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Dynamics of geodesics, and Maass cusp forms

Anke PonrL and Don ZAGIER

Abstract. The correspondence principle in physics between quantum mechanics and classical
mechanics suggests deep relations between spectral and geometric entities of Riemannian
manifolds. We survey — in a way intended to be accessible to a wide audience of
mathematicians — a mathematically rigorous instance of such a relation that emerged
in recent years, showing a dynamical interpretation of certain Laplace eigenfunctions of
hyperbolic surfaces.

Mathematics Subject Classification (2020). 11F37, 11F67, 37D40, 37D35, 37BI10.
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1. Introduction

Suppose we have a huge space, such as the earth or a billiard table, and a
small marble sitting on this space. We give this marble an initial push and observe
its trajectory as it travels over the space. As we experienced from a very young
age on, the marble goes straight until it hits an obstacle, e.g., the boundary of the
billiard table, from which it bounces off with outgoing angle equal to incoming
angle, and then continues its straight path until the next obstacle where the same
game restarts.

Ficure 1
Trajectory on a stadium-shaped billiard table
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FiGure 2
Trajectory on a hill, given by a disk with a bump in the middle,
viewed from above. Height level curves are indicated by dotted circles.

In Figure 1 this situation is depicted for a flat stadium-shaped billiard table.
In Figure 2 it is shown for a disk with a bump in the middle, indicating that
‘straight path’ here means ‘path of minimal resistance’ or ‘path of minimal effort’.

In terms of physics, the motion of the marble is predicted by the laws of
classical mechanics. In such a description, moving objects are often modeled as
point particles, that is, as objects without size or dimension, identifying the object
with its center of mass.

In reality, any real-world object has a non-zero size, and the idealization as a
point is not always desirable or correct. If we consider a very small marble which
is almost a point, say of the size of an electron, or if we zoom in into our previous
marble and try to describe the trajectory of a single electron of it then we notice
that the classical mechanics model is not accurate on this subatomic level. One
of the obstacles is the impossibility to determine simultaneously with absolute
precision the position and momentum of the considered particle, as expressed
by Heisenberg’s famous uncertainty principle. Thus, the classical mechanical
principles of determinism and time reversibility are not valid anymore. On
such small scale, a more accurate model is provided by quantum mechanics,
which describes the probability with which the particle attains a specific position-
momentum combination.

The correspondence principle in physics states that, in the limit of passing to
large scale, the predictions of quantum mechanics reproduce those of classical
mechanics. However, the precise relation between classical and quantum mechanics
is not yet fully understood, and its investigation gives rise to many interesting
mathematical questions.

In terms of mathematics, the classical mechanical aspects of the motion of
the marble considered above translate to properties of the geodesic flow on a
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Riemannian manifold X, whereas the quantum mechanical description relates
to the Laplace operator on X and its (L?-)eigenvalues and eigenfunctions. The
correspondence principle then suggests an intimate relation between geometric-
dynamical aspects of X on the one hand, and its spectral aspects on the other:

Physics Mathematics
. . ) . periodic geodesics
classical mechanics “v> geometric entities : o .
lengths of periodic geodesics

s . Laplace eigenfunctions
quantum mechanics “w> spectral entities : )
Laplace eigenvalues

During the last century, many results showing relations between geometric-
dynamical and spectral properties of Riemannian manifolds have been obtained.
In Section 2 we will discuss — as an appetizer — the flat 1-torus where a clear
relation between the lengths of periodic geodesics (‘classical mechanical objects’)
and the Laplace eigenvalues (‘quantum mechanical objects’) appears.

The main aim of this article is to present a much deeper relation between
periodic geodesics and Laplace eigenfunctions that has emerged in recent years,
but now for a class of hyperbolic surfaces.

In a nutshell, this goes as follows. A well-chosen discretization of the flow
along the periodic geodesics gives rise to a one-parameter family of transfer
operators, which are evolution operators that are reminiscent of weighted graph
Laplacians and that also may be thought of as discretizations of the hyperbolic
Laplacian. As such, these operators are simultaneously objects of classical and
quantum mechanical nature, and therefore can serve as mediators between the
dynamical and spectral entities of the hyperbolic surface under consideration. In
our case, highly regular, rapidly decaying eigenfunctions (called period functions)
of eigenvalue 1 of the transfer operator with parameter s are in bijection
with rapidly decaying Laplace eigenfunctions (called Maass cusp forms) with
spectral parameter s. This provides a purely dynamical interpretation of the
Maass cusp forms (not just their eigenvalues), shows a close dependence between
periodic geodesics and these Laplace eigenfunctions, and provides a deep-lying
mathematical realization of an instance of the correspondence principle.

The modular surface was the first hyperbolic surface for which such a result
could be established, through combination of work by E. Artin [Art], Series [Ser],
Mayer [Mayl, May2], Lewis [Lew], Bruggeman [Bru], Chang-Mayer [CM], and
Lewis—Zagier [LZl, LZ2]. Taking advantage of the constructions involved, an
extension to a class of finite covers of the modular surface was achieved in
the combination of [CM, DH, FMM]. An alternative proof for the modular
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surface was provided in [BM, MMS]. The recent development of a new type
of discretizations for geodesic flows on hyperbolic surfaces [Poh3] and of a
cohomological interpretation of the Maass cusp forms [BLZ] allowed to prove
such a relation between periodic geodesics and Laplace eigenfunctions for a large
class of hyperbolic surfaces far beyond the modular surface and in a very direct
way [MP, Pohl, Poh2].

In Sections 3-7 we will survey this new approach, although in an informal
way and restricting for simplicity to the modular surface. We attempt to provide
sufficiently precise definitions and enough details to keep the exposition as
understandable as possible without introducing too much technical material. As
a general principle we invite all readers to rely on their intuitive understanding
of the geometry and dynamics of Riemannian manifolds, to use the many figures
as a support, and to ignore the exact expressions of all formulas.

To end this introduction, we briefly mention another example of the many
other strands of research seeking for and establishing relations between geometric-
dynamical and spectral properties of Riemannian manifolds, where considerable
progress has been made in the last two decades and that provides another concrete
incarnation of the correspondence principle: the problem of quantum unique
ergodicity. This problem concerns the distribution of the mass of high energy
Laplace eigenfunction (i.e., with large eigenvalue). A conjecture by Rudnick and
Sarnak states that on surfaces with sufficiently chaotic geodesic flows, the mass
of Laplace eigenfunctions equidistributes as their eigenvalues tend to infinity. In
other words, for such surfaces, the limiting behavior of the mass distribution of
Laplace eigenfunctions is expected to be governed by the behavior of the geodesic
flow. We refer to [Has, Sar, Zel] for precise statements and excellent surveys of
the recent developments.

2. An appetizer

In this section we will treat the ‘baby case’ of the flat 1-torus
T = R/Z = [0,1]/{0=1},

and show an intimate and very clear relation between geometric and spectral
entities, and hence a mathematical rigorous instance of the correspondence
principle.

Of course, this specific one-dimensional Riemannian manifold is much too
simple to be representative of the general situation. However, it allows us to provide
— without too much technical effort — a first instance of the relation between the
geometry and the spectrum as motivated by the considerations from physics. We
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will also use this ‘baby example’ to carefully introduce the relevant geometrical
and spectral concepts, whose counterparts in the situation of hyperbolic surfaces
will be treated in the main body of this paper.

2.1. The flat 1-torus. For a pictorial, but rather sketchy construction of the flat
I-torus T we may imagine the set R of real numbers as a number line, and
glue together this line at any two points that are separated by an integer distance.
The glueing process can be visualized as rolling up the line to a unit circle. (See
Figure 3.) Alternatively, we may take the interval [0, 1] and glue together its two
endpoints 0 and 1.

~9
g
I
I

FiGure 3
Rolling up R to form T

Both these geometric constructions indicate that T carries more structure than
just being a set. In particular, as we will explain now, a well-defined notion of
distances on T exists, and derivatives of maps from and to T can be defined.

In order to be able to formulate such additional structures in precise terms
and to work with them, we use a formula-based definition of T . For that, we
identify any two points of R that differ by an integer only. Thus, for each r € R,
all points in the set

(1) {r+m|melZ}

are unified to a single element, which we denote by [r]. The torus T, as a set,
consists of all these elements. The glueing process in the pictorial construction
is a visualization of the projection map

(2) ar:R—->T, r—|r].

This map is locally injective, which means that for any » € R we find a small ¢ > 0
such that the restriction of nr to the interval (r —e,r + ¢) is injective. Here, we
may choose ¢ = % for each r € R. In rough terms, small pieces of the torus T
look exactly like small pieces of R. It is precisely this property which allows us
to push certain structures of R to T.

2.2. Geometric entities. The geomertric entity or, from the standpoint of the
introduction, the classical mechanical object that we are interested in is the set
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of all periodic geodesics. A geodesic is a path on T of a specific type that we
now introduce.

In order to define the differentiability of a function mapping from an open
interval in R to T we pick for each x € T a representative ry € R (thus,
[rx] = x) and denote by o, the inverse of the restriction of the projection
map nr to the interval (rx —3,7x + 3). (We recall that 7y is locally injective.)
Then o, is the bijective map

Ux:T\{[rx‘}‘%]}_’(rx_%,rx‘l‘%)

satisfying
T © Ox = idr<([r,+1/2]) -

Let / C R be an open interval and p: I — T a map. Then p is differentiable
at ¢ € [ if there exists § > 0 such that the map

oppyop:(t—46t+48) >R
is well-defined and differentiable at ¢. In this case, the derivative of p at t is

p'(t) = (opp) 0 p)(2).

It is straightforward to check that neither the property of differentiability nor the
derivative depends on the choice of the representative of p(t) in R. The map p
is a path on T if it is differentiable at any point of I, a property also called
differentiable for short. For any path p: I — T, the set / should be thought of
as a time interval, and p(¢) as the position where we are at time ¢ if we travel
along the path p. The derivative p’ is the speed of p, and p is said to be of
unit speed if |p'(t)| =1 for all t € I.

A path p: I — T is straight or a geodesic on T if — roughly said — for any
two nearby points on the path no shorter way between them exists than the path
itself. To be more precise, we define the distance between two points x,y € T
to be the minimal distance between any two of their representatives in R, hence

dr(x,y) = min{dr(rs,1y) | [rx] = x, [ry] =y},

where
d]R(rxary) = |ry — ryl

is the usual euclidean distance on R. A path p: I — T of unit speed is straight
if for any ¢ € I there exists € > 0 such that for all #;,t, € (t —&,t + &) N1 we

have
)
[ e
5]

dr (p(), p(t2)) = = |1 —n| = dr(f1,12).
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That is, the distance between p(t;) and p(fz) equals the length of the path
between p(f;) and p(t), which here also equals the euclidean distance be-
tween f; and f,. From now on, ‘geodesic’ will always mean a unit speed,
complete geodesic, i.e., a straight path of unit speed with time interval / = R.

In everyday language, the notion of path usually does not refer to the motion,
i.e., toamap p: I — T, but rather to the static object, i.e., to the image p(/)
of p. The orientation, however, is important: ‘the path from a to b’. We too
will use the notion of geodesic more flexibly and apply it to refer to either

(G1) a geodesic p: R — T defined as above as a path, or

(G2) the oriented image of such a geodesic, or — more precisely — its
equivalence class when we identify any two such geodesics that differ
only by a shift in their arguments.

'The motivation for the second usage is that we are typically not interested in the
specific time parametrization of a geodesic. The context should always clarify
which version is being used.

In our one-dimensional ‘baby example’ there are only two geodesics in the
sense (G2), namely those represented by the two geodesics in the sense (G1)
given by

p+:R—>T, t[£f].

(See Figure 4.) Both these geodesics are periodic, that is, they ‘close up’, or in
rigorous terms, there exists to > 0 such that for all r € R,

p+(t) = p+(t +1o).

The minimal such ¢ is called the (primitive) period or (primitive) length £(p+)
of the geodesic p+, which here is £(p+) = 1 in both cases. Periodicity and
lengths are invariants under the equivalence of geodesics, and hence an intrinsic
notion for geodesics in the sense (G2).

FiGure 4
The two periodic geodesics on T
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For this ‘baby example’ we are interested in the (primitive) geodesic length
spectrum LT, defined as the multiset (= set with multiplicities) of lengths of
the periodic geodesics in the sense (G2). In our case, this is

Lt = {lengths of periodic geodesics}rs = {1,1}r1.

2.3. Spectral entities. The spectral entity or the quantum mechanical object that
we need here is the Laplace spectrum of T, which we now explain.

In analogy with the definitions of differentiability for maps I — T, we use
the local injectivity of the projection map st to characterize the differentiability
of functions T — C. Then a function f:T — C is differentiable if the map

F = foar:R—->C

is differentiable. The derivative of f at [r] € T is then the derivative of F
at r € R, and again it is straightforward to check that f’([r]) is indeed well-
defined.

Further, a function f: T — C is square-integrable or, for short, in L2, if
the map

f = fomnt|pn:[0,1)>C

is square-integrable in the usual sense. In particular, f is integrable and
1 ~
/ | f(r)|?dr < 0.
0

We identify two such functions f1, f» if fol | fl(r) — fz(r)|2 dr =0 and denote
the set of all equivalence classes by L?(T).
The Laplace operator on T, given by

d2

A = ———
T d[r]2 s

acts on L2(T). As Fourier theory shows, a basis for its L?-eigenfunctions is
constituted by the family

fi:T=>C, fu(lr]) = ¥k k €Z).
An immediate calculation gives
At fi = Qnk)’fr.
Thus, the Laplace spectrum of T is the multiset

o(T) = {Laplace eigenvalues}r; = {Q2nk)* |k € Z},,.
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2.4. Relation between geometric and spectral entities. The physics-informed
intuition on a close relation between the geodesic length spectrum Lt of T and
the Laplace spectrum o (T) can be proven mathematically rigorously in different
ways of which we provide one here. For that we consider the dynamical zeta

function
r(s) = [] (1 - e-sf) = (1—e™)?.
LelT
Then
r(s) =0 = s =2nik for some k € Z,

and the order of each zero is 2. In other words,
(3) tr(s) =0 == (is)? € o(T),

and the order of s as a zero corresponds to the order of (is)? as eigenvalue,
except for s = 0, where the order of the Laplace eigenvalue (is)?> = 0 is 1,
whereas the order of the zero s =0 of {r is 2.

Thus knowing the geodesic length spectrum LT, and hence the dynamical
zeta function {1, we can deduce all Laplace eigenvalues, and even their
multiplicities up to the difficulty at s = 0. Conversely, if we are given the
Laplace spectrum o(T) (with multiplicities), and hence all zeros of {r with
almost all multiplicities, then we can easily deduce the exact formula of {r and
thus the geodesic length spectrum.

This ends the 1-dimensional ‘appetizer’. In the rest of the paper we will study
a 2-dimensional case, again describing first the geometric side, then the spectral
side, and then the relation between them. Of course, this case is much more
involved, but we have tried to introduce the concepts in this one-dimensional
torus case in such a way that they generalize naturally.

3. Geometric and spectral sides of the modular surface

In the previous section we considered the torus T, which is a quotient of the
flat 1-manifold R by a discrete group action. From now on, we will consider
hyperbolic surfaces, which are orbit spaces of the hyperbolic plane H by discrete
groups of Riemannian isometries. For concreteness we will discuss only the
modular surface X = PSL,(Z)\H, even though the results hold for a much
larger class. We will provide precise definitions of all objects further below in
this section.

In the course of the following four sections we will survey — as already
mentioned in the introduction — a rather deep relation between the geodesic
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flow on X and the rapidly decaying Laplace L2 -eigenfunctions for the modular
group PSL,(Z), the Maass cusp forms. This results in a dynamical interpretation
of Maass cusp forms, or from a physics point of view, in a description of certain
quantum mechanical wave functions using only tools and objects from classical
mechanics. The proof of this relation is split into three major steps:

(I) A cohomological interpretation of Maass cusp forms, which we will explain
in Section 4. Representing Maass cusp forms faithfully as cocycle classes in
suitable cohomology spaces provides an interpretation of these forms in a
rather algebraic way of which we will take advantage.

(IT) A well-chosen discretization of the geodesic flow on X, which we will
construct in Section 5. This discretization extracts those geometric and
dynamical properties from the geodesic flow on X that are crucial for
the relation to Maass cusp forms, and it discards all the other additional
properties. This condensed, discrete version of the geodesic flow is also of
a rather algebraic nature.

(IIT) A connection between the discretization of the geodesic flow and the
cohomology spaces, as discussed in Section 6. The central object mediating
between these objects is the evolution operator (with specific weights, adapted
to the spectral parameter of Maass cusp forms; a transfer operator) of the
action map in the discrete version of the geodesic flow. We will see that the
highly regular eigenfunctions of the evolution operator with parameter s are
building blocks for the cocycle classes in the cohomological interpretation
of the Maass cusp forms with spectral parameter s, and will establish an
explicit bijection between these eigenfunctions and the Maass cusp forms.

Even though the first two steps are technically independent of each other, crucial
choices in the construction of the discretization of the geodesic flow in the
second step can be motivated by the precise expressions in the cohomological
interpretation of Maass cusp forms in the first step. Therefore we recommend
the reader to go through these steps in the order as presented. The third step
necessarily takes advantage of the results from Sections 4 and 5. From a technical
point of view, only the final results of these sections are needed for Step (III), not
the information on how they were obtained, so readers who are only interested
in this step may proceed directly to Section 6 after familiarizing themselves with
the general setup and Theorems 4.1 and 5.1. In Section 7 we will provide a brief
recapitulation.

In the remainder of this section we introduce the geometric and spectral objects
that we will need further on. We restrict ourselves here to the absolutely necessary
minimum. There are many excellent textbooks which provide much more detail
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on these objects and comprehensive treatments of hyperbolic surfaces. We refer
in particular to [Ber, Rat, Ven].

3.1. The hyperbolic plane. The hyperbolic plane is a certain two-dimensional
manifold with Riemannian metric in which Euclid’s parallel axiom fails: on the
hyperbolic plane, for every straight line L (infinitely extended in both directions)
and any point p not on L there are infinitely many lines L passing through p
that do not intersect L.

Abstractly, the hyperbolic plane is the unique two-dimensional connected,
simply connected, complete Riemannian manifold with constant sectional curva-
ture —1 (see, e.g., [Boo, Theorem 6.3]). There are many models for the hyperbolic
plane. We use its upper half plane model!

H = {zeC|Imz > 0},
where the line element of the Riemannian metric is given by

dx? + dy?

4) ds? = )2

x+iy
Informally, the Riemannian metric allows us to measure distances and angles.
Angles in hyperbolic geometry are identical to the euclidean angles in H.
Distances between points however are changed in hyperbolic geometry when
compared to euclidean geometry. From a euclidean point of view, hyperbolic
distances between two points increase when these move nearer to the real axis R.
For the torus T we discussed two notions of geodesics in Section 2.2: the
(G1)-version in which we understand geodesics as paths, and the (G2)-version
where we understand geodesics as oriented subsets. In the upper half plane model
of the hyperbolic plane, the (G2)-version of geodesics, i.e., infinite paths that are
straight with respect to this metric, are the (oriented) semi-circles with center
on R and the vertical rays based on the real axis. (See Figure 5.)
The upper half plane H has a boundary whose definition is motivated by the
dynamics of the geodesics on H; it consists of all ‘infinite endpoints’ of the
geodesics. Considering Figure 5, this boundary is given by

P!(R) = R U {o0}.
A Riemannian isometry is a bijective map on H which preserves the distance

between any two points. In particular, any Riemannian isometry maps geodesics

! Another widely known model for the hyperbolic plane is the Poincaré disk model, which prominently
features in several of M. C. Escher’s pictures.
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N

FIiGURE 5
Geodesics on H

0

to geodesics. The group of orientation-preserving Riemannian isometries on the
hyperbolic plane is isomorphic to the (projective) matrix group

G := PSLr(R) := SL,(R)/{=id}.

The element g € G represented by the matrix (25) € SLy(R) is denoted

by g = [25], with square brackets. It then has one other representative
in SL,(R), namely (Z% —5). The action of G on H is given by
a b az+b
5 . = "
®) |:c d :| z cz+d

Occasionally, we will omit the dot - in the notation. The action of G on H,
as defined in (5), extends continuously to an action of G on H UP!(R) in the
obvious way, using that in hyperbolic geometry the equality 1/0 = oc is valid.
Thus, the right hand side of (5) is replaced by a/c if z = 0o and ¢ # 0, and
by oo if z =00 and ¢ =0 or if ¢z +d = 0. We use the notation from (5) also
for this extended action.

3.2. The modular surface. A subgroup of G of particular importance is the
modular group
' = PSL»(Z).

It acts on H preserving the tesselation by triangles as indicated in Figure 6. The
modular surface is the orbit space

X = IN\H,

that is, the space we obtain if we identify any two points of H that are mapped
to each other by some element of I'. We let

(6) . H—-X=T\H

be the projection map. The space X can be compactified by adding an additional
point that is represented in H by oo (=ioo). For future purpose we note that
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FiGure 6
Tesselation of H by triangles

P1(Q) := QU {oo} is the T -orbit of oo and that the map 7 extends canonically

to a map
HUP'(Q) - X = \(HUP'(Q),

which we continue to denote .
A model of X is given by the (closed) fundamental domain

Fo = {zeH | |z| =1, |Rez| <1}

(see Figure 7). It contains at least one point of any I'-orbit, thus 7 (Fy) = X.
Only points in the boundary of Fo can be identified under the action of I',

Fo

e

A A

S
e
E/'/-‘z\'\

0

|
D=
N—e

Figure 7
Fundamental domain Fo for I’
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m(00)

cusp conical singularities

FIGURE 8
The modular surface X = I'\H

namely the left vertical boundary is mapped to the right one by the element

_
(7) T = [o 1],

which acts on H by T-z =z + 1, and the left bottom boundary (the arc from o
to i) is mapped to the right bottom boundary (the arc from ¢ to i) by

o1
®) S = [_1 0},

which acts on H by S-z = —1/z. If we glue F, together according to these
boundary identifications then we obtain the modular surface X, as illustrated
in Figure 8. This is just like what we did when we represented T = R/Z
as [0,1]/{0 = 1}. Clearly, there is more than one fundamental domain for the
modular surface. Another fundamental domain is, e.g.,

Fi={zeH ||lz-121, 0<Rez < }}

(see Figure 9). It arises from Fy by cutting off the left half F; := Fy N {Rez < 0}
from Fy, gluing S, to the right half of Fy and adding all topological boundaries.
Thus,

F = 8FL U (Fo~FL),
where F; = JFp N {Rez < 0} denotes the closure of F; in H. For our

constructions in Section 5 below, the fundamental set F is more convenient
than Fy.
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D=

FiGUuRre 9
Fundamental domain F for T

The modular surface has an infinite ‘end’ of finite volume, called the cusp. In
the fundamental domain Fj it is represented by the strip going to oc. In terms
of I', the presence of the element 7 in I' caused the presence of this cusp. As
we will see, this cusp and the element 7 play a special role throughout.

For completeness we remark that the modular surface is not a hyperbolic
surface in the strict sense because it is not a Riemannian manifold but rather an
orbifold. It has the two conical singularities at i and o (see Figures 7-9). At
these points the structure of the quotient space X = I'\H is not smooth. The
non-smoothness, however, does not influence any step in our discussions.

3.3. Geometric entity: Geodesics. Just as in the case of the torus, the ‘geometric
entities’ for the modular surface are the periodic geodesics and their lengths. A
geodesic on X is the image under the projection map = : H — X of a geodesic
on H, as illustrated in Figure 10. Geodesics on H are infinitely long, but
geodesics on X can be either infinitely long or else periodic and of finite length.
The (primitive) geodesic length spectrum Ly of X is by definition the multiset
of the lengths of periodic geodesics. The periodic geodesics on X are closely
related to those elements g € I' with |tr(g)| > 2, the hyperbolic elements: For
every periodic geodesic ¥ on X and any representing geodesic ¥ of ¥ on H
(i.e., m(y) = ¥ ) there exists a hyperbolic element g € I such that g.y is a
time-shifted version of y, i.e., there exists z; > 0 such that

) g.y(t) =yt +1g) for all ¢ e R.

If in (9) the value f, is minimal among all possible choices of g € T', then g is
primitive hyperbolic. An equivalent characterization is that g is hyperbolic and
not of the form A" with heT and n > 2.
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7(00)

(1)

FiGure 10
A geodesic on the modular surface

Conversely, whenever y is a geodesic on H and there exists g € I' and
tg > 0 such that (9) holds, then g is hyperbolic and = (y) is a periodic geodesic
on X . Furthermore, every hyperbolic element in I" time-shifts a unique geodesic
on H. Under this assignment of primitive hyperbolic elements in I" to periodic
geodesics on X, the set of periodic geodesics on X is bijective to the set of
conjugacy classes of the primitive hyperbolic elements in I', and the (primitive)
geodesic length spectrum of X is the multiset

Ly = {Zacosh(ltL(g—)l) lgeHP} ,
2 M

where HP is any set of representatives for the conjugacy classes of primitive
hyperbolic elements in I'. The smallest element in Ly is

2 acosh (%) = 2log (3 +2J§) :

and more generally the full multiset Ly consists of all numbers of the form

(r+«/t_ZT4)
2

2log

with ¢t € Z>3 with multiplicities that can be described explicitly in terms of
class numbers of indefinite quadratic forms. We refer the interested reader to
[Ter, Exercises 18-20 in Section 3.7, and the paragraph below them] and omit
any discussion of this relation here.
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3.4. Spectral entity: Laplace eigenfunctions. We now introduce the spectral
objects we are interested in: the Maass wave forms for I', and the more special
Maass cusp forms.

The Laplacian on H, the hyperbolic Laplacian, is

(10) A = —y2(a§; + 35) (z=x+1iy).

The differential operator A commutes with all elements of the group G =
PSL,(R) of orientation-preserving Riemannian isometries; the factor y? in (10)
corresponds to the factor y~2 in the formula of the line element of the Riemannian
metric in (4). Initially, A is defined as an operator on all functions H — C that
are twice partially differentiable. However, it can also be understood as an operator
on more general spaces. We refer to [Hoe, Ven] for extensive discussions.

Now let u: H — C be a I'-invariant eigenfunction of A, that is, a function
satisfying u(g-z) = u(z) for all g € I' and all z € H, and

(11) Au = s(1 —s)u

for some s € C. Further below we will see that it is more convenient to work
with the spectral parameter s rather than with the eigenvalue s(1—ys) itself. We
do not need to specify a priori the precise regularity of u, it suffices to require u
to be a hyperfunction or continuous (which is much stronger): since the Laplace
operator is elliptic with real-analytic coefficients, the function u is automatically
real-analytic (see [Hoe, Theorem 9.5.1] or [Fol, Theorem 6.33 and its remarks]).

The invariance of u under the element 7" € I' from (7) shows that u is
1-periodic, and hence has a Fourier expansion of the form

u(x +iy) = Zan(y)ez’”"x.

nezZ

By separation of variables in (11) we see that each function a, is a solution of a
second-order differential equation (depending on s), a modified Bessel differential
equation. This equation has two independent solutions, one exponentially big and
one exponentially small as y — co, except if » = 0, where two independent
solutions are y* and y!~ for s # %, and y'/2 and y'/?logy for s = 1. If we
assume in addition that v has polynomial growth at infinity, in which case u is
called a Maass wave form for T', then the Fourier expansion becomes

U +iy) = 1y’ +ey' ™ +yE Y A K,y Qrlnly) eI

nez

n#0
where the first two terms must be replaced by c¢;y'/2+coy'/?logy if s = 1. Here

K, is the appropriately normalized solution of the Bessel differential equation
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that is exponentially small at infinity, the so-called modified Bessel function of
the second kind with index v € C, whose precise definition plays no role in our
further discussion and is therefore omitted. The A, are complex numbers that
automatically have polynomial growth.

If we further assume that u is bounded, then ¢; = ¢, =0 and

; 1 -
u(x +iy) = y2 ) AyK,_ yQnulnly) e
nez

n#0

In this case, the function u has rapid decay at infinity and is called a Maass
cusp form with spectral parameter s. It is known that the real part of s then
always lies between 0 and 1. Since any Maass wave form u is I'-invariant, we
can also consider u as a true function on X = T'\H, and characterize Maass
cusp forms as eigenfunctions of A on X having rapid decay as their argument
tends to the cusp.

The Friedrichs extension allows us to define A as an operator on the Hilbert
space L?(X), which can be understood as the space of the (Lebesgue-equivalence
classes of) I'-invariant functions H — C that are locally square-integrable [Ven].
The L?-eigenfunctions of A on X are the constant functions (with eigenvalue 0)
and the Maass cusp forms, whose eigenvalues are positive and tend to infinity,
giving an L2-Laplace spectrum

o(X) = {0, 91.141---, 148.432---, 190.131---, ...}

whose elements can be computed numerically to high precision [BSV], but are
not known in closed form.

3.5. Dynamical zeta function. An analogue of the dynamical zeta function {r
of the torus is the Selberg zeta function Zx, which has an Euler product given
by the lengths of periodic geodesics and an Hadamard product in terms of the
Laplace resonances (i.e., spectral parameters of generalized eigenfunctions). More
precisely, Zx(s) is defined for Res > 1 by

Zx(s) = l_[ 1_[ —(s+k)£

leLy k=0

and the analogue of (3) is Selberg’s theorem that this function extends mero-
morphically to C and vanishes if s is a spectral parameter. See [Sel] or [Ven,
Chapter 7].
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4. The cohomological interpretation of Maass cusp forms

We now turn to the first step in the passage from geodesics on the modular
surface X to Maass cusp forms for I': the interpretation of Maass cusp forms
in terms of parabolic 1-cohomology as provided in [BLZ].

The essential part of this cohomological interpretation, of which we take
advantage here, is that every Maass cusp form u with spectral parameter s is
characterized by a vector (cg)ger of functions P!(R) — C given by integrals
of the form

(e @]
(12) cg(t) = f ws(u,t)

g~ loo
for t € R, and at oo by smooth (C*) extension (see below for a definition).
Here, ws(u,-) is a certain closed 1-form on H defined below and the integration
is along any path in H UP!(Q) from g~ loo to oo with at most finitely many
points in P!(Q) (and which approaches these, say, within a sector). In fact, we
usually take a piecewise geodesic path. The functions (cg)ger satisfy certain
relations among each other, so-called cocycle relations, showing that a suitable
cohomology theory is the natural home of this setup.

For completeness of exposition and for the convenience of the reader we
provide a rather detailed definition of this cohomology (specialized to the modular
group I'), even though these details will not be needed further on. Readers who
want to proceed faster to the final result are invited to skip the remaining
part of this section after having read Theorem 4.1. They should interpret the
space lear(I‘; V}) defined below as a vector space whose elements are equivalence
classes of maps from I' to the space of sufficiently regular functions on P!(R),
where the notion of ‘sufficiently regular at oo’ depends on the parameter s.
Theorem 4.1 then states that the assignment of Maass cusp forms u with spectral
parameter s to the equivalence classes of the vectors (cg) is linear and injective,
and surjects onto Hp, (I V).

For the detailed description we start with a few preparations. The parabolic
cohomology will then be seen to be a refinement of the standard group cohomology
in order to account for the cusp of the modular surface and the rapid decay of
the Maass cusp forms towards this cusp. The name parabolic alludes to the fact
that elements in G that stabilize a single point in P!(R), such as T, are called
parabolic.

For any s € C, we define an action of G on partial functions P!(R) — C
by setting

(13) (g f(t) = (g®) flgt)
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(sometimes also denoted f|,5g) wherever it is defined. We recall that such a
partial function need not be defined on all of P!(R). In the situation of (13), the
function 4(g~!) f will not be defined on g~!-00 (and maybe additional points).

Let Vi (called the space of smooth, semi-analytic vectors of the principal
series representation with spectral parameter s in the line model) denote the
space of smooth functions ¢: P!(R) — C that are real-analytic on R up to a
finite set that may depend on ¢, with the action (13). Smoothness at the point co
here means that the map

() 1t > [t p(— 1)

extends smoothly (C*°) to the point 0 (recall the element S from (8)). For
completeness we remark that in [BLZ] the space V; is denoted Vg *®.

The vector space Z;ar(I‘;V;) of parabolic 1-cocycles is then the space of
maps c: ' =V} such that

e for all g,h € I, we have
(14) cen = Ts(h V)eg +cn,

where ¢, denotes the function c(g), and

e there exists ¢ € VJ such that
(15) cr = (T Ho — .

(For general discrete subgroups we would need a similar condition for
representatives of each conjugacy class of parabolic elements.)

The subspace BY(I";V}) of 1-coboundaries consists of the maps ¢: I' — V¥ for
which there exists ¢ € V; such that

(16) cg = (g e —9 for every g € I.

For ¢ € BY([;V¥) and ¢ € V¥ as in (16) we find for all g,k € T the identity
cen =T8N e —p=1(h g7 )p—¢

(™) (sl Yo —¢) + (e —¢

=t(h g +cn,

which shows that every 1-coboundary is a 1-cocycle, and also that B!(T; V})
is a subspace of Z;ar(r;v;) (take ® = ¢ in (15)). The quotient space

HL (T3 V0 = ZL (T V) /BN T VE)

is called the space of parabolic 1-cohomology classes with values in V.
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For any two real-analytic functions u,v on H we define the Green’s form to

be the real-analytic 1-form

d d

[u,v] = —u-v-dz + u~—3-d?,

0z 0z
which is easily seen to be closed (i.e., d[u,v] = 0) if u and v are eigenfunctions
of A with the same eigenvalue. For any s € C and any ¢ € R the
function R(¢;)*: H — C, where

1

R(t;z) = Im ,
I —z

is an eigenfunction of A with eigenvalue s(1 — s). Therefore, if u is a Maass
cusp form with spectral parameter s, then for any ¢ € R the 1-form

ws(u,1) = [u, R(t;)°]

is closed. From this it follows that, for any g € I', the integral

(o]

(17) 0 :=f ws(u, 1)
g

is independent of the chosen path from g~ !co to oo. The integral is convergent
due to the rapid decay of u at the cusp. The regularities of u and R(-;-)* yield
cg € V5. Furthermore, the T -invariance of u implies the transformation formula

b gb
(18) rs(g)f o4, 1) =/ osu,f)  (geT, a,b eP'(R), t €R)
a g

‘a

and from this one easily deduces that the map c¢¥ satisfies the cocycle relation (14)
and the relation in (15) and hence is a parabolic cocycle. Then we have:

Theorem 4.1 ([LZ2, BLZ]). For s € C, Res € (0,1), the map u > [c*] defines
an isomorphism of vector spaces

- ~ ol .
{Maass cusp forms with spectral parameter s} — Hpy, (T; V).

5. Discretization of geodesics

In this section we will discuss the second step in the passage from geodesics
on the modular surface X to Maass cusp forms for I': the construction of a
discretization of the motion along the geodesics on X.
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The two elements (generators)

(19) T = (i (1)) and 15 = ((1) i)

of T and the map
F:(0,000~Q— (0,00)~Q

given by the two branches

O,)~Q = (0,00)~Q, x> T{'x =%

(20) N
(1,00)~Q — (0,00)~Q, x> T, lx =x—1

will play a crucial role. By iterating the map F we get a discrete(-time) dynamical
system

@21 No % ((0,00)~Q) = (0,00)~Q, (m,x) = F"(x),

which we denote for short by F as well. (It will always be clear if F refers to
the map in (20) or to the map in (21).) We will show that this discrete dynamical
system can be thought of as a discrete version of the geodesic flow on X : The
map F and its iterates capture the essential geometric and dynamical properties
of the geodesic flow that will be needed for establishing the relation between the
geodesics on X and the Maass cusp forms for I'. In particular, the orbits of the
map F describe the future behavior of (almost all) geodesics on X, and periodic
geodesics on X correspond to points x € (0,00) ~ Q with periodic (i.e., finite)
orbits under F .2

The construction of F from the geodesic flow on X proceeds in several
steps: We first choose a ‘good’ cross section (in the sense of Poincaré) for the
geodesic flow on X, ie., a subset C of the unit tangent bundle of X that is
intersected by all periodic geodesics at least once, and each intersection between
any geodesic on X and C is discrete. We refer to the discussion below for
precise definitions. The choice of C yields a first return map, which is the
map that assigns to each element v € C the next intersection between C and
the geodesic on X starting at time O in the direction v . The first return map
provides a first discretization of the geodesic flow on X.

Then we choose a ‘good’ set of representatives for C , ie., a subset C* of
the unit tangent bundle of H that is bijective to C with respect to the canonical
quotient map. The specific properties of C* will allow us to semi-conjugate the
first return map to a map on (0, oc) ~ Q, which is precisely the map F.

2We remark that the formula for F is identical to the map @ given in [CZ, Section 1.1, Lemma]
in connection with the so-called rational period functions.
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The construction we will present below is a special case of the algorithm
in [Poh3] for finding good discretizations for geodesic flows on much more
general hyperbolic surfaces. We refer to [Poh3] for further details and all omitted
proofs, in particular to [Poh3, Proposition 8.2, Theorem 8.15, Corollary 8.16] and
their specialization to the modular surface as in [Poh3, Example 3.3].

As in Section 5, readers who want to proceed faster to the final result are
invited to skip the remaining part of this section after having read Theorem 5.1
below. In Section 6 only the map F will be needed, not the details of its
construction.

5.1. Geodesics. While in Section 3 we used the notion of geodesics in the
sense (G2) (adapted to the hyperbolic plane and the modular surface in place of
the real line and the torus), we now also need geodesics in the sense (G1).

A geodesic y on H in the sense (G1) is completely determined by requiring
that it passes through a given point z € H at time ¢ = 0 in a given direction.
Recall that we consider only geodesics of unit speed, so that the speed in the given
direction does not form another parameter. Therefore we may identify geodesics
in the sense (G1) with the set of all unit length direction vectors at all peints
of H, thus, with the unit tangent bundle SH of H.

For v € SH we let y,: R — H be the (unique) geodesic on H such that

(22) Y0} = v,

Both the tangent vector y,(0) to y, at time ¢ = 0 and the element v € SH
are combinations of position and direction, the position y,(0) being the base
point base(v) € H. The geodesic flow on H (the motion along geodesics on H)
is the map

(23) RxSH—» SH, (t,v) > y,(t).

The action of G on H by Riemannian isometries induces an action of G on SH
by
gv = (g0 0 (geG, ve SH).

The unit tangent bundle of X is then just the quotient
SX = I'\SH.

We denote the projection map

(24) n:SH — SX

with the same symbol as the projection map H — X from (6). The context
always clarifies which one is meant. We typically denote a geodesic on H by y
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and a unit tangent vector in SH by v, and use ¥ and v for the corresponding
geodesic m(y) on X and unit tangent vector n(v) € SX. In analogy with (22),
for any v € SX we let 7, denote the geodesic on X determined by

w0 =7.

Also the geodesic flow on X is inherited from the geodesic flow on H as defined
in (23), and hence is the map

RxSX - SX, (¢t,7) Py(t).

5.2. Cross section. By a cross section we mean (slightly deviating from the
standard definition) a subset C of SX such that

(C1) every periodic geodesic on X intersects C . In other words, for any periodic
geodesic y there exists + € R such that y'(t) € C .

(C2) each intersection of any geodesic on X with C is discrete. In other words,
for any geodesic ¥ and ¢t € R with 7/(¢) € C there exists & > 0 such
that

7(t—et+)NC ={7'(t)}.

We define a set of representatives C* for a cross section C to be a subset of SH
that is bijective to C under the projection map 7 from (24). (We write C*
rather than C because the latter traditionally denotes the full preimage of s
in SH.) Of course, to characterize a cross section C it suffices to provide a
set of representatives, but choosing a cross section and a set of representatives
that serves our purposes is an art. For the modular surface we will take

C* := {veSH|base(v) €iR™, yy(c0) € (0, 00) ~ Q}
as set of representatives, where
Yu(00) == lim yyu(2).
t—>0c0
The associated cross section
C = n(C*

is the set of unit tangent vectors U € SX sitting on the geodesic from (i)
to m(oo) such that the geodesic emanating from v does not converge to the
cusp m(oo) in future or past time. A pictorial representation of C* and C
is given in Figure 11. Choosing a set of representatives C* such that the base
points of its elements forms the geodesic from 0 to oo in H is motivated by
the integral expression in (17). Its effect will become clearer in Section 6.
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5.3. Discretization. We will now show how to relate the geodesic flow on X
to a discrete dynamical system on (a subset of) R.(. In the case of the modular
surface, this construction is closely related to continued fractions, more precisely
to Farey fractions. The reader interested in this connection may find the articles
[Art, Ric, Ser, KU] useful.

Let 7 € C be an element of the cross section and consider the associated
geodesic 7, on X. By the choice of C , the geodesic 7, intersects C again
in future time. Let ¢y > O, the first return time, be the minimal positive number
such that

W = Plto) € C.
(See Figure 12.) Let v,w € C* be the elements in the set of representatives
corresponding to v, W, and yy,Yw the associated geodesics on H. (See
Figure 13.) Since the unit tangent vector y;(fp) € SH projects to W under
7, that is,

Jr(V:)('fo)) = W,
there exists a unique element g € I' such that

Yolto) = gw.

This element is characterized by the property that
(25) Vu(to) € g:C*,

i.e., by the first intersection of y, with some I'-translate of C* after passing
through v = y/(0). To find the element g we consider the neighboring translates
of the fundamental domain F and the relevant translates of C*.

=8

7(00)

C
base(v) 7(0)
®
0 T
endpoint 7, (co0) is irrational (1)
Ficure 11
The set of representatives C* and the cross section C . The gray
shadows indicate the directions of the elements of C and C*.
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We observe that, as shown in Figure 14, the unit tangent vector y, (fo) can be
only in T7-C* or T,-C* with T1,T, as in (19). In Figure 15 we have g =T,
so that here

w = Trlyi(te),  yw(oo) = T lyy(00).

We further observe that for every point x € (0,00)~ Q, no matter which v € C*
with y,(c0) = x we consider, we find the same value for the element g € I
in (25). This is caused by the property of C* that for j € {1,2} the set of base
points of the vectors in 7;-C* split the hyperbolic plane H into two half-spaces
and that 7;-C* consists of all relevant vectors pointing into one of these half-
spaces. Therefore the element g defined by (25) depends only on x, not on the
specific element v € C* with y,(c0) = x. The procedure just described induces
a discrete dynamical system

(26) F:(0,000~Q = (0,00)~Q,

where for each x € (0,00) ~Q, we pick v € C* such that y,(c0) = x, let g be
the element in T' such that y;(fp) € g-C* and set

F(x) = g lx.

Theorem 5.1 ([Poh3]). The set C is a cross section for the geodesic flow on
X, and C* is a set of representatives for C . The induced discrete dynamical
system (as in (26)) is the map F as given in (20).

m(00)

FiGure 12
The geodesic determined by v and its first return to C
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0 ()l ~(00)

Ficure 13
Associated geodesics on H

Ficure 14
Relevant I' -translates of F and C*

6. Transfer operators and Maass cusp forms

In this section we carry out the third and final step in the passage from
geodesics on the modular surface X to Maass cusp forms for I': to tie together the
discrete dynamical system F from Section 5 and the cohomological interpretation
of Maass cusp forms from Section 4.
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T5-C*

Yw
Yo

T:-C*

0 yo(o0) 1 Y (00)

Ficure 15
Next intersection. Recall that v = y;,(0) and w = y;,(0).

The mediating object between both sides is the transfer operator family (Ls)sec
associated to F. The transfer operator Ls; with parameter s acts on the vector
space of functions from (0,00) to C and is given by

27 Lof®) = Y [F W)™ f(w)

weF~1()

for f e CO®) e (0,00). This operator has its origin in the thermodynamic
formalism of statistical mechanics. It is a generalization of the transfer matrix for
lattice—spin systems, which is used to find equilibrium distributions. The weight,
being the (—s)th-power of the derivative of F', is motivated within this framework,
where s serves as an inverse Boltzmann constant and temperature. From a purely
mathematical point of view, this operator can be seen as an evolution operator
or as a graph Laplacian on a somewhat generalized graph, in both cases with
appropriate weights. The explicit expression for F allows us to evaluate (27) in
our special case to

Lof) = f+1) + (t+1)‘2~‘f(ti—1), £>0,

or, using (13), to
Ly = Ts(T1_1) + Ts(T2_1)~

(This simple formula is for the modular group only. For other groups one can
have a vector of more complicated finite sums.)
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The correspondence that we have been aiming at is a bijection between the
eigenfunctions of Ly with eigenvalue 1 and the Maass cusp forms with spectral
parameter s. More precisely, we have the following theorem.

Theorem 6.1 ([MP, Pohl]). Let s € C, 1 > Res > 0. Then for any Maass cusp
form u with spectral parameter s, the function f,: (0,00) — C defined by

(28) fult) = fo w31, 1)

is a real-analytic eigenfunction of Ls with eigenvalue 1. The map u — f, is
a linear isomorphism between the space of Maass cusp forms with spectral
parameter s and the space of real-analytic eigenfunctions f of Ls with
eigenvalue 1 for which the map R ~ {0} — C defined by

(29) {f on (0,00)
—15(S)f on (—o00,0)

extends smoothly to 0.

We will now explain the main steps of the proof with an emphasis on intuition
and heuristics. Some steps will be omitted, most prominently some discussions
of convergence and regularities. We hope to convince the reader that a major part
of the proof is encoded in Figure 16 and that the choice of the integral path in
(28) and the function in (29) is natural.

T o s.c* §c*

=] 0

Ficure 16
Relevant T -translates for proof of Theorem
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Proof (key elements). We present the main ideas of the proof, split into four
steps.

Step 1: Relation between L; and C®*. We first reconsider the transfer
operator Ls and its domain C©°) We may think of any f € C©®%) a5
being a mass distribution or density on (0,oc) of which the transfer operator
evaluates its s-weighted evolution under one application of F'. Recalling that F
is a discrete version of the geodesic flow on X, that £; is a weighted evolution
operator of F, and that the essential ingredient of this discretization is the set C*,
we may intuitively think of f as being a ‘shadow’ of some function f* on C*
that is constant on any set of the form

E; = {veC*|yy(o0) =1t} (t € (0,00)) .

Thus,
f(H) = f*) for any v € E;.

When developing the formula for F we asked where the geodesics determined
by the elements in C* go to. In the expression for L, the preimage of F is
used. Hence, when building L£;, we may alternatively ask where these geodesics
come from. For the modular group T, the relevant sets are 7, !C* and i o a8
(See Figure 16.)

Step 2: Relation between Maass cusp forms and C*. Let u be a Maass cusp
form with spectral parameter s. We use the characterization of u via a cocycle
class in the space HI}aI(F;VS*) from Theorem 4.1, and then use the family of
functions (cg)ger from (17) as a representative for this cocycle class. We think
of each c, as being the integral along the geodesic from g~ 'oo to oo, or even
better, as an integral over the set of unit tangent vectors based on this geodesic.

In particular, for g =S we have S™1oo =0, so that

(30) 0 = [Cown  @e®

is the integral along the geodesic from 0 to oo. Thus, in an intuitive way, we
may think of c§ as an integral over C*U S§-C* and of each value c§(t) as the
mean of some (fictive) function ¢§(¢) defined on C* U §-C*.

Step 3: From Maass cusp forms to eigenfunctions of L;. Let u be a Maass
cusp form with spectral parameter s and (cg)ger the associated family of
functions from (17). We want to associate to # in a natural way an eigenfunction f
of Ly with eigenvalue 1. The intuitive way of thinking of c§ and any function f
as objects related to C* suggests using C* as mediating element. Staying with
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this intuition, we should restrict c§ to an integral over C* and use a relation like
S*(v) =c§(t)|cx for v e E,. In terms of the actual objects (and their rigorous
definitions) we are led to set

(31) f = c§lo,00)

which is precisely (28).

We now show that (31) indeed defines an eigenfunction of L with eigen-
value 1. So far we have used in (30), and hence in (31), the geodesic from 0
to oo as path of integration. Since the 1-form ws(u,t) is closed, we may change
the path to be the geodesic from 0 to —1 followed by the geodesic from —1

to oo: - » -
[0 ws(u,t) =/0 ws(u,t) + f_l ws(u,t).

Using the transformation formula (18) we now find, for any ¢ € (0, 00),
o0
@ = [ s
0

T lea T, oo
=/ ws(u,t) +f 1 ws(u,t)

T; 10 T;'o
= (T [0 " 0s,1) + (T [0 " os(u,)
= (T ) f@) + (T3 D Q).
Therefore f = Lsf .

Step 4: From eigenfunctions of £; to Maass cusp forms. Conversely, let
f be a real-analytic eigenfunction of L; with eigenvalue 1 that satisfies the
requirement in (29). We want to associate to f a Maass cusp form u in a way
which inverts the mapping from Step 3 and which is also natural. Instead of trying
to do this directly, we will define a parabolic 1-cocycle ¢ = ¢/ in Z;ar(l"; Vi),
Theorem 4.1 then implies that the cocycle ¢ is indeed of the form ¢ = ¢* for a
unique Maass cusp form u.

In order to define ¢ we prescribe it on the group elements 7 and S.
Applying (17) for g = T, in which case the integral in (17) vanishes, motivates
setting

cT = 0.

Further, the intuition explained above suggests defining

if on (0, 00)

32 =
- T 1—n(®)F on (~00,0).
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The minus sign in the second row is motivated by the fact that S ‘changes the
direction’ of the geodesic from 0 to oo. Since the functions in (32) and (29)
coincide, the regularity properties of f imply that cg as defined in (32) on
PR < {0, 00} extends smoothly to 0 and oo.

Since 7' and S generate all of I', the cocycle relation (14) dictates the value
of ¢ on all other elements. It remains to show that ¢ is well-defined, which
here means that if a word in 7, T—! and S equals the identity in I", then the
corresponding Z[I']-combination of ¢z and cg vanishes. To that end we use the
presentation

r={s71|s2=(1"'s)’=id
and show that
t5(S)es + ¢s and  (t5((ST)?) + ©(ST) + 1)(zs(S)ep-1 + ¢s)

vanish identically. For the first expression, this follows immediately from (32).
For the second expression we use cr = 0, deduce first cy—1 = —t3(T)er = 0
and then find

(zs((ST)?) + 75(ST) + 1)(z5(S)ep—1 + c5)
= %((ST)*)cs + w:(ST)es + cs

—t () f—w(TTH S+ f on (0, 00)
= IS(TI_IS) [—TS(Tl_l)f + f —rs(Tz_l)f] on (—1,0)
w(T718)[f —w(T3) f —w(T7Y) ] on (—o00,-1),

which vanishes since f = L;f. This calculation can also be read off from
Figure 17, as the reader can verify. O

7. Recapitulation and closing comments

We have surveyed an intriguing relation between the periodic geodesics on the
modular surface X = I'\H (‘classical mechanical objects’) and the Maass cusp
forms for I' (‘quantum mechanical objects’). For this, we started simultaneously
on both ends:

On the geometric side, we developed a discrete version of the (periodic part
of the) geodesic flow on the modular surface by means of a cross section in the
sense of Poincaré. We realized this discretization as a discrete dynamical system
on (0,00) by using a well-chosen representation of the cross section on the upper
half plane. This step turns the geodesic flow into a discrete and somehow finite
object while preserving its essential dynamical features.
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T;'S.C*BR T, 1C* = (ST»)%S-C* S.c* @cC*

T 'C* = ST35-C*

TG0 = 8T, 0F

=1 0

Ficure 17
Relevant I'-translates for proof of Theorem

On the spectral side, we characterized the Maass cusp forms as cocycle classes
in a certain precise cohomology space. The isomorphism from Maass cusp forms
to cocycle classes is given by an integral transform, where a certain 1-form
is integrated along certain geodesics. Even though the cocycle classes remain
objects of quantum mechanical nature, this characterization of Maass cusp forms
constitutes a first and very important step towards the geometry and dynamics of
the modular surface.

Connecting these two sides is the family of transfer operators, which from
their definition are purely classical mechanical objects but which clearly exhibit a
quantum mechanical nature. These transfer operators depend heavily on the choice
of the discretization. The proof of the isomorphism between eigenfunctions of the
transfer operators and the parabolic 1-cocycles clearly shows that the shape of
the set of representatives is crucial. Here, it is the set of (almost) all unit tangent
vectors that are based on the geodesic from 0 to oo and that point ‘to the right’.

This set of representatives and its I'-translates can be seen as a geometric
realization of the cohomology. The transfer operator then encodes the cocycle
relation. An eigenfunction with eigenvalue 1 of the transfer operator obeys a
geometric variant of the cocycle relation, and hence can be related to an actual
cocycle, which in turn characterizes a Maass cusp form.
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