrgensen’s inequality. This implies that G, is dense in these cases by a
well known dichotomy (see Proposition 7, and [Sul, Section 1]).

We will extend Theorem 1 to three dimensional hyperbolic space H?> as
follows.

Let Isom™(FI®) be the group of orientation preserving isometries of 3.
Fix a point p € H? and an orthogonal tangent frame v;,vp,vs based at p.
Suppose A, is the isometry which transports the given frame a distance r along
the geodesic with initial condition (p,v;) while Rj,, Rz3, R3; are 90° rotations
fixing p in the direction of the planes generated by (v, v2), (v2,v3), and (vs, v1)
respectively.

Theorem 2. The subgroup G, of Is0m+(]I-]I3) generated by Ay, Ri2, Ra3, R31 is
discrete if and only if r € {r, :n > 5} U [ro, +00) Where r, are defined as in
Theorem 1. For all other values of r the group is dense in Isom™ (H?3).

Furthermore, G5 is cocompact, G, is not cocompact but has finite covolume,
and Gy, has infinite covolume for all n > 7.

The proof of Theorem 2 rests on Theorem 1, Andreev’s theorem (see [RHD]),
and the Poincaré Polyhedron Theorem for reflexion groups (see [dIH]). It is given
in Section 4.

1.2. Relationship to the existing literature. The discreteness problem is the
problem of determining whether a finitely generated group of isometries of
hyperbolic space is discrete (see [Gil2] and the references therein). Both of
our results are solutions to this problem for particular one parameter families of
subgroups of isometries in H? and H? respectively.

The Gilman—Maskit algorithm (see [Gill] and [GM]) gives a finite sequence of
steps to determine whether a two generator subgroup of Isom™ (H?) is discrete
or not. Theorem 1 gives additional information on the structure of the set of
parameters for which the algorithm will yield one result or the other. An illustration
of the arguments of [Gill] applied to one parameter considered here is given in
Section 5.2.

It was shown in [Kap] that no real number algorithm exists (in the Blum—
Shub-Smale computability model) for determining whether a finitely generated
group of isometries of H? is discrete or not.

The results of [Gru] and [CC] are related to a generalization of the family of
groups G, where the rotation R has order 2N for some N > 2 (instead of 4
as in Theorem 1). For further discussion see Section 5.1.
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In the context of Theorem 1, the Poincaré polygon theorem (see, for exam-
ple, [dRh] or [Mas]) directly implies that G,, is discrete for n = 5,6,... and
preserves a tiling by regular polygons.

The Poincaré theorem also holds in higher dimensional hyperbolic space
(see [EP]) and is sufficient to establish that G,; is discrete and cocompact
in the context of Theorem 2. However a simple argument communicated to us
by Roland Roeder, which we give in Section 4 shows that the corresponding
compact polyhedra for rg,r7,... do not exist in H3. We will show, however,
that an infinite volume polyhedra corresponding to each r, for n = 6,7,... does
exist, and apply the Poincaré polyhedron theorem (specifically the version for
reflexion groups given here [dIH]) to it to obtain Theorem 2.

In the context of both Theorem 1 and Theorem 2, when r > ro the group G,
contains a finite index Schottky group and therefore its behavior is well understood
in the literature. For example, in the two dimensional case, the results of [CC]
imply that G, leaves invariant a regular tree of degree N which is bi-Lipschitz
embedded in the hyperbolic plane. This case is also covered by results on finite
valued matrix cocycles in [ABY]. At the critical distance ro, there is still an
embedded tree preserved by G,. but the embedding is no longer bi-Lipschitz.

A well known argument (see, for example, [Sul, Part 1]) implies that in both
the two and three dimensional cases, for each r > 0 either G, is discrete or
dense in the corresponding group Isom™ (H?) or Isom™ (H?). We give the details
of this argument for H? in Proposition 7. This implies the dichotomy for H?3,
as we explain at the beginning of Section 4.

The Margulis lemma (see, for example, [BGS, Theorem 9.5]) implies that G,
is dense for all » small enough.

Results of Benoist and Quint imply a discreteness vs denseness dichotomy for
G, when acting on any finite area quotient of H? as discussed in [Led].

Software implementations of a ‘robot’ (usually called a ‘turtle’ in this context)
receiving commands to move forward or turn in place by given amounts date
back to the LOGO programming language [AdS]. Some implementation details
and exploration of the hyperbolic case is given in [SCMT]. A rudimentary but
functional software implementation of a hyperbolic turtle has been made available
by one of the authors [Les2]. Several of the figures in this article were prepared
with the software available here [Lesl].

2. Preliminaries

We now recall some basic facts on hyperbolic geometry which will be used
in what follows, see [Bea] for a general reference on this subject.
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The hyperbolic plane H? is the unique, up to isometry, complete simply
connected surface with curvature —1. Concrete manifolds with explicit metrics
satisfying these properties are called models of the hyperbolic plane.

The upper half-plane model is the space {z € C : Im(z) > 0} endowed with

the Riemannian metric ;lf(dxz + dy?). The orientation preserving isometries in
this model are the Mdebius transformations of the form

az+b

Z
cz+d

where a,b,c,d € R and ad —bc = 1.

The disk model is the space D = {z € C : |z|] < 1} with the metric
(T;Fﬁj)z(dxz + dy?). Figures 1, 2, 3, 4, and 7 below illustrate the disk
model. An isometry between the upper half-plane and disk model is z —

z—i

z+i "

In both of these models the hyperbolic geodesics are Euclidean straight lines
or circles which are perpendicular to the boundary. In particular there is a unique,
globally minimizing, geodesic between any pair of points in H?2.

An orientation preserving isometry of H? is called elliptic, parabolic, or
hyperbolic, according to whether it fixes a single interior point, a single boundary
point, or two boundary points, respectively, in the disk model.

Elliptic isometries are also called rotations, they act as rotations in the tangent
space of their fixed point in H?. An element

N cos(f) —sin(f)
sin(d) cos(d)

) € PSL,(R)

acts as a rotation of angle —26 (i.e., a clockwise rotation) in the half-plane
model.

Hyperbolic isometries are also called translations, they fix a unique geodesic in
H? and act as a translation of a certain distance when restricted to this geodesic.
An element

et 0
+ ( 5 e_,) € PSL,(R)

acts as a translation of distance 2¢ in the upper half-plane model.

From the Gauss—Bonnet theorem and explicit construction in one of the models
shows that there exists a geodesic triangle in H? with interior angles «,f,y in
H? if and only if o + B + y <, and in this case the triangle is unique up to
isometries.
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In the hyperbolic plane given the length of two sides of a triangle and the
angle between them the length of the third side is determined by the hyperbolic
law of cosines

cosh(c) = cosh(a) cosh(b) — sinh(a) sinh(b) cos(y)

where a,b,c are the lengths of the sides opposite to angles «, 8, y respectively.

As in spherical geometry, in H? two angles of a triangle and the length of
the side between determine the third angle (in Euclidean geometry the length of
the side plays no role in this relation). In the hyperbolic case the relation is given
by the second hyperbolic law of cosines which states

cos(y) = —cos(a) cos(B) + sin(a) sin(B) cosh(c).

Let Isom™ (H?2) be the group of orientation preserving isometries of H? endowed
with the topology of pointwise convergence (which in this case is equivalent to
locally uniform convergence because all functions are uniformly Lipschitz). The
upper half-plane model shows that Isom™ (H?) is homeomorphic to PSL,(R)
with the topology of pointwise convergence coming from SL,(R).

A Fuchsian group is a discrete subgroup of Isom™* (H?) (i.e., a subgroup
which is discrete as a subset with respect to the given topology).

Given a subgroup G of Isom™ (H?) if the orbit Gp is not discrete for some
p € H? then G is not discrete. On the other hand if G has a finite index
subgroup H which is discrete it follows that G is discrete.

From the map z + Z in the disk model, one obtains that given a geodesic in
H? there is a unique orientation reversing isometry that acts as the identity on
the geodesic. We call this the axial symmetry with respect to the geodesic.

If 01,0, are axial symmetries along two geodesics then their composition ;07
yields, a rotation of angle 26 if the geodesics meet at an angle 6, a parabolic
isometry if the geodesics do not intersect but the distance between them is zero,
and a translation of distance 2¢ if the geodesics are at a positive distance ¢.

3. Proof of Theorem 1

We fix in this section the notation introduced preceding the statement of
Theorem 1. In particular, recall that we have fixed a point p € H? and a unit
tangent vector v based at p. We let A, be the translation of distance r in
direction v along the geodesic with initial condition v and R be the clockwise
rotation by 90° fixing p. The group G, is generated by A, and R.
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3.1. Tilings. We will now discuss the values of r for which G, is discrete and
preserves a tiling by regular polygons. Our result will be a consequence of the
Poincaré Polygon Theorem (see [dRh] or [Mas]) which we now state in a version
sufficient for our purpose:

Theorem 3 (Poincaré Polygon Theorem). Suppose that P is a compact polygon
in H? with an even number 2N of sides which are oriented so that each vertex
of P is the endpoint and starting point of some edge.

Divide the edges of P into N pairs (s1,t1),...,(SN,tn). Suppose that for
each pair of sides (si,t;) an orientation preserving isometry o; is given such
that the interior of oi(P) is disjoint from P and such that o;(s;) = t;.

If a vertex p is the starting point of an edge s; we define o;(p) as its
successor, if on the other hand p is the starting point of an edge t; we define
o, '(p) as its successor. An elliptic cycle is the complete orbit of a vertex under
the successor mapping.

If the sum of interior angles among the vertices of each elliptic cycle is 2r/k
for some natural number k (depending on the cycle) then the group generated
by o1,...,0N is discrete, the translates of P under this group cover H, and
no two translates of P by distinct elements of the group intersect at an interior
point.

The conclusions of the above theorem can be restated by saying that P is a
fundamental domain for the group generated by o1,...,0n.

A geodesic triangle with interior angles /4,7 /4 and 2z/n (where n is a
natural number) exists in H? if and only if

JT+71'+2R'<”
4 4 n

which implies n > 5.

We consider such a triangle 7,, with a vertex at p and edges in directions v
and w forming a clockwise angle of /4, and such that the edge in direction v
is opposite to the interior angle 2z /n.

By the second hyperbolic law of cosines, the length of the side with direction

v has length
2,
r, = acosh (1 + 2cos (—’;—T-)) .

Notice that the sequence r, is increasing, we define

oo = lim r, = acosh(3).
n——+oo
Proposition 4. For each n = 5,6,... the group G,, is discrete and T, is a

fundamental domain.
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Ficure 1
The tiling corresponding to r = rs

Proof. Let m be the midpoint of the geodesic segment [p, A,,(p)], and let a
and b be the other two sides of 7,, where a has and endpoint at p.
The isometry o7 = A4,,R? fixes m and sends the geodesic segment [p,m] to
[m,Ar,(p)]. The isometry o, = A,, R maps a to b fixing their shared endpoint.
By Theorem 3 the group generated by o, and o, is discrete and has 7, as
a fundamental domain. Since this group coincides with G,, this establishes the
claim. O

3.2. Trees. We will now discuss the case where the group G, is discrete
and preserves and embedded regular tree of degree four. This happens exactly
when r > r.

For this purpose let B, = RA,R™! and H, be the group generated by A,
and B,.
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FiGURE 2
The embedded tree for r = roo + 0.05

Also, we define the four closed half-planes N, S, E, W (for North, South,
East, and West respectively) by

N = {q : dist(g, p) > dist(q, B; ' (p))},
S = {q : dist(q, p) = dist(q, B;(p))},
E = {q : dist(q, p) = dist(q, 4-(p))}.

W = {q : dist(q, p) > dist(q, 4; ' (p))},

where dist(a, b) is the hyperbolic distance between a and b.
We define the central region C = H\(NUSUE UW).
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Proposition S. The regions N, S, E, W are pairwise disjoint if and only if r > reo.
In this case H, is discrete and freely generated by A, and B,. Also, G, is
discrete, the stabilizer of C in G, is generated by R, and G, preserves a
geodesic embedding of the regular tree of degree four.

Proof. Without loss of generality assume the regions N and E intersect. Let x, y
be the closest points to p in N and E respectively. Observe that the geodesic
segments [p,x] and [p, y] have length r/2 and meet at a right angle at p.

If NN E # @ then there is an intersection point z which is in the boundary
of both regions and is equidistant from x and y.

Consider the triangle 7' with vertices p,x,z and let « be the interior angle
at z. Notice that the interior angle at x is n/2 and at p is n/4 so that
0 <a < /4. By the second hyperbolic law of cosines one has

(1) r = 2acosh(v/2cos()) < 2acosh(v2) = acosh(3) = re.

Conversely, if the inequality above is satisfied a triangle with angles 7/2,7/4,«
exists in H?2. Placing two such triangles with right angles at x and y respectively,
sharing a vertex at p and a side along the perpendicular bisector of x and y it
follows that N and E intersect at a common third vertex z.

Suppose now that r > ro, so that N, S, E, W are pairwise disjoint.

Notice that A,(H?>\ W) C E ,A;Y(H?\ E) c W, B,(H>\ N) C S, and
B7Y(H?\ S)C N.

This shows that if X is any non-trivial reduced word in 4,, 4;!, B,, B;’! (i.e.
a finite product where no element is followed by its inverse) then X(C)NC = @.
Hence the group H, is freely generated by A, and B, (this is an instance of
the well known ping-pong lemma, see for example [Kob]) and is discrete since
the orbit of p, and the stabilizer of p is trivial.

Notice that G, is generated by H, and R, and RH,R™! = H, (it suffices
to check RA,R™' € H, and RB,R™' € H,). Hence, H, is a normal subgroup
of G-

Furthermore, since R(C) = C it follows that if X,Y € H, and XR' = YR/
then X =Y and i = j (mod 4). This shows that H,, H,R, H,R*> and H,R3
are pairwise disjoint. It follows that their union must be G, and [G, : H,] = 4.
If XR' is an element of G, we have that XR'(C) = X(C) = C if and only if
X is the identity, so the stabilizer of C in G, is generated by R as claimed.

Let x, y,z, w be the closest points to p in the regions N, S, E, W respectively.
The set {p,x,y,z,w} is R-invariant and the union of geodesic segments S =
[p, x]U[p, y]U[p, z]U[p, w] intersect pairwise only at p. Notice that X(S)NS # @
for a non-identity element X € H, if and only if X € {A,,A,‘I,B,,Br‘ I in
which case the intersection is a single point from the set {x, y,z,w}. It follows
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that the H,-orbit of § is a tree of degree four (the Cayley graph of H,) with
all edges of length r, and is invariant under G, as claimed. O

3.3. Irrational rotations. In this section and the following one we will show
that the only values of r > 0 for which G, is discrete are given by Propositions 4
and 5. We will also show that for all other values of r the group G, is dense
in Isom™ (H?).

FIGURE 3
An illustration of 100,200 and 300 iterations of
A, R applied to a segment of length r for r = rp5

For this purpose the first important observation is the following:
Proposition 6. The isometry A,R is elliptic if and only if r < reo.

Proof. We repeat the argument from the proof of Proposition 5.

Let o, be the axial symmetry (orientation reversing isometry which is the
identity along a geodesic) with respect to the geodesic passing through p in
direction perpendicular to v.

Define o7 = A,,/zorzAr‘/l2 and notice that A, = 0103.

Letting o3 be the symmetry with respect to the geodesic passing through p
in a direction 45° clockwise from v, notice that R = 003.

To conclude observe that AR = 07020203 = 0103 is elliptic if and only if
the geodesics fixed by o; and o3 intersect. If this happens there exist a triangle
with a side of length r/2 adjacent to angles 7/2 and n/4. By the second law
of cosines (see Equation 1) this happens if and only if r < ry. O

The following well known argument (see [Sul, Section 1]) shows that if G,
is not discrete then it is dense in Isom™ (H?2). In particular, this happens if A, R
is elliptic of infinite order.

Proposition 7. For each r > 0 either G, is discrete or dense in Isom™ (H?).
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Proof. We use the Poincaré model where H? is identified with the unit disc
D ={zeC:|z] <1} and Isomt(H?) with the group M of complex Mdobius
transformations preserving D.

Let S be the closure of G, in M and S, the connected component of the
identity in S. Notice that Sy is normal in S and is a connected Lie subgroup
of M.

If So has dimension 0 then S (and therefore G,) is discrete. We suppose
from now on that this is not the case.

If Sy is a proper subgroup of M then there is a non-empty set F with at
most two points in the closed disk D such that Sy is the set of elements in M
fixing all points in F.

Since Sy is normal in S it follows that all elements of S permute the points
in F.

However, it is immediate that no finite set in D is invariant by both A4, and
B, = RA,R™'. Therefore So = M and G, is dense as claimed. O]

3.4. Non-primitive rotations. We extend the definition of r, used in Proposi-
tion 4 to all ¢+ > 4 with the formula

r; = acosh (1 + ZCOS(ZTJT)) .

It is simple to see that ¢ +— r; is an increasing homeomorphism from (4, +00)
to (0,r«) and that A,, R is a rotation of angle 2x/t.

If ¢ is irrational then by Proposition 7 the group G,, is dense in Isom™ (H?).
Proposition 4 shows that if ¢+ =5,6,7,... then G,, is discrete.

It remains to discuss the case t = p/q > 4 where p and ¢ are coprime and
g > 1. We will show that G,, is dense for these values of .

For this purpose we will use Jgrgensen’s inequality (see [Joe]) applied to well
chosen elements of G, .

Theorem 8 (Jgrgensen’s inequality). Let G be a non-elementary Fuchsian group
generated by two elements X,Y € PSL,(R), then

|tr(X)? — 4] + | (X, Y]) - 2| = 1,

where tr(Z) denotes the trace of a matrix Z and [X,Y] = XYX7'Y~! is the
commutator of X and Y.

Proposition 9. If t = p/q > 4 is a reduced fraction with q > 1 then G,, is
dense in Isom™ (H?).
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FiGure 4
A non-simple right angled polygon with sides of length r = rg9/2

Proof. We use the upper half plane model where H? is identified with {z € C :
Im(z) > 0}. We fix p=1i and v =i (the unit tangent vector pointing upwards
with base point i ). The group Isom™ (H?) is identified with PSL,(R) where

a b
c d
az+b

corresponds to the isometry z > 22 ==
With this identification we have

e’z 0 1 (1 -1
- R=— .
Ar ( 0 e"/z)’ V2 (1 1 )

In general if Ry is the matrix corresponding to the clockwise rotation of angle
6 fixing p one has tr(R) = 2cos(f/2). If T is the matrix corresponding
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to a translation along a geodesic which passes through p then tr(7) =
2 cosh(dist(p, T(p))/2).

Let o be the fixed point of A, R. The triangle with vertices p,o, Ap has
angles w/4,7/4,2n/t so that by the second law of cosines one has

1 + cos(2x/t)
sin(27/t) ) '

a = dist(p, 0) = acosh (

Notice that, because ¢ = p/q, for some integer k one has that X = (4, R)* is
a rotation of angle 2x/p fixing o.

We will apply Jgrgensen’s inequality to X and R?. For this purpose notice
first that

|tr(X)? — 4| = |4cos(ir/ p)? — 4| = 4(1 —cos(x/ p)?) = 4sin(x/p)>.
We now notice that
[X,R?] = XR2X'R2 = (XR’X"HR?

is the composition of a central symmetry (i.e., a 180° rotation) centered at p,
and a central symmetry centered at X(p). It follows that [X, R?] is a translation
of distance 2dist(p, X(p)) along the geodesic passing through p and X(p).

This implies that tr([X, R?]) = 2cosh(dist(p, X(p))). Since p and X(p) are
at distance a from o and the segments [p,0] and [X(p),o] form an angle of
2r/p by the law of cosines one has

tr((X,R*]) -2 = 2(cosh(dist(p, X(p))) — 1)
— 2((:osh(a)2 — sinh(a)? cos(27/ p) — 1)
2(1 - cos(2n/p)) sinh(a)?

= 2(1 —cos(n/p)* + sin(n'/p)z) sinh(a)?
= 4sin(rr/ p)? sinh(a)?.

From this we obtain
|tr(X)? — 4| + |tr([X, R?]) — 2| = 4sin(n/ p)? cosh(a)?
7\2 1 + cos(2£2) 2
= 4sin (—) ——# .
b4 sin( > )

Denote the right hand side above by f(p,¢). and notice that if ¢ > 2 and g > 4
then f(p,q) < f(p,2). So it suffices to show that f(p,2) < 1 for all integers
p with p/2>4 (so p>9).
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Hence, setting x = =/ p it suffices to show that

(1+ c:os(4x))2
sin(4x)?2

4sin(x)? <1,

when 0 < x < r/9. We will show that, in fact, the above inequality holds when
x € (0,7/4).
Reordering and taking square roots, we must prove that
sin(4x)
sin(x) °

2(1 + cos(4x)) <

which applying the double angle formulas is equivalent to

2 sin(2x) cos(2x)

2(1 2x)? —sin(2x)?) = 4cos(2x)?
(1 + cos(2x)” —sin(2x)?) = 4cos(2x)* < )
For x € (0,7/4) one has that cos(2x) is positive, so the above is equivalent to

sin(2x)
sin(x) ’

2cos(2x) <

which using the double angle formula for sin(2x) yields

2 sin(x) cos(x)
sin(x)

which holds for all x € (0,7/4). [

2cos(2x) <

= 2 cos(x),

4. Proof of Theorem 2

Let p,vi,va,v3, Ay, R12, R23, R3; be as defined preceding the statement of
Theorem 2.

If r ¢ {ry} U[reo, +00) then considering the subgroups generated by A,, Ri»
and A,, Rp; respectively and applying Theorem 1 one has that G, is dense in
the set of isometries of two perpendicular geodesically embedded copies of H?
in H3.

It follows that, given any point ¢ € H?3, the closure of G, contains the
rotations fixing g with axis perpendicular to the two aforementioned hyperbolic
planes. This implies that the closure of G, contains all rotations fixing ¢ and
therefore that G, is dense in Isom™ (H?) in all these cases.

It remains to show that G, is discrete for all r € {rs,rg,...} U[reo, +00).

The same ping-pong argument given in the proof of Proposition 5 above (using
six instead of four regions) yields that G, is discrete if r > ro.
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Lemma 10. If r > ro then G, is discrete and preserves an embedding of the
regular tree of degree six.

Proof Let Ty = A,,T» = R124,R7}, Ts = R314,R3}, and for i = 1,2,3 let
= {q : dist(¢, p) = dist(q, Ti(p))}, and S; = {q : dist(q, p) > dist(q, ;"' (p))}.

We claim that the six regions Ni, Sy, N2, S»2, N3, S3 are disjoint if and only
if r>re.

To establish the claim assume, without loss of generality (since one may
permute and take the inverse of the transformations 7;), that Ny N N, # @ and
let q, e NyN Nj.

Let g be the orthogonal projection of ¢’ onto the plane P containing p
and tangent vectors v, v, (defined preceding the statement of Theorem 2). The
triangles with vertices (p,q,q’), (T1(p),q.q’) and (T2(p),q,q’) have a right angle
at ¢, and share the side joining g and ¢’. Since dist(¢’, 7;(p)) < dist(¢’, p) for
i = 1,2 it follows that dist(g, T;(p)) < dist(g, p) as well. Therefore g € Ny N N;.

Since the group generated by A, and R;, preserves P, it follows from
Proposition 5 that Ny NP and N, N P are disjoint if and only if r > ro. Hence
N; and N, are disjoint if and only if r > ro as claimed.

Notice that T;(H? \ Si) C N; and T7Y(H3\ N;) C S; for all .

Letting C = H?3\ U (N; US;) this implies that if X is any non-trivial reduced

word in T1,T T2,T T3,T_1 then X(C) N C = @. Hence the group H,
generated by T, 7,, T3 is free and discrete.

We now claim that H, has finite index in G, and therefore G, is also
discrete.

To see this let S be the group generated by R;», R23, and R3;. Notice that
S is finite and in fact |S| = 24.

One has that G, is generated by H, and S, and RH,R™! = H, for all
R € § (it suffices to check this for the generators). Hence, H, is a normal
subgroup of G,.

Furthermore, since R(C) = C for all R € § it follows that if X,Y € H, and
XR; = YR, with R{,R, € § then X(C) = Y(C) and therefore X = Y. This
shows that H, R, and H, R, are disjoint, and it follows that [G, : H,] = |S| = 24
as claimed.

Notice furthermore that g(C) = C for g € G, if and only if g € S.

To conclude we now show that the action of G, preserves a tree of degree
SiX.

For this purpose for each i let n;,s; be the closest points to p in the

regions N; and S; respectively. The set {p} U | {n;,s;} is S -invariant and the
i=1
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3
union of geodesic segments A = | J[p,s;] U [p,n;] intersect pairwise only at p.
i=1

Notice that X(A) N A # @ for a non-identity element X € H, if and only if
X € {Th, 7Y, T2, T;7}, T3, T; 1} in which case the intersection is a single point
from the set {ny,s1,n2,52,n3,53}. It follows that the H, -orbit of A is a tree of
degree six (the Cayley graph of H,) with all edges of length r, and is invariant
under G, as claimed. O

We will now discuss the cases where r =r, for n =5,6,...

Lemma 11. For all n > 5 the group G,, is discrete. The group G,5 is cocompact,
G Is not cocompact but has finite covolume, and G, has infinite covolume for
all n>17.

To prove the result we will construct polyhedral tilings of H? which are
preserved in each case. Only in the case r = rs are the polyhedra compact.

A finite sided polyhedron with sides which are regular n-gons with interior
right-angles, and all dihedral angles equal to 90°, cannot exist if n > 6. To see
this we give an argument communicated to us by Roland Roeder.

Suppose such a polyhedron exists for some n, let V, E, F be the number of
vertices, edges, and faces respectively. Because the dihedral angles are non-obtuse
each vertex is the intersection of exactly three faces by [RHD, Proposition 1.1], so
V =nF/3. Since each edge is the intersection of two faces one has £ =nF/2.
Substituting this into Euler’s polyhedron formula we obtain

6_
V—E+F=(f—f+1)F= "

3 2

F =2,

It follows that n < 5 from which n = 5 is the only possibility in H3. We now
show that this possibility actually occurs.

Lemma 12. There exists a convex hyperbolic dodecahedra C whose faces are
regular right-angled hyperbolic pentagons.

Proof. By Andreev’s theorem [RHD, Proposition 1.1], there exists up to isometry
a unique hyperbolic dodecahedron C such that the angle between any two faces
at a shared edge is 90°.

It follows (for example from [RHD, Proposition 1.1]) that all the interior angles
of each face are also right angles. Hence, all faces are regular pentagons with
interior right angles and their side length is rs. ]

We will now show that, if n = 6,7,..., gluing hyperbolic n-gons at a right
angle along each edge one bounds an infinite volume convex polyhedra in H3.
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Lemma 13. For each n > 6 there exists an infinite volume convex polyhedra
in H3 whose faces are regular n-gons with interior right angles (contained in
a totally geodesic embedded hyperbolic plane), any two intersecting faces share
a side and intersect at a right dihedral angle along this side, and exactly three
sides meet at each vertex.

Proof. We will prove the case r = rg separately. See Figure 5 for this case.

Consider the upper half space model of hyperbolic space. On the boundary,
take a tiling by regular (Euclidean) hexagons such that the distance between the
centers of neighboring hexagons is 2. At the center of each hexagon consider a
Euclidean sphere of radius +/2. The intersection of each sphere with the upper
half space is a geodesically embedded copy of H?. Furthermore, the copies
corresponding to neighboring hexagons intersect at a right angle. The part of
each half sphere which is not contained in any other is a regular hyperbolic
hexagon with interior right angles and exactly three of these meet at each vertex.

We define C as the region bounded by the constructed hexagons which does
not accumulate on the boundary plane in this model. Since C contains a horoball
it has infinite volume. In this case, and only for n» = 6, the polyhedra C has a
single limit point on the geometric boundary of H? (the point corresponding to
oo in the upper half space model).

Suppose now that r = r, for some natural number n > 7. Since + + 1 <1
there exists a tiling of H? by regular (i.e. all sides and interior angles are equal)
n-gons with exactly three meeting at each vertex.

Consider a totally geodesic embedding H of H? into H?3. Tile H as described
above. Let x,y € H be neighboring vertices in the tiling and consider unit speed
geodesics «, B perpendicular to H at «(0) = x and B(0) = y respectively.
Assume furthermore that «(t) and B(t) are on the same side of H for all 7.

Let s, be the length of the side of the hyperbolic regular n-gon with interior
angles of 2w /3. Direct calculation shows that s, < ry,.

The distance between «(¢) and B(t) has minimum s, at ¢t = 0 and goes to
infinity when ¢t — +o00. Therefore, there exists 79 > 0 such that this distance is
exactly r,.

For each pair of vertices as above let a(tp), B(to) be vertices of the polyhedron
to be constructed, and the geodesic segment between them be a side. The geodesics
o, B are chosen so their positive direction is always the same fixed component
of the complement of H in H?3.

Notice that the vertices and sides constructed from the tiling on H are
equivariant under the group of isometries of H?® which preserve the tiling and
preserve each connected component of the complement of H .
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In particular, considering the order n rotation along the geodesic perpendicular
to H at the center of a tile in H, one sees that the vertices constructed from
those of the given tile are in a totally geodesically embedded hyperbolic plane
in H3 which is perpendicular to the axis of this rotation.

Hence, we may define a face of the polyhedron by considering this plane, and
we have shown that it is a hyperbolic regular n-gon with interior right angles.

Since exactly three faces meet at each vertex, and the interior angles of all
faces are right angles, it follows that the dihedral angle between faces sharing an
edge is also a right angle.

Define C as the component bounded by these faces which contains H . Since
C contains a half space it has infinite volume. O

Using the polyhedra of Lemma 13 the discreteness of G, follows from the
Poincaré theorem for reflexion groups [dIH, Chapter 3] and a simple algebraic
argument.

Proof of Lemma 11. Fix n and let C be the polyhedron given by Lemma 13.

We may assume that the initial orthonormal frame is placed at a vertex of C
and that the unit vectors in the frame point in the direction of the incident sides
meeting at this vertex.

Let S be the group generated by the set of reflexions with respect to the faces
of C. By the Poincaré Polyhedron Theorem for reflexion groups [dIH, Chapter 3]
the group § is discrete and C is a fundamental domain of its action.

On the other hand the group G of isometries of H? which stabilizes C is
also discrete because the distance between distinct faces of C is bounded from
below.

Observe that gSg~! = § for all g € G so that the group generated by G
and S coincides with SG, the set of elements of the form sg for some s € S
and g €G.

We claim that the group SG is discrete.

To see this suppose that sigx is a sequence of elements in this group
converging to the identity. One has si(gx(C)) = sx(C) and since C is
fundamental domain for § it follows that s; is the identity for all k£ large
enough. However since G is discrete it follows that gi is also the identity for
all k& large enough. Hence, SG is discrete as claimed.

To conclude it suffices to show that G, C SG.

Recall that the initial point p is a vertex of C and the starting orthonormal
frame vectors vy, vz, v3 point in the direction of the sides containing p. Hence
if R is any of the rotations Rj;, R>3, R3; one has that R(C) shares a common
face with C. Hence choosing s € S to be the symmetry along that face one has
SR € G and therefore R € SG.
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Similarly, because v, and v3 belong to totally geodesically embedded
hyperbolic planes containing the side in direction v;, one has that A,(v;) and
A,(v3) are in the direction of two the sides containing A,(p) other than the
geodesic segment [p, A.(p)]. Hence, A,(C) shares the face containing those two
directions with C. Once again taking s to be the reflexion along this face one
obtains A4, € SG.

This concludes the proof that G, C SG from which it follows that G, is
discrete.

We will now discuss the covolume of G,, for n > 6.

Letting n = 6 notice from Lemma 13 that there is a unique boundary point
& which is an accumulation point of C. Considering the union U of all half-
geodesics starting at a face of C and ending at £ notice that U must contain a
fundamental domain of the action of G,,. Since U has finite volume it follows
that G, has finite covolume.

Now suppose that n > 7, we claim that the quotient of C by its stabilizer
has infinite volume. This implies that claim that G,, has infinite covolume.

To establish the claim notice that the stabilizer of C coincides with that of
the tiling of of the hyperbolic plane H considered in Lemma 13. Since one of the
half spaces delimited by H is entirely contained in C the claim follows from the
fact that any Fuchsian group acting on H has infinite covolume in H?. This, in
turn, follows from the fact that the set U of half-geodesics perpendicular to H
which start in a fundamental domain of the action on A has infinite volume. [J

5. Further discussion
5.1. Other primitive rotations. Following [Gru], fix a natural number N > 2,
a real number s € (0, 1), and setting & = exp(in/N) let

z + s&
o T e Y

s§z+1

for 0 <! <2N —1.

Let Gy, be the group of automorphisms of the unit disk D = {z € C : |z| < 1}
generated by Ty, T1,..., Tan—-1.

Endowing DD with the hyperbolic metric each 7; is a translations of distance
= log(%). The axis of translation for 7; and 7;4, intersect at 0 with an
angle of /N . Hence, setting N = 2, the group G, is the same as H, defined
in Section 3.2.

In [Gru, Theorem 2, part (i)], citing [CC, Theorem 3, part (i)] for proof, it is

claimed that if s < cos(x/2N) then the group Gy, is not discrete.



Hyperbolic right-angled paths 403

PR,
eSS
7 :...‘\\
am

AT
ll 7T “,'l'

/4
[}

o
17
1/

ETTIE:

v/
e

‘!&

LN

FiGure 5
Iustration of the proof of lemma 13 for r = rg. The spheres are centered
at the midpoints of hexagons which tile a horizontal plane and their radii is
such that two neighboring spheres intersect at a right angle. In the upper half
plane model, the surfaces obtained by truncating these spheres along planes
perpendicular to the hexagonal tiling are hyperbolic right angled hexagons.

Setting N = 2, this would imply that H, (which we recall is the group
generated by A, and RA,R™!) is not discrete for all

1
AN e (2

1 — | = log -1 = log(3 + 24/2) = acosh(3) = 7o,
-5 _

r <log

contradicting the cases G,,,n >5 of Theorem 1.

The mistake in the proof of [CC, Theorem 3, part (i)] is that [CC, Lemma 2
and Lemma 3] only show that the mapping ® from the 2N -regular tree to D
considered by the authors is not an embedding. But this does not entail that the
group G, is not discrete.

Despite this mistake the following question still seems natural and interesting:
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Question 14. Let R be a rotation of even order 2N fixing a point p € H? and
A, a translation of distance r > 0 along a geodesic containing p. For which
values of r > 0 is the group G, generated by R and A, discrete?

It seems that the methods used in the present article are sufficient to prove
that there exists an increasing bounded sequence S such that G, is discrete if
and only if r € S U [sup S, +00). However, a complete characterization of the
sequence S does not follow immediately.

5.2. Relationship to the Gilman-Maskit algorithm. We fix in this section
r = ris/3 and consider the group H, generated by A, and B, as defined in
Section 3.2. By Theorem 1 the group G, is not discrete (see Figure 6, and
therefore H, is not discrete (since it is a finite index subgroup of G,).

The key step of our proof of non-discreteness of H, is the application of
Jgrgensen’s inequality to suitable elements of G, (see Proposition 9).

We will now apply the arguments of [Gill] (which are much more general
since they cover all groups generated by two translations with intersecting axes)
to the generators 4, and B, of H, for the sake of comparison. To keep with
Gilman’s notation set A = A,,B = B, and G = H,. See Figure 7 where the
following discussion is illustrated.

We start with the Discreteness Theorem [Gill, Theorem 3.1.1].

In our particular case the commutator [A, B] is a rotation of angle 4 x 27:%.
Hence, we land in case 4 of the theorem with tr([4, B]) = —2cos (k2x/n) with
k=3 and n=7.

The discussion is given in terms of an acute triangle Acty g . To calculate this
triangle one begins setting p = p, and p; = A4,,2(p) and p3 = B,;»(p) and
considers the triangle T4 p with vertices pi, p2, p3. In our case Ty, p is a right

FiGcure 6
An illustration of 1,10 and 100 iterations of M = (A,R)°R for r = ry43.
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FiGURrRE 7
Illustration corresponding to the Gilman—Maskit algorithm
argument applied to the group H, for r = ris/3.

isosceles triangle, and therefore the algorithm given in [Gill, Section 2] stops
immediately and T4, = Acty,B.

This implies that, since k = 3, and Acty p is a right isosceles triangle, the
group is discrete according to [Gill, Theorem 3.1.1] contradicting Theorem 1.

However, [Gill, Theorem 3.2.1] states that if Acta,p is a right isosceles triangle
then one must have k = 2 which is also a contradiction.

It seems that the mistake is only in the statement of the results and not the
proofs. Going further into the arguments of [Gill, Section 13] one sees that the
the key point of the argument is the Matelski—-Beardon count stated in [Gill,
Theorem A.0.2].
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According to the Matelski-Beardon count we should consider the group G*
generated by the central symmetries (rotations of angle 180°) Ejp , Ep,, Ep,
centered at pp, po, p3 respectively. Let P be the pentagon with vertices
P3, P2, Ep,(p2), y(p3), and o where y = Ep Ep, Ep, and o is the fixed point
of y.

Assuming that G is discrete let ¢t be the quotient between the area of P
and the area of H?/G*. The theorem implies that if k = 3 then t = 2.

Hence, verifying that one cannot have ¢ = 2 yields an alternative proof of
non-discreteness of G from the one given above.
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