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The Martin boundary of relatively hyperbolic groups
with virtually abelian parabolic subgroups

Matthieu Dussaule, Ilya Gekhtman,
Victor Gerasimov and Leonid Potyagailo

Abstract. Given a probability measure on a finitely generated group, its Martin boundary

is a way to compactify the group using the Green's function of the corresponding random

walk. We give a complete topological characterization of the Martin boundary of finitely
supported random walks on relatively hyperbolic groups with virtually abelian parabolic

subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space H",
we show that the Martin boundary coincides with the CAT(0) boundary of the truncated

space.

Mathematics Subject Classification (2020). Primary 20F65, 20F67, 31C35; Secondary

60B15, 57M07, 22D05.

Keywords. Random walks on groups, hyperbolic groups relatively to a system of virtually
abelian subgroups, Martin and Bowditch compactifications.

1. Introduction and statement of results

1.1. Random walks on relatively hyperbolic groups. A probability measure /i
on a countable group T determines a T-invariant Markov chain with transition

probabilities p(x,y) p(x~1y), called a random walk.

Connecting asymptotic properties of this random walk to the geometry of
Cayley graphs of T has been a fruitful line of research. One way to do this is

through relating the Green's function of fi to some natural metric on T, and

the probabilistically defined Martin boundary of /x to some geometric boundary
of r.

The Green's function G of (r, fx) is defined as

OO

G(x,y) X^Ca-V).
n=0



342 M. Dussaule, I. Gekhtman, V. Gerasimov and L. Potyagailo

It describes the amount of time a random path starting at x is expected to spend

at y. We now fix a basepoint o in T. For each y e T the function Ky : T -* R

defined by Ky{x) G(x, y)/G{o, y) is called a Martin kernel. The map y -> Ky
defines an embedding of T in the space of functions F -> R+. The closure of
T in this space is called the Martin compactification and 0/xr T/x \ T is

called the Martin boundary. One can equally define the Martin compactification as

the horospherical (Busemann) compactification with respect to the Green distance

dG(x,y) — In G(q'y) on T [BB], These definitions also make sense for more

general measures ji. One of the main interest of the Martin boundary is its

connection with harmonic functions. We will give more details in Section 2.

Giving a geometric description of the Martin boundary is often a difficult
problem. Margulis showed that for centered finitely supported random walks on

nilpotent groups, the Martin boundary is trivial [Mar]. On the other hand, for
noncentered random walks with exponential moment on an abelian group of rank

k, Ney and Spitzer [NS] showed that the Martin boundary is homeomorphic to

a sphere of dimension k — 1. For a hyperbolic group equipped with a finitely
supported measure, Ancona [Anc] proved that the Martin boundary coincides with
the Gromov boundary of the group. His proof relies on his famous following
inequality which also implies that T is hyperbolic with respect to the Green

distance. There exists c > 0 such that for any x,y,z e T lying in this order on

a word geodesic,

dG(x, y) + dG{y,z) < dG(x,z) + c.

Recall that an action T r\ T is minimal and non-elementary if T is a minimal

compact space invariant under the action and it contains more than two points. An
action T r\ T is called convergence if the induced action on the space of distinct

triples of T is properly discontinuous. A minimal, non-elementary convergence
action on a compact metric space T such that every point of T is either conical

or bounded parabolic (see definitions in Section 3) is called geometrically finite. A
finitely generated group T is called hyperbolic relative to a system of subgroups

V if T admits a geometrically finite action on a metrisable compactum T such

that the elements of V are the stabilizers of the parabolic points. The space T is

called the Bowditch boundary and we will denote it by 3bT. It is known to be

the Gromov boundary of a proper geodesic Gromov hyperbolic space on which
T acts properly discontinuously and isometrically [Bow],

Gekhtman, Gerasimov, Potyagailo and Yang proved in [GGPY] for any finitely
generated group T that the following generalized Ancona inequality is satisfied.

For every x,y,z e T,

(1) dG(x,y) + dG(y, z) < dG(x,z) + A(8^(x,z)).
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The inequality (1) is similar to that of Ancona but there are no restrictions on the

group to be hyperbolic and on the triple of points x,y,z to belong to the same

word-geodesic in the Cayley graph. On the other hand, the universal constant of
Ancona is replaced with a function A : M>0 -> M>0 which is a non-increasing
function such that A{t) -> +00 once t 0. Its argument in (1) is a visibility
function 8y (x, z) which is the Floyd distance between x and z from y. This

distance is obtained by rescaling the word distance with a quickly decreasing
scalar function / : M>0 -> M>0 called Floyd function (see Section 3.1 for more

details).
One of the corollaries of (1) obtained in [GGPY] states that if the group T is

relatively hyperbolic then the identity map on the group extends to a continuous

equivariant surjection from the Martin boundary to the Bowditch boundary of
T. Moreover the preimage of any conical point under this map is a singleton.

Determining the Martin boundary is thus reduced in this case to describing the

preimages of a countable set of parabolic points.
The goal of this paper is to show that if the maximal parabolic subgroups

are virtually abelian, then the Martin boundary of a finitely supported random

walk is obtained by a blow-up construction at parabolic limit points of the

Bowditch boundary. More precisely, one can define the induced chain on any

neighborhood of a maximal parabolic subgroups, using the first return kernel to

this neighborhood. We replace every parabolic limit point £ at Bowditch boundary,
stabilized by the parabolic subgroup P e V with the Martin boundary of this

return kernel on some fixed-sized neighborhood of P, which is the sphere of
dimension k — 1, where k is the rank of P (see Section 3.2 for more details).

This result was already known in some partial cases. Woess determined

in [Woel] the homeomorphism type of the Martin boundary for finitely supported
nearest neighbor random walks on free products of the form Zdl * Zdl (which
are hyperbolic relative to each abelian factor). For such random walks, he proved
that the Martin boundary is obtained by adding spheres of dimension d\ — 1 for
each left coset yZdl and spheres of dimension di — 1 for each left coset yZdl
to the set of infinite words. We also note that in the Woess' theorem one does not
need to assume that the free factors are abelian. Precisely, the Martin boundary
of a nearest neighbor random walk on Ti * T2 is obtained by gluing copies of
the Martin boundary of the induced chains on Ti and P2 to the set of infinite
words.

Another previously known example is given by finitely supported random
walks on a non-cocompact lattice in the hyperbolic upper half-plane H2. In this

case the Bowditch boundary is the limit set which coincides with the unit circle,
and the group is also hyperbolic. So by Ancona's theorem, the Martin boundary
is the Gromov boundary of the group which is homeomorphic in this case to the
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set of ends of a free group obtained by blowing-up at each parabolic fixed point
of rank 1 into two points. However, in general, for geometrically finite Kleinian

groups (even for non-cocompact lattices in the hyperbolic 3-space H3 the

homeomorphism type of the Martin boundary of finitely supported random walks

was not known before. For sake of completeness, let us also mention the work of
Ballman and Ledrappier [BL]. They study discretization of the Brownian motion
on Riemannian manifolds. In particular, they identify the Martin boundary for
some classes of measures on geometrically finite Kleinian groups. Those measures
however are not in general finitely supported.

In view of the above discussion, we ask the following question.

Question 1.1. Let T be a relatively hyperbolic group and let /i be a probability
measure on T whose finite support generates T as a semigroup. Let <p be

the equivariant continuous surjective map from the Martin boundary dßY to
the Bowditch boundary 9ßT constructed in [GGPY]. Is the ip-preimage of a

parabolic point homeomorphic to the Martin boundary of the induced chain on

a bounded neighborhood of the corresponding parabolic subgroup

In this paper, we give a positive answer to this question when the group Y is

hyperbolic relatively to virtually abelian subgroups. This class of groups includes:

geometrically finite subgroups of the group of isometries of the real hyperbolic

space H", limit groups, and finitely generated groups acting freely on K" -trees

(the latter groups are hyperbolic relatively to abelian subgroups by [Gui], [Dah2]).

Definition 1.2. We will call a boundary, obtained by replacing a fixed point of a

parabolic subgroup of rank k by a sphere of dimension k — 1, parabolic blow-up
boundary (PBU-boundary for short).

We refer to Section 3.2 for more details on this definition. Dussaule [Dus]
generalized Woess' result [Woel] and gave a geometric description of the Martin
boundary for any finitely supported random walk on free products of abelian

groups, identifying it with the visual boundary of a CAT(0) space on which the

group acts cocompactly. In particular it is a PBU-boundary. The key technical
result of [Dus] extends results of Ney and Spitzer [NS] to more general chains.

It states that the Martin boundary of non-centered -or strictly sub-Markov- chains

on Ik x {1 N}, N e N, is a sphere of dimension k — 1 (see Proposition 4.6

below). One of the main results of the paper is the following.

Theorem 1.3. Let Y be a non-elementary finitely generated relatively hyperbolic

group with respect to a collection of infinite virtually abelian subgroups. Let p
be a measure on Y whose finite support generates Y as a semigroup. Then, the

Martin boundary is a PBU-boundary.
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The following direct corollary answers the above question in the case when

all parabolic subgroups are virtually abelian.

Corollary 1.4. Suppose that all the assumptions of Theorem 1.3 are valid. Let

cp \ djLr —> r be an equivariant continuous map from the Martin boundary to

the Bowditch boundary. Then for every parabolic point p e (iß F the set q>~1(p)

is homeomorphic to the Martin boundary of the stabilizer H of p with respect
to the induced measure.

Another central result of the paper is the following.

Theorem 1.5. Let T be a non-elementary finitely generated relatively hyperbolic

group with respect to a collection of infinite virtually abelian subgroups. Let p
be a measure on T whose finite support generates T as a semigroup. Then, every

point of the Martin boundary corresponds to a minimal harmonic function.

There is a particularly simple geometric construction of a PBU-boundary when

T is a non-uniform lattice in the real hyperbolic n -space BP. By removing from
H" a T-equivariant collection of disjoint horoballs based at parabolic fixed points
and considering the induced shortest-path metric on the complement, we obtain a

CAT (fi) space on which F acts cocompactly. One can easily check that the visual

boundary of this CAT(0) space is a PBU-boundary. In particular, when n 3,
the PBU-boundary is homeomorphic to the sphere S2 with a countable and dense

set of discs removed. It is then homeomorphic to the Sierpinski carpet (see [Rua,

Theorem 4.1, Corollary 4.2] for a proof and see also [TW, Theorem 1] for a more

general statement). Concluding this discussion we obtain from Theorem 1.3 the

following.

Corollary 1.6. Let T be a non-uniform lattice in the real hyperbolic space
H". Let p be a probability measure on T whose finite support generates F

as a semigroup. Then, the Martin boundary is equivariantly homeomorphic to

the CAT(0) boundary of the truncated space. In particular if n =3, it is

homeomorphic to the Sierpinski carpet.

1.2. Brief description of difficulties and ideas of the proofs. To prove
Theorem 1.3 we define the induced random walk on each parabolic subgroup
P as the first return kernel on P. This chain happens to be strictly sub-Markov.

The aim would be to show that the Martin boundary of the induced chain on
P coincides with the limit set of P in the original Martin boundary of (r, p).
By [GGPY, Corollary 8.3] this would be true if we knew a priori that every
point in the preimage of £ in the Martin boundary of (F, p) corresponds to a
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minimal harmonie function. However to prove the minimality, we need to have a

precise description of the Martin boundary of the induced sub-Markov chain on

parabolic subgroups. So we proceed in the opposite way: we first characterize the

preimages of parabolic points and a posteriori we obtain that they correspond to
minimal harmonic functions.

Our proofs of Theorems 1.3 and 1.5 use both the inequality (1) and the

generalization of the theorem of Ney and Spitzer [NS] given in [Dus]. Roughly
stated, we show that the preimage of a parabolic point on the Bowditch boundary,
with stabilizer P, is homemorphic to the Martin boundary of a neighborhood
of P with a finite (though not probability) measure induced by the first return

times, which by the result of [Dus] is a sphere of the appropriate dimension.

To show that the Martin boundary dßF is a PBU-boundary, we have to
deal with two types of trajectories, namely those converging to conical points in
the Bowditch boundary and those whose projections converge in the geometric
boundary of a parabolic subgroup. To treat the first type of trajectories, we use

results of [GGPY] which imply that whenever a sequence gn converges to a

conical limit point then it converges to a unique point of the Martin boundary
(see Proposition 5.2).

For the second type of trajectories, we study the induced random walk on
a parabolic subgroup P. An additional difficulty, not mentioned above, is that
this random walk is not finitely supported. Using results of Gerasimov and

Potyagailo [GP3], we prove that the induced random walk on a sufficiently large

neighborhood of P has large exponential moments. Applying then several results

of [Dus], we show that if a sequence gn converges in the boundary of P, then

it converges in the Martin boundary. Furthermore two different points in the

boundary of P correspond to two different points in the Martin boundary.
To finish this discussion we stress that the above methods crucially use several

times that the parabolic subgroups are virtually abelian. So already in the case

where the group F is hyperbolic relatively to virtually nilpotent subgroups,

Question 1.1 remains open.

1.3. Organization of the paper. The paper is divided into six main parts, besides

the introduction.
Section 2 is devoted to giving the necessary probabilistic background on

random walks, Markov chains, and their Martin boundaries. In particular, we will
explain the relationship between the Martin boundary and harmonic functions.
This relationship was actually the reason for introducing the Martin boundary in
the first place.

Section 3 is about relatively hyperbolic groups. In Sections 3.1, we give the

definition of those groups and state results of Gerasimov and Potyagailo about
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the interplay between the Floyd distance and the geometry of the Cayley graph
of such groups. We also define properly what is a PBU-boundary and what is

the geometric compactification of a parabolic subgroup in Section 3.2.

In Section 4, we give the necessary geometric background on Martin
boundaries for the proof of our main theorem. In Section 4.1, we restate the

inequality (1) obtained in [GGPY], This inequality will be used throughout the

proofs, especially when we deal with trajectories converging to conical limit
points. In Section 4.2, we state the results of Dussaule about Martin boundaries

of chains on x {1,..., N}. This part is a bit technical and we extend his

results to deal later with trajectories converging in the geometric boundary of a

parabolic subgroup.

In Section 5, we prove our main theorem, Theorem 1.3. We first deal with
conical limit points in Section 5.1, using results of Section 4.1 and then with

parabolic subgroups in Section 5.2, using results of Section 4.2.

In Section 6, we prove Theorem 1.5, that is, every point of the Martin boundary
is a minimal harmonic function. Again, we will deal separately with trajectories

converging to conical limit points and trajectories converging in the boundary of
parabolic subgroups.

In Section 7, we give a geometric construction of a PBU-boundary, using a

construction of Dahmani in [Dahl], We also state some questions suggested by
our results.

Let us give here a proper definition of the Martin boundary and the minimal
Martin boundary. In this paper, we deal with random walks on groups, but

during the proofs, we will restrict the random walk to thickenings of peripheral
subgroups and we will not get actual random walks. Thus, we need to define

Martin boundaries for more general transition kernels.

Consider a countable space E and equip E with the discrete topology. Fix

some base point o in E. Consider a transition kernel p on E with finite total

mass, that is p : E x E -> R+ satisfies

It is often required that the total mass is 1 and in that case, the transition kernel
defines a Markov chain on E. In general, we will say that p defines a chain on
E and we will sometimes assume that this chain is sub-Markov, that is the total

mass is at most 1. If pi is a probability measure on a finitely generated group F,

2. Martin boundaries of random walks

yeE
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then p(g,h) p{g~lh) is a probability transition kernel and the Markov chain

is the random walk associated to p.
Define in this context the Green's function G as

G(x, y) P{n\x, y) e [0, +00],
n> 0

where p^ is the nth convolution power of p, i.e.

pM{x,y)- ^ p{x,xi)p(xi,x2)---p{x„-i,y).

Definition 2.1. Say that the chain defined by p is finitely supported if for every
x e E, the set of y e E such that p(x,y) > 0 is finite.

Definition 2.2. Say that the chain defined by p is irreducible if for every

x,y e E, there exists n such that p<Jl\x,y) > 0.

For a Markov chain, this means that one can go from any x e E to any y e E
with positive probability. In this setting, the Green's function G{x,y) is closely
related to the probability that a p -governed path starting at x ever reaches y.
Indeed, the latter quantity is equal to (see [Woe2, Lemma 1.13.(b)].

Notice that in the case of a random walk on a group F, the Green's function
is invariant under left multiplication, so that G(x,x) G(0,0) for every x.
Thus, up to some multiplicative constant, G(x,y) is the probability to go from

x to y. We denote this probability by P(x -> y) in the following, so that

G(x, y) G(o, o)P(x -> y). Moreover, the irreducibility of the chain is equivalent
to the condition that the support of the measure 11 generates F as a semigroup.

In particular, in the context of Theorem 1.3, the transition kernel defined by
the probability measure p is irreducible.

We will also use the following definition during our proofs.

Definition 2.3. Say that the chain defined by p is strongly irreducible if for

every x,y e E, there exists n0 such that V« > n0, p^n\x,y) > 0.

We will also assume that the chain is transient, meaning that the Green's

function is everywhere finite. For a Markov chain, this just means that almost

surely, a path starting at x returns to x only a finite number of times.

Consider an irreducible transient chain p. For y e E, define the Martin kernel
based at y as

§£4G(o,y)
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The Martin compactification of E with respect to p (and o) is a compact
metrizable space containing E as an open and dense space, whose topology is

described as follows. A sequence yn in E converges to a point in the Martin
compactification if and only if the sequence Kyn converges pointwise. Up to

isomorphism, it does not depend on the base point o and we denote it by Ep.
We also define the Martin boundary as 3PE Ep \ E. We refer to [Saw] for a

complete construction of the Martin compactification.
Seeing the Martin kernel K as a function of two variables x and y, the Martin

compactification is then the smallest compact space M in which E is open and

dense and such that K can be extended to the space E xM, continuously on the

second variable. If y e Ep, denote by Ky the extension of the Martin kernel.

In the particular case of a symmetric Markov chain, that is a Markov chain

satisfying p(x, y) p(y, x), the Green's distance, which was defined by Brofferio
and Blachère in [BB] as

is actually a metric and the Martin compactification of E with respect to the

Markov chain p is the horofunction compactification of E for this metric.

Now, assume that E T is a finitely generated group and that the transition
kernel p is defined by a probability measure p. In that case, denote by r;i the

Martin compactification and by the Martin boundary. The action by (left)
multiplication of T on itself extends to an action of T on V ß.

One important aspect of the Martin boundary is its relation with harmonic
functions. Recall that if p is a transition kernel on a countable space E, a

harmonic function is a function (p : E -> M such that p<p (p, that is,

We have the following key property (see [Saw, Theorem 4.1]).

Proposition 2.4 (Martin Representation Theorem). Let p be a irreducible transient
transition kernel on a countable space E. For any non-negative harmonic function
cp, there exists a measure v on the Martin boundary <)ßE of E such that

Let (p be a non-negative harmonic function. It is called minimal if any other

non-negative harmonic function f such that fix) < (pix) for every x e £ is

proportional to <p by a constant. The minimal Martin boundary is the set

do{x,g) -lnP(x y)
G(y,y)

Vx e E,<p(x) — E pix,y)<p{y).
yeE
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3= {i e dßE, Kx(-) is minimal harmonie}.

It is thus a subset of the full Martin boundary dßE. A classical representation
theorem of Choquet shows that for any non-negative harmonic function <p, one

can choose the support of the measure v lying in 3E. The measure v is then

unique (see [KSK, Chapter 10.7]). In other words, for any such function (f>, there

exists a unique measure /x^ on dE such that

3.1. Relative hyperbolicity and the Floyd metric. Let F be a finitely generated

group. The action of F on a compact Hausdorff space T is called a convergence
action if the induced action on triples of distinct points of T is properly
discontinuous. If T is a metrizable compactum then the action G T is

convergence if and only if every sequence of distinct elements gn in F contains

a subsequence g„k such that gnk x -> a and for all x e X with at most perhaps

one exceptional point.
Suppose T T is a convergence action. The set of accumulation points

AT of any orbit Fx (x e T) is called the limit set of the action. As long as

AT has more than two points, it is uncountable and the unique minimal closed

T-invariant subset of T. The action is then said to be non-elementary. In this

case, the orbit of every point in AT is infinite. The action is minimal if AT T.
A point £ AT is called conical if there is a sequence gn of F and distinct

points a,ß e AT such that gnÇ -> a and gnrj -» ß for all rj e T \ {£}. The

point £ e AT is called bounded parabolic if it is the unique fixed point of
its stabilizer in T, which is infinite and acts cocompactly on AT \{£}. The

stabilizers of bounded parabolic points are called (maximal) parabolic subgroups.
The convergence action T T is called geometrically finite if every point of
AT c T is either conical or bounded parabolic.

Definition 3.1. Let P be a collection of subgroups of T. We say that F is

hyperbolic relative to V if there exists some compactum T on which F acts

minimally and geometrically finitely and the maximal parabolic subgroups are the

elements of V.

Such a compactum is then unique up to T -equivariant homeomorphism [Bow]
and is called the Bowditch boundary of (T, V). The group F is said to be relatively

3. Relatively hyperbolic groups
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hyperbolic if it is hyperbolic relative to some collection of subgroups, or equiva-

lently if it admits a geometrically finite convergence action on some compactum.
The group T is non-elementary relatively hyperbolic if it admits a non-elementary
geometrically finite convergence action on some infinite compactum.

Since T is assumed to be finitely generated, every maximal parabolic subgroup
is finitely generated too (see [Gerl, Main Theorem (d)]). Then, by Yaman's

results [Yam], it follows that if T ry T is a minimal geometrically finite action,
then there exists a proper geodesic Gromov hyperbolic space X on which T

acts properly discontinuously by isometries and a T -equivariant homeomorphism
T ->dX.

Let T be a group hyperbolic relative to a collection of parabolic subgroups V.
The set V is invariant under conjugacy, since the set of parabolic limit points is

invariant under the group action. Furthermore, the set V contains at most finitely
many conjugacy classes of maximal parabolic subgroups (see [Tuk, Theorem IB]).

We now discuss the Floyd distance and the Floyd boundary. Let / : R+ -> R+
be a function satisfying two conditions: ffn>o fn < 00; and there exists a

A 6 (0,1) such that 1 > fn+i/fn > A for all nefi. The function / is then

called the rescaling function or the Floyd function.
Let S be a finite system of generators of T, we denote by CsT the Cayley

graph, and by d(.,.) the word distance. Fix a basepoint 0 e T and rescale CsT
by declaring the length of an edge a to be f(d(o,o)). The induced shortpath
metric on CsF is called the Floyd metric with respect to the basepoint o and

Floyd function / and denoted by 8P(.,.). Its Cauchy completion (whose topology
does not depend on the basepoint) is called the Floyd compactification Tf and

3/r r/\r is called the Floyd boundary. Karlsson showed that the action of a

group on its Floyd boundary is always convergence [Kar, Theorem 2]. On the other

hand, if T is relatively hyperbolic and if the Floyd function / is not decreasing

exponentially too fast, Gerasimov [Ger2, Map theorem] proved that there is

continuous F -equivariant surjection (Floyd map) from the Floyd boundary to the

Bowditch boundary. Furthermore, Gerasimov and Potyagailo [GP2, Theorem A]
proved that the preimage of any conical point by this map is a singleton and

the preimage of a parabolic fixed point p is the limit set for the action of its
stabilizer Tp on 3/r. In particular if Tp is an amenable non-virtually cyclic

group then its limit set on the Floyd boundary is a point. Consequently, when T
is hyperbolic relative to a collection of infinite amenable subgroups which are not

virtually cyclic, the Floyd boundary is homeomorphic to the Bowditch boundary.
Let a : / -> be a (finite or infinite) geodesic for the Cayley metric. We

also fix a relatively hyperbolic structure on T and let V be a system of maximal

parabolic subgroups of it. A point v a(to) a (to e I) is said to be (e, R) -

deep if there exists g e T and P e V such that the image a(]to — R, to + P[) is
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contained in the -neighborhood of gP. Otherwise, pea is called an (e. R)-
transition point (or simply (e, R) -transitional) of a. Gerasimov and Potyagailo

proved the following key property.

Proposition 3.2 ([GP3, Corollary 5.10]). For each e > 0, R > 0 there exists

8 > 0 such that the following holds. For any 3 distinct points x,y,z in F, if
y is situated in a (word) distance D from an (e, R) -transition point of a word

geodesic [x,z] between x and z, then 8y(x,z) >8.

Remark about the proof The argument of [GP3, Corollary 5.10] guarantees that
-/the shortcut distance Sy(x,z) on the Bowditch compactification of the Cayley

graph is bounded below by some constant 5 > 0. This distance is obtained by

transferring the Floyd metric by the Floyd map constructed by Gerasimov [Ger2].
f —f

It satisfies the following inequality (see [GP1, Section 3.1]): 8Jy (x, z) > 8y (x,z).
This gives the above statement (see [Ger2] and [GP1] for more details). We

note also that the shortcut distance provides a necessary and sufficient criterion
in the above context: the point y is a (e, R) -transition point if and only if
-/8y (x, z) > 8 > 0 where (e, R) and 8 determine each other.

3.2. Geometric compactifications. We now give a precise definition of a

PBU-boundary. We first define the geometric boundary of an infinite, virtually
abelian, finitely generated group. Let P be such a group, so that there exists

a subgroup of P isomorphic to Z/c, for some k > 1, with finite index in
P. Then, any section P/lk -> P provides an identification between P and
Zfc x {1,..., N} for some N > 1. Let gn be a sequence in P and identify gn

with (zn, jn) e Ik x{l,...,N}. Say that the sequence gn converges to a point
in the boundary of P if z„ tends to infinity and converges to some point
in the sphere Here, || • || is the Euclidean norm. This defines what we call
the geometric boundary dP of P.

Actually, since P is virtually abelian, it admits a proper and cocompact action

on a CAT(0) space, see [BH, Remark 7.3 (2)]. The geometric boundary of P we
defined coincides with the CA T(0) boundary of P, which is the visual boundary
of a CAT(0) space Rk on which P acts properly and cocompactly. Note that

the CAT(0) boundary of a finitely generated group is not well defined in general
since CAT{0) boundaries are not invariant under quasi-isometries. However, the

CAT{0) boundary of a virtually abelian group is well defined. More generally,

if a relatively hyperbolic group T with respect to virtually abelian subgroups

acts isometrically on a CAT(0) space then the boundary 9T is a well defined

CAT(0) boundary, see [HK, Theorem 1.2.1, Theorem 1.2.2 (3)]. In particular, the
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geometric boundary of P neither depends on the choice of the abelian subgroup

lk of finite index in P nor on the choice of the section P/Zk -> P.
The definition of the geometric boundary immediately implies the following.

Lemma 3.3 (Perspectivity property). Let P e V and zn, z'n two sequences

converging to dP such that the distance \z — z'\\ is bounded. Then they both

converge to the same point in 3P.

Proof. By definition of the geometric topology ||z„|| -> oo (and so is z'n Assume

that the sequence converges to 0 G §k~1 where k is the rang of P. Since

z'n zn + u„ and \\un\\ is bounded it follows that lim„^oo 0- The same

argument works in the opposite sens.

Remark. The property established in the lemma we call perspectivity property. It
is true for virtually abelian parabolic subgroups but it is largely unknown in other

cases (in particular for nilpotent parabolic subgroups, see also the concluding
Section 7.3).

If F is a finite set, we define the geometric boundary of the product P x F
as follows. First identify P with Zfc x {1 ,...,N} as before. This provides an

identification between P x F and 7Lk x {1,..., N'} for some other integer N' > 1.

As above, a sequence gn in P x F is said to converge in the geometric boundary

if its projection onto Zk under this identification converges in the geometric

boundary of lk. This slight generalization will be useful in the following. Indeed,

for technical reasons, when studying sequences converging in 3P, we will not
restrict the random walk to parabolic subgroups but to bounded neighborhoods
of them.

Suppose now that T is a finitely generated group hyperbolic relative to

a collection V of infinite subgroups. We will assume through the paper that

every parabolic subgroup is virtually abelian. Let Vo C V denote a full subset

of representatives of conjugacy classes of parabolic subgroups. As mentioned,

by [Tuk, Theorem IB], V0 is finite. We define a parabolic blow-up (PBU) boundary
for T relative to this choice of P0, although our definition will not depend on it
up to equivariant homeomorphism, since we will prove that the Martin boundary
is a PBU-boundary (and the Martin boundary does not depend on V0).

Fixing a word metric d on T, for A c T and g G F, let

projyi(g) {h G A : d(h,g) d(A,g)}

be the set of closest point projections of ^ to d. For a subset F c T let

proj^(F) [J proj4(g).
geF
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Let ita : T -> A be any function with jtA(g) e proj^ (g). The following result

will be used several times further on.

Proposition 3.4 ([GP3, Proposition 4.3]). The diameter of projp(g) is finite and
bounded uniformly and independently on g e F and P e V.

In particular when T is a hyperbolic group relatively to virtually abelian

subgroups, then by Lemma 3.3 for a sequence gn e T the convergence of np (gn)
to the geometric boundary of P does not depend on the choice of np.

We will use boundaries throughout the paper. We fix the following terminology.
A compactification F of F is a metrizable compact space, containing V as an

open and dense space, endowed with a group action by homeomorphisms T ry T

that extends the action by left multiplication on F. Then, 3T := T \ T is called

a boundary of T.

Definition 3.5. Let T be a group hyperbolic relative to a collection V of virtually
abelian subgroups. Fix a finite set of representatives of conjugacy classes of
parabolic subgroups Vq C V. A parabolic blow-up (PBU) boundary of (T, V0)

is a boundary 9T such that the following holds.

A sequence gn in F converges to a point in 9T if and only if g„ tends

to infinity and either gn converges to a conical point in the Bowditch boundary

or there exist g e T and a parabolic subgroup P e Vq such that g~1ngp(gn)

converges in the geometric boundary of P.

We start proving that the topology on the PBU-boundary of (T, To) is well
defined.

Proposition 3.6. Let F be a group hyperbolic relative to a collection V of
virtually abelian subgroups. Let 9i T and 92F be two PBU-boundaries. Then,

the identity on T extends to an equivariant homeomorphism from F U 91T to

ru92r.

Proof. We first define a map 4> from 3iT to 92r. Let £ e 9iT. Since T is

dense in T U 9iT, there exists a sequence gn of points of T converging to £.

By Definition 3.5 this implies that gn also converges to some point f in 92T.
Let us prove that f only depends on f Assume that g'n is another sequence

converging to f in 9^, so that g'n converges to some £' in 92r. Consider the

sequence g'^ defined by g'f g2n and g%n+1 g'2n+l. Then, g'„ also converges
to Ç in 9iT so it converges to a point in 92T. This proves that f f'. We

define a map O : T U 9i T -> T U 92F as an extension of the identity map on V

given by <!>(£) f.
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By construction, whenever a sequence gn in T converges to £ e 3i F, <&(gn)

converges to <!>(£). Similarly, we define a map $ : TU 32T -* T U SjT. If gn

in T converges to £ e 3i T and converges to ï, e 32T, then <h(f) Ç and

*T(£) £. Thus, O o 4> Id on 32r and «I» o ^ — Id on 3ir. Obviously,
d)ovi/=zq/0<I) /rf on T, so that <t> and T are inverse bijections. Hence, we

only need to prove that <f> and 4» are continuous and equivariant. By symmetry,
we only need to prove that <t> is continuous and equivariant.

Let xn be a sequence in F U 3i T converging to some x. Assume first that

x e T. Since T is open in F U 3i T, xn e T for large enough n, so that

x„ converges to re T and so <J>(x„) converges to <J>(x). Consider now some

x e 3iF. Since both compactifications are assumed to be metrizable, we choose

arbitrary distances di on F U 3; F, i 1,2.
Our goal is to construct a sequence gn in F that also converges to x and

satisfies that d\(gn,xn) < \/n and d2{gn,^{xn)) < 1 /»• Whenever x„ F, we
set gn x„. Let n be such that xn e 3iT. Since T is dense in T U 3iT,
there exists a sequence gn<m converging to xn when m tends to infinity. By
construction of O, this implies that gn,m converges to <E>(x„) when m tends

to infinity. We can thus find large enough m that we denote by mn such that,

letting gn gn,m„ we have di(gn,xn) < l/n and d2(gn, < 1 /n. Now, xn

converges to x and d\{gn,x) < d\(g„, xn)+d(xn, x), so that gn also converges to

x. By construction of O, this implies that gn converges to 4>(x) in 32r. Finally,

d2(®(x„),4>(x)) < d2(<S>(xn), gn) + d2(gn, O(x)), so that 3>(x„) also converges to

$(x). This shows that <I> is continuous.

Let us prove that is equivariant to conclude. Since $ is the identity on

T, for any g, g' e T, O(gg') gg' g • $(£')• Assume that | e 3iT and let

g 6 T. Choose a sequence gn converging to Ç. Then, ggn converges to g • £.

By construction of <J>, gg„ converges to 0(g • Ç) in 32r. Also, by construction,

g„ converges to 4>(£) so that ggn converges to g <F(f) in 92F. This shows that

$(g • f) g <î>(£), which concludes the proof.

The following result implies that Definition 3.5 matches the rough definition

given in the introduction (Definition 1.2).

Proposition 3.7. Let r be a group hyperbolic relative to a collection V of
virtually abelian subgroups. Let 3T be a PBU-boundary. Then, the identity on

T extends to a continuous equivariant surjective map

ru3r->ru3Br,
where 9# F is the Bowditch boundary. Moreover, the preimage of a conical limit
point is a singleton and the preimage of a parabolic point is an n — l -dimensional

sphere where n is the rank of its stabilizer.
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Proof. We first construct a map <Y>pbu ' 9T -» 9gr. Let £ e 9T. Since T is
dense in T U 9T, there exists a sequence of points gn in T converging to £.

There are two cases. First, if gn converges to a conical limit point a, then we
define $>pbu(0 — a • Otherwise, there exists F e To and g e T such that

g~1rcgp(gn) converges in the geometric boundary of P. Let a be the parabolic
limit point fixed by P and define 'PpBu(f) get. We extend this map to a map
<$>PBU : T U 9T ->ru 9ß r declaring $pbu to be the identity on T, as in the

proof of Proposition 3.6.

The group T is dense in both compactifications and both compactifications are

metrizable. Indeed, by definition, a PBU-boundary is assumed to be metrizable
and it follows from Bowditch's construction [Bow] that Y U 9ßT is metrizable.
Note also that ru9gF admits the shortcut metric mentioned in the Remark after

Proposition 3.2. Therefore, it is sufficient to prove that whenever a sequence gn

in T converges to £ e 9T, gn converges to 'PpBu(f) £ 9gT. If <YpBu(f) is

conical, this is given by the construction of ®pbu Otherwise, 'PpBu(f) a is

parabolic. Letting P e V0 and g e Y be such that the stabilizer of g~]a is P,
g~ljigp(gn) converges to 'Ç. In particular, ngp(gn) tends to infinity so that gn

converges to a. By construction, <î>pbu is surjective and equivariant.
To conclude, we note that the preimage of a conical limit point is a single

point by construction and that the preimage of a parabolic limit point a is

homeomorphic to the geometric boundary of P eVo, where P is the stabilizer
of g~xa for some g T. This geometric boundary of P is an n — 1 -dimensional

sphere where n is the rank of P. This concludes the last part of the proof.

Our main theorem states that the Martin boundary of a finitely supported
random walk is a PBU-boundary, so that in particular, such a boundary always
exists and does not depend on the choice of generators. In Section 7 we will also

give a geometric construction of a PBU-boundary based on a compactifications
of relatively hyperbolic groups introduced by F. Dahmani which in turns is based

on a classical topological Z -compactification.

4. Topology of Martin boundaries

4,1. Generalized Ancona's inequality. Suppose Y is a finitely generated group.
Let /r be a probability measure whose finite support generates Y as a semigroup
and let G be the associated Green's function.

Denote by G(x, z; BR(y)) the Green's function from x to z conditioned by
not visiting the ball of center y and radius R, that is

G{x,z-,BcR{y)) YJVx{Xk=z I Xt i BR(y), I e {1,... ,k - 1}).
k> 0
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For a hyperbolic group Ancona's inequality, mentioned in the Introduction, can be

restated in the multiplicative form as follows. There exists a uniform constant C,
depending only on the hyperbolicity constant of the group, such that for any three

distinct points x,y,z lying along a word geodesic in this order in the Cayley

graph, one has

^G(x,y)G(y,z) < G(x,z) < CG(x,y)G(y,z).

Ancona used this inequality to identify the Martin boundary of hyperbolic groups
with their Gromov boundary. To apply this theory to relatively hyperbolic groups,
we will need the following result of Gekhtman, Gerasimov, Potyagailo and Yang
which implies the inequality (1). Fix a Floyd function /.
Theorem 4.1 ([GGPY, Theorem 1.3]). For each e > 0 and 8 > 0 there exists

R > 0 such that for all x,y,w e T satisfying that 8y, {x, y) > S > 0, the

probability that the random walk starting at x and conditioned to reach y
avoids a ball in the Cayley graph centered at w of radius R is at most e. In
terms of the Green function, it can be stated as

(2) G(x,y;BcR(w)) < eG(x,y).

By Proposition 3.2, the points x,y,w satisfy 8{1}(x,y) > 8 for some fixed
8 > 0 as soon as the point w is within a word distance D of a transition point
on a word geodesic [x,y]. If the group T is word-hyperbolic then all points
on a geodesic in the Cayley graph are transition points for a uniform constant

(depending only on the hyperbolicity constant), hence Theorem 4.1 implies the

Ancona's inequality in this case, see [GGPY, Corollary 1.4].

4.2. Martin boundaries of thickened abelian groups. To understand the

behavior of Kgn (g), when gn converges in the geometric boundary of a parabolic
subgroup, we will introduce the transition kernel of the first return to the

corresponding subgroup P. We will then get a sub-Markov chain on P and

we will show that we can identify this first-return-chain with a lk -invariant sub-

Markov chain on Zk x {1,..., N} for the standard action z -(z',k) (z + z', k)
(see Lemma 5.10). We will then use results for such chains.

In [Dus], the author shows that under some technical assumptions, the Martin
boundary of such a chain on Zfe x {1 coincides with the geometric
boundary. In this setting, the geometric boundary is defined as in Section 3.2.

Namely, a sequence (zn,jn) in Zkx{l,...,N} converges to a point in the

geometric boundary if zn tends to infinity and converges in the unit sphere

gk-1
_ We now introduce the assumptions of [Dus] and we will later show that

they are satisfied in our setting.
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Consider a Zk -invariant chain p on the product space 7Lk x {1,... ,7V}. For

every function defined on Zk x {1,..., TV}, the {1,...,7V} coordinate will be

considered as an index. For example, the transition kernel will be written as

Pjij2(z1, z2), its nth power of convolution as Pj"j2 (z\, z2), the Green's function
as Gjuj2(z\,z2) and the Martin kernel as Kjlj2(zi,z2). We can thus see these

functions as the entries of TV x TV matrices. Assume that the chain p is strongly
irreducible, that is, for every j\, j2 e {1,..., TV} and for every z\,z2 eZk, there

exists n0 such that for every n > no, Pj"]j2(zi,z2) > 0. As we will see later (see

Lemma 5.1), strong irreducibility is not too much to ask and we will be able to
reduce our study of irreducible chains to strongly irreducible ones.

In [NS], Ney and Spitzer show that the Martin boundary of a strongly
irreducible, finitely supported, noncentered random walk on Zk coincides with
the CAT(0) boundary. Their proof is based on the study of minimal harmonic
functions which are of the form z Zk i-> e"'z for some u e Rk satisfying the

condition

(3) £ p(0,z)e"'z l.
zeZ*

In our setting, for u e Rk, we define the TV x TV matrix F(u) whose entries are

given by

^iJ2(")= J2 Ph.h®>2)eu'z-
zeZk

The entries of this matrix may be infinite. We restrict our attention to the set

where they are finite and denote this set by J0 :

J0 {u eRk,Vji,j2 e {1,..., TV}, Fjuj2(u) < +oo}.

We also denote by J the interior of Jo.
Let M > 0. Let p be a chain on Zk x{l,..., TV}. Say that p has exponential

moments up to M if for every j, j' e {1,..., TV},

J" Pj,j'{0, z)eM"z" < +oo.

ZZk

We will show in Proposition 5.11 that the chain has exponential moments. Hence

every coefficient Fh J2 (u) is finite for small u. It follows that Jo contains a

small ball, and so the set J is not empty.

Lemma 4.2. For every u e Jo, the matrix F(u) has non-negative entries.

Furthermore, this matrix is strongly irreducible, meaning that there exists n > 0

such that F(u)n has positive entries.
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Proof. The calculation provided in [Dus, Lemma 3.2] shows that the entries of
F(u)n are given by

r>,j,(«>* E d0'*""-
zZk

Strong irreducibility of E(w) is deduced from strong irreducibility of p.

Since F(u) is strongly irreducible, it follows from the Perron-Frobenius
theorem (see [Sen, Theorem 1.1]) that F(u) has a dominant positive eigenvalue,
that is an eigenvalue X(u) which is positive and such that for every other

eigenvalue A e C, |A| < A(u). Moreover, any eigenvector associated to X(u) has

non-zero coordinates and we can assume that every coordinate is positive. The

analog of Equation (3) will be

(4) A(w) 1.

Denote by D the set where A(u) is at most 1: D — {u e J7, X(u) < 1}. The two
technical assumptions of [Dus] on the chain p are the following.

Assumption 4.3. The set D is compact.

Assumption 4.4. The minimum of the function A is strictly smaller than 1.

Since A(u) is a dominant eigenvalue, it is analytic in u (see Proposition 8.20

in [Woe2]). For it e T, denote by VA(w) the gradient of A with respect to it.
We have the following.

Lemma 4.5 ([Dus, Lemma 3.22]). Under Assumptions 4.3 and 4.4, the set

{u eRk,X(u) 1}

is homeomorphic to Sk~1. An explicit homeomorphism is given by

ue{ueRk,X[u) l}^~^.
This provides a homeomorphism tp between Sk~l and the geometric boundary

of Zk x {I,..., N} constructed as follows. Let (zn,jn) be a sequence in Zk x
{1,..., N} converging to a point z in the geometric boundary d(Zd x{\,... ,N}).
Then z„ tends to infinity and converges to a point 0 in the unit sphere

There exists a unique u e {u e Rk,X(u) 1} such that 9 — nva(m)|| • Then>

define <p(z) u.
The Martin boundary is defined up to the choice of a base point. Fix such a

base point (zq, jo) e Zk x{\ IV}. Now, we can state that the Martin boundary
coincides with the geometric boundary.
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Proposition 4.6 ([Dus, Proposition 3.29]). Let p be a strongly irreducible transition

kernel on Zk x {1,..., N} which is Zk -invariant and satisfies Assumptions 4.3

and 4.4. If zn e Ik converges to z G dZk, let u <p(z). Then, for every z Zk

and for every j\, j2 e {1,..., TV}, there exists a constant Ch > 0 which only
depends on j\ such that Kjlj2(z,zn) converges to Cjleu'^z~z°K

Consider now a chain p on Ik x N. If N > 1, define the induced

chain px as the chain of the first return to Zk x {1 ,N}, that is, if
(z,j),(z'J')eZkx{\,...,Nj,

pN((z,j),(z',j')) p((z,j),{z',j'))
+ E E p((z, j), (ZiJi))p((Zi,ji), (z2, j2)) p{(Zk, jk)(z, ;"))•

k> 1 (Zl ,jl),-,(ZkJk)
J1 h>N

Denote by G the Green's function associated to p and by Gjv the Green's function
associated to the induced chain pn Then, we have the following lemma.

Lemma 4.7. The restriction to Zfex{l,..., N} of the Green's fmiction G coincides

with the Green's function G^.

Proof. Every trajectory from (z, j) to (z',j') for the initial chain p defines a

trajectory from (z,j) to (z',j') for px, by conditioning the trajectory on the

successive passages through Zk x {1,..., N}. Every trajectory for pn is uniquely
obtained in such a way. Summing over all trajectories, the two Green's functions

coincide.

We also have the following proposition.

Proposition 4.8. Let p be a Zfc -invariant, finitely supported, strongly irreducible
transition kernel on Zfc x N. Then, there exist A'0 > 0 and M > 0 such that
whenever N > N0 and the chain has exponential moments up to M, pu
satisfies Assumption 4.3.

Proof. We will prove that there exist p > 0 and M > 0, such that for sufficiently
large N, whenever the chain pn has exponential moments up to M, then

(5) {u 6 M.k, X(u) < 2} c jae ||u|| < p) C IF.

Denote by (e\,...,ek) the canonical basis in Rfe. Since the chain p is strongly
irreducible, there exists «,• such that for every n > nit pt"\(0,1), (g,1)) > 0.

Thus, there exists n0 such that for every i, //"o)((0, l), (e/, 1)) > 0, so that there

is a path of length n0 from (0,1) to (c,, 1). These paths stay in Zk x {\,..., No}
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for some No, since the chain p is finitely supported. Thus, for every N > No, for

every i, the restricted chain pw satisfies p^°\(0, 1), (e,, 1)) > a, for some a > 0.

Let N > N0 and u e~Rk, and let us fix L > 0. There exists fx > 0 such that

if ||u|| > fx, then at least one of the &uei is larger than -, so that Fiti(u)n° > L.
Moreover, if p^ has exponential moments up to fx +1, then F(u) has finite entries

for /X < ||u|| < fx + l and so does F(u)n°. Let v(u) be an eigenvector associated

to A(w). Then, it is an eigenvector of F(u)n° associated to A(m)"°. Since F(u) is

strongly irreducible, v(u) has non-zero coordinates and we can even choose v(u)
with strictly positive coordinates. Denote by t>(w)(l) its first coordinate. Then,

u(w)(l)A(w)"° > Fiji(m)"°v(m)(1) so that A(w)"° > Fiti(u)n° > L.
Consequently, A(w)"°, hence X(u), can be made arbitrarily large, when

enlarging ||u||. Moreover, if pn has sufficiently large exponential moments,
then A(u) is well defined for arbitrarily large ||w||. Inclusion (5) now follows
from these two facts. This proves that the sub-level A(m) < 1, is bounded, thus

compact and contained in the open set A(n) < 2, which is included in I. Thus,

Assumption 4.3 is satisfied.

We will also use the following.

Lemma 4.9. Let p be a Zk -invariant, strongly irreducible chain on 1k x
{1,..., TV}. If p is (strictly) sub-Markov, then it satisfies Assumption 4.4.

Proof. The fact that the chain is strictly sub-Markov means that the matrix F(0)
defined above is strictly sub-stochastic. In particular, its dominant eigenvalue A(0)
satisfies A(0) < 1 and the minimum of A is strictly less than 1, so Assumption 4.4
is satisfied.

Combining the explicit formula given in Proposition 4.6 together with
Proposition 4.8 and Lemma 4.9, we obtain the following corollary which describes

convergence in the Martin boundary for a chain on ZkxN.

Corollary 4.10. Let p be a Zk -invariant, finitely supported, strongly irreducible
transition kernel on 7Lk x N such that:

(a) For large enough N, the induced chain pn on 7Lk x {1...., TV} is strictly
sub-Markov.

(b) For all M there exists an No > 0 such that for N > No, the chain p^
has exponential moments up to M.

Then, a sequence (zn,jn) in Zk xN, with sup(y'„) < +oo, converges to a point
in the Martin boundary of p if and only if ||z„|| tends to infinity and

converges to a point of Sk~l.
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Thus, the fact that (zn,j„) converges to a point in the Martin boundary does

not depend on the sequence (jn) as long as it remains bounded. In particular,

(.zn,jn) converges in the Martin boundary if and only if its projection (z„,0) on
Zk x {0} converges in the Martin boundary and the limits are the same.

5. Convergence of Martin kernels: Proof of Theorem 1.3

Let T be a hyperbolic group relative to a collection V of infinite virtually
abelian subgroups. Let /! be a measure on T whose finite support generates F

as a semigroup. In this section we prove that the Martin boundary is a PBU-

boundary, proving Theorem 1.3. Recall that dP denotes the geometric boundary
of a maximal parabolic subgroup P defined in Section 3.2. We fix a finite set

Vo of representatives of conjugacy classes of V. We will deal separately with

sequences converging to conical limit points and sequences converging in gdP
for some coset gP of a parabolic subgroup P e Vo. For the second case, we

will apply results of Section 4.2. It will be more convenient to deal with strongly
irreducible chains. Thus, we first show that we can reduce to such chains.

In a very general context, consider a chain p on a countable space E. Define
the modified chain p on E by

p{x\,x2) ^ A(xi,x2) + ^p(x l,X2),

where A(xi,x2) 0 if x\ f x2 and 1 otherwise. Denote by p^ the nth
convolution power of p. Also denote by G the associated Green's function:

G(x i,x2) 2>W(*i.*2).
«>o

We have the following (see [Woe2, Lemma 9.2]).

Lemma 5.1. With these notations, \G(xi,x2) G{x\,x2) and thus the Martin
kernels are the same.

In our context, this means we can assume that fx(e) > 0, and so the random

walk is strongly irreducible.

5.1. Convergence to conical limit points. We first study conical limit points.
We prove the following.

Proposition 5.2. Consider a sequence gn of T that converges to a conical

point a in the Bowditch boundary. Then, gn converges to a point in the Martin
boundary.
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This is a consequence of the following two results of [GGPY].

Proposition 5.3 ([GGPY, Theorem 7.4]). The identity map T -» T extends to

a continuous equivariant surjection F from the Martin compactification to the

Bowditch compactification.

Proposition 5.4. [GGPY, Corollary 7.14] The preimage F~l(a) of a conical limit
point a consists of a single point.

Indeed, let gn converge to a conical limit point a and assume that g„ does

not converge in the Martin compactification. By compactness, gn has two

subsequences that converge to two distinct points in the Martin boundary, which are

both mapped to a by F. This is a contradiction.

5.2. Convergence in parabolic subgroups. In this section, we prove the

convergence of the Martin kernels Kgn (•) when gn converges to a point in
the geometric boundary of a parabolic subgroup P. We fix a finite set V0

of conjugacy classes of parabolic subgroups. Let P e Vo. By assumption, P

contains a subgroup isomorphic to Zk with finite index. Any section P/Zk -> P

provides an identification between P and 7Lk x {1,..., N}.
Let pn be a sequence in P. Identify then pn with (z„, jn) e Zfc x {1,..., N).

By definition, the sequence pn converges to a point in the boundary dP of P

if and only if zn tends to infinity and converges to some point in §k~l.
Denote the corresponding point in Sfc_1 by 6 and say that pn converges to 6.
Our goal is to prove the following.

Proposition 5.5. Let gn be a sequence in T. If np(gn) converges to a point
of dP, then g„ and np(gn) both converge in the Martin boundary 3/xF to the

same point.

Corollary 5.6. Let g e T and let P e Vo- If gn is a sequence such that
g~l jigp{gn) converges to a point of dP, then gn converges to some point in the

Martin boundary.

Proof of the Corollary. By Proposition 3.4 the diameter of projp(g) is uniformly
bounded. In our situation, nP(g-xgn) e (projp(g_1g„) g~1(projgPgn)), so

the element 7tp(g~1gn) is within a bounded distance of g~1Jtgp(gn) Thus,

rip(g~lgn) also converges to some point in 3P. Proposition 5.5 shows that

g~xgn converges to some point in the Martin boundary, hence so does gn.

The key point in the proof of Proposition 5.5 is the following statement.
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Proposition 5.7. Suppose gn is a sequence with supnd(gn,P) < oo. Then, gn

converges to a point in the Martin boundary of T if and only if np(gn converges
to a point of dP. Moreover, in that case, gn and np(gn) both converge in the

Martin boundary of T to the same point.

The rest of this section is devoted to prove Proposition 5.7. Proposition 5.5

will then be deduced from it.
Let t] > 0 and let NV(P) be the rç-neighborhood of P. We introduce the

chain p corresponding to the first return to NV(P), defined as in Section 2.

Namely, for g,g' e Nv( P) denote by p{g,g') the probability that the random

walk starting at g returns to Nn{P), and first does so at g'. In other words

p{g,g') G{g,g'\ N^{P)). We will see that the probability that the random walk

starting at g never goes back to NV{P) is positive (see Lemma 5.10). Thus, p
is not a probability transition kernel and defines a sub-Markov chain on Nn(P).
Nevertheless, one can still define the Green's function associated to p as

GP(g,g') J2Pin)(8>g')> g>g' e N„(P),
7!>0

where p(n^ is the nth power of convolution of p. According to Lemma 4.7, we
have the following.

Lemma 5.8. The Green's function Gp coincides with the restriction to NV(P)
of the Green's function Gß associated to the initial random walk.

We also have the following property.

Lemma 5.9. The chain p is strongly irreducible.

Proof. The proof is based on the same idea as the proof of Lemma 5.8. First,
the initial random walk is irreducible. Now, every trajectory for p comes from
a trajectory for the random walk on the whole group, after excluding points that

do not stay in the neighborhood of P. Thus, there is a positive proportion (for
p) of paths from any point g e Nn(P) to any other point g' e NV(P). This

proves that p is irreducible. Now, recall that we assumed that p(e) > 0 (see

Lemma 5.1), so that p(g,g) > 0 and thus p is strongly irreducible.

In light of Lemma 5.8, to prove Proposition 5.7, it suffices to show that a

sequence satisfying its conditions converges to a point in the Martin boundary of
Ain{P) with the induced chain p.

We first notice that, as a set, T can be identified P -equivariantly with fxN.
Indeed, P acts by left multiplication on r and the quotient is countable. We
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order elements in the quotient according to their distance to P. It follows that the

rç-neighborhood Nr]{P) can be P -equivariantly identified with P x Nv}.
Moreover, if q' < q, the set P x {1,..., Nrf) identified with NV>(P) is a subset

of P x {1,..., Nv} identified with NV{P).
Now, identifying P with Zk x F, where F is finite, we identify the group

T with Zfc x N. Thus, the p -random walk can be considered as a Zk -invariant
Markov chain q on Zk x N and the restriction of the random walk to Nn(P)
coincides with the restriction of the chain q to Zk x {\,... ,NV) for some Nn
To simplify the notations, we will write N Nv.

Let gn be a sequence in Nr}(P) and identify gn with (zn,jn) e Zk x
{1 Notice that the projection of gn to P converges in the geometric
boundary dP of P if and only if (zn,jn) converges in the geometric boundary
of Zk x {1,..., N}, since in both cases, the sequence converges in the geometric
boundary if and only if zn tends to infinity and converges to a point in the

sphere.

To prove Proposition 5.7, it suffices to show that the Markov chain q on
Zk x N and its induced chain p on Zk x {1 satisfy the conditions of
Corollary 4.10. Thus, we just need to show that for large enough q, the induced
chain on N^iP) has sufficiently large exponential moments and is strictly sub-

Markov.

Lemma 5.10. The induced chain p is strictly sub-Markov.

Proof, ft suffices to show that there exists g Nn(P) such that

P(g<g')< L
g'eNniP)

This follows from the fact that the /x-random walk starting at g with d{g, P) q

has a positive probability of never returning to N^(P). This, in turn, follows from
the fact that the random walk almost surely converges to a conical point (see, for
example, [GGPY, Theorem 9.8, Theorem 9.14]).

For M > 0, recall that p is said to have exponential moments up to M if
for every j,j' e {1,..., A^},

T. py,y'(0,z)eM||z" < -l-oo.

zeZk

Proposition 5.11. Let M > 0. For large enough q, p has exponential moments

up to M.

The proof of Proposition 5.11 will be divided into several steps. We will use

the following geometric preliminary results.
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Proposition 5.12 ([GP3, Proposition 8.5]). There are constants a0, D > 0,

independent of the parabolic subgroup P, such that if a is a geodesic with

endpoints oc\, a2 satisfying d(pro)P(ai),a) > D, then

diam(projp(a)) < uq.

The following two results follow from Proposition 5.12. Note that the first one

also follows from [Hru, Corollary 8.2],

Corollary 5.13. There exists cq such that the following holds. If g\,g2 e T and

if g'i e proj/>g, for i 1,2 then, d(g[,g'2) < d(gug2) + c0.

Proof. Consider a geodesic a from g\ to g2 • If a stays outside the D-
neighborhood of P, then d(gj, g'2) < üq

Otherwise, denote by aq, respectively a2 the first, respectively last point of
a within a distance D of P and let a- e pro]P(a,). Applying Proposition 5.12,

we get d(g[, a-) < ao- Also, d(a'i,at) < D, so that the triangle inequality yields

d(g[,g'2) < 2fl0 + 2D + d(a1,a2) < d(g1,g2) + c0,

where c'o 2D + 2üq.

Corollary 5.14. For large enough a > 0, the function p : M+ R+ defined by

P(h) inf|j(gi,g2) : d(nP(gx),TtP(g2)) > a,d(gt,P) > rçj

tends to infinity as r] -> oo.

Proof. Choose a and r) larger than the constants a0 and D from Proposition 5.12.

Let g\,g2 e T be such that d(g\,P) > rj and d(g\,g2) < r) — D. Let a be a

geodesic connecting gi and g2. By the triangle inequality, d(a,P) > D.
Consequently, we have diam(projp(a)) < a0 < a. In particular d(nP(g\),nP(g\)) < a.
Thus, the conditions d(g\,P) > rj and d(nP(gi), nP(g\)) > a imply that

d(g\,g2) > p — D, completing the proof.

The following classical lemma is a consequence of the fact that the spectral
radius of p is less than 1. This follows in turn from non-amenability of Y,
according to a famous result of Kesten, see [Kes],

Lemma 5.15 (Kesten). Denote by p*n the nth power of convolution of the

measure p. There exists a > 0 such that for every g e T,

/^(£)<e-'
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We can now prove Proposition 5.11. Let z e Zk and j,j' e {I,... ,N}. If the

first return to Nr,(P) starting at (0, j) is at (z, j'), there is a path Z0,..., Zn+1
such that Z0 (0, j), Z„+j — (z,j') and Z; ^ NV(P) for 1 < I < n. Note

that rf(Z/,Z/+i) < r(ji), where r(ji) only depends on the support of fx. Thus,

if r] > 3then Z0,Z„+i <£ N2r]/3(P) as soon as n > 1, which will hold if
||z|| is large enough. Moreover by the triangle inequality, any geodesic from Z/
to Z/+1 stays outside of Nn/3(P), for 0 <l<n.

Define a path cp from Z0 to Z„+i by gluing together geodesies from Z;
to Z/+i. Then, the length of cp is at most nr(fx). The parabolic subgroup P

together with the induced word distance is quasi-isometric to its subgroup Zk

together with the Euclidean distance. In particular, the word distance between 0

and z in P is larger than A||z||, where ||z|| stands for the Euclidean norm of
zelk and A only depends on the quasi-isometry parameters.

Denote by u,- the vertices of the path <p. We claim that for the constants a

and Co from Corollary 5.14 and Corollary 5.13, assuming that diam(proj)P(/> > a

(for sufficiently large ||z||), we can choose points yk % (k 1such
that their projections yk — Jipiyy) satisfy

a < d{yk,yk+1) < fli fl + 1 + c0.

Indeed, let Vj np(vj) and yi tq. We argue by induction. Assuming that
the index ki-i was already chosen, let k, — min{T > ki-\,d(ji-\,Vk) > a). If
such an index exists, we define y, Otherwise, we set / i — 1. By our
choice, we have d(ji-\, v^-î) < a. Applying now Corollary 5.13, the triangle
inequality yields d(ji-i,yi) < d(yt-+ d(vki-i,vki) < a + 1 + c0 ax,
as we claimed.

By gluing together a path from 0 to y\, paths from y,- to y,+i and a path
from yi to z, we get a path from 0 to z inside P whose length is thus larger
than A||z|| and is at most la\, for d(yi, y;+i) < a\. Hence, / > • By
definition of the function p in Corollary 5.14, d(yj,yj+1) > p(jj/3). Thus, the

length of <p is at least ^-p(??/3)||z||, where p{q/3) tends to infinity, as r) tends

to infinity.
Fix Ro > 0. Then, for large enough rj, p(rj/3) > ^Ror(ji), so the length of

(p is at least R0r(ji)\\z\\. Recall that n is the number of steps of the trajectory
from (0. j) to (z,j') and that the length of <p is at most nr(/i). We thus have

n > /?o||z||. Note that Ro can be taken arbitrarily large, provided that r] is chosen

large enough. Summing over all trajectories of the random walk from g — (0, j)
t0 gz (z, j') that stay outside N^iP), we have

pjj'(0,z)< J2
n>R0\\z\\
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Lemma 5.15 shows that

Pjj'(0, z)< e~a" - e"aÄoi|z|1 J2 e~an-

n>R0\\z\\ n>0

To prove Proposition 5.11, it suffices to choose A0 so that Root > M.

We can now complete the proof of Proposition 5.7, using Corollary 4.10.

Indeed, Lemma 5.9 shows that the induced chain on (arbitrary) bounded
neighborhoods of P is strongly irreducible, while Lemma 5.10 shows that it is strictly
sub-Markov (Condition a) of Corollary 4.10) and Proposition 5.11 shows that it
has sufficiently high exponential moment (Condition b) of Corollary 4.10).

Thus, Corollary 4.10 implies that the Martin compactification of the induced

chain on bounded neighborhoods of P coincides with the geometric compactification

of P, and together with Lemma 5.8 this implies Proposition 5.7.

To prove Proposition 5.5, we now show that we can reduce to the case of a

sequence that stays in a uniform neighborhood of the parabolic subgroup P. The

proof is based on the following strategy. Assume that the sequence gn leaves every
bounded neighborhood of P, but its projections to P still converge to a point
6 in 3P. Proposition 5.7 applied to 7tp(g„) guarantees that np(gn) converges
to a point in the Martin boundary. We want to prove that the same is true for

gn. In other words, we want to prove that Kgn converges pointwise. Generalized

Ancona inequalities show that to go from the basepoint e (the neutral element of
T) or from an arbitrary point g to gn, the random walk visits nP(gn) with high
probability. Thus, G{g,gn) is close to G(g,nP(gn))G(np(gn),g„) and G(e,g„)
is close to G(e,7TP(gn))G(7tp(gn),gn), so that Kgn (g) is close to K7tpign)(g).
Convergence for Kgn(g) then follows from convergence for KnP(gn)(g)-

We now give a formal proof. Let pn up gn be a projection point of gn to

P. By assumption we have \imn-+œ pn £ e S^T. By Lemma 8.2 of [GGPY],
there is a uniform S > 0 with liminf„^.ooi5/n(g,gn) >8 for all g e T. Let
e > 0. Consider any g e T. By Theorem 4.1, there is an rj > 0 such that for

large enough n,

(6) G(g,gn;B^{pn))<eG(g,gn)

and

(7) G(e,g„; Bcn(pn)) < eG(e,gn).

Assume rj is also large enough to satisfy Proposition 5.11. Decomposing a path

from e to gn according to its last visit to Bv(pn), we can write

(8) G(e,gn)= G(e,u„)G(un,gn\B*(pn)) + G(e,gn: Bcn(pn))

Un^BriiPn)
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and similarly,

(9) G(g,gn)= G(g^n)G(un,gn\Bcv(pn))+G(g,gn,B^(pn)).
un ^Br) pn

By Proposition 5.7 we know that for any un e B(pn, rf) also converges to £. Then

G(g,un)/G{e,un) converges to Kç (g) and this is independent of the sequence

un. Hence, for large enough n, we have

(10) (1 - )Kt(g) < Gr{?,Un\ < (1 + e)K((g).
G(e,un)

Combining (6), (9) and (10), we obtain for all large n that

G{g,gn)< + t)Kç(g)G(e,un)G(un,gn-, Bcn(pn)) + eG(g,gn),
Un^BrjiPn)

so that

(l-e)G(g,g„)<(l + e)^(g) J2 G(e, u„)G(un,gn; B^(pn)).
Un^Brjipn)

Then, using (8), (1 -e)G(g,gn) < (1 + e)Kç(g)G(e, gn). Similarly, using (7), (8),

(9) and (10), we get a lower bound, so that for large enough n,

1+e G(e,gn) I — e

Since e > 0 is arbitrary we get that K(g,gn) converges to Kç(g). This holds for

every g e T, so that gn converges to f in the Martin boundary, completing the

proof of Proposition 5.5.

It follows now from Corollary 5.6 and Proposition 5.2 that a sequence gn e F

converges in the Martin compactification of T if one of the following conditions
is satisfied:

(1) either gn converges to a conical point of the Bowditch boundary,

(2) or for some parabolic subgroup P e Vo and some j e F, g~XTigp{gn)

converges to a point of dP,

To complete the proof that the Martin boundary is a PBU-boundary we need

to show the converse: namely that if gn converges to a point in the Martin
boundary, then it satisfies either (1) or (2).

Suppose gn converges to a point in the Martin boundary. By Proposition 5.3,

gn converges to a point a in the Bowditch boundary. If a is conical, then (1)

holds. Suppose now that a is parabolic with stabilizer gPg_1 (P Vo, g e T)
and assume that (2) is not satisfied. We have g~17tgp(g„) e projP(g'lgn) and
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by Proposition 3.4 the latter set has a uniformly bounded diameter. Thus the

elements np(g~A gn) and g~1ngp(gn) are within a bounded distance of each

other, hence by Lemma 3.3 7ip(g~1gn) cannot converge to a point in 3P. Since

gn converges to the parabolic limit point a, the quantity \\ngp{gn)\\ goes to

infinity. Thus, there are sub-sequences hn and h'n of gn with Tip(g~1hn) and

tip(g~xh'n) converging to different points of 3P By Proposition 5.7, 7ip(g~1hn)
and iip(g~lh'n) converge to different points £ and f in 3/xT. Furthermore, by

Proposition 5.5, g~lhn converges to the same point in dflV as rip(g~lhn) and

g~1h'n converges to the same point in as Tip{g~lh'n). Thus hn and h'n

converge to different points of 3^1", contradicting our assumption on gn.
This proves that the Martin boundary is a PBU-boundary, ending the proof of

Theorem 1.3.

6. Minimality

In this section we prove Theorem 1.5, namely the minimality of the Martin
boundary. We will use the following, which is a direct consequence of [Dus,

Proposition 6.3].

Proposition 6.1. There exists an r]o > 0 such that for rj > q0 the following holds.

For any distinct ao, aq e 3P there exists a neighborhood U of a\ (not containing
ao) in 3P and a sequence gn of Nv P such that

(1) either Ka(gn) tends to infinity, uniformly over a e U and Kao(gn) stays
bounded away from infinity.

(2) or Ka(gn) stays bounded away from 0, uniformly over a U and Kao(gn)

converges to 0.

We now prove the following.

Theorem 6.2. Let T be hyperbolic relative to a collection of virtually abelian

subgroups. Let p be a probability measure on F whose finite support generates
T as a semigroup. Then every point of the Martin boundary V corresponds
to a minimal harmonic function.

Proof. By Theorem 1.3, is a PBU-boundary. This means that there is a

T-equivariant surjective map F : dILV -> dpT such that if a e dp T is conical,

F~1(a) is a single point and if a e SgT is parabolic, F~1(a) 3P where

P is the stabilizer of a and 3P denotes its geometric boundary. Notice that

F : 3mF -* 3ßT is the same map as the the map : 3ßT constructed

in [GGPY, Corollary 1.7].
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Let cto £ 3/iT. Then Kao is a positive harmonic function. By the Choquet

representation theorem, there exists a finite Borel measure u0 va° on the Martin
boundary, with support contained in the minimal Martin boundary df F such that

for all g T

To prove minimality of ao it suffices to show that the support of v0 consists of
the single point ao • In Corollary 7.9 of [GGPY] the authors deduce the following
result from the inequality (1) (see Theorem 4.1).

Lemma 6.3. The support of vq is contained in F~l(yF{ao)).

If F (ao) is conical, then F"1(F(a0)) is a single point [GGPY, Corollary 7.14].

Lemma 6.3 then implies that the support of v0 is a single point so that a0 is

minimal.
On the other hand, if ao is a parabolic point of the Bowditch boundary with

stabilizer P, Theorem 1.3 implies that F~l (F(aQ)) 3P. Thus we know that r0
is supported on dP Fl df T.

Now, suppose ai is a point of dP distinct from ao. By Proposition 6.1, there

exists a neighborhood U of ai, not containing ao, and a sequence gn such that

(1) either Ka(gn) tends to infinity, uniformly over a e U and Kao(gn) stays
bounded away from infinity.

(2) or Ka(gn) stays bounded away from 0, uniformly over a eU and Kao(gn)

converges to 0.

Thus, in the first case, for large enough n and for all a e U, we have Ka(gn) > Rn,
where Rn tends to infinity. Then by definition,

As Kao(gn) stays bounded away from infinity, it follows that v0(U) 0.

In the second case, for large enough n and for all a U, we have Ka (gn > C

for some constant C. Then,

(gn) / Ka{gn)dv0(a) > / Ka{gn)dv0(a) > Rnv0(U).

As Kao{gn) -> 0 as n oc it follows again that v0(U) 0. In both cases, the

support of u0 does not contain ai. We conclude that the support of v0 consists

only of ao, so Kao must be minimal.
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7. Another viewpoint on the PBU-boundary

The aim of this section is to prove that the PBU-compactification of a

hyperbolic group relatively to a system of virtually abelian subgroups constructed

in the paper is equivalent to a well-known compactification constructed for general

relatively hyperbolic groups by F. Dahmani [Dahl],

7.1. Relative Cayley graph. In this section we summarize several facts which

will be used further on. Let T be a group generated by a finite symmetric set S.
We denote by G the Cayley graph Cs F of F with respect to the system S.

Let us also fix a family V of subgroups of T satisfying two properties: it is

invariant under conjugation in r and there is a finite subset Vo — {Pi, -Pk) C

V such that every element Fe V is conjugate to one of P,. We call the system

of the left cosets {gP : P e Vo, g e F} the system of horospheres and each of
its element is called a horosphere (see [GP3, Section 5] for more explanations

on horospheres).
Refine the graph G by adding an edge of length 1 between each pair of

vertices belonging to the same horosphere. The obtained graph is called the

relative Cayley graph with respect to the pair (S, Vo) and we denote it by A.
The choice of the subset Vo for A plays a similar role as the choice of a finite

generator set S for the Cayley graph G and the graph A does not depend on Vo

up to quasi-isometry.
Let d denote the word distance of G and d the path distance of A. To

distinguish paths in G and A we call them G-paths (or simply paths) and A-
paths (or relative paths) respectively. Every A-path I lifts to a G -path in the

following way: its lift I has the same non-horospherical edges as I and every
horospherical edge of I is replaced by a geodesic interval in G with the same

endpoints.
From now on, we assume that the group T is relatively hyperbolic with

respect to a system of maximal parabolic subgroups V. By [Tuk, Theorem IB]
there is a finite subset Vo {Pi,, Pk} of V such that every P e V is

conjugate to one of Pi (i e {1, • • • k}). So {gP : P e Vo, geT} is a system

of horospheres. One of the main properties of the relative graph A in this case

is that it is hyperbolic [Far], [Bow] (see also [GP3, Proposition 7.1] for a direct

proof of this fact and Remark 7.2 concerning different definitions of the relative

hyperbolicity).
Recall that a path y : J -> X in a metric space (A, dx) is called quasi-

geodesic if there is an affine function a(t) At + B (f > 0), called a distortion

function, which satisfies

(11) diam(7) < a(diam(y(3y)),
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where diam(-) denotes the diameter of a set. The constants A and B are called

parameters of the quasi-geodesic. In our case the role of X is played by the graphs
Q or A, so J C N and we say respectively that y is d -quasi-geodesic (or simply
quasi-geodesic) or d -quasi-geodesic (or relative quasi-geodesic). In particular if a
is the identity function our curve y is a geodesic. Since A is hyperbolic, every
d -quasi-geodesic with fixed parameters stays in a uniformly bounded distance

from a d -geodesic having the same endpoints [Gro, Proposition 7.2.A].
Even though the graph G is not hyperbolic in general, the lifts of d -quasi-

geodesics to Q have properties close to those of d -quasi-geodesics in a hyperbolic

space. The following lemma confirms this fact and will be used in the next

subsection.

Lemma 7.1. Let T be a hyperbolic group relative to a system V of parabolic
subgroups. Consider two curves I and m in the Cayley graph G having the

same endpoints o and x. Assume that I is a d -quasi-geodesic and m is a

d -quasi-geodesic both having the parameters A and B. Assume also that for
every horosphere S gP (g e T. P e Vo) the curve m can have at most one

edge in A with endpoints in S. Then there exists a constant C, only depending

on A and B, such that for every vertex v em we have d(v,l) < C.

When m is a d -geodesic the lemma is proved by Hruska in [Hru, Lemma 8.8],
whose proof uses a lot of preliminary results. We provide below a direct proof
based on several tools already used in the paper.

We call the above condition of the intersections of relative quasi-geodesics with
horospheres one-edge horospherical intersection property. An important subclass

of relative quasi-geodesics form d -geodesies which obviously satisfy this property.

Proof of the Lemma. Let m' denote a lift of m to G We first claim that m'
is a d -quasi-geodesic whose parameters only depend on A and B and every
vertex of m' fl m is R -transitional for a constant R which also only depends

on A and B. Indeed if m was a d -geodesic the claim would directly follow
from Propositions 6.1 and 7.8 of [GP3]. Actually, the first part of the proof of
Proposition 6.1 consists in proving that m' is an «-distorted path where the

distortion function a (see formula (11)) is a quadratic polynomial. To check this

statement in our situation, one needs to replace the d -distance n between the

endpoints of m by An + B for the parameters A and B of the quasi-geodesic m.
The distortion function a of the lift m' obviously remains a quadratic polynomial
after such a modification. Then, using that m can contains at most one edge in
each horosphere of A, the rest of the proof of Proposition 6.1 applies without

any change. It follows that the whole curve m' is a-distorted for a quadratic

polynomial a, and every vertex of m G m' is R -transitional in G Then all
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assumptions of [GP3, Proposition 7.8] are satisfied and it implies that m' is a

quasi-geodesic in Q with uniformly bounded parameters (depending on those of
m confirming our claim.

By the claim every v e m is an R -transition point of the curve m' having the

same endpoints o and x as the d -quasi-geodesic I. By Proposition 3.2, there

is a constant 5 > 0 such that the Floyd distance §{(o,x) satisfies (o, x) > 8.

Then Karlsson's lemma [Kar, Lemma 1] implies that d(v,l) <C for a uniform
constant C depending on 8 and the parameters of the quasi-geodesic /.

We note that Karlsson proved this lemma in assumption that / is a d -geodesic
but his proof works without any changes in the case of quasi-geodesics (see [GP1]

where this and more general cases are discussed). This concludes the proof.
To finish the discussion about the relative quasi-geodesics it is worth to

mention that the proof of the lemma works for the first entry (or the last exit)
horospherical point u of any relative quasi-geodesic m (without assuming that

m has one-edge horospherical intersection property). Then the above argument
also shows that the distance d(u,l) is uniformly bounded if u e m is such a

point and m is a relative quasi-geodesic with bounded parameters.
There is a more general assumption than our one-edge horospherical

intersection property which is due to B. Farb [Far], His condition that relative

quasi-geodesics are without backtracking is equivalent to that each horospherical

part of such a curve m in A is connected and has a uniformly bounded d -length

depending only on the parameters of m. Such curves were used in [Far] to define

BCP-property which we do not need to use here. We simply mention that the

hyperbolicity of the relative graph together with the BCP-property is equivalent
to the fact that the group V is relatively hyperbolic. Furthermore, we note that

this BCP-property follows from the above lemma, combined with the fact that

the intersection of different horospheres has a uniformly bounded d -diameter,

see [GP3, Corollary 5.7],

7.2. Dahmani's geometric boundary. In [Dahl], the author introduces a com-
pactification of hyperbolic groups relative to a system of parabolic subgroups

V. Dahmani's construction has an inductive nature: once one knows a "good"
compactification of parabolic subgroups then a "good" compactification is
obtained for the whole group. To define Dahmani's compactification we need to

introduce few more notions. Let T admits a minimal geometrically finite action

on a compactum T. Denote by Par the fixed-point set of parabolic subgroups

for this action and by Ac the set of conical points.

Assumptions. Every maximal parabolic subgroup P e V admits a metrizable

compactification P UdP such that P is dense in it. Furthermore for every finite
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subset F of P and for every open cover U of P U dP, all translates of F by
P but finitely many are contained in an element of U. In this case we say that
finite sets fade at infinity [Bes], [Dahl],

We also assume that the action of F on elements of V continuously extends to

an action on their boundaries: for x„ e P and g e T, x„ -> £ e dP implies that

gxn -> £' g(£) e g(dP). Furthermore we ask this extension to be equivariant,
that is g(dP) 3(gPg"1) and we also set 3(gP) g(dP).
End of Assumptions.

The boundary 3T is defined in [Dahl] as follows:

(12) 3r := 3p] Ac g(dPi)\ Ac,
PsV '

PiZVo
gsr

where V0 is the maximal subset of V of non-conjugate subgroups.
The proof of Proposition 3.6 above, applying without changes in this case,

shows that the topology on the space T U 3T is uniquely defined by the following
definition of convergence of sequences of elements of T to the boundary points
in 3T.

Definition 7.2 (Dahmani's compactification [Dahl, Definition 3.3]). Let T be

a hyperbolic group relatively to a system of parabolic subgroups V. We fix a

metrisable compactification for every P e V satisfying the above Assumptions.
Say that a sequence gn in T converges to a point £ e 3T if one of the two

following cases happens:

• either £ e Ac is a conical point then gn converges to £ in the Bowditch

compactification of T;

• or £ e 3(gP) where P To is a parabolic subgroup and g e T. Then there

exist a sequence un ghn e gP, hn e P such that hn tends to g-1 • £ and

a relative geodesic ln between gn and un, for which un is the first entry
point of ln in the horosphere gP.

Remark. In [Dahl, Definition 3.3] the author uses curves ln satisfying technical
conditions. They are relative quasi-geodesics outside a compact set. They have

uniformly bounded parameters. Furthermore, they are assumed to be left reduced,
a condition which implies that the left endpoint of such a curve is not followed
by a horospherical edge. By Lemma 7.1, it is easy to see that we can replace
such a curve /„ by a relative geodesic having the same endpoints, as it is done

in the definition above.
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Theorem 7.3 ([Dahl, Theorem 3.1]). Let T be a hyperbolic group relative to a

system V. Assume that each P e P admits a metrisable topology satisfying the

assumptions above. Then there exists a topology on Pu3r satisfying Definition 7.2

such that the topological space is compact and metrisable.

To compare Dahmani's compactification with that of PBU we will use the

geometric compactification of parabolic subgroups introduced in Section 3.2.

Recall that in our context, every parabolic subgroup P e V is virtually abelian

and convergence to 3P is given as follows.

Identifying P with Zk x{l,..., N} and p e P with (z, j) e lk x{l,..., N},
we say that a sequence (z„, jn) converges in 3P if zn tends to infinity and

converges to a point 9 in Sk~l. Formally, one can choose sets of the form

Un>m(9) x {1, A'} to form a countable system of neighborhoods of a point 9

in the boundary, where

Un,m{9) Vn{9) U Jz Z:k, ||z|| > m, p-6 Vn{9)J

with Vn{9) a neighborhood of 9 in Sk~1.

Defining in such a way the topology on maximal subset Vo — {Pi Pk)

of non-conjugate elements of V we then define the topology on every P e V
to verify 3P g(9Pi) if P gPig~l,g e T,i e {1,..., /c}. With the following
lemma we obtain that the topology defined in this way on the set \_}pep(P U 3F)
satisfies all the assumptions above.

Lemma 7.4. Finite subsets of the space P U DP, equipped with this topology,

fade at infinity.

Proof. By Lemma 3.3, if z„ and z'n are two sequences in Zk such that \\zn—z'n\\

is bounded by a constant and zn converges to a point 9 in <)Zk, then z'n also

converges to 9 in dZk. By induction, the same holds for a finite number of

sequences. That is, if z^\ z„^ are sequences in Zk such that \\zn^ — z„2) ||

is bounded for every j\,j2 and such that one of them converges in dZk, then

they all converge to the same point. This property is called perspectivity property
in [Ger2],

To finish the proof, assume by contradiction that F is a finite subset of P
and U is an open cover of P U 3P such that there are infinitely many translates

of F that are not contained in one of the open sets in U. Denote these translates

by Pn F pn e P). Let f e F. The sequence p„ f tends to infinity. Up to taking
a sub-sequence, it converges to a point £ in 3F. By the above perspectivity

property for every f'eF, p„ f all eventually belong to an arbitrary small
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neighborhood U$ of £. Then choosing Uç inside of an element of U containing
£ we obtain a contradiction.

The following proposition is the main result of this section.

Proposition 7.5. Let F be a hyperbolic group relatively to a system V of
virtually abelian subgroups. For every P e V we fix a geometric topology on
P U dP as above. Then the topologies of Dahmani's compactification and of
PBU-compactification of T coincide.

Proof. The convergence to a conical point is defined in the same way, so the

only case we need to consider is when a sequence gn e T converges to a point
in 3P for some P e V. So we need to prove that the convergence in one of the

following topologies implies the convergence in the other one.

(1) (Dahmani's topology) There is a sequence of relative geodesies ln between

gn and their first entry points un ghn to a fixed horosphere gP, where

P Vo,g e T, such that hn converges to a point £ e 3P.

(2) (BPU topology) The projections vn ngp{gn) of gn on gP satisfy that

g~lvn converges to £ e dP.

The proof is a direct consequence of the following lemma due to A. Sisto whose

original proof is based on the BCP-property and other results which we do not

use. We obtain the Lemma as a simple consequence of Lemma 7.1.

Lemma 7.6 (Sisto's lemma [Sis, Lemma 1.15.2] [Bounded Geodesic Image]). With

the above notations, there exists a constant M > 0 such that d(un, vn) < M for
the word distance d and ne N.

Proof of the Lemma. Since the points un and vn belong to the same

horosphere gP, there is an edge en between them in the relative graph A. Then the

curve I n ln U en is a relative quasi-geodesic with endpoints vn and gn and

with uniform parameters A B — I (see Section 7.1). Furthermore since ln is

a d -geodesic, the curve l'n c A satisfies the one-edge horospherical intersection

assumption.

By Lemma 7.1, there exists a uniform constant C such that for un el'n, one
has d{un,[gn,vn]) < C where [gn, vn] is a d -geodesic between gn and vn.
Denote by yn e [g„,v„] a point such that d{yn,un) d(un, [gn, vn]) < C. Since

the geodesic [g„,u„] realizes the distance d(gn,gP) and un e gP, we have

d(y„,vn) < d(yn,un). Hence, d(un,v„) < d{yn,vn) + d{yn,un) < 2d{yn,un) <
2C M. The lemma is proved.
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Both sequences un and vn belong to the same horosphere gP (F e V, g e T).
By Lemma 7.6 we have d(un,vn) < M, hence d(g~xun, g~xv„) < M. Thus, by
Lemma 7.4, hn g~xun converges to a point in dP if and only if g-1u„
converges to the same point. This concludes the proof.

7.3. Some questions and remarks. Let us make here some comments and ask

further questions related to the above results. Combining the results of Theorem 1.3

and [GGPY, Theorem 1.3] we have the following corollary, which seems to be

interesting independently of the random walks context.

Corollary 7.7. Let T be a finitely generated group, hyperbolic relative to a

collection of infinite virtually abelian subgroups. Then, there exists an equivariant
and continuous surjective map from the PBU-boundary to the Floyd boundary

ofT.

Bestvina [Bes] introduced the notion of Z -boundaries for groups. Whenever
3P is a Z-boundary for P, Dahmani [Dahl, Theorem 4.1] showed that the

construction presented above yields a Z-boundary 3F for T. When parabolic
subgroups are virtually abelian, the geometric boundary 3P coincides with the

CAT(O) boundary of P as noted in Section 3.2, see also [BH, Remark 7.3 (2)].
Hence, it is a Z -boundary, according to [AG, Lemma 8]. Combining now the

results of Corollary 1.4, Corollary 7.7 and Proposition 7.5, we get the following.

Corollary 7.8. Let T be a finitely generated group, hyperbolic relative to a

collection of infinite virtually abelian subgroups. Then, there exists an equivariant
and continuous surjective map from a Z -boundary to the Floyd boundary. There

also exists an equivariant and continuous surjective map from a Z-boundary of
T to the Bowditch boundary, which is 1 -to-1 at conical points and the preimage

of a parabolic point coincides with the Z-boundary of its stabilizer.

Since the Martin boundary does not depend on different peripheral structures,
but only on the random walk, Theorem 1.3 also implies the following.

Corollary 7.9. If T is hyperbolic relative to two different collections of infinite
virtually abelian subgroups, then two corresponding PBU-boundaries, constructed

for each relatively hyperbolic structure, are equivariantly homeomorphic.

We conclude the discussion with few questions related to the above results. We

only considered PBU-boundaries for relatively hyperbolic with respect to virtually
abelian parabolic subgroups. Theorem 7.3 shows that one can extend the definition
of a PBU-boundary to any relatively hyperbolic group. However its relation with
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the corresponding Martin boundary is not known when the parabolic subgroups

are not virtually abelian.

1. Are Corollary 7.7 and Corollary 7.8 true for more general relatively
hyperbolic groups? We conjecture that they are still true for hyperbolic

groups relatively to virtually nilpotent groups, but for more general relatively
hyperbolic groups there might exist counter-examples.

The following question, motivated by the proof of Proposition 5.5, also seems to
be interesting.

2. Assume that T is hyperbolic relative to a system V. Describe the class V

for which our key Proposition 5.5 is true. Namely, let (xn) be a sequence

of elements of T tending to infinity and yn be a projection of xn onto a

horosphere corresponding to a parabolic point p in the Bowditch boundary.
Then is it true that xn converges to a preimage of p in the Martin boundary

if and only if yn converges to the same point?

In a forthcoming preprint by Gerasimov, Potyagailo and de Souza, it is proved
that this condition defines a unique PBU-compactification of a group hyperbolic
relative to a system of parabolic subgroups with fixed boundaries.
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