
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 66 (2020)

Heft: 3-4

Artikel: On the discreteness of states accessible via right-angled paths in
hyberbolic space

Autor: Lessa, Pablo / García, Ernesto

DOI: https://doi.org/10.5169/seals-919581

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-919581
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


L'Enseignement Mathématique (2) 66 (2020), 383-407 DOI 10.4171/LEM/66-3/4-4

On the discreteness of states accessible via
right-angled paths in hyperbolic space

Pablo Lessa and Ernesto Garcia

Abstract. We consider the control problem where, given an orthonormal tangent frame in
the hyperbolic plane or three dimensional hyperbolic space, one is allowed to transport
the frame a fixed distance r > 0 along the geodesic in direction of the first vector, or
rotate it in place a right angle. We characterize the values of r > 0 for which the set of
orthonormal frames accessible using these transformations is discrete.

In the hyperbolic plane this is equivalent to solving the discreteness problem (see

[Gil2] and the references therein) for a particular one parameter family of two-generator
subgroups of PSL2(M) In the three dimensional case we solve this problem for a particular
one parameter family of subgroups of the isometry group which have four generators.

Mathematics Subject Classification (2020). Primary: 30F35, 20H10; Secondary: 22E40.

Keywords. Fuchsian groups, Kleinian groups, discreteness problem.

1. Introduction

Imagine a robot which can move forward a fixed distance and rotate in place
a right angle. Which states are accessible for such a system from a given initial
position and orientation?

It is clear that, if placed on the Euclidean plane, the robot is constrained to

move on a square grid. The attainable states (position and orientation) for the

robot are the vertices of the grid and the four orientations parallel to the edges.

However, if we imagine the robot constrained to move on the surface a sphere,

it is simple to see that the accessible states may form either a finite or infinite
set, depending on the relationship between the distance the robot is allowed to
advance and the diameter of the sphere.

To formalize this consider the unit sphere S2 centered at the origin in I3.
Fixing any point p e S2 and unit tangent vector v at p to represent the initial
state of the robot, we may identify the space of possible states with the group
of rotations SO(3) via the mapping R e* (Rp, Rv).
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With this identification the set of accessible states corresponds to the subgroup

Gr of SO(3) generated by the two elements R and Ar, where R is the unique
rotation fixing p and rotating v a clockwise right angle, and Ar is the unique
rotation advancing (p, v) a distance r along the geodesic (great circle) with
initial speed v.

In particular, the set of accessible states is finite if and only if Gr is a finite
subgroup of SO(3).

The finite subgroups of SO(3) are well known (see for example [Arm, Chapter
19]) and their classification implies that Gr is discrete if and only if r nn/2
for some integer n.

In what follows we answer the above question in the hyperbolic plane H2,
and also in three dimensional hyperbolic space H3.

1.1. Statements. Fix an orientation on H2 and let Isom+(H2) be its group
of orientation preserving isometries. As in the spherical case we fix an initial
point p e H2 and a unit tangent vector v e Tp M2 which represent the initial
position and orientation of the robot. The set of states is identified with the group
Isom+(lHI2) via the mapping g h* (g(p), Dpg(v)).

Let R be the clockwise rotation by a right angle fixing p, and Ar be the

translation of distance r along the positive direction of the geodesic with initial
condition v.

The set of accessible states is the orbit of v under the group Gr generated

by R and Ar. For r > 0 this set is always infinite, but we are interested in
whether it is discrete or not.

We will use acosh(x) log(x + fx2 — ]) to denote the inverse hyperbolic
cosine function.

Our main result is the following:

Theorem 1. Let rs < r6 < ••• be the sequence where rn acosh(l + 2cos(^))
is the side of the (unique up to isometry) regular n-gon with interior right angles
in H2, let rœ lim r„ — acosh(3), and let G, be the group generated by R

n-t+oo
and Ar (as defined above).

Then Gr is discrete if and only if r e {r„ : n > 5} U \i~oq, +oo). For all other
values of r the group Gr is dense in Isom+(H2).

Using the Poincaré Polygon Theorem we will show in Section 3.1 that for
n > 5 the group Grn acts with a fundamental domain given by a triangle with
angles 7t/4, jt/4, 2n/n.

In Section 3.2 we will show that when r > rœ the group Gr preserves a

embedded tree of degree 4, which in particular shows that Gr is discrete.
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In Sections 3.3 and 3.4 we show that in the remaining cases Gr is not discrete,

using J0rgensen's inequality. This implies that Gr is dense in these cases by a

well known dichotomy (see Proposition 7, and [Sul. Section 1]).

We will extend Theorem 1 to three dimensional hyperbolic space H3 as

follows.

Let Isom+(H3) be the group of orientation preserving isometries of H3.
Fix a point p e H3 and an orthogonal tangent frame tq, i>2, u3 based at p.
Suppose Ar is the isometry which transports the given frame a distance r along
the geodesic with initial condition (p,vi) while R\2, R22, R31 are 90° rotations

fixing p in the direction of the planes generated by (tq, V2), («2, r-3), and (u3, tq

respectively.

Theorem 2. The subgroup Gr of Isom+(H3) generated by Ar, R\2, R22. R31 is
discrete if and only if r e {rn : n > 5} U [r^, +00) where rn are defined as in
Theorem 1. For all other values of r the group is dense in Isom+(M3).

Furthermore, Gr$ is cocompact, Gr(i is not cocompact but has finite covolume,

and Grn has infinite covolume for all n > 7.

The proof of Theorem 2 rests on Theorem 1, Andreev's theorem (see [RHD]),
and the Poincaré Polyhedron Theorem for reflexion groups (see [dlH]). It is given
in Section 4.

1.2. Relationship to the existing literature. The discreteness problem is the

problem of determining whether a finitely generated group of isometries of
hyperbolic space is discrete (see [Gil2] and the references therein). Both of
our results are solutions to this problem for particular one parameter families of
subgroups of isometries in 1HI2 and H3 respectively.

The Gilman-Maskit algorithm (see [Gill] and [GM]) gives a finite sequence of
steps to determine whether a two generator subgroup of Isom+(H2) is discrete

or not. Theorem 1 gives additional information on the structure of the set of
parameters for which the algorithm will yield one result or the other. An illustration
of the arguments of [Gill] applied to one parameter considered here is given in
Section 5.2.

It was shown in [Kap] that no real number algorithm exists (in the Blum-
Shub-Smale computability model) for determining whether a finitely generated

group of isometries of H3 is discrete or not.

The results of [Gru] and [CC] are related to a generalization of the family of
groups Gr where the rotation R has order 2N for some N > 2 (instead of 4

as in Theorem 1). For further discussion see Section 5.1.
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In the context of Theorem 1, the Poincaré polygon theorem (see, for example,

[dRh] or [Mas]) directly implies that Gfn is discrete for n — 5,6.... and

preserves a tiling by regular polygons.
The Poincaré theorem also holds in higher dimensional hyperbolic space

(see [EP]) and is sufficient to establish that Grs is discrete and cocompact
in the context of Theorem 2. However a simple argument communicated to us

by Roland Roeder, which we give in Section 4 shows that the corresponding

compact polyhedra for r6,r7,... do not exist in H3. We will show, however,
that an infinite volume polyhedra corresponding to each rn for n 6,7,... does

exist, and apply the Poincaré polyhedron theorem (specifically the version for
reflexion groups given here [dlH]) to it to obtain Theorem 2.

In the context of both Theorem 1 and Theorem 2, when r > the group Gr
contains a finite index Schottky group and therefore its behavior is well understood

in the literature. For example, in the two dimensional case, the results of [CC]

imply that Gr leaves invariant a regular tree of degree N which is bi-Lipschitz
embedded in the hyperbolic plane. This case is also covered by results on finite
valued matrix cocycles in [ABY], At the critical distance r^ there is still an

embedded tree preserved by Groo but the embedding is no longer bi-Lipschitz.
A well known argument (see, for example, [Sul, Part 1]) implies that in both

the two and three dimensional cases, for each r > 0 either Gr is discrete or
dense in the corresponding group Isom+(H2) or Isom+(H3). We give the details

of this argument for H2 in Proposition 7. This implies the dichotomy for H3,
as we explain at the beginning of Section 4.

The Margulis lemma (see, for example, [BGS, Theorem 9.5]) implies that Gr
is dense for all r small enough.

Results of Benoist and Quint imply a discreteness vs denseness dichotomy for

Gr when acting on any finite area quotient of H2 as discussed in [Led],
Software implementations of a 'robot' (usually called a 'turtle' in this context)

receiving commands to move forward or turn in place by given amounts date

back to the LOGO programming language [AdS], Some implementation details

and exploration of the hyperbolic case is given in [SCMT]. A rudimentary but

functional software implementation of a hyperbolic turtle has been made available

by one of the authors [Les2], Several of the figures in this article were prepared

with the software available here [Lesl].

2. Preliminaries

We now recall some basic facts on hyperbolic geometry which will be used

in what follows, see [Bea] for a general reference on this subject.



Hyperbolic right-angled paths 387

The hyperbolic plane H2 is the unique, up to isometry, complete simply
connected surface with curvature — 1. Concrete manifolds with explicit metrics

satisfying these properties are called models of the hyperbolic plane.

The upper half-plane model is the space {z e C : Im(z) > 0} endowed with
the Riemannian metric 4y(,dx2 + dy2). The orientation preserving isometries in
this model are the Möebius transformations of the form

az + b
z h* -

cz + d

where a,b,c,d el and ad — be — 1.

The disk model is the space D {z e C : \z\ < 1} with the metric

i_(x2+y2) )2(dx2 + dy2). Figures 1, 2, 3, 4, and 7 below illustrate the disk

model. An isometry between the upper half-plane and disk model is z i->

In both of these models the hyperbolic geodesies are Euclidean straight lines

or circles which are perpendicular to the boundary. In particular there is a unique,

globally minimizing, geodesic between any pair of points in H2.

An orientation preserving isometry of H2 is called elliptic, parabolic, or
hyperbolic, according to whether it fixes a single interior point, a single boundary
point, or two boundary points, respectively, in the disk model.

Elliptic isometries are also called rotations, they act as rotations in the tangent

space of their fixed point in H2. An element

acts as a rotation of angle —29 (i.e., a clockwise rotation) in the half-plane
model.

Hyperbolic isometries are also called translations, they fix a unique geodesic in
H2 and act as a translation of a certain distance when restricted to this geodesic.

An element

±(o e°-.)PSL2(K)

acts as a translation of distance 21 in the upper half-plane model.

From the Gauss-Bonnet theorem and explicit construction in one of the models
shows that there exists a geodesic triangle in H2 with interior angles a,ß,y in
H2 if and only if a + ß + y < n, and in this case the triangle is unique up to
isometries.
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In the hyperbolic plane given the length of two sides of a triangle and the

angle between them the length of the third side is determined by the hyperbolic
law of cosines

cosh(c) cosh(a) cosh(fi) - sinh(a) sinh(fi) cos(y)

where a, b, c are the lengths of the sides opposite to angles a,ß,y respectively.

As in spherical geometry, in H2 two angles of a triangle and the length of
the side between determine the third angle (in Euclidean geometry the length of
the side plays no role in this relation). In the hyperbolic case the relation is given

by the second hyperbolic law of cosines which states

cos(y) — cos(a) cos(ß) + sin(a) sin(/3) cosh(c).

Let Isom+(LHI2) be the group of orientation preserving isometries of H2 endowed

with the topology of pointwise convergence (which in this case is equivalent to

locally uniform convergence because all functions are uniformly Lipschitz). The

upper half-plane model shows that Isom+(H2) is homeomorphic to PSL2(R)
with the topology of pointwise convergence coming from SL2(M).

A Fuchsian group is a discrete subgroup of Isom+(H2) (i.e., a subgroup
which is discrete as a subset with respect to the given topology).

Given a subgroup G of Isom+(H2) if the orbit Gp is not discrete for some

p e H2 then G is not discrete. On the other hand if G has a finite index

subgroup H which is discrete it follows that G is discrete.

From the map zi->-z in the disk model, one obtains that given a geodesic in
H2 there is a unique orientation reversing isometry that acts as the identity on
the geodesic. We call this the axial symmetry with respect to the geodesic.

If <7i,<72 are axial symmetries along two geodesies then their composition oyer2

yields, a rotation of angle 29 if the geodesies meet at an angle 9, a parabolic

isometry if the geodesies do not intersect but the distance between them is zero,
and a translation of distance 21 if the geodesies are at a positive distance t.

3. Proof of Theorem 1

We fix in this section the notation introduced preceding the statement of
Theorem 1. In particular, recall that we have fixed a point p H2 and a unit

tangent vector v based at p. We let Ar be the translation of distance r in
direction v along the geodesic with initial condition v and R be the clockwise

rotation by 90° fixing p. The group Gr is generated by Ar and R.
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3.1. Tilings. We will now discuss the values of r for which Gr is discrete and

preserves a tiling by regular polygons. Our result will be a consequence of the

Poincaré Polygon Theorem (see [dRh] or [Mas]) which we now state in a version
sufficient for our purpose:

Theorem 3 (Poincaré Polygon Theorem). Suppose that P is a compact polygon
in H2 with an even number 2N of sides which are oriented so that each vertex

of P is the endpoint and starting point of some edge.

Divide the edges of P into N pairs (s\,ti),..., (sn Jn)- Suppose that for
each pair of sides (.?,•, q an orientation preserving isometry cr,- is given such

that the interior of ct,(P) is disjoint from P and such that a, (5, f;.
If a vertex p is the starting point of an edge s; we define a, (p) as its

successor, if on the other hand p is the starting point of an edge ti we define

a~l{p) as its successor. An elliptic cycle is the complete orbit of a vertex under
the successor mapping.

If the sum of interior angles among the vertices of each elliptic cycle is 2n/k
for some natural number k (depending on the cycle) then the group generated
by o\,..., <Tjv is discrete, the translates of P under this group cover H, and

no two translates of P by distinct elements of the group intersect at an interior
point.

The conclusions of the above theorem can be restated by saying that P is a

fundamental domain for the group generated by oy,..., cr#.
A geodesic triangle with interior angles 7r/4, 7t/4 and 2ix/n (where « is a

natural number) exists in H2 if and only if

which implies n > 5.
We consider such a triangle Tn with a vertex at p and edges in directions v

and w forming a clockwise angle of jt/4, and such that the edge in direction v

is opposite to the interior angle 2n/n.
By the second hyperbolic law of cosines, the length of the side with direction

v has length

rn acosh (1+2 cos

Notice that the sequence rn is increasing, we define

roo lim rn acosh(3).
«->•+00

Proposition 4. For each n 5,6,... the group Grn is discrete and Tn is a

fundamental domain.
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Figure 1

The tiling corresponding to r r$

Proof. Let m be the midpoint of the geodesic segment [p, Arn(p)\, and let a

and b be the other two sides of Tn where a has and endpoint at p.
The isometry o\ ArnR2 fixes m and sends the geodesic segment [p, m] to

[m, A,-n (p)\. The isometry er2 ArnR maps a to b fixing their shared endpoint.

By Theorem 3 the group generated by oy and ct2 is discrete and has Tn as

a fundamental domain. Since this group coincides with Grn this establishes the

claim.

3.2. Trees. We will now discuss the case where the group Gr is discrete

and preserves and embedded regular tree of degree four. This happens exactly
when r > r00.

For this purpose let Br RArR~l and Hr be the group generated by Ar
and Br.
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Figure 2

The embedded tree for r — + 0.05

Also, we define the four closed half-planes N, S, E, W (for North, South,
East, and West respectively) by

N {q : dist(<?,/0 > dist(<?, B~l(p))},
S {q : dist(<7, /?) > dist(<?, Br{p))},
E {q : dist(<?, p) > dist(g, Ar(p))},
W {q : dist(<7, p) > dist(?, A~\p))},

where dist(a,Z>) is the hyperbolic distance between a and b.

We define the central region C =1\(A'USU£UW).
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Proposition 5. The regions TV, S, E, W are pairwise disjoint if and only if r > r^.
In this case Hr is discrete and freely generated by Ar and Br. Also, Gr is

discrete, the stabilizer of C in Gr is generated by R, and Gr preserves a

geodesic embedding of the regular tree of degree four.

Proof Without loss of generality assume the regions TV and E intersect. Let x,y
be the closest points to p in TV and E respectively. Observe that the geodesic

segments [p,x] and [p. y] have length r/2 and meet at a right angle at p.
If N fl E ^ 0 then there is an intersection point z which is in the boundary

of both regions and is equidistant from x and y.
Consider the triangle T with vertices p,x,z and let a be the interior angle

at z. Notice that the interior angle at x is tt/2 and at p is jt/4 so that
0 < a < 7t/4. By the second hyperbolic law of cosines one has

(1) r 2acosh(V2cos(o!)) < 2acosh(\/2) acosh(3) roo-

Conversely, if the inequality above is satisfied a triangle with angles n/2,n/A,ot
exists in H2. Placing two such triangles with right angles at x and y respectively,

sharing a vertex at p and a side along the perpendicular bisector of x and y it
follows that TV and E intersect at a common third vertex z.

Suppose now that r > r^ so that N, S, E. W are pairwise disjoint.
Notice that /4r(H2 \ W) c E ,Apl{W2 \ E) c W, Br(H2 \ TV) C S, and

BpfU2 \ S) c TV.

This shows that if X is any non-trivial reduced word in Ar, Af1, Br. Bp1 (i.e.

a finite product where no element is followed by its inverse) then X(C)C\C 0.
Hence the group Hr is freely generated by Ar and Br (this is an instance of
the well known ping-pong lemma, see for example [Kob]) and is discrete since

the orbit of p, and the stabilizer of p is trivial.
Notice that Gr is generated by Hr and R, and RHrR~l Hr (it suffices

to check RArR~l e Hr and RBrR~x e Hr). Hence, Hr is a normal subgroup
of Gr.

Furthermore, since R(C) C it follows that if X,Y e Hr and XR' YRJ

then X — Y and i — j (mod 4). This shows that Hr,HrR,HrR2 and HrR3
are pairwise disjoint. It follows that their union must be Gr and [Gr : Hr] 4.

If XR1 is an element of Gr we have that XR1 (C) — X(C) C if and only if
X is the identity, so the stabilizer of C in Gr is generated by R as claimed.

Let x, y, z, w be the closest points to p in the regions TV, S. E. W respectively.
The set {p,x,y,z,w} is R -invariant and the union of geodesic segments S

[p,x]G[p, y]G[p,z]\J[p,w] intersect pairwise only at p. Notice that X(S)n,S' f 0
for a non-identity element X e Hr if and only if X e {Ar, Af1, Br, Bp1} in
which case the intersection is a single point from the set {x,y,z,w}. It follows
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that the Hr -orbit of S is a tree of degree four (the Cayley graph of Hr with
all edges of length r, and is invariant under Gr as claimed.

3.3. Irrational rotations. In this section and the following one we will show

that the only values of r > 0 for which Gr is discrete are given by Propositions 4

and 5. We will also show that for all other values of r the group Gr is dense

in Isom+(H2).

Figure 3

An illustration of 100,200 and 300 iterations of
Ar R applied to a segment of length r for r r2jr

For this purpose the first important observation is the following:

Proposition 6. The isometry ArR is elliptic if and only if r < r^.

Proof We repeat the argument from the proof of Proposition 5.

Let o*2 be the axial symmetry (orientation reversing isometry which is the

identity along a geodesic) with respect to the geodesic passing through p in
direction perpendicular to v.

Define oi Ar/2(T2Af12 and notice that Ar — 0-102.

Letting <73 be the symmetry with respect to the geodesic passing through p
in a direction 450 clockwise from v, notice that R 0203.

To conclude observe that AR 01020203 0103 is elliptic if and only if
the geodesies fixed by o\ and 03 intersect. If this happens there exist a triangle
with a side of length r/2 adjacent to angles n/2 and jt/4. By the second law

of cosines (see Equation 1) this happens if and only if r < rœ.

The following well known argument (see [Sul, Section 1]) shows that if Gr
is not discrete then it is dense in Isom+(H2). In particular, this happens if Ar R

is elliptic of infinite order.

Proposition 7. For each r > 0 either Gr is discrete or dense in Isom+(H2).
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Proof. We use the Poincaré model where H2 is identified with the unit disc

D {z e C : |z| < 1} and Isom+(H2) with the group M of complex Möbius
transformations preserving D>.

Let S be the closure of Gr in M and S0 the connected component of the

identity in S. Notice that S0 is normal in S and is a connected Lie subgroup
of M.

If So has dimension 0 then S (and therefore Gr) is discrete. We suppose
from now on that this is not the case.

If S0 is a proper subgroup of M then there is a non-empty set F with at

most two points in the closed disk D such that So is the set of elements in M
fixing all points in F.

Since So is normal in S it follows that all elements of S permute the points
in F.

However, it is immediate that no finite set in D is invariant by both Ar and

Br — RArR-1. Therefore So M and Gr is dense as claimed.

3.4. Non-primitive rotations. We extend the definition of rn used in Proposition

4 to all t > 4 with the formula

rt acosh ^1 + 2cos^^-j^

It is simple to see that t rt is an increasing homeomorphism from (4, -f-oo)

to (0, Too) and that Art R is a rotation of angle 2n/t.
If t is irrational then by Proposition 7 the group Gr, is dense in Isom+(H2).

Proposition 4 shows that if t 5,6,1,... then Grt is discrete.

It remains to discuss the case t — p/q > 4 where p and q are coprime and

q > 1. We will show that Gr, is dense for these values of t.
For this purpose we will use Jprgensen's inequality (see [Joe]) applied to well

chosen elements of Gr.

Theorem 8 (Jprgensen's inequality). Let G be a non-elementary Fuchsian group
generated by two elements X, Y e PSL2(1), then

I tr(W)2 — 4| + \ tr([X, F]) — 2| > 1,

where tr(Z) denotes the trace of a matrix Z and [X.Y] XYX~x Y~l is the

commutator of X and Y.

Proposition 9. If t p/q > 4 is a reduced fraction with q > 1 then Gr, is

dense in lsom+{H2).
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Figure 4

A non-simple right angled polygon with sides of length r rg/2

Proof. We use the upper half plane model where H2 is identified with {z e C :

Im(z) > 0}. We fix p — i and v i (the unit tangent vector pointing upwards
with base point i The group Isom+(H2) is identified with PSL2(M) where

corresponds to the isometry z ff+j
With this identification we have

Ar
W2

0

0

-r/2
1 r

\/2 U 1

In general if Ag is the matrix corresponding to the clockwise rotation of angle
9 fixing p one has tr(fl) 2cos(0/2). If T is the matrix corresponding
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to a translation along a geodesic which passes through p then tr(T)
2cosh(dist(p, T{p))/2).

Let o be the fixed point of Ar, R. The triangle with vertices p,o,Ap has

angles n/4,n/4,2tt/1 so that by the second law of cosines one has

fA + cos(2n/t)\
adist(p, o) acosh ^ j.

Notice that, because t p/q, for some integer k one has that X (ArtR)k is

a rotation of angle 2tx/p fixing o.
We will apply Jprgensen's inequality to X and R2. For this purpose notice

first that

|tr(X)2 — 4| |4cos(jr/p)2 — 4| 4(1 - cos(jr/p)2) 4sin(;r/p)2.

We now notice that

[X, R2] XR2X~1R~2 (XR2X~1)R2

is the composition of a central symmetry (i.e., a 180° rotation) centered at p,
and a central symmetry centered at X{p). It follows that [X. R2] is a translation

of distance 2dist(p, Z(p)) along the geodesic passing through p and X(p).
This implies that tr([W, R2]) 2cosh(dist(p, X(p))). Since p and X(p) are

at distance a from o and the segments [p,o] and [X(p),o\ form an angle of
2n/p by the law of cosines one has

tr([X, R2]) — 2 2^cosh(dist(/?, 2f(p))^ - 1^

2^cosh(a)2 - sinh(a)2 cos(2jr/p) — 1^

2^1 - cos(27r//?)^ sinh(a)2

2^1 — cos(;r/p)2 + sin(;r/p)2^ sinh(a)2

4 sin(7r/p)2 sinh(a)2.

From this we obtain

I ir(X)2 — 4| + I tr([2f, ft2]) — 2| 4sin(jr/p)2cosh(a)2

Denote the right hand side above by f(p, q), and notice that if q > 2 and ^ > 4

then f(p,q) < f(p,2). So it suffices to show that f(p, 2) < 1 for all integers

p with p/2 > 4 (so p > 9).
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Hence, setting x — n/p it suffices to show that

(l + cos(4x))2
4si°W ' ''

when 0 < x < tt/9. We will show that, in fact, the above inequality holds when

x e (0, jt/4).
Reordering and taking square roots, we must prove that

2(l+cos(40)<f^.
which applying the double angle formulas is equivalent to

„/•, ,2 • ,2 2sin(2x) cos(2x)
2(1 + cos(2x) - sm(2x) 4cos(2x)2 < — —-.v ' sin(x)

For x e (0, jt/4) one has that cos(2x) is positive, so the above is equivalent to

sin(2x)
2cos(2x) <

sin(x)

which using the double angle formula for sin(2x) yields

s
2 sin(x) cos(x) „ / x2cos(2x) < 2cos(x),

sin(x)

which holds for all x e (0, tt/4)

4. Proof of Theorem 2

Let p, vi, V2, vs, Ar, Ri2, R23, R31 be as defined preceding the statement of
Theorem 2.

If r £ {rn} U [/"oo, +00) then considering the subgroups generated by Ar, R\2
and Ar,R2\ respectively and applying Theorem 1 one has that Gr is dense in
the set of isometries of two perpendicular geodesically embedded copies of H2

in H3.

It follows that, given any point q e H3, the closure of Gr contains the

rotations fixing q with axis perpendicular to the two aforementioned hyperbolic
planes. This implies that the closure of Gr contains all rotations fixing q and

therefore that Gr is dense in Isom+(H3) in all these cases.

It remains to show that Gr is discrete for all r e {r5, r6,...} U [r^, +00).
The same ping-pong argument given in the proof of Proposition 5 above (using

six instead of four regions) yields that Gr is discrete if r > rœ.
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Lemma 10. If r > rœ then Gr is discrete and preserves an embedding of the

regular tree of degree six.

Proof. Let T\ Ar,T2 — R\2ArR^2 ,Ti Rj,\ArR^l, and for i — 1,2,3 let

Ni {q : dist(g, p) > dist{q, 7) (/?))}, and S, {q : distfiy, p) > dist(q, Tr\p))}.
We claim that the six regions N\. .Si, N2, S2, N3, S3 are disjoint if and only

if r > roo.
To establish the claim assume, without loss of generality (since one may

permute and take the inverse of the transformations 7j that Ni n N2 7^ 0 and

let q' G yVi n n2
Let q be the orthogonal projection of q' onto the plane P containing p

and tangent vectors vi,v2 (defined preceding the statement of Theorem 2). The

triangles with vertices (p,q,q'),(T\(p),q,q') and (T2(p),q,q') have a right angle

at q, and share the side joining q and q'. Since dist(g', 7i(/?)) < dist(</',p) for
/ 1,2 it follows that distfi/, 7j(/?)) < dist(<y,/i) as well. Therefore q e N\ (1N2.

Since the group generated by Ar and R\2 preserves P, it follows from

Proposition 5 that N\ (T P and N2 IT P are disjoint if and only if r > rœ. Hence

N\ and N2 are disjoint if and only if r > r^ as claimed.

Notice that 7j (H3 \ St) C N, and 7j_1(lHI3 \ Ni) C S, for all i.
3

Letting C H3\ (J (Ni US;) this implies that if X is any non-trivial reduced
; 1

word in 7), 7j_1, T2. T^1, T3, T^1 then X(C) fl C — 0. Hence the group Hr
generated by 7), T2, T3 is free and discrete.

We now claim that Hr has finite index in Gr and therefore Gr is also

discrete.

To see this let S be the group generated by R\2, R23, and S31. Notice that
S is finite and in fact |S| 24.

One has that Gr is generated by Hr and S, and RHrR~l — Hr for all
R e S (it suffices to check this for the generators). Hence, Hr is a normal

subgroup of Gr.
Furthermore, since R(C) C for all R e S it follows that if X, Y e Hr and

XRi YR2 with R\,R2 e S then X(C) T(C) and therefore X Y. This

shows that HrR\ and HrR2 are disjoint, and it follows that [Gr : 77r] |5| =24
as claimed.

Notice furthermore that g(C) — C for g e Gr if and only if g e S.
To conclude we now show that the action of Gr preserves a tree of degree

six.

For this purpose for each i let be the closest points to p in the
3

regions Ni and St respectively. The set {/?} U (J {/?,, .v;} is S -invariant and the
i l
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3

union of geodesic segments A (J [p, s,-] U [p, «,] intersect pairwise only at p.
i 1

Notice that X(A) n A ^ 0 for a non-identity element X e Hr if and only if
X e {7i, Tf1, T2, T2-1, T3, r3-1} in which case the intersection is a single point
from the set {n\,s\, ri2,s2,«3,^3}- It follows that the Hr-orbit of A is a tree of
degree six (the Cayley graph of Hr with all edges of length r, and is invariant
under Gr as claimed.

We will now discuss the cases where r rn for n 5,6....

Lemma 11. For all n > 5 the group Grn is discrete. The group Grs is cocompact,
Gre is not cocompact but has finite covolume, and Grn has infinite covolume for
all n >7.

To prove the result we will construct polyhedral tilings of H3 which are

preserved in each case. Only in the case r r5 are the polyhedra compact.
A finite sided polyhedron with sides which are regular n -gons with interior

right-angles, and all dihedral angles equal to 90°, cannot exist if n > 6. To see

this we give an argument communicated to us by Roland Roeder.

Suppose such a polyhedron exists for some n, let V,E,F be the number of
vertices, edges, and faces respectively. Because the dihedral angles are non-obtuse
each vertex is the intersection of exactly three faces by [RHD, Proposition 1.1], so

V nF/3. Since each edge is the intersection of two faces one has E nF/2.
Substituting this into Euler's polyhedron formula we obtain

rn n \ 6 — nV-E + F (--- + i)F=—F 2.

It follows that n <5 from which n 5 is the only possibility in H3. We now
show that this possibility actually occurs.

Lemma 12. There exists a convex hyperbolic dodecahedra C whose faces are
regular right-angled hyperbolic pentagons.

Proof. By Andreev's theorem [RHD, Proposition 1.1], there exists up to isometry
a unique hyperbolic dodecahedron C such that the angle between any two faces

at a shared edge is 90°.

It follows (for example from [RHD, Proposition 1.1]) that all the interior angles

of each face are also right angles. Hence, all faces are regular pentagons with
interior right angles and their side length is r5.

We will now show that, if « 6,7,..., gluing hyperbolic n -gons at a right
angle along each edge one bounds an infinite volume convex polyhedra in H3.
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Lemma 13. For each n > 6 there exists an infinite volume convex polyhedra
in HI3 whose faces are regular n -gons with interior right angles (contained in

a totally geodesic embedded hyperbolic plane), any two intersecting faces share

a side and intersect at a right dihedral angle along this side, and exactly three

sides meet at each vertex.

Proof We will prove the case r r6 separately. See Figure 5 for this case.

Consider the upper half space model of hyperbolic space. On the boundary,
take a tiling by regular (Euclidean) hexagons such that the distance between the

centers of neighboring hexagons is 2. At the center of each hexagon consider a

Euclidean sphere of radius a/2. The intersection of each sphere with the upper
half space is a geodesically embedded copy of H2. Furthermore, the copies

corresponding to neighboring hexagons intersect at a right angle. The part of
each half sphere which is not contained in any other is a regular hyperbolic
hexagon with interior right angles and exactly three of these meet at each vertex.

We define C as the region bounded by the constructed hexagons which does

not accumulate on the boundary plane in this model. Since C contains a horoball

it has infinite volume. In this case, and only for n — 6, the polyhedra C has a

single limit point on the geometric boundary of HI3 (the point corresponding to

oo in the upper half space model).

Suppose now that r rn for some natural number n > 7. Since \ + \ < \
there exists a tiling of H2 by regular (i.e. all sides and interior angles are equal)

n -gons with exactly three meeting at each vertex.

Consider a totally geodesic embedding H of H2 into H3. Tile H as described

above. Let x, y e H be neighboring vertices in the tiling and consider unit speed

geodesies a, ß perpendicular to H at a(0) x and ß(0) y respectively.
Assume furthermore that a(t) and ß(t) are on the same side of H for all t.

Let s„ be the length of the side of the hyperbolic regular n -gon with interior
angles of 2tt/3 Direct calculation shows that sn < rn.

The distance between a(t) and ß(t) has minimum sn at t 0 and goes to

infinity when t -* +oo. Therefore, there exists t0 > 0 such that this distance is

exactly rn.
For each pair of vertices as above let a (to), ß (fo) be vertices of the polyhedron

to be constructed, and the geodesic segment between them be a side. The geodesies

a, ß are chosen so their positive direction is always the same fixed component
of the complement of H in H3.

Notice that the vertices and sides constructed from the tiling on H are

equivariant under the group of isometries of H3 which preserve the tiling and

preserve each connected component of the complement of H.
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In particular, considering the order n rotation along the geodesic perpendicular
to H at the center of a tile in H, one sees that the vertices constructed from
those of the given tile are in a totally geodesically embedded hyperbolic plane
in H3 which is perpendicular to the axis of this rotation.

Hence, we may define a face of the polyhedron by considering this plane, and

we have shown that it is a hyperbolic regular n -gon with interior right angles.
Since exactly three faces meet at each vertex, and the interior angles of all

faces are right angles, it follows that the dihedral angle between faces sharing an

edge is also a right angle.
Define C as the component bounded by these faces which contains H. Since

C contains a half space it has infinite volume.

Using the polyhedra of Lemma 13 the discreteness of Gr follows from the

Poincaré theorem for reflexion groups [dlH, Chapter 3] and a simple algebraic

argument.

Proof of Lemma 11. Fix n and let C be the polyhedron given by Lemma 13.

We may assume that the initial orthonormal frame is placed at a vertex of C

and that the unit vectors in the frame point in the direction of the incident sides

meeting at this vertex.
Let S be the group generated by the set of reflexions with respect to the faces

of C. By the Poincaré Polyhedron Theorem for reflexion groups [dlH, Chapter 3]

the group S is discrete and C is a fundamental domain of its action.

On the other hand the group G of isometries of H3 which stabilizes C is

also discrete because the distance between distinct faces of C is bounded from
below.

Observe that gSg_1 S for all g G so that the group generated by G

and S coincides with SG, the set of elements of the form sg for some s e S

and g e G.
We claim that the group S G is discrete.

To see this suppose that skgh is a sequence of elements in this group
converging to the identity. One has Skigk(C)) ,s>(C) and since C is

fundamental domain for S it follows that s* is the identity for all k large

enough. However since G is discrete it follows that gk is also the identity for
all k large enough. Hence, S G is discrete as claimed.

To conclude it suffices to show that Gr c S G.
Recall that the initial point p is a vertex of C and the starting orthonormal

frame vectors Vi,v2,V3 point in the direction of the sides containing p. Hence

if R is any of the rotations R\2. R23, R31 one has that R(C) shares a common
face with C. Hence choosing s e S to be the symmetry along that face one has

sR e G and therefore R e SG.
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Similarly, because V2 and v3 belong to totally geodesically embedded

hyperbolic planes containing the side in direction vi, one has that Ar(v2) and

Ar(v3) are in the direction of two the sides containing Ar(p) other than the

geodesic segment [p,Ar{p)\. Hence, Ar{C) shares the face containing those two
directions with C. Once again taking s to be the reflexion along this face one

obtains Ar e S G.
This concludes the proof that Gr c S G from which it follows that Gr is

discrete.

We will now discuss the covolume of Grn for n > 6.

Letting n 6 notice from Lemma 13 that there is a unique boundary point
£ which is an accumulation point of C. Considering the union U of all half-

geodesics starting at a face of C and ending at £ notice that U must contain a

fundamental domain of the action of Gr6. Since U has finite volume it follows
that Gre has finite covolume.

Now suppose that n >7, we claim that the quotient of C by its stabilizer
has infinite volume. This implies that claim that Gn has infinite covolume.

To establish the claim notice that the stabilizer of C coincides with that of
the tiling of of the hyperbolic plane H considered in Lemma 13. Since one of the

half spaces delimited by H is entirely contained in C the claim follows from the

fact that any Fuchsian group acting on H has infinite covolume in H3. This, in

turn, follows from the fact that the set U of half-geodesics perpendicular to H
which start in a fundamental domain of the action on H has infinite volume.

5. Further discussion

5.1. Other primitive rotations. Following [Gru], fix a natural number N > 2,
a real number 5 e (0, 1), and setting £ exp(in/N) let

1> — _l >

s£ z + 1

for 0 < / < 2N — 1.

Let be the group of automorphisms of the unit disk D {z e C : \z\ < 1}

generated by 70, 7\,..., T2N-\
Endowing D with the hyperbolic metric each 7; is a translations of distance

r l°g(T=f)- The axis of translation for 7/ and Ti+1 intersect at 0 with an

angle of n/N. Hence, setting N 2, the group G2,s is the same as Hr defined

in Section 3.2.

In [Gru, Theorem 2, part (i)], citing [CC, Theorem 3, part (i)] for proof, it is

claimed that if s < cos(m/2N) then the group Gn,s is not discrete.
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Figure 5

Illustration of the proof of lemma 13 for r rç. The spheres are centered

at the midpoints of hexagons which tile a horizontal plane and their radii is

such that two neighboring spheres intersect at a right angle. In the upper half
plane model, the surfaces obtained by truncating these spheres along planes

perpendicular to the hexagonal tiling are hyperbolic right angled hexagons.

Setting N 2, this would imply that Hr (which we recall is the group
generated by Ar and RAr R~l is not discrete for all

r < log ^j log I j lo§(3 + 2v^) acosh(3) r^,

contradicting the cases Grn,n >5 of Theorem 1.

The mistake in the proof of [CC, Theorem 3, part (i)] is that [CC, Lemma 2

and Lemma 3] only show that the mapping <L from the 2N -regular tree to D
considered by the authors is not an embedding. But this does not entail that the

group Gjv,s is not discrete.

Despite this mistake the following question still seems natural and interesting:
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Question 14. Let R be a rotation of even order 2N fixing a point p e H2 and

Ar a translation of distance r > 0 along a geodesic containing p. For which
values of r > 0 is the group Gr generated by R and Ar discrete?

It seems that the methods used in the present article are sufficient to prove
that there exists an increasing bounded sequence S such that Gr is discrete if
and only if reSU [sup S, +oc). However, a complete characterization of the

sequence S does not follow immediately.

5.2. Relationship to the Gilman-Maskit algorithm. We fix in this section

r ri4/3 and consider the group Hr generated by Ar and Br as defined in
Section 3.2. By Theorem 1 the group Gr is not discrete (see Figure 6, and

therefore Hr is not discrete (since it is a finite index subgroup of Gr

The key step of our proof of non-discreteness of Hr is the application of
Jprgensen's inequality to suitable elements of Gr (see Proposition 9).

We will now apply the arguments of [Gill] (which are much more general
since they cover all groups generated by two translations with intersecting axes)

to the generators Ar and Br of Hr for the sake of comparison. To keep with
Gilman's notation set A Ar, B Br and G Hr. See Figure 7 where the

following discussion is illustrated.

We start with the Discreteness Theorem [Gill, Theorem 3.1.1],

In our particular case the commutator [A, B] is a rotation of angle 4x2^-^.
Hence, we land in case 4 of the theorem with tr([A, B]) -2 cos (kin/n) with
k 3 and n =7.

The discussion is given in terms of an acute triangle Ac\a,b To calculate this

triangle one begins setting p — p2 and p\ Ar/2(p) and p2 Br/2(p) and

considers the triangle Ta,b with vertices p\.p-i,pz- In our case Ta,b is a right

Figure 6

An illustration of 1,10 and 100 iterations of M (ArR)9R for r r]4/3.
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Figure 7

Illustration corresponding to the Gilman-Maskit algorithm
argument applied to the group Hr for r 1-14/3.

isosceles triangle, and therefore the algorithm given in [Gill, Section 2] stops

immediately and Ta,b Ac.
This implies that, since k 3, and Act^g is a right isosceles triangle, the

group is discrete according to [Gill, Theorem 3.1.1] contradicting Theorem 1.

However, [Gill, Theorem 3.2.1] states that if AcXa,b is a right isosceles triangle
then one must have k 2 which is also a contradiction.

It seems that the mistake is only in the statement of the results and not the

proofs. Going further into the arguments of [Gill, Section 13] one sees that the

the key point of the argument is the Matelski-Beardon count stated in [Gill,
Theorem A.0.2],
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According to the Matelski-Beardon count we should consider the group G*

generated by the central symmetries (rotations of angle 180°) EP1,EP2,EP3
centered at P\,P2,P3 respectively. Let P be the pentagon with vertices

P3, p2,EPx{p2), y(P3), and o where y EPlEP2EP3 and o is the fixed point
of y.

Assuming that G* is discrete let t be the quotient between the area of P
and the area of H2/G*. The theorem implies that if k — 3 then t — 2.

Hence, verifying that one cannot have t 2 yields an alternative proof of
non-discreteness of G from the one given above.
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