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The Martin boundary of relatively hyperbolic groups
with virtually abelian parabolic subgroups

Matthieu DussauLg, Ilya GEKHTMAN,
Victor GErasiMov and Leonid PoTryAaGAILO

Abstract. Given a probability measure on a finitely generated group, its Martin boundary
is a way to compactify the group using the Green’s function of the corresponding random
walk. We give a complete topological characterization of the Martin boundary of finitely
supported random walks on relatively hyperbolic groups with virtually abelian parabolic
subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space H”,
we show that the Martin boundary coincides with the CAT (0) boundary of the truncated
space.

Mathematics Subject Classification (2020). Primary 20F65, 20F67, 31C35; Secondary
60B15, 57M07, 22D05.

Keywords. Random walks on groups, hyperbolic groups relatively to a system of virtually
abelian subgroups, Martin and Bowditch compactifications.

1. Introduction and statement of results

1.1. Random walks on relatively hyperbolic groups. A probability measure u
on a countable group I' determines a I'-invariant Markov chain with transition
probabilities p(x,y) = u(x~'y), called a random walk.

Connecting asymptotic properties of this random walk to the geometry of
Cayley graphs of I' has been a fruitful line of research. One way to do this is
through relating the Green’s function of p to some natural metric on I', and
the probabilistically defined Martin boundary of u to some geometric boundary
of I'.

The Green’s function G of (I, u) is defined as

G(x,y) =Y _ p*(x"'y).

n=0
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It describes the amount of time a random path starting at x is expected to spend
at y. We now fix a basepoint ¢ in I'. For each y € I the function K, : ' - R
defined by K,(x) = G(x,y)/G(o,y) is called a Martin kernel. The map y — K,
defines an embedding of I' in the space of functions I' — R¥. The closure of
T in this space is called the Martin compactification T, and 9, =T, \ T is
called the Martin boundary. One can equally define the Martin compactification as
the horospherical (Busemann) compactification with respect to the Green distance
dg(x,y) = —In g%%) on I' [BB]. These definitions also make sense for more
general measures . One of the main interest of the Martin boundary is its
connection with harmonic functions. We will give more details in Section 2.

Giving a geometric description of the Martin boundary is often a difficult
problem. Margulis showed that for centered finitely supported random walks on
nilpotent groups, the Martin boundary is trivial [Mar]. On the other hand, for
noncentered random walks with exponential moment on an abelian group of rank
k, Ney and Spitzer [NS] showed that the Martin boundary is homeomorphic to
a sphere of dimension k — 1. For a hyperbolic group equipped with a finitely
supported measure, Ancona [Anc] proved that the Martin boundary coincides with
the Gromov boundary of the group. His proof relies on his famous following
inequality which also implies that I' is hyperbolic with respect to the Green
distance. There exists ¢ > 0 such that for any x,y,z € I' lying in this order on
a word geodesic,

dg(x,y) +dg(y,z) <dg(x,z)+c.

Recall that an action I' ~, T is minimal and non-elementary if T is a minimal
compact space invariant under the action and it contains more than two points. An
action I' », T is called convergence if the induced action on the space of distinct
triples of T is properly discontinuous. A minimal, non-elementary convergence
action on a compact metric space 7 such that every point of T is either conical
or bounded parabolic (see definitions in Section 3) is called geometrically finite. A
finitely generated group I' is called hyperbolic relative to a system of subgroups
P if T' admits a geometrically finite action on a metrisable compactum 7" such
that the elements of P are the stabilizers of the parabolic points. The space T is
called the Bowditch boundary and we will denote it by dgI'. It is known to be
the Gromov boundary of a proper geodesic Gromov hyperbolic space on which
[ acts properly discontinuously and isometrically [Bow].

Gekhtman, Gerasimov, Potyagailo and Yang proved in [GGPY] for any finitely
generated group I' that the following generalized Ancona inequality is satisfied.
For every x,y,z €T,

(1) dg(x,y) +dg(y,z) < dg(x,2) + A(8] (x, 2)).
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The inequality (1) is similar to that of Ancona but there are no restrictions on the
group to be hyperbolic and on the triple of points x, y,z to belong to the same
word-geodesic in the Cayley graph. On the other hand, the universal constant of
Ancona is replaced with a function 4 : Rs9o — Rs¢ which is a non-increasing
function such that A(t) — +o0 once r — 0. Its argument in (1) is a visibility
function Sf (x,z) which is the Floyd distance between x and z from y. This
distance is obtained by rescaling the word distance with a quickly decreasing
scalar function f :Rs¢ — R called Floyd function (see Section 3.1 for more
details).

One of the corollaries of (1) obtained in [GGPY] states that if the group T" is
relatively hyperbolic then the identity map on the group extends to a continuous
equivariant surjection from the Martin boundary to the Bowditch boundary of
I. Moreover the preimage of any conical point under this map is a singleton.
Determining the Martin boundary is thus reduced in this case to describing the
preimages of a countable set of parabolic points.

The goal of this paper is to show that if the maximal parabolic subgroups
are virtually abelian, then the Martin boundary of a finitely supported random
walk is obtained by a blow-up construction at parabolic limit points of the
Bowditch boundary. More precisely, one can define the induced chain on any
neighborhood of a maximal parabolic subgroups, using the first return kernel to
this neighborhood. We replace every parabolic limit point & at Bowditch boundary,
stabilized by the parabolic subgroup P € P with the Martin boundary of this
return kernel on some fixed-sized neighborhood of P, which is the sphere of
dimension k — 1, where k is the rank of P (see Section 3.2 for more details).

This result was already known in some partial cases. Woess determined
in [Woel] the homeomorphism type of the Martin boundary for finitely supported
nearest neighbor random walks on free products of the form Z9' x Z% (which
are hyperbolic relative to each abelian factor). For such random walks, he proved
that the Martin boundary is obtained by adding spheres of dimension d; —1 for
each left coset yZ9! and spheres of dimension d, — 1 for each left coset yZ%2
to the set of infinite words. We also note that in the Woess’ theorem one does not
need to assume that the free factors are abelian. Precisely, the Martin boundary
of a nearest neighbor random walk on I'; x I, is obtained by gluing copies of
the Martin boundary of the induced chains on I'; and I'; to the set of infinite
words.

Another previously known example is given by finitely supported random
walks on a non-cocompact lattice in the hyperbolic upper half-plane H?2. In this
case the Bowditch boundary is the limit set which coincides with the unit circle,
and the group is also hyperbolic. So by Ancona’s theorem, the Martin boundary
is the Gromov boundary of the group which is homeomorphic in this case to the
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set of ends of a free group obtained by blowing-up at each parabolic fixed point
of rank 1 into two points. However, in general, for geometrically finite Kleinian
groups (even for non-cocompact lattices in the hyperbolic 3-space H?) the
homeomorphism type of the Martin boundary of finitely supported random walks
was not known before. For sake of completeness, let us also mention the work of
Ballman and Ledrappier [BL]. They study discretization of the Brownian motion
on Riemannian manifolds. In particular, they identify the Martin boundary for
some classes of measures on geometrically finite Kleinian groups. Those measures
however are not in general finitely supported.
In view of the above discussion, we ask the following question.

Question 1.1. Let I be a relatively hyperbolic group and let u be a probability
measure on ' whose finite support generates I' as a semigroup. Let ¢ be
the equivariant continuous surjective map from the Martin boundary d,I" to
the Bowditch boundary dpI" constructed in [GGPY]. Is the ¢-preimage of a
parabolic point homeomorphic to the Martin boundary of the induced chain on
a bounded neighborhood of the corresponding parabolic subgroup ?

In this paper, we give a positive answer to this question when the group I' is
hyperbolic relatively to virtually abelian subgroups. This class of groups includes:
geometrically finite subgroups of the group of isometries of the real hyperbolic
space H”, limit groups, and finitely generated groups acting freely on R” -trees
(the latter groups are hyperbolic relatively to abelian subgroups by [Gui], [Dah2]).

Definition 1.2. We will call a boundary, obtained by replacing a fixed point of a
parabolic subgroup of rank k by a sphere of dimension k —1, parabolic blow-up
boundary (PBU-boundary for short).

We refer to Section 3.2 for more details on this definition. Dussaule [Dus]
generalized Woess’ result [Woel] and gave a geometric description of the Martin
boundary for any finitely supported random walk on free products of abelian
groups, identifying it with the visual boundary of a CAT(0) space on which the
group acts cocompactly. In particular it is a PBU-boundary. The key technical
result of [Dus] extends results of Ney and Spitzer [NS] to more general chains.
It states that the Martin boundary of non-centered -or strictly sub-Markov- chains
on Z¥x{1,...,N}, N € N, is a sphere of dimension k —1 (see Proposition 4.6
below). One of the main results of the paper is the following.

Theorem 1.3. Let T" be a non-elementary finitely generated relatively hyperbolic
group with respect to a collection of infinite virtually abelian subgroups. Let
be a measure on T'" whose finite support generates T" as a semigroup. Then, the
Martin boundary is a PBU-boundary.
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The following direct corollary answers the above question in the case when
all parabolic subgroups are virtually abelian.

Corollary 1.4. Suppose that all the assumptions of Theorem 13 are valid. Let
¢ : 0, — dgl" be an equivariant continuous map from the Martin boundary to
the Bowditch boundary. Then for every parabolic point p € dgT the set ¢~ '(p)
is homeomorphic to the Martin boundary of the stabilizer H of p with respect
to the induced measure.

Another central result of the paper is the following.

Theorem 1.5. Let T be a non-elementary finitely generated relatively hyperbolic
group with respect to a collection of infinite virtually abelian subgroups. Let [
be a measure on T whose finite support generates I" as a semigroup. Then, every
point of the Martin boundary corresponds to a minimal harmonic function.

There is a particularly simple geometric construction of a PBU-boundary when
I" is a non-uniform lattice in the real hyperbolic n-space H"”. By removing from
H" a I'-equivariant collection of disjoint horoballs based at parabolic fixed points
and considering the induced shortest-path metric on the complement, we obtain a
CAT(0) space on which I' acts cocompactly. One can easily check that the visual
boundary of this CAT(0) space is a PBU-boundary. In particular, when n = 3,
the PBU-boundary is homeomorphic to the sphere S? with a countable and dense
set of discs removed. It is then homeomorphic to the Sierpinski carpet (see [Rua,
Theorem 4.1, Corollary 4.2] for a proof and see also [TW, Theorem 1] for a more
general statement). Concluding this discussion we obtain from Theorem 1.3 the
following.

Corollary 1.6. Let I be a non-uniform lattice in the real hyperbolic space
H". Let (v be a probability measure on " whose finite support generates T°
as a semigroup. Then, the Martin boundary is equivariantly homeomorphic to
the CAT(0) boundary of the truncated space. In particular if n = 3, it is
homeomorphic to the Sierpinski carpet.

1.2. Brief description of difficulties and ideas of the proofs. To prove
Theorem 1.3 we define the induced random walk on each parabolic subgroup
P as the first return kernel on P . This chain happens to be strictly sub-Markov.
The aim would be to show that the Martin boundary of the induced chain on
P coincides with the limit set of P in the original Martin boundary of (I, u).
By [GGPY, Corollary 8.3] this would be true if we knew a priori that every
point in the preimage of ¢ in the Martin boundary of (I', ) corresponds to a
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minimal harmonic function. However to prove the minimality, we need to have a
precise description of the Martin boundary of the induced sub-Markov chain on
parabolic subgroups. So we proceed in the opposite way: we first characterize the
preimages of parabolic points and a posteriori we obtain that they correspond to
minimal harmonic functions.

Our proofs of Theorems 1.3 and 1.5 use both the inequality (1) and the
generalization of the theorem of Ney and Spitzer [NS] given in [Dus]. Roughly
stated, we show that the preimage of a parabolic point on the Bowditch boundary,
with stabilizer P, is homemorphic to the Martin boundary of a neighborhood
of P with a finite (though not probability) measure induced by the first return
times, which by the result of [Dus] is a sphere of the appropriate dimension.

To show that the Martin boundary d,I" is a PBU-boundary, we have to
deal with two types of trajectories, namely those converging to conical points in
the Bowditch boundary and those whose projections converge in the geometric
boundary of a parabolic subgroup. To treat the first type of trajectories, we use
results of [GGPY] which imply that whenever a sequence g, converges to a
conical limit point then it converges to a unique point of the Martin boundary
(see Proposition 5.2).

For the second type of trajectories, we study the induced random walk on
a parabolic subgroup P. An additional difficulty, not mentioned above, is that
this random walk is not finitely supported. Using results of Gerasimov and
Potyagailo [GP3], we prove that the induced random walk on a sufficiently large
neighborhood of P has large exponential moments. Applying then several results
of [Dus], we show that if a sequence g, converges in the boundary of P, then
it converges in the Martin boundary. Furthermore two different points in the
boundary of P correspond to two different points in the Martin boundary.

To finish this discussion we stress that the above methods crucially use several
times that the parabolic subgroups are virtually abelian. So already in the case
where the group I' is hyperbolic relatively to virtually nilpotent subgroups,
Question 1.1 remains open.

1.3. Organization of the paper. The paper is divided into six main parts, besides
the introduction.

Section 2 is devoted to giving the necessary probabilistic background on
random walks, Markov chains, and their Martin boundaries. In particular, we will
explain the relationship between the Martin boundary and harmonic functions.
This relationship was actually the reason for introducing the Martin boundary in
the first place.

Section 3 is about relatively hyperbolic groups. In Sections 3.1, we give the
definition of those groups and state results of Gerasimov and Potyagailo about
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the interplay between the Floyd distance and the geometry of the Cayley graph
of such groups. We also define properly what is a PBU-boundary and what is
the geometric compactification of a parabolic subgroup in Section 3.2.

In Section 4, we give the necessary geometric background on Martin
boundaries for the proof of our main theorem. In Section 4.1, we restate the
inequality (1) obtained in [GGPY]. This inequality will be used throughout the
proofs, especially when we deal with trajectories converging to conical limit
points. In Section 4.2, we state the results of Dussaule about Martin boundaries
of chains on Z¥ x {1,...,N}. This part is a bit technical and we extend his
results to deal later with trajectories converging in the geometric boundary of a
parabolic subgroup.

In Section 5, we prove our main theorem, Theorem 1.3. We first deal with
conical limit points in Section 5.1, using results of Section 4.1 and then with
parabolic subgroups in Section 5.2, using results of Section 4.2.

In Section 6, we prove Theorem 1.5, that is, every point of the Martin boundary
is a minimal harmonic function. Again, we will deal separately with trajectories
converging to conical limit points and trajectories converging in the boundary of
parabolic subgroups.

In Section 7, we give a geometric construction of a PBU-boundary, using a
construction of Dahmani in [Dahl]. We also state some questions suggested by
our results.

2. Martin boundaries of random walks

Let us give here a proper definition of the Martin boundary and the minimal
Martin boundary. In this paper, we deal with random walks on groups, but
during the proofs, we will restrict the random walk to thickenings of peripheral
subgroups and we will not get actual random walks. Thus, we need to define
Martin boundaries for more general transition kernels.

Consider a countable space E and equip E with the discrete topology. Fix
some base point ¢ in E. Consider a transition kernel p on E with finite total
mass, that is p : E x E — R satisfies

VX €E, Y p(x,y) < +oo.
yeE

It is often required that the total mass is 1 and in that case, the transition kernel
defines a Markov chain on E. In general, we will say that p defines a chain on
E and we will sometimes assume that this chain is sub-Markov, that is the total
mass is at most 1. If p is a probability measure on a finitely generated group I',
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then p(g,h) = u(g~'h) is a probability transition kernel and the Markov chain
is the random walk associated to .
Define in this context the Green’s function G as

G(x,y) =Y p"(x,y) €0, +oc],

n>0

where p®™ is the nth convolution power of p, i.e.

PP x,y) = ) pex)px1,x2) - plen-t, ).

Definition 2.1. Say that the chain defined by p is finitely supported if for every
x € E, the set of y € E such that p(x,y) > 0 is finite.

Definition 2.2. Say that the chain defined by p is irreducible if for every
x,y € E, there exists n such that p®(x,y) > 0.

For a Markov chain, this means that one can go from any x € E toany y € £
with positive probability. In this setting, the Green’s function G(x,y) is closely
related to the probability that a p-governed path starting at x ever reaches y.
Indeed, the latter quantity is equal to % (see [Woe2, Lemma 1.13.(b)].

Notice that in the case of a random walk on a group I', the Green’s function
is invariant under left multiplication, so that G(x,x) = G(o,0) for every x.
Thus, up to some multiplicative constant, G(x, y) is the probability to go from
x to y. We denote this probability by P(x — y) in the following, so that
G(x,y) = G(o,0)P(x — y). Moreover, the irreducibility of the chain is equivalent
to the condition that the support of the measure u generates I' as a semigroup.

In particular, in the context of Theorem L3, the transition kernel defined by
the probability measure  is irreducible.

We will also use the following definition during our proofs.

Definition 2.3. Say that the chain defined by p is strongly irreducible if for
every x,y € E, there exists ny such that Yn > ny, p™(x,y) > 0.

We will also assume that the chain is transient, meaning that the Green’s
function is everywhere finite. For a Markov chain, this just means that almost
surely, a path starting at x returns to x only a finite number of times.

Consider an irreducible transient chain p. For y € E, define the Martin kernel
based at y as




Martin boundary of relatively hyperbolic groups 349

The Martin compactification of E with respect to p (and o) is a compact
metrizable space containing £ as an open and dense space, whose topology is
described as follows. A sequence y, in E converges to a point in the Martin
compactification if and only if the sequence K,, converges pointwise. Up to
isomorphism, it does not depend on the base point 0 and we denote it by E,,.
We also define the Martin boundary as 9,E = E, \ E. We refer to [Saw] for a
complete construction of the Martin compactification.

Seeing the Martin kernel K as a function of two variables x and y, the Martin
compactification is then the smallest compact space M in which E is open and
dense and such that K can be extended to the space E x M, continuously on the
second variable. If y € E,, denote by K; the extension of the Martin kernel.

In the particular case of a symmetric Markov chain, that is a Markov chain
satisfying p(x, y) = p(y, x), the Green’s distance, which was defined by Brofferio
and Blachére in [BB] as

G(x,y)
G(,y)

is actually a metric and the Martin compactification of E with respect to the
Markov chain p is the horofunction compactification of E for this metric.

Now, assume that £ = I" is a finitely generated group and that the transition
kernel p is defined by a probability measure y. In that case, denote by T, the
Martin compactification and by d,I" the Martin boundary. The action by (left)
multiplication of T' on itself extends to an action of ' on T,.

One important aspect of the Martin boundary is its relation with harmonic
functions. Recall that if p is a transition kernel on a countable space E, a
harmonic function is a function ¢ : £ — R such that p¢ = ¢, that is,

Vx e E.p(x) =Y p(x,»)$().

yeE

dg(x,g) = -InP(x - y) = —In

We have the following key property (see [Saw, Theorem 4.1]).

Proposition 2.4 (Martin Representation Theorem). Let p be a irreducible transient
transition kernel on a countable space E. For any non-negative harmonic function
¢, there exists a measure v on the Martin boundary 0,E of E such that

Vx e E, p(x) = [3 . Kz (x)dv(F).

Let ¢ be a non-negative harmonic function. It is called minimal if any other
non-negative harmonic function ¢ such that ¥ (x) < ¢(x) for every x € E is
proportional to ¢ by a constant. The minimal Martin boundary is the set
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B'SE = {55 € 0, E, K5(-) is minimal harmonic}.

It is thus a subset of the full Martin boundary d,E. A classical representation
theorem of Choquet shows that for any non-negative harmonic function ¢, one
can choose the support of the measure v lying in d7} E. The measure v is then
unique (see [KSK, Chapter 10.7]). In other words, for any such function ¢, there
exists a unique measure py on 9/ E such that

vxe g0 = [ Ke@dup(d).

i

3. Relatively hyperbolic groups

3.1. Relative hyperbolicity and the Floyd metric. Let I" be a finitely generated
group. The action of T" on a compact Hausdorff space T is called a convergence
action if the induced action on triples of distinct points of T is properly
discontinuous. If 7' is a metrizable compactum then the action G ~ T is
convergence if and only if every sequence of distinct elements g, in I contains
a subsequence gy, such that g,, x — a and for all x € X with at most perhaps
one exceptional point.

Suppose I' n, T is a convergence action. The set of accumulation points
AT of any orbit I'x (x € T) is called the limit set of the action. As long as
AT has more than two points, it is uncountable and the unique minimal closed
I"-invariant subset of 7. The action is then said to be non-elementary. In this
case, the orbit of every point in AT is infinite. The action is minimal if AT =T .

A point ¢ € AT is called conical if there is a sequence g, of I' and distinct
points «,B € Al such that g, - « and gyn — B for all n € T \ {¢}. The
point { € AI' is called bounded parabolic if it is the unique fixed point of
its stabilizer in I', which is infinite and acts cocompactly on AT \ {{}. The
stabilizers of bounded parabolic points are called (maximal) parabolic subgroups.
The convergence action I' ~, T is called geometrically finite if every point of
AT C T is either conical or bounded parabolic.

Definition 3.1. Let P be a collection of subgroups of I'. We say that I' is
hyperbolic relative to P if there exists some compactum 7 on which T' acts
minimally and geometrically finitely and the maximal parabolic subgroups are the
elements of P.

Such a compactum is then unique up to I'-equivariant homeomorphism [Bow]
and is called the Bowditch boundary of (I',P). The group I is said to be relatively
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hyperbolic if it is hyperbolic relative to some collection of subgroups, or equiva-
lently if it admits a geometrically finite convergence action on some compactum.
The group I' is non-elementary relatively hyperbolic if it admits a non-elementary
geometrically finite convergence action on some infinite compactum.

Since I is assumed to be finitely generated, every maximal parabolic subgroup
is finitely generated too (see [Gerl, Main Theorem (d)]). Then, by Yaman’s
results [Yam], it follows that if ' ~, 7 is a minimal geometrically finite action,
then there exists a proper geodesic Gromov hyperbolic space X on which T’
acts properly discontinuously by isometries and a I'-equivariant homeomorphism
T — dX.

Let I be a group hyperbolic relative to a collection of parabolic subgroups P.
The set P is invariant under conjugacy, since the set of parabolic limit points is
invariant under the group action. Furthermore, the set P contains at most finitely
many conjugacy classes of maximal parabolic subgroups (see [Tuk, Theorem 1B]).

We now discuss the Floyd distance and the Floyd boundary. Let f : RT — R™T
be a function satisfying two conditions: ) ., fn < oo; and there exists a
A € (0,1) such that 1 > f,41/fn = A for all neN. The function f is then
called the rescaling function or the Floyd function.

Let S be a finite system of generators of I', we denote by CgI" the Cayley
graph, and by d(.,.) the word distance. Fix a basepoint 0 € I and rescale CsT"
by declaring the length of an edge o to be f(d(o,0)). The induced shortpath
metric on CgI" is called the Floyd metric with respect to the basepoint o and
Floyd function f and denoted by 8({ (., .). Its Cauchy completion (whose topology
does not depend on the basepoint) is called the Floyd compactification T'y and
o, = ff \I' is called the Floyd boundary. Karlsson showed that the action of a
group on its Floyd boundary is always convergence [Kar, Theorem 2]. On the other
hand, if T is relatively hyperbolic and if the Floyd function f is not decreasing
exponentially too fast, Gerasimov [Ger2, Map theorem] proved that there is
continuous I'-equivariant surjection (Floyd map) from the Floyd boundary to the
Bowditch boundary. Furthermore, Gerasimov and Potyagailo [GP2, Theorem A]
proved that the preimage of any conical point by this map is a singleton and
the preimage of a parabolic fixed point p is the limit set for the action of its
stabilizer I', on 0rI'. In particular if I', is an amenable non-virtually cyclic
group then its limit set on the Floyd boundary is a point. Consequently, when I"
is hyperbolic relative to a collection of infinite amenable subgroups which are not
virtually cyclic, the Floyd boundary is homeomorphic to the Bowditch boundary.

Let o : I — CgsI'" be a (finite or infinite) geodesic for the Cayley metric. We
also fix a relatively hyperbolic structure on I' and let P be a system of maximal
parabolic subgroups of it. A point v = a(tp) € @ (top € I) is said to be (e, R)-
deep if there exists g € ' and P € P such that the image «(Jzp — R, ?o + R[) is
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contained in the e-neighborhood of gP. Otherwise, p € « is called an (€, R)-
transition point (or simply (e, R)-transitional) of «. Gerasimov and Potyagailo
proved the following key property.

Proposition 3.2 ([GP3, Corollary 5.10]). For each € > 0, R > 0 there exists
8 > 0 such that the following holds. For any 3 distinct points x,y,z in T, if
y is situated in a (word) distance D from an (€, R)-transition point of a word
geodesic [x,z] between x and z, then 8{ (x,z) = 6.

Remark about the proof. The argument of [GP3, Corollary 5.10] guarantees that

the shortcut distance g;r (x,z) on the Bowditch compactification of the Cayley
graph is bounded below by some constant § > 0. This distance is obtained by
transferring the Floyd metric by the Floyd map constructed by Gerasimov [Ger2].
It satisfies the following inequality (see [GP1, Section 3.1]): 8}{ (x,2) > g){(x,z).
This gives the above statement (see [Ger2] and [GPI] for more details). We
note also that the shortcut distance provides a necessary and sufficient criterion
in the above context: the point y is a (e, R)-transition point if and only if

gf(x,z) > § > 0 where (¢, R) and & determine each other.

3.2. Geometric compactifications. We now give a precise definition of a
PBU-boundary. We first define the geometric boundary of an infinite, virtually
abelian, finitely generated group. Let P be such a group, so that there exists
a subgroup of P isomorphic to ZK, for some k > 1, with finite index in
P. Then, any section P/Z*¥ — P provides an identification between P and
Z¥ x{1,...,N} for some N > 1. Let g, be a sequence in P and identify g,
with (z,, ju) € Z*¥ x {1,..., N}. Say that the sequence g, converges to a point
in the boundary of P if z, tends to infinity and II_ZLI—I converges to some point
in the sphere S¥~!. Here, ||| is the Euclidean norm. This defines what we call
the geometric boundary dP of P.

Actually, since P is virtually abelian, it admits a proper and cocompact action
on a CAT(0) space, see [BH, Remark 7.3 (2)]. The geometric boundary of P we
defined coincides with the CAT (0) boundary of P, which is the visual boundary
of a CAT(0) space R¥ on which P acts properly and cocompactly. Note that
the CAT(0) boundary of a finitely generated group is not well defined in general
since CAT(0) boundaries are not invariant under quasi-isometries. However, the
CAT(0) boundary of a virtually abelian group is well defined. More generally,
if a relatively hyperbolic group T' with respect to virtually abelian subgroups
acts isometrically on a CAT(0) space then the boundary oI' is a well defined
CAT (0) boundary, see [HK, Theorem 1.2.1, Theorem 1.2.2 (3)]. In particular, the
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geometric boundary of P neither depends on the choice of the abelian subgroup
Zk of finite index in P nor on the choice of the section P/ZF — P.
The definition of the geometric boundary immediately implies the following.

Lemma 3.3 (Perspectivity property). Let P € P and z,,z) two sequences
converging to 0P such that the distance ||z — Z'|| is bounded. Then they both
converge to the same point in dP.

Proof. By definition of the geometric topology ||z,|| — oo (and so is z},). Assume

that the sequence H—jfm converges to 6 € S¥~1 where k is the rang of P. Since

z) = Zp + Un and ||u,|| is bounded it follows that lim,_eo %ﬂ = ¢. The same
argument works in the opposite sens. U
Remark. The property established in the lemma we call perspectivity property. It
is true for virtually abelian parabolic subgroups but it is largely unknown in other
cases (in particular for nilpotent parabolic subgroups, see also the concluding
Section 7.3).

If F is a finite set, we define the geometric boundary of the product P x F
as follows. First identify P with Z¥ x {1,..., N} as before. This provides an
identification between P x F and Z¥ x{1,..., N’} for some other integer N’ > 1.
As above, a sequence g, in P xF is said to converge in the geometric boundary
if its projection onto ZK under this identification converges in the geometric
boundary of Z¥ . This slight generalization will be useful in the following. Indeed,
for technical reasons, when studying sequences converging in 0P, we will not
restrict the random walk to parabolic subgroups but to bounded neighborhoods
of them.

Suppose now that I' is a finitely generated group hyperbolic relative to
a collection P of infinite subgroups. We will assume through the paper that
every parabolic subgroup is virtually abelian. Let Py C P denote a full subset
of representatives of conjugacy classes of parabolic subgroups. As mentioned,
by [Tuk, Theorem 1B], Py is finite. We define a parabolic blow-up (PBU) boundary
for I' relative to this choice of Py, although our definition will not depend on it
up to equivariant homeomorphism, since we will prove that the Martin boundary
is a PBU-boundary (and the Martin boundary does not depend on Py).

Fixing a word metric d on ', for ACT and g e, let

proju(g) ={h € A:d(h,g) =d(A,g)}

be the set of closest point projections of g to A. For a subset FF C T" let

projs(F) = [ projy (g).
geF
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Let m4 : I' = A be any function with m4(g) € proj,(g). The following result
will be used several times further on.

Proposition 3.4 ([GP3, Proposition 4.3]). The diameter of projp(g) is finite and
bounded uniformly and independently on g € ' and P € P.

In particular when T' is a hyperbolic group relatively to virtually abelian
subgroups, then by Lemma 3.3 for a sequence g, € I the convergence of wp(gn)
to the geometric boundary of P does not depend on the choice of mp.

We will use boundaries throughout the paper. We fix the following terminology.
A compactification T of T' is a metrizable compact space, containing I" as an
open and dense space, endowed with a group action by homeomorphisms I' ~, T’
that extends the action by left multiplication on I'. Then, oI :=T \ I is called
a boundary of I'.

Definition 3.5. Let I be a group hyperbolic relative to a collection P of virtually
abelian subgroups. Fix a finite set of representatives of conjugacy classes of
parabolic subgroups Py C P. A parabolic blow-up (PBU) boundary of (T, P)
is a boundary o' such that the following holds.

A sequence g, in ' converges to a point in JdI' if and only if g, tends
to infinity and either g, converges to a conical point in the Bowditch boundary
or there exist g € I' and a parabolic subgroup P € Pp such that g~ 'mep(gn)
converges in the geometric boundary of P.

We start proving that the topology on the PBU-boundary of (I',Pg) is well
defined.

Proposition 3.6. Ler T" be a group hyperbolic relative to a collection P of
virtually abelian subgroups. Let 911" and 03,I" be two PBU-boundaries. Then,
the identity on T extends to an equivariant homeomorphism from I' U 0, fto
'uao,r.

Proof. We first define a map ® from d;I" to 9,I". Let & € 0;I". Since I is
dense in ' U d;I", there exists a sequence g, of points of I" converging to &.
By Definition 3.5 this implies that g, also converges to some point é in d,.
Let us prove that £ only depends on £. Assume that g, is another sequence
converging to £ in d;I", so that g, converges to some g in 9,I". Consider the
sequence g, defined by g5, = g2, and g3, = g5, - Then, g, also converges
to £ in 0, so it converges to a point in d,I". This proves that & = £'. We
define a map ®:"'Ud, I’ = ' U d,I' as an extension of the identity map on T

given by ®(§) =§£.
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By construction, whenever a sequence g, in I' converges to § € 0:I", ®(gn)
converges to ®(&). Similarly, we define a map W:TUdI' - T U0 T. If g,
in T" converges to & € 9;I" and converges to ¢ € d,I", then ®(§) = ¢ and
V() =§&. Thus, oW = Id on 0,I" and W o ® = Id on d,I". Obviously,
PoVW=Wod=1Id on I', so that & and ¥ are inverse bijections. Hence, we
only need to prove that ® and ¥ are continuous and equivariant. By symmetry,
we only need to prove that @ is continuous and equivariant.

Let x, be a sequence in ' Ud;T" converging to some x. Assume first that
x € I, Since T is open in ' U d;I", x, € ' for large enough n, so that
Xp converges to x € I' and so ®(x,) converges to ®(x). Consider now some
x € 0,". Since both compactifications are assumed to be metrizable, we choose
arbitrary distances d; on ' U d;[", i =1,2.

Our goal is to construct a sequence g, in I' that also converges to x and
satisfies that d1(gn,x,) < 1/n and da(gn, ®(x,)) < 1/n. Whenever x, € T', we
set gn = x,. Let n be such that x, € 9;I". Since I' is dense in ' U 0;T,
there exists a sequence g, converging to x, when m tends to infinity. By
construction of &, this implies that g, , converges to ®(x,) when m tends
to infinity. We can thus find large enough m that we denote by m, such that,
letting g, = gn,m, » we have d1(gs, x,) < 1/n and da(gn, P(xn)) < 1/n. Now, xy,
converges to x and di(gn,x) < di1(gn,xn)+d(x,,x), so that g, also converges to
x . By construction of &, this implies that g, converges to ®(x) in d.I". Finally,
d2(P(xn), D(x)) < d2(P(xn), gn) + d2(gn, D(x)), so that ®(x,) also converges to
®(x). This shows that ® is continuous.

Let us prove that ® is equivariant to conclude. Since @ is the identity on
I, for any g,g’ e I', ®(gg’) = gg’ = g-d(g’). Assume that £ € 9, and let
g € I'. Choose a sequence g, converging to &£. Then, gg, converges to g-§.
By construction of ®, gg, converges to ®(g-£) in d,I". Also, by construction,
gn converges to ®(£) so that gg, converges to g-®(§) in d,I". This shows that
d(g-£) =g P(€), which concludes the proof. U

The following result implies that Definition 3.5 matches the rough definition
given in the introduction (Definition 1.2).

Proposition 3.7. Let " be a group hyperbolic relative to a collection P of
virtually abelian subgroups. Let 0I' be a PBU-boundary. Then, the identity on
I' extends to a continuous equivariant surjective map

ruor - ruagrl,

where dgI' is the Bowditch boundary. Moreover, the preimage of a conical limit
point is a singleton and the preimage of a parabolic point is an n—1-dimensional
sphere where n is the rank of its stabilizer.
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Proof. We first construct a map ®ppy : AT — dpI". Let ¢ € dT". Since T is
dense in ' U dI', there exists a sequence of points g, in I' converging to {.
There are two cases. First, if g, converges to a conical limit point «, then we
define ®ppy(¢) = a. Otherwise, there exists P € Py and g € I' such that
g 'mgp(gn) converges in the geometric boundary of P. Let o be the parabolic
limit point fixed by P and define ®ppy({) = go. We extend this map to a map
®ppy : T'U I — I' U dgl" declaring ®ppy to be the identity on I', as in the
proof of Proposition 3.6.

The group I' is dense in both compactifications and both compactifications are
metrizable. Indeed, by definition, a PBU-boundary is assumed to be metrizable
and it follows from Bowditch’s construction [Bow] that ' U dgI” is metrizable.
Note also that 'UdpI" admits the shortcut metric mentioned in the Remark after
Proposition 3.2. Therefore, it is sufficient to prove that whenever a sequence gy,
in I' converges to ¢ € dI', g, converges to ®ppy () € 0gI'. If ®ppy({) is
conical, this is given by the construction of ®ppy . Otherwise, ®ppy ({) = o is
parabolic. Letting P € Py and g € I' be such that the stabilizer of g~ la is P,
g 'mgp(gn) converges to ¢. In particular, nmgp(gn) tends to infinity so that g,
converges to «. By construction, ®ppy is surjective and equivariant.

To conclude, we note that the preimage of a conical limit point is a single
point by construction and that the preimage of a parabolic limit point « is
homeomorphic to the geometric boundary of P € Py, where P is the stabilizer
of g7la for some g € I'. This geometric boundary of P is an n —1-dimensional
sphere where n is the rank of P. This concludes the last part of the proof. [

Our main theorem states that the Martin boundary of a finitely supported
random walk is a PBU-boundary, so that in particular, such a boundary always
exists and does not depend on the choice of generators. In Section 7 we will also
give a geometric construction of a PBU-boundary based on a compactifications
of relatively hyperbolic groups introduced by F. Dahmani which in turns is based
on a classical topological Z-compactification.

4. Topology of Martin boundaries

4.1. Generalized Ancona’s inequality. Suppose T is a finitely generated group.
Let © be a probability measure whose finite support generates I as a semigroup
and let G be the associated Green’s function.

Denote by G(x,z; Bi(y)) the Green’s function from x to z conditioned by
not visiting the ball of center y and radius R, that is

G(x,z: BR(0) = Y Pu(Xy =z | X; ¢ BR(Y), 1 €{l,....k—1}).
k>0
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For a hyperbolic group Ancona’s inequality, mentioned in the Introduction, can be
restated in the multiplicative form as follows. There exists a uniform constant C,
depending only on the hyperbolicity constant of the group, such that for any three
distinct points x,y,z lying along a word geodesic in this order in the Cayley
graph, one has

£G@.G(,2) = 6(x,2) = CO(x, 1)G,2).

Ancona used this inequality to identify the Martin boundary of hyperbolic groups
with their Gromov boundary. To apply this theory to relatively hyperbolic groups,
we will need the following result of Gekhtman, Gerasimov, Potyagailo and Yang
which implies the inequality (1). Fix a Floyd function f.

Theorem 4.1 ([GGPY, Theorem 1.3]). For each € > 0 and § > 0 there exists
R > 0 such that for all x,y,w € I' satisfying that 8£(x,y) >8>0, the
probability that the random walk starting at x and conditioned to reach y
avoids a ball in the Cayley graph centered at w of radius R is at most €. In
terms of the Green function, it can be stated as

(2) G(x,y; Bg(w)) < €G(x,y).

By Proposition 3.2, the points x,y,w satisfy 5{; (x,y) > & for some fixed
8 > 0 as soon as the point w is within a word distance D of a transition point
on a word geodesic [x,y]. If the group I' is word-hyperbolic then all points
on a geodesic in the Cayley graph are transition points for a uniform constant
(depending only on the hyperbolicity constant), hence Theorem 4.1 implies the
Ancona’s inequality in this case, see [GGPY, Corollary 1.4].

4.2. Martin boundaries of thickened abelian groups. To understand the
behavior of Kg,(g), when g, converges in the geometric boundary of a parabolic
subgroup, we will introduce the transition kernel of the first return to the
corresponding subgroup P. We will then get a sub-Markov chain on P and
we will show that we can identify this first-return-chain with a Z -invariant sub-
Markov chain on Z* x {1,..., N} for the standard action z - (z’,k) = (z + ', k)
(see Lemma 5.10). We will then use results for such chains.

In [Dus], the author shows that under some technical assumptions, the Martin

boundary of such a chain on Z* x {1,...,N} coincides with the geometric
boundary. In this setting, the geometric boundary is defined as in Section 3.2.
Namely, a sequence (z,,j,) in ZK x {1,...,N} converges to a point in the

geometric boundary if z, tends to infinity and II%W converges in the unit sphere

Sk=1_ We now introduce the assumptions of [Dus] and we will later show that
they are satisfied in our setting.



358 M. DussauLE, 1. GEkHTMAN, V. Gerasimov and L. PoryacaiLo

Consider a Z* -invariant chain p on the product space Z* x {1,...,N}. For
every function defined on Z* x {1,...,N}, the {1,..., N} coordinate will be
considered as an index. For example, the transition kernel will be written as
Pj1.j»(Z1,22), its nth power of convolution as pj(.:?h (z1,22), the Green’s function
as Gj,,j,(z1,22) and the Martin kernel as K, j,(z1,z2). We can thus see these
functions as the entries of N x N matrices. Assume that the chain p is strongly
irreducible, that is, for every ji, j» € {1,..., N} and for every z;,z; € 7k | there
exists no such that for every n > ny, pj('?,)jz (z1,z2) > 0. As we will see later (see
Lemma 5.1), strong irreducibility is not too much to ask and we will be able to
reduce our study of irreducible chains to strongly irreducible ones.

In [NS], Ney and Spitzer show that the Martin boundary of a strongly
irreducible, finitely supported, noncentered random walk on Z* coincides with
the CAT(0) boundary. Their proof is based on the study of minimal harmonic
functions which are of the form z € Z¥ > e*? for some u € R¥ satisfying the
condition

(3) > p0,2)e" = 1.

zeZk

In our setting, for u € R¥, we define the N x N matrix F(u) whose entries are
given by
Fjjo (1) = Z Pj1,j2 (0, 2)e**.
zeZk
The entries of this matrix may be infinite. We restrict our attention to the set
where they are finite and denote this set by Fy:

Fo={ueR¥ V)i, joef{l,....N}, Fj, j,(u) < +00}.

We also denote by F the interior of Fy.
Let M > 0. Let p be a chain on Z¥x{1,..., N}. Say that p has exponential
moments up to M if for every j,j’ € {l,...,N},

Y P70, 2)eMAl < 4o,

zeZk

We will show in Proposition 5.11 that the chain has exponential moments. Hence
every coefficient Fj, ;,(u) is finite for small u. It follows that F; contains a
small ball, and so the set F is not empty.

Lemma 4.2. For every u € Fo, the matrix F(u) has non-negative entries.
Furthermore, this matrix is strongly irreducible, meaning that there exists n > 0
such that F(u)" has positive entries.
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Proof. The calculation provided in [Dus, Lemma 3.2] shows that the entries of
F(u)* are given by

Frn@l' =Y i, 0,2)e"",

zeZk

Strong irreducibility of F(u) is deduced from strong irreducibility of p. O

Since F(u) is strongly irreducible, it follows from the Perron-Frobenius
theorem (see [Sen, Theorem 1.1]) that F(u) has a dominant positive eigenvalue,
that is an eigenvalue A(u) which is positive and such that for every other
eigenvalue A € C, |A| < A(u). Moreover, any eigenvector associated to A(u) has
non-zero coordinates and we can assume that every coordinate is positive. The
analog of Equation (3) will be

4) Aw) = 1.

Denote by D the set where A(u) is at most 1: D = {u € F,A(u) < 1}. The two
technical assumptions of [Dus] on the chain p are the following.

Assumption 4.3. The set D is compact.
Assumption 4.4. The minimum of the function A is strictly smaller than 1.

Since A(u) is a dominant eigenvalue, it is analytic in u (see Proposition 8.20
in [Woe2]). For u € F, denote by VA(u) the gradient of A with respect to u.
We have the following.

Lemma 4.5 ([Dus, Lemma 3.22]). Under Assumptions 4.3 and 4.4, the set
{u e R¥, A(u) = 1}
is homeomorphic to S¥~'. An explicit homeomorphism is given by

VA(u)

k —
uef{ueRAu) =1} VAT

This provides a homeomorphism ¢ between S*¥~! and the geometric boundary
of Z¥ x {1,..., N} constructed as follows. Let (z,, j,) be a sequence in Z¥ x
{1,..., N} converging to a point Z in the geometric boundary 3(Z¢ x{1,...,N}).
Then z, tends to infinity and "—;fm converges to a point € in the unit sphere

Sk=1 There exists a unique u € {u € R¥, A(u) = 1} such that 6 = %. Then,

define ¢(z) = u.

The Martin boundary is defined up to the choice of a base point. Fix such a
base point (zo, jo) € Z¥x{1,...,N}. Now, we can state that the Martin boundary
coincides with the geometric boundary.
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Proposition 4.6 ([Dus, Proposition 3.29]). Let p be a strongly irreducible transi-
tion kernel on Z*¥x{1,..., N} which is Z* -invariant and satisfies Assumptions 4.3
and 4.4. If z, € Z¥ converges to % € dZ*, let u = (). Then, for every z € Z*
and for every ji,j» € {1,...,N}, there exists a constant C;; > 0 which only
depends on j, such that K; j,(z,z,) converges to C, e*z=70),

Consider now a chain p on Zk x N. If N > 1, define the induced
chain pxy as the chain of the first return to 7k x {1,...,N}, that is, if
(z,7),(z,j)eZ*k x{1,...,N},

pn (2. ). (D) = p(z, ), (2, J")
+> Y, p(@ i) e D) e i, (22, 2)) - p(@ro Ji) (D).

k21 (le_jl ),....,(Zk ajk)
7 . Jk>N

Denote by G the Green’s function associated to p and by G the Green’s function

associated to the induced chain py . Then, we have the following lemma.

Lemma 4.7. The restriction to Z¥x{1,..., N} of the Green’s function G coincides
with the Green’s function Gy .

Proof. Every trajectory from (z,j) to (z/,j’) for the initial chain p defines a
trajectory from (z, j) to (z/,j’) for pn, by conditioning the trajectory on the

successive passages through Z* x{1,...,N}. Every trajectory for py is uniquely
obtained in such a way. Summing over all trajectories, the two Green’s functions
coincide. O

We also have the following proposition.

Proposition 4.8. Let p be a 7* -invariant, finitely supported, strongly irreducible
transition kernel on 7K x N. Then, there exist Ny > 0 and M > 0 such that
whenever N > Ny and the chain py has exponential moments up to M, py
satisfies Assumption 4.3.

Proof. We will prove that there exist & >0 and M > 0, such that for sufficiently
large N, whenever the chain py has exponential moments up to M, then

(5) lueR¥, Aw) <2} c lueR¥ |u| <pu} cF.

Denote by (e1,...,ex) the canonical basis in R¥. Since the chain p is strongly
irreducible, there exists n; such that for every n > n;, p(")((O, 1), (e;, 1)) > 0.
Thus, there exists 7o such that for every i, p®0)((0, 1), (e;, 1)) > 0, so that there
is a path of length ny from (0, 1) to (e;,1). These paths stay in ZF x {1,..., No}
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for some Ny, since the chain p is finitely supported. Thus, for every N > Ny, for
every i, the restricted chain py satisfies pj((}"’) ((0,1),(e;, 1)) > a, for some a > 0.
Let N > No and u € R¥, and let us fix L > 0. There exists i > 0 such that
if ||u]| = w, then at least one of the e**i is larger than % so that Fy ()"0 > L.
Moreover, if py has exponential moments up to pu+1, then F(u) has finite entries
for p < |lull = w+1 and so does F(u)". Let v(u) be an eigenvector associated
to A(u). Then, it is an eigenvector of F(u)"° associated to A(u)"°. Since F(u) is
strongly irreducible, v(x) has non-zero coordinates and we can even choose v(u)
with strictly positive coordinates. Denote by wv(u)(1) its first coordinate. Then,
v(u)(DA(u)" > Fp ()" v(u)(1) so that A(u)"0 > Fy y(u)"® > L.
Consequently, A(u)", hence A(u), can be made arbitrarily large, when
enlarging ||u|. Moreover, if py has sufficiently large exponential moments,
then A(u) is well defined for arbitrarily large ||u|. Inclusion (5) now follows
from these two facts. This proves that the sub-level A(u) < 1, is bounded, thus
compact and contained in the open set A(u) < 2, which is included in F. Thus,
Assumption 4.3 is satisfied. O

We will also use the following.

Lemma 4.9. Let p be a Z*-invariant, strongly irreducible chain on ZF x
{1,...,N}. If p is (strictly) sub-Markov, then it satisfies Assumption 4.4.

Proof. The fact that the chain is strictly sub-Markov means that the matrix F(0)
defined above is strictly sub-stochastic. In particular, its dominant eigenvalue A(0)
satisfies A(0) < 1 and the minimum of A is strictly less than 1, so Assumption 4.4
is satisfied. d

Combining the explicit formula given in Proposition 4.6 together with
Proposition 4.8 and Lemma 4.9, we obtain the following corollary which describes
convergence in the Martin boundary for a chain on Z¥ x N.

Corollary 4.10. Let p be a Z*-invariant, finitely supported, strongly irreducible
transition kernel on Z¥ x N such that:

(a) For large enough N, the induced chain py on ZF x {1,...,N} is strictly
sub-Markov.

(b) For all M there exists an Ny > 0 such that for N > Ny, the chain py
has exponential moments up to M .

Then, a sequence (z,,jn) in Z¥ x N, with sup(j,) < +oc, converges to a point
in the Martin boundary of p if and only if |z,|| tends to infinity and 22

[EM]
converges to a point of S¥~1.
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Thus, the fact that (z,, j,) converges to a point in the Martin boundary does
not depend on the sequence (j,) as long as it remains bounded. In particular,
(zn, jn) converges in the Martin boundary if and only if its projection (z,,0) on
Z* x {0} converges in the Martin boundary and the limits are the same.

5. Convergence of Martin kernels: Proof of Theorem 1.3

Let I" be a hyperbolic group relative to a collection P of infinite virtually
abelian subgroups. Let p be a measure on I' whose finite support generates I'
as a semigroup. In this section we prove that the Martin boundary is a PBU-
boundary, proving Theorem 1.3. Recall that dP denotes the geometric boundary
of a maximal parabolic subgroup P defined in Section 3.2. We fix a finite set
Po of representatives of conjugacy classes of P. We will deal separately with
sequences converging to conical limit points and sequences converging in gdP
for some coset gP of a parabolic subgroup P € Py. For the second case, we
will apply results of Section 4.2. It will be more convenient to deal with strongly
irreducible chains. Thus, we first show that we can reduce to such chains.

In a very general context, consider a chain p on a countable space E. Define
the modified chain p on E by

- 1 1
p(x1,x2) = EA(X1,X2) + zp(xl,xz),

where A(xi,x3) = 0 if x; # xp and 1 otherwise. Denote by p"(”) the nth
convolution power of p. Also denote by G the associated Green’s function:

G(xl,xz) = Zﬁ(n)(xl,)Q).
n=>0

We have the following (see [Woe2, Lemma 9.2]).

Lemma 5.1. With these notations, %G(xl,xz) = G(x1,x2) and thus the Martin
kernels are the same.

In our context, this means we can assume that u(e) > 0, and so the random
walk is strongly irreducible.

5.1. Convergence to conical limit points. We first study conical limit points.
We prove the following.

Proposition 5.2. Consider a sequence g, of T' that converges to a conical
point « in the Bowditch boundary. Then, g, converges to a point in the Martin
boundary.
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This is a consequence of the following two results of [GGPY].

Proposition 5.3 ([GGPY, Theorem 7.4]). The identity map T — ' extends to
a continuous equivariant surjection F from the Martin compactification to the
Bowditch compactification.

Proposition 5.4. [GGPY, Corollary 7.14] The preimage F~'(a) of a conical limit
point « consists of a single point.

Indeed, let g, converge to a conical limit point o and assume that g, does
not converge in the Martin compactification. By compactness, g, has two sub-
sequences that converge to two distinct points in the Martin boundary, which are
both mapped to o by F. This is a contradiction. O

5.2. Convergence in parabolic subgroups. In this section, we prove the
convergence of the Martin kernels Kg, (-) when g, converges to a point in
the geometric boundary of a parabolic subgroup P. We fix a finite set Py
of conjugacy classes of parabolic subgroups. Let P € Py. By assumption, P
contains a subgroup isomorphic to Z* with finite index. Any section P/Z¥ — P
provides an identification between P and ZK x {1,..., N}.

Let p, be a sequence in P . Identify then p, with (z,, j,) € Z¥ x{1,...,N}.
By definition, the sequence p, converges to a point in the boundary dP of P
if and only if z, tends to infinity and "—jﬁ converges to some point in Sk,
Denote the corresponding point in S¥~1 by # and say that p, converges to 6.
Our goal is to prove the following.

Proposition 5.5. Let g, be a sequence in TI'. If np(gn) converges to a point
of 0P, then g, and mp(gn) both converge in the Martin boundary 0,I" to the
same point.

Corollary 5.6. Let g € " and let P € Py. If gn is a sequence such that
g 'mgp(gn) converges to a point of 0P, then g, converges to some point in the
Martin boundary.

Proof of the Corollary. By Proposition 3.4 the diameter of projp(g) is uniformly
bounded. In our situation, 7p(g~'gs) € (projp(g~'gn) = &' (Projzpg&n)), SO
the element 7p(g~'g,) is within a bounded distance of g~ 'mgp(g,). Thus,
np(g~'gn) also converges to some point in dP. Proposition 5.5 shows that
g lg, converges to some point in the Martin boundary, hence so does g,. [

The key point in the proof of Proposition 5.5 is the following statement.
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Proposition 5.7. Suppose g, is a sequence with sup, d(gn, P) < 0o. Then, gn
converges to a point in the Martin boundary of T if and only if wp(g,) converges
to a point of dP. Moreover, in that case, g, and wp(g,) both converge in the
Martin boundary of T" to the same point.

The rest of this section is devoted to prove Proposition 5.7. Proposition 5.5
will then be deduced from it.

Let n > 0 and let N,(P) be the n-neighborhood of P. We introduce the
chain p corresponding to the first return to N,(P), defined as in Section 2.
Namely, for g,g’ € N,(P) denote by p(g,g’) the probability that the random
walk starting at g returns to N,(P), and first does so at g’. In other words
p(g.8") = G(g,g's Nj(P)). We will see that the probability that the random walk
starting at g never goes back to Nj(P) is positive (see Lemma 5.10). Thus, p
is not a probability transition kernel and defines a sub-Markov chain on N,(P).
Nevertheless, one can still define the Green’s function associated to p as

Gp(g.8) =) p™(g.8). g.8' € Ny(P),

n>0

where p™ is the nth power of convolution of p. According to Lemma 4.7, we
have the following.

Lemma 5.8. The Green’s function G, coincides with the restriction to Ny(P)
of the Green’s function G, associated to the initial random walk.

We also have the following property.
Lemma 5.9. The chain p is strongly irreducible.

Proof. The proof is based on the same idea as the proof of Lemma 5.8. First,
the initial random walk is irreducible. Now, every trajectory for p comes from
a trajectory for the random walk on the whole group, after excluding points that
do not stay in the neighborhood of P. Thus, there is a positive proportion (for
p) of paths from any point g € N,(P) to any other point g’ € N,(P). This
proves that p is irreducible. Now, recall that we assumed that w(e) > 0 (see
Lemma 5.1), so that p(g,g) > 0 and thus p is strongly irreducible. O

In light of Lemma 5.8, to prove Proposition 5.7, it suffices to show that a
sequence satisfying its conditions converges to a point in the Martin boundary of
Ny (P) with the induced chain p.

We first notice that, as a set, I can be identified P -equivariantly with P x N.
Indeed, P acts by left multiplication on I" and the quotient is countable. We
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order elements in the quotient according to their distance to P . It follows that the
n-neighborhood N,(P) can be P -equivariantly identified with P x {1,..., Ny}.
Moreover, if ' <7, the set P x{1,..., N,/} identified with N,/ (P) is a subset
of P x{l,..., Ny} identified with N,(P).

Now, identifying P with Z*¥ x F, where F is finite, we identify the group
I with Z* x N. Thus, the p-random walk can be considered as a Z* -invariant
Markov chain g on ZK x N and the restriction of the random walk to N, (P)
coincides with the restriction of the chain ¢ to Z¥ x {1,.. .,N,,} for some ]\7,]
To simplify the notations, we will write N = Nn.

Let g, be a sequence in N,(P) and identify g, with (za, jn) € Zk x
{1,...,N}. Notice that the projection of g, to P converges in the geometric
boundary dP of P if and only if (z,, j,) converges in the geometric boundary
of Z* x {1,..., N}, since in both cases, the sequence converges in the geometric
boundary if and only if z, tends to infinity and ﬁ converges to a point in the
sphere.

To prove Proposition 5.7, it suffices to show that the Markov chain g on
Z¥ x N and its induced chain p on Z¥ x {1,..., N} satisfy the conditions of
Corollary 4.10. Thus, we just need to show that for large enough 7, the induced
chain on N,(P) has sufficiently large exponential moments and is strictly sub-
Markov.

Lemma 5.10. The induced chain p is strictly sub-Markov.

Proof. 1t suffices to show that there exists g € N,(P) such that
Y. peg)<l.

g'eNy(P)
This follows from the fact that the p-random walk starting at g with d(g, P) = n
has a positive probability of never returning to N, (P). This, in turn, follows from
the fact that the random walk almost surely converges to a conical point (see, for
example, [GGPY, Theorem 9.8, Theorem 9.14]). O

For M > 0, recall that p is said to have exponential moments up to M if
for every j,j' €{l,...,N},

Z Pj,j’(O: Z)CM”z" < 400.

zeZk

Proposition 5.11. Let M > 0. For large enough n, p has exponential moments
up to M.

The proof of Proposition 5.11 will be divided into several steps. We will use
the following geometric preliminary results.
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Proposition 5.12 ([GP3, Proposition 8.5]). There are constants ag, D > 0,
independent of the parabolic subgroup P, such that if o is a geodesic with
endpoints oy, satisfying d(projp(o;),o) > D, then

diam(proj () < a.

The following two results follow from Proposition 5.12. Note that the first one
also follows from [Hru, Corollary 8.2].

Corollary 5.13. There exists co such that the following holds. If g1,g> € I' and
if g} € projpgi for i =1,2 then, d(g},g;) < d(g1.82) + co.

Proof. Consider a geodesic o from g; to g». If o stays outside the D-
neighborhood of P, then d(g}.g5) < ao.

Otherwise, denote by «;, respectively a, the first, respectively last point of
o within a distance D of P and let o] € projp(e;). Applying Proposition 5.12,
we get d(g},a;) < ag. Also, d(a],a;) <D, so that the triangle inequality yields

d(g},85) <2ap+ 2D + d(ay,a2) < d(g1,82) + co,

where c¢o = 2D + 2ay. L]

Corollary 5.14. For large enough a > 0, the function p: Ry — Ry defined by

p(n) = inf{d(g1,82) : d (wp (1), 7 (2) = a,d(gi, P) > 1)}

tends to infinity as n — 00.

Proof. Choose a and n larger than the constants @y and D from Proposition 5.12.
Let g1,82 € I' be such that d(g,,P) >n and d(g;,g2) <n—D. Let o be a
geodesic connecting g; and g,. By the triangle inequality, d(«, P) > D . Conse-
quently, we have diam(projp (o)) < ap <a. In particular d(7p(g1),7p(g1)) <a.
Thus, the conditions d(g;, P) > n and d(wp(g1),7np(g1)) = a imply that
d(g1,g2) > n— D, completing the proof. O

The following classical lemma is a consequence of the fact that the spectral
radius of p is less than 1. This follows in turn from non-amenability of T,
according to a famous result of Kesten, see [Kes].

Lemma 5.15 (Kesten). Denote by w*" the nth power of convolution of the
measure . There exists a > 0 such that for every g € T,

M*n (g) S e—an .
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We can now prove Proposition 5.11. Let z € Z* and j, j' € {1,...,N}. If the
first return to N,(P) starting at (0, j) is at (z, j'), there is a path Zo,..., Z, 41
such that Zy = (0,/), Zp41 = (z,j’) and Z; ¢ Ny(P) for 1 <[ < n. Note
that d(Z;, Z;4+1) < r(u), where r(u) only depends on the support of w. Thus,
if n>3r(u), then Zoy, Zy41 & Nap/3(P) as soon as n > 1, which will hold if
|z|| is large enough. Moreover by the triangle inequality, any geodesic from Z;
to Z;4+1 stays outside of Nj/3(P), for 0 </ <n.

Define a path ¢ from Zy to Z,4+; by gluing together geodesics from Z;
to Zj;41. Then, the length of ¢ is at most nr(w). The parabolic subgroup P
together with the induced word distance is quasi-isometric to its subgroup Z¥
together with the Euclidean distance. In particular, the word distance between 0
and z in P is larger than A|z|, where ||z|| stands for the Euclidean norm of
z e ZF and A only depends on the quasi-isometry parameters.

Denote by v; the vertices of the path ¢. We claim that for the constants a
and ¢o from Corollary 5.14 and Corollary 5.13, assuming that diam(proj)p¢ > a
(for sufficiently large [|z||), we can choose points yx = v;, (k =1,...,[) such
that their projections y; = mp(y) satisfy

a <d(Vk,Yk+1) a1 =a+1+co.

Indeed, let ¥; = mp(v;) and y; = vy. We argue by induction. Assuming that
the index k;—; was already chosen, let k; = min{k > k;j_1,d(Ji-1,0%) > a}. If
such an index exists, we define y; = vg, . Otherwise, we set [ =i —1. By our
choice, we have d(yi-1,0k,—1) < a. Applying now Corollary 5.13, the triangle
inequality yields d(Ji-1, i) < d(Ji—1, Og;—1) + d(Uk; -1, Ux;) < a+ 14+ co = ax,
as we claimed.

By gluing together a path from O to y;, paths from y; to y;+; and a path
from y; to z, we get a path from O to z inside P whose length is thus larger
than Al z| and is at most lay, for d(y;,Vi+1) < a;. Hence, | > %115"- By
definition of the function p in Corollary 5.14, d(y;,y;+1) = p(n/3). Thus, the
length of ¢ is at least %p(nﬁ)llzll, where p(n/3) tends to infinity, as 1 tends
to infinity.

Fix Ro > 0. Then, for large enough 7, p(n/3) > Z Ror(w), so the length of
¢ is at least Ror(w)|z||. Recall that n is the number of steps of the trajectory
from (0, j) to (z,/j’) and that the length of ¢ is at most nr(w). We thus have
n > Rylz||. Note that Ry can be taken arbitrarily large, provided that 7 is chosen
large enough. Summing over all trajectories of the random walk from g = (0, )
to g; = (z,j’) that stay outside N,(P), we have

pi(0.2) < Y w(E g

n=Rollz|
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Lemma 5.15 shows that

Pj,jf(O,Z) < Z e 9 < e—Rolz| Ze—an_

n=Rollz|l nz0
To prove Proposition 5.11, it suffices to choose Ry so that Roox > M . O

We can now complete the proof of Proposition 5.7, using Corollary 4.10.
Indeed, Lemma 5.9 shows that the induced chain on (arbitrary) bounded neigh-
borhoods of P is strongly irreducible, while Lemma 5.10 shows that it is strictly
sub-Markov (Condition a) of Corollary 4.10) and Proposition 5.11 shows that it
has sufficiently high exponential moment (Condition b) of Corollary 4.10).

Thus, Corollary 4.10 implies that the Martin compactification of the induced
chain on bounded neighborhoods of P coincides with the geometric compactifi-
cation of P, and together with Lemma 5.8 this implies Proposition 5.7. O

To prove Proposition 5.5, we now show that we can reduce to the case of a
sequence that stays in a uniform neighborhood of the parabolic subgroup P. The
proof is based on the following strategy. Assume that the sequence g, leaves every
bounded neighborhood of P, but its projections to P still converge to a point
@ in 0P . Proposition 5.7 applied to mp(g,) guarantees that mp(g,) converges
to a point in the Martin boundary. We want to prove that the same is true for
gn. In other words, we want to prove that Kg, converges pointwise. Generalized
Ancona inequalities show that to go from the basepoint e (the neutral element of
I') or from an arbitrary point g to g, the random walk visits wp(g,) with high
probability. Thus, G(g, gn) is close to G(g,7p(gn))G(wp(gn),gn) and Gle, gn)
is close to G(e,mp(gn))G(7p(gn), gn), so that K, (g) is close to K, (4,)(8)-
Convergence for Kg,(g) then follows from convergence for K, (,)(&).

We now give a formal proof. Let p, = mpg, be a projection point of g, to
P . By assumption we have lim,_ o pn = § € 0, By Lemma 8.2 of [GGPY],
there is a uniform & > 0 with liminf,— 8},:, (g,8n) = 6 for all g € I'. Let
€ > 0. Consider any g € I'. By Theorem 4.1, there is an n > 0 such that for
large enough n,

(6) G(g,gn; B;(Pn)) <€G(g gn)
and
) G e, gn BE(pn)) < €Gle, gn).

Assume 7 is also large enough to satisfy Proposition 5.11. Decomposing a path
from e to g, according to its last visit to B,(p,), we can write

(8) G(e,gn) = Z G(e,un)G(u,,,gn; B;;(Pn)) + G(e,g,,; Bg(l’n))
un€By(pn)
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and similarly,

9  G(g.gn) = Y G(&un)G(un.gn: BL(pn)) + G(g.8n: BS(pn)).
un€By(pn)

By Proposition 5.7 we know that for any u, € B(pn,n) also converges to §. Then
G(g,un)/G(e,u,) converges to K¢(g) and this is independent of the sequence
u, . Hence, for large enough », we have

<& G(g,un) =

(10) (I -€)Ke(g) < Gleun =

(1+€)Ke(g).
Combining (6), (9) and (10), we obtain for all large n that
G(g.gn) = Y. (1+Ke(8)G(e,un)G (un,gn: B (pn)) + €G(g, gn),
un€Bn(pn)
so that
(1-)G(g.gn) < 1+ )Ke(8) D Gle.un)G (tn. gni By(pn)-
Un€By(pn)
Then, using (8), (1—€)G(g.gn) < (1+€)Ke(g)G(e, gn). Similarly, using (7), (8),

(9) and (10), we get a lower bound, so that for large enough =,

l=¢ G(g.gn) _1+¢€
K - =
1+ € E(g)_G(e,gn)"l—e

K¢ (g).

Since € > 0 is arbitrary we get that K(g, g») converges to Kg(g). This holds for
every g € I', so that g, converges to £ in the Martin boundary, completing the
proof of Proposition 5.5. O

It follows now from Corollary 5.6 and Proposition 5.2 that a sequence g, € I’
converges in the Martin compactification of I' if one of the following conditions
is satisfied:

(1) either g, converges to a conical point of the Bowditch boundary,

(2) or for some parabolic subgroup P € Py and some g € T', g7 lmep(gn)
converges to a point of dP,

To complete the proof that the Martin boundary is a PBU-boundary we need
to show the converse: namely that if g, converges to a point in the Martin
boundary, then it satisfies either (1) or (2).

Suppose g, converges to a point in the Martin boundary. By Proposition 5.3,
gn converges to a point ¢« in the Bowditch boundary. If « is conical, then (1)
holds. Suppose now that o is parabolic with stabilizer gPg™! (P € Py, g € I")
and assume that (2) is not satisfied. We have g~ 'mgzp(gn) € projp(g~'gn) and
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by Proposition 3.4 the latter set has a uniformly bounded diameter. Thus the
elements 7p(g~'g,) and g~ lm,p(g,) are within a bounded distance of each
other, hence by Lemma 3.3 m#p(g~'g,) cannot converge to a point in dP. Since
gn converges to the parabolic limit point o, the quantity ||mgp(gs)|| goes to
infinity. Thus, there are sub-sequences h, and A, of g, with wp(g~'h,) and
np(g~'h)) converging to different points of dP . By Proposition 5.7, mp(g~'hy)
and 7p(g~'h)) converge to different points § and & in d,". Furthermore, by
Proposition 5.5, g~'h, converges to the same point in 3, as np(g~'h,) and
g~ 'h!, converges to the same point in 9,T" as wp(g~'h,). Thus h, and K,
converge to different points of d,I", contradicting our assumption on g,.

This proves that the Martin boundary is a PBU-boundary, ending the proof of
Theorem 1.3. O

6. Minimality

In this section we prove Theorem 1.5, namely the minimality of the Martin
boundary. We will use the following, which is a direct consequence of [Dus,
Proposition 6.3].

Proposition 6.1. There exists an ng > 0 such that for n > no the following holds.
For any distinct a9, 1 € 0P there exists a neighborhood U of oy (not containing
ap) in dP and a sequence g, of NpP such that

(1) either Ky(gn) tends to infinity, uniformly over a € U and Ky,(gn) stays
bounded away from infinity.

(2) or Ky(gn) stays bounded away from O, uniformly over a € U and Ky,(gn)
converges to 0.

We now prove the following.

Theorem 6.2. Let I be hyperbolic relative to a collection of virtually abelian
subgroups. Let u be a probability measure on " whose finite support generates
[' as a semigroup. Then every point of the Martin boundary 0,1 corresponds
to a minimal harmonic function.

Proof. By Theorem 1.3, d,I" is a PBU-boundary. This means that there is a
['-equivariant surjective map F : d,I" — dpI' such that if @ € dpI" is conical,
F~!(a) is a single point and if a € dgI' is parabolic, F~!(a) = 0P where
P is the stabilizer of a and 9P denotes its geometric boundary. Notice that
F :9,I' > dgI" is the same map as the the map ¢ : dp(I' — dpI" constructed
in [GGPY, Corollary 1.7].
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Let ap € d9,I". Then K, is a positive harmonic function. By the Choquet
representation theorem, there exists a finite Borel measure vy = v¥0 on the Martin
boundary, with support contained in the minimal Martin boundary d)/T" such that
forall ge T

Kuol®) = [ Kalg)dvo(@)

To prove minimality of «q it suffices to show that the support of vy consists of
the single point op. In Corollary 7.9 of [GGPY] the authors deduce the following
result from the inequality (1) (see Theorem 4.1).

Lemma 6.3. The support of v is contained in F~'(F(ap)).

If F(ag) is conical, then F~1(F(ap)) is a single point [GGPY, Corollary 7.14].
Lemma 6.3 then implies that the support of vy is a single point so that «q is
minimal.

On the other hand, if o is a parabolic point of the Bowditch boundary with
stabilizer P, Theorem 1.3 implies that F~!(F(ag)) = 9P . Thus we know that vy
is supported on dP N /T,

Now, suppose «; is a point of dP distinct from «g. By Proposition 6.1, there
exists a neighborhood U/ of o, not containing o, and a sequence g, such that

(1) either Ky(gn) tends to infinity, uniformly over o € & and Ky,(gn) stays
bounded away from infinity.

(2) or Ky(gn) stays bounded away from O, uniformly over o € U and Ky (gn)
converges to 0.

Thus, in the first case, for large enough n and for all « € U, we have Ky(g,) > Ry,
where R, tends to infinity. Then by definition,

Kag(8s) = f Ka(gn)dvo(@) > f _ Kalgn)dw(@) = Ruvo@d.

a€dP

As Kg,(gn) stays bounded away from infinity, it follows that vo(U/) = 0.
In the second case, for large enough n and for all o € U, we have K,(g,) > C
for some constant C. Then,

Koy (gn) = Ko (gn)dvo(ar) = Cro(Uf).
a€dP
As Ky,(gn) — 0 as n — oo it follows again that vo({{) = 0. In both cases, the
support of vy does not contain «;. We conclude that the support of vy consists
only of ag, so Ky, must be minimal. O
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7. Another viewpoint on the PBU-boundary

The aim of this section is to prove that the PBU-compactification of a
hyperbolic group relatively to a system of virtually abelian subgroups constructed
in the paper is equivalent to a well-known compactification constructed for general
relatively hyperbolic groups by F. Dahmani [Dahl].

7.1. Relative Cayley graph. In this section we summarize several facts which
will be used further on. Let I" be a group generated by a finite symmetric set S.
We denote by G the Cayley graph CsI" of I' with respect to the system S.

Let us also fix a family P of subgroups of I'" satisfying two properties: it is
invariant under conjugation in I" and there is a finite subset Py = {Py,...,.Px} C
P such that every element P € P is conjugate to one of P;. We call the system
of the left cosets {gP : P € Py, g € I'} the system of horospheres and each of
its element is called a horosphere (see [GP3, Section 5] for more explanations
on horospheres).

Refine the graph G by adding an edge of length 1 between each pair of
vertices belonging to the same horosphere. The obtained graph is called the
relative Cayley graph with respect to the pair (S,7Py) and we denote it by A.
The choice of the subset Py for A plays a similar role as the choice of a finite
generator set S for the Cayley graph G and the graph A does not depend on Py
up to quasi-isometry.

Let d denote the word distance of G and d the path distance of A. To
distinguish paths in G and A we call them G-paths (or simply paths) and A-
paths (or relative paths) respectively. Every A-path [ lifts to a G-path in the
following way: its lift I has the same non-horospherical edges as [ and every
horospherical edge of / is replaced by a geodesic interval in G with the same
endpoints.

From now on, we assume that the group I' is relatively hyperbolic with
respect to a system of maximal parabolic subgroups P. By [Tuk, Theorem 1B]
there is a finite subset Py = {Pi,,..., Py} of P such that every P € P is
conjugate to one of P; (i € {1,...,k}). So {gP : P € Py, geTI} is a system
of horospheres. One of the main properties of the relative graph A in this case
is that it is hyperbolic [Far], [Bow] (see also [GP3, Proposition 7.1] for a direct
proof of this fact and Remark 7.2 concerning different definitions of the relative
hyperbolicity).

Recall that a path y : J — X in a metric space (X,dx) is called quasi-
geodesic if there is an affine function «(t) = At + B (¢ = 0), called a distortion
function, which satisfies

(11) diam(J) < a(diam(y(3J)),
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where diam(-) denotes the diameter of a set. The constants A and B are called
parameters of the quasi-geodesic. In our case the role of X is played by the graphs
G or A,so J C N and we say respectively that y is d -quasi-geodesic (or simply
quasi-geodesic) or d -quasi-geodesic (or relative quasi-geodesic). In particular if o
is the identity function our curve y is a geodesic. Since A is hyperbolic, every
d -quasi-geodesic with fixed parameters stays in a uniformly bounded distance
from a d -geodesic having the same endpoints [Gro, Proposition 7.2.A].

Even though the graph G is not hyperbolic in general, the lifts of d -quasi-
geodesics to G have properties close to those of d -quasi-geodesics in a hyperbolic
space. The following lemma confirms this fact and will be used in the next
subsection.

Lemma 7.1. Let T be a hyperbolic group relative to a system P of parabolic
subgroups. Consider two curves | and m in the Cayley graph G having the
same endpoints o and x. Assume that | is a d-quasi-geodesic and m is a
d -quasi-geodesic both having the parameters A and B. Assume also that for
every horosphere S = gP (g € I', P € Py) the curve m can have at most one
edge in A with endpoints in S. Then there exists a constant C, only depending
on A and B, such that for every vertex v € m we have d(v,l) <C.

When m is a d -geodesic the lemma is proved by Hruska in [Hru, Lemma 8.8],
whose proof uses a lot of preliminary results. We provide below a direct proof
based on several tools already used in the paper.

We call the above condition of the intersections of relative quasi-geodesics with
horospheres one-edge horospherical intersection property. An important subclass
of relative quasi-geodesics form d -geodesics which obviously satisfy this property.

Proof of the Lemma. Let m’ denote a lift of m to G. We first claim that m’
is a d-quasi-geodesic whose parameters only depend on A and B and every
vertex of m’ N m is R-transitional for a constant R which also only depends
on A and B. Indeed if m was a d-geodesic the claim would directly follow
from Propositions 6.1 and 7.8 of [GP3]. Actually, the first part of the proof of
Proposition 6.1 consists in proving that m’ is an «-distorted path where the
distortion function « (see formula (11)) is a quadratic polynomial. To check this
statement in our situation, one needs to replace the d-distance n between the
endpoints of m by An+ B for the parameters A and B of the quasi-geodesic m.
The distortion function « of the lift m’ obviously remains a quadratic polynomial
after such a modification. Then, using that m can contains at most one edge in
each horosphere of A, the rest of the proof of Proposition 6.1 applies without
any change. It follows that the whole curve m’ is «-distorted for a quadratic
polynomial «, and every vertex of m Nm’' is R-transitional in G. Then all
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assumptions of [GP3, Proposition 7.8] are satisfied and it implies that m’ is a
quasi-geodesic in G with uniformly bounded parameters (depending on those of
m), confirming our claim.

By the claim every v € m is an R-transition point of the curve m’ having the
same endpoints ¢ and x as the d-quasi-geodesic /. By Proposition 3.2, there
is a constant § > 0 such that the Floyd distance 8{ (0,x) satisfies 8,{ (0,x) > 6.
Then Karlsson’s lemma [Kar, Lemma 1] implies that d(v,!) < C for a uniform
constant C depending on & and the parameters of the quasi-geodesic /.

We note that Karlsson proved this lemma in assumption that / is a d -geodesic
but his proof works without any changes in the case of quasi-geodesics (see [GP1]
where this and more general cases are discussed). This concludes the proof. [l

To finish the discussion about the relative quasi-geodesics it is worth to
mention that the proof of the lemma works for the first entry (or the last exit)
horospherical point u of any relative quasi-geodesic m (without assuming that
m has one-edge horospherical intersection property). Then the above argument
also shows that the distance d(u,/) is uniformly bounded if u € m is such a
point and m is a relative quasi-geodesic with bounded parameters.

There is a more general assumption than our one-edge horospherical in-
tersection property which is due to B. Farb [Far]. His condition that relative
quasi-geodesics are without backtracking is equivalent to that each horospherical
part of such a curve m in A is connected and has a uniformly bounded d -length
depending only on the parameters of m. Such curves were used in [Far] to define
BCP-property which we do not need to use here. We simply mention that the
hyperbolicity of the relative graph together with the BCP-property is equivalent
to the fact that the group I' is relatively hyperbolic. Furthermore, we note that
this BCP-property follows from the above lemma, combined with the fact that
the intersection of different horospheres has a uniformly bounded d -diameter,
see [GP3, Corollary 5.7].

7.2. Dahmani’s geometric boundary. In [Dahl], the author introduces a com-
pactification of hyperbolic groups relative to a system of parabolic subgroups
P. Dahmani’s construction has an inductive nature: once one knows a “good”
compactification of parabolic subgroups then a “good” compactification is ob-
tained for the whole group. To define Dahmani’s compactification we need to
introduce few more notions. Let ' admits a minimal geometrically finite action
on a compactum 7. Denote by Par the fixed-point set of parabolic subgroups
for this action and by A, the set of conical points.

Assumptions. Every maximal parabolic subgroup P € P admits a metrizable
compactification P UdP such that P is dense in it. Furthermore for every finite
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subset F of P and for every open cover U of P UdP, all translates of F by
P but finitely many are contained in an element of I{. In this case we say that
finite sets fade at infinity [Bes], [Dahl].

We also assume that the action of I" on elements of P continuously extends to
an action on their boundaries: for x, € P and g € I', x, — § € dP implies that
gxn, — & = g(&) € g(0P). Furthermore we ask this extension to be equivariant,
that is g(dP) = d(gPg~!) and we also set d(gP) = g(dP).

End of Assumptions.

The boundary dI" is defined in [Dahl] as follows:

(12) oT := (|_| aP)I_lAc = ( | ] g(BP,-)) | ] A,

PeP PPy
gerl
where P, is the maximal subset of P of non-conjugate subgroups.

The proof of Proposition 3.6 above, applying without changes in this case,
shows that the topology on the space I'UdI" is uniquely defined by the following
definition of convergence of sequences of elements of I' to the boundary points
in aT".

Definition 7.2 (Dahmani’s compactification [Dahl, Definition 3.3]). Let I" be
a hyperbolic group relatively to a system of parabolic subgroups P. We fix a
metrisable compactification for every P € P satisfying the above Assumptions.
Say that a sequence g, in I' converges to a point £ € dI" if one of the two
following cases happens:

e cither § € A, is a conical point then g, converges to § in the Bowditch
compactification of T';

e or £€d(gP) where P € Py is a parabolic subgroup and g € I'. Then there
exist a sequence u, = ghy € gP,h, € P such that k, tends to g~!-£ and
a relative geodesic [, between g, and u,, for which u, is the first entry
point of /, in the horosphere gP.

Remark. In [Dahl, Definition 3.3] the author uses curves [, satisfying technical
conditions. They are relative quasi-geodesics outside a compact set. They have
uniformly bounded parameters. Furthermore, they are assumed to be left reduced,
a condition which implies that the left endpoint of such a curve is not followed
by a horospherical edge. By Lemma 7.1, it is easy to see that we can replace
such a curve [, by a relative geodesic having the same endpoints, as it is done
in the definition above.
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Theorem 7.3 ([Dahl, Theorem 3.1]). Let I be a hyperbolic group relative to a
system P. Assume that each P € P admits a metrisable topology satisfying the
assumptions above. Then there exists a topology on T'UAdT" satisfying Definition 7.2
such that the topological space is compact and metrisable.

To compare Dahmani’s compactification with that of PBU we will use the
geometric compactification of parabolic subgroups introduced in Section 3.2.
Recall that in our context, every parabolic subgroup P € P is virtually abelian
and convergence to dP is given as follows.

Identifying P with ZK¥x{1,...,N} and p € P with (z,j) € Z¥x{1,...,N},
we say that a sequence (zj, j,) converges in 0P if z, tends to infinity and "—ZT
converges to a point 6 in gk=1, Formally, one can choose sets of the form
Upm(@) x{1,...,N} to form a countable system of neighborhoods of a point
in the boundary, where

A

Upnm(8) = Vo(8) U {z e 7k |z|| = m, i

201
with V,,(9) a neighborhood of 6 in S¥-!.

Defining in such a way the topology on maximal subset Py = {P1,..., Pk}
of non-conjugate elements of P we then define the topology on every P € P
to verify dP = g(dP;) if P = gPig ', ge I,i €{l,...,k}. With the following
lemma we obtain that the topology defined in this way on the set | |pp(P UdP)
satisfies all the assumptions above.

Lemma 7.4. Finite subsets of the space P U 0P, equipped with this topology,
fade at infinity.

Proof. By Lemma 3.3, if z, and z, are two sequences in ZF such that |z, —z. ||
is bounded by a constant and z, converges to a point # in dZ¥, then z; also
converges to 6 in 0Z*. By induction, the same holds for a finite number of
sequences. That is, if zD, ..., 29 are sequences in Z* such that ||z{" — 202
is bounded for every ji,j» and such that one of them converges in dZ¥, then
they all converge to the same point. This property is called perspectivity property
in [Ger2].

To finish the proof, assume by contradiction that F is a finite subset of P
and U is an open cover of P UdP such that there are infinitely many translates
of F that are not contained in one of the open sets in /. Denote these translates
by pu F (pn € P). Let f € F. The sequence p,- f tends to infinity. Up to taking
a sub-sequence, it converges to a point £ in dP. By the above perspectivity
property for every f’' € F, p,- f’ all eventually belong to an arbitrary small
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neighborhood Ug of &. Then choosing Ug inside of an element of I/ containing
¢ we obtain a contradiction. ]

The following proposition is the main result of this section.

Proposition 7.5. Let T" be a hyperbolic group relatively to a system P of
virtually abelian subgroups. For every P € P we fix a geometric topology on
P U 0P as above. Then the topologies of Dahmani’s compactification and of
PBU-compactification of T' coincide.

Proof. The convergence to a conical point is defined in the same way, so the
only case we need to consider is when a sequence g, € I' converges to a point
in JP for some P € P. So we need to prove that the convergence in one of the
following topologies implies the convergence in the other one.

(1) (Dahmani’s topology) There is a sequence of relative geodesics /,, between
gn and their first entry points u, = gh, to a fixed horosphere gP, where
P € Py,g € T, such that h, converges to a point £ € dP.

(2) (BPU topology) The projections v, = mgp(gn) of gn on gP satisfy that
g v, converges to £ € dP.

The proof is a direct consequence of the following lemma due to A. Sisto whose
original proof is based on the BCP-property and other results which we do not
use. We obtain the Lemma as a simple consequence of Lemma 7.1.

Lemma 7.6 (Sisto’s lemma [Sis, Lemma 1.15.2] [Bounded Geodesic Image]). With
the above notations, there exists a constant M > 0 such that d(u,,v,) < M for
the word distance d and n € N.

Proof of the Lemma. Since the points u, and v, belong to the same horo-
sphere gP, there is an edge e, between them in the relative graph A. Then the
curve T,, =1, Ue, is a relative quasi-geodesic with endpoints v, and g, and
with uniform parameters A = B =1 (see Section 7.1). Furthermore since [, is
a d -geodesic, the curve I! C A satisfies the one-edge horospherical intersection
assumption.

By Lemma 7.1, there exists a uniform constant C such that for u, € I, one
has d(uy,,|[gn,vn]) < C where [g,,v,] is a d-geodesic between g, and v,.
Denote by y, € [gn,vn] a point such that d(y,,u,) = d(un, [gn,vn]) < C. Since
the geodesic [g,,v,] realizes the distance d(g,,gP) and u, € gP, we have
d(¥n,vn) < d(yn,un). Hence, d(upn,vy) < d(yn,vn) + d(yn,un) < 2d(yn,un) <
2C = M . The lemma is proved. U
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Both sequences u, and v, belong to the same horosphere gP (P € P,g € I).
By Lemma 7.6 we have d(u,,v,) < M, hence d(g~'u,, g v,) < M. Thus, by
Lemma 7.4, h, = g~ 'u, converges to a point in 9P if and only if g~ v,
converges to the same point. This concludes the proof. O

7.3. Some questions and remarks. Let us make here some comments and ask
further questions related to the above results. Combining the results of Theorem 1.3
and [GGPY, Theorem 1.3] we have the following corollary, which seems to be
interesting independently of the random walks context.

Corollary 7.7. Let T" be a finitely generated group, hyperbolic relative to a
collection of infinite virtually abelian subgroups. Then, there exists an equivariant
and continuous surjective map from the PBU-boundary to the Floyd boundary
of .

Bestvina [Bes] introduced the notion of Z-boundaries for groups. Whenever
dP is a Z-boundary for P, Dahmani [Dahl, Theorem 4.1] showed that the
construction presented above yields a Z-boundary dI' for I'. When parabolic
subgroups are virtually abelian, the geometric boundary 9P coincides with the
CAT(0) boundary of P as noted in Section 3.2, see also [BH, Remark 7.3 (2)].
Hence, it is a Z-boundary, according to [AG, Lemma 8]. Combining now the
results of Corollary 1.4, Corollary 7.7 and Proposition 7.5, we get the following.

Corollary 7.8. Let T' be a finitely generated group, hyperbolic relative to a
collection of infinite virtually abelian subgroups. Then, there exists an equivariant
and continuous surjective map from a Z-boundary to the Floyd boundary. There
also exists an equivariant and continuous surjective map from a Z-boundary of
[' to the Bowditch boundary, which is 1-to-1 at conical points and the preimage
of a parabolic point coincides with the Z-boundary of its stabilizer.

Since the Martin boundary does not depend on different peripheral structures,
but only on the random walk, Theorem 1.3 also implies the following.

Corollary 7.9. If T is hyperbolic relative to two different collections of infinite
virtually abelian subgroups, then two corresponding PBU-boundaries, constructed
for each relatively hyperbolic structure, are equivariantly homeomorphic.

We conclude the discussion with few questions related to the above results. We
only considered PBU-boundaries for relatively hyperbolic with respect to virtually
abelian parabolic subgroups. Theorem 7.3 shows that one can extend the definition
of a PBU-boundary to any relatively hyperbolic group. However its relation with
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the corresponding Martin boundary is not known when the parabolic subgroups
are not virtually abelian.

1. Are Corollary 7.7 and Corollary 7.8 true for more general relatively
hyperbolic groups? We conjecture that they are still true for hyperbolic
groups relatively to virtually nilpotent groups, but for more general relatively
hyperbolic groups there might exist counter-examples.

The following question, motivated by the proof of Proposition 5.5, also seems to
be interesting.

2. Assume that T is hyperbolic relative to a system P. Describe the class P
for which our key Proposition 5.5 is true. Namely, let (x,) be a sequence
of elements of T tending to infinity and y, be a projection of x, onto a
horosphere corresponding to a parabolic point p in the Bowditch boundary.
Then is it true that x, converges to a preimage of p in the Martin boundary
if and only if y, converges to the same point?

In a forthcoming preprint by Gerasimov, Potyagailo and de Souza, it is proved
that this condition defines a unique PBU-compactification of a group hyperbolic
relative to a system of parabolic subgroups with fixed boundaries.
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