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Effective counting for discrete lattice orbits in the plane
via Eisenstein series

Claire BurriN, Amos Nevo, Rene RUnr and Barak WEiss

Abstract. In 1989 Veech showed that for the flat surface formed by gluing opposite
sides of two regular n-gons, the set ¥ C R? of saddle connection holonomy vectors
satisfies a quadratic growth estimate |[{y € ¥ : |y|| < R}| ~ cy R?, and computed the
constant cy . In 1992 he recorded an observation of Sarnak that gives an error estimate
{y €Y :|yll <R} =cyR%®+ O(R%) in the asymptotics. Both Veech’s proof of quadratic
growth, and Sarnak’s error estimate, rely on the theory of Eisenstein series, and are valid
in the wider context of counting points in discrete orbits for the linear action of a lattice
in SL>(R) on the plane. In this paper we expose this technique and use it to obtain the
following results. For lattices I" with trivial residual spectrum, we recover the error estimate
O(R‘g‘), with a simpler proof. Extending this argument to more general shapes, and using
twisted Eisenstein series, for sectors Sy g = {rel’ : r > 0,0 < 0 <« + B} we prove an
error estimate

[0 €Y € Saplyl < RY| = er

R? + 0:(R%).

For dilations of smooth star bodies R - By = {rel :0<r < Ry (6)}, where R > 0 and
Y is smooth, we prove an estimate

{y €Y :yeR By} =cr.yR2 + 0y (RY).
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1. Introduction

We recall the Gauss circle problem, which aims to provide an estimate for
the cardinality ‘B N Zz| of the intersection of a large ball B in the plane with
the integer lattice. The estimate

|B(0,R) N Z*| = nR* + O(R)

is easy to prove and is attributed to Gauss (here B(x,r) C R? is the Euclidean
ball of radius r around x). There have been several improvements to the error
term and this is still the topic of intense investigation (see [IKKN] for a recent
survey). A more general problem in the same vein aims to replace the set Z2
with another discrete set Y, and replace large balls B with more general sets. For
more general sets Y, the first step is establishing quadratic growth, i.e., showing
|B(O,R)NY| = cy R? + 0o(R?) for some cy > 0, and this can already be very
challenging. In cases where quadratic growth has been established, the natural
next questions are to evaluate the quadratic growth constant cy, and to obtain
error estimates. A well-studied example is when Y is the set of primitive points
in Z2, which is a discrete orbit under the group SL,(Z). This paper is concerned
with the case in which Y is a discrete orbit for a lattice in G = SL,(R) acting
on the plane. An important contribution to the study of these discrete orbits
was made by Veech in a celebrated 1989 paper [Veel], and in the subsequent
papers [Vee2, Vee3]. We begin by recalling the context of Veech’s work.

A translation surface is a compact oriented surface equipped with a translation
structure. Since the main results of this paper will not involve translation surfaces,
we omit the precise definitions, referring the interested reader to the surveys
[Vor, MT, Zor]. For any translation surface M, the collection of holonomy
vectors of saddle connections is a discrete set Yps in R?, consisting of planar
holonomies of certain straightline paths on M. The group G acts on a moduli
space of translation surfaces, as well as on the plane by linear transformations,
satisfying an equivariance property You = gYur . For any M, its stabilizer group
(or Veech group) is

'y ={geG:gM = M}

If Ty is a lattice in G, i.e., is discrete and of finite covolume, then M is called
a lattice surface (or Veech surface). These lattices are non-uniform and thus have
discrete orbits in the plane. Here is a summary of the results of [Veel] which
are relevant to this paper.

Theorem 1.1 (Veech 1989). (a) The surfaces M, obtained by gluing sides in
two copies of a regular n-gon are lattice surfaces, and the corresponding
lattice is non-arithmetic unless n € {3, 4, 6}.
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(b) For lattice surfaces, Yy is a finite union of 'y -orbits.

(c) Discrete orbits of lattices in G acting on the plane, satisfy quadratic growth.
In particular, the sets Yy satisfy quadratic growth when M is a lattice
surface.

(d) The quadratic growth constants for the surfaces M, in (a) are computed.

Veech proved statement (c) by reducing the problem to previous work in
analytic number theory. We will review this below in §3. He also computed
quadratic growth constants for the examples in statement (a), and in [Vee2],
computed quadratic growth constants for more examples. Veech revisited statement
(c) in [Vee3], where he introduced a number of techniques which make it possible
to establish quadratic growth in more general situations, and compute quadratic
growth constants. Among other things he also reproved (c) by ergodic methods,
in particular using an ergodic-theoretic tool of Eskin and McMullen [EMc].
Another ergodic-theoretic proof of (c) was given by Gutkin and Judge in [GJ],
also using ideas of [EMc]. In subsequent work, Eskin and Masur [EM] improved
on Veech [Vee3] and proved that almost every translation M (with respect to the
natural measures on the moduli spaces of translation surfaces) satisfies quadratic
growth. Their arguments are also ergodic-theoretic and rely on an ergodic theorem
appearing in [Nev].

In the presence of some spectral estimates, it is possible to improve on
quadratic growth by establishing effective quadratic growth, by which we mean
proving an error term of the form

(1.1) |B(O, R)N Y| = cy R? + O(R*™?)

for some § > 0. In [NRW], relying on spectral estimates established in [AGY, AG],
such an error bound was given for almost every translation surface. In particular,
the results of [NRW] imply effective quadratic growth for Veech surfaces. However
the constant § appearing in [NRW] is far from optimal, and a much better error
estimate for the case of lattice surfaces has long been known to experts. In fact,
already in [Vee2, Remark 1.12], Veech included the remark (which he attributed
to Sarnak) that work of Selberg and Good can be used to prove to an estimate
of the form

(1.2) |BO, R)N Y| = cy R? + O(R?),

where Y is the orbit of tempered lattice in G (see §2). See also [RR, Tru] for
related results.

An initial goal of this paper was to provide an exposition of the method
sketched in [Vee2, Remark 1.12], specifically for the benefit of those who might
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be familiar with ergodic-theoretic counting techniques but not with the techniques
used in analytic number theory. While studying this topic, the authors obtained
several extensions and improvements. Thus the paper acquired an additional goal
of proving these new results; however we believe that a survey on these matters
has not lost its relevance, and we chose to write our paper on the level of a tutorial.

The structure of the paper is as follows. In §2 we define the objects which will
be the focus of our discussion and state our results, comparing our new results
with those which were obtained by previous authors (or could be easily deduced
from their work). Specifically we define the class of tempered lattices and the
larger class of lattices with trivial residual spectrum, which are the subgroups
for which the relevant spectral estimates are as strong as one could hope for.
As we will explain, our improvements concern counting points in more general
shapes than Euclidean balls; e.g., sectors or dilates of star-shaped bodies. In §3
we define Eisenstein series and collect some results about them. We also explain
how Veech obtained statement (c) of Theorem 1.1. In §4 we prove the bound
(1.2) (see Theorem 2.4) for counting in balls, and for lattices with trivial residual
spectrum. Our work bypasses difficult work of Good [Goo] by taking advantage
of the fact that in our particular setting, counting can be achieved by making a
contour shift of a truncated Eisenstein series to the critical line, for a general
lattice. This strategy is classical in analytical number theory (see, e.g., [Dav]),
and indeed goes back to the proof of the Prime Number Theorem, but in our
situation requires an extra averaging argument, see Proposition 4.2. In §5 we use
this idea to prove our improvements. Our analysis is further influenced by the
work of Sarnak [Sar4]. Although §5 is the one containing the proof of the new
results, the proofs use the ideas involved in proving earlier results, and so we do
not recommend starting with §5. The results of §4 and §5 both rely on reducing
counting problems to fundamental estimates about Eisenstein series, which are
collected in §3, and whose proofs we do not explain.

2. Definitions and statement of results

In this section we set our notation, recall certain preliminary results, and state
our results.

2.1. Some actions and subgroups of G = SL,(R). Recall that G acts on the
left on the upper half-plane H = {z € C : Im(z) > 0} and on the plane R?
respectively, by the rules

a b Z_aZ+b and (@ b [(x\ _ [ax+by
c d]° cz+d c dl\y] \ex+dy)’
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The G-action on H preserves the hyperbolic metric ds? = @% and hence
the hyperbolic area form %1. Let
K =SO0,(R) = {rg:0 ¢ [b,zn]}, where 7g = (9980 —smd}
sinf cosf

Let i = +/—1 so that K is the stabilizer of i. Also let ||| be the Euclidean
norm on R?; it is also preserved by K. Let e; = (1,0) so that the stabilizer
of ey is

N ={u;:s eR}, where us=((1) i)

Let I' C G be a discrete subgroup. It then acts properly discontinuously on H. We
call T a lattice if there is a finite G -invariant measure on G/I' or equivalently,
a fundamental domain for the I'-action on H of finite hyperbolic area. If there is
a compact fundamental domain then T" is called cocompact or uniform. If T is
a lattice we write X = H/TI", denote the G -invariant measure on Xr induced
by the hyperbolic area form by ur and write covol(I') = ur(Xr).

A subgroup of T" is called maximal unipotent if it is conjugate (in G) to the
group

No ={u, :n €7}

and is not properly contained in a subgroup conjugate to N,. For a lattice
I' € G, the quotient H/ T has a finite number of topological ends called cusps.
The number of cusps is zero if and only if I" is cocompact, and in the non-uniform
case, there is a bijection between cusps and conjugacy classes (in I') of maximal
unipotent subgroups. For a lattice I' and v € R? < {0}, the orbit ['v is discrete
if and only if the stabilizer of v in T' is a maximal unipotent group, and we
refer to the conjugacy class of the stabilizer of v as the cusp corresponding to
I'v. In particular a cocompact lattice has no discrete orbits in its action on R2.
Clearly I'v is discrete if and only if I'(tv) =¢T'v is discrete for all ¢ # 0, and
hence the number of discrete orbits, considered up to dilation, is the same as the
number of cusps. We are interested in counting points in discrete orbits for the
I"-action on R?.

Warning. In the literature, one often works with PSL,(R) = G/{z£Id}, the
group of orientation-preserving isometries of H. Since we are interested in point
sets in the plane, which need not be invariant under the action of —Id, it will
be more natural for us to work with G. This discrepancy may result in minor
deviations with other texts; there will be no discrepancy whenever I' contains
—Id, and for many counting problems we can reduce to this situation as follows:
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Proposition 2.1. Let n : G — PSL,(R) be the natural projection, and suppose
I' is a lattice in G, which does not contain —1d. Let T® = z=1(n(I")), so
that T is a degree 2 central extension of T'. Then either T®v = T'v or
Iy =Tv U -Tv (a disjoint union).

Proof. Since —Id and I' generate I'®), we have I'®v = I'v U ~T'v. If this is
not a disjoint union then there is u € I'v for which —u € I'v, say u = y3v and
—u = ypv. Then

—v ==y @) =y (—u) =y v
so that 'v = —I"v. L]

Let A be the Laplace—Beltrami differential operator on H, which is expressed
in coordinates as
a2 f n g2
ox2  ay?2 )’
It is not hard to check that A is G -invariant and hence descends to a well-defined
differential operator on Xr which we continue to denote by A. The eigenvectors

for A which belong to L? (X, ur) are called Maass forms. The corresponding
eigenvalues satisfy

(2.1) Af(x +iy) = —y? (

O0=RAo <A1 <A<+,

and the nontrivial small eigenvalues are those satisfying A; € (0, %]
Definition 2.2. We say that I" is tempered if it has no nontrivial small eigenvalues.

Examples of tempered subgroups are the Veech groups of the surfaces M,
of Theorem L.1(1): Veech showed that they are (2,n,00) Schwarz triangle groups,
these triangle groups were shown to be tempered by Sarnak [Sarl, §3], and all
triangle groups were shown to be tempered by Zograf [Zog]. All but finitely
many non-uniform triangle groups arise as Veech groups of lattice surfaces,
see [BM, Hoo, Wri].

Suppose I' is a non-uniform lattice with k cusps, and for i = 1,...,k choose
5; € G sothat T} = 5i‘lI‘5,- contains Ny as a maximal unipotent subgroup, where
the groups s; Nosi‘1 are mutually nonconjugate maximal unipotent subgroups of
I'. Let

, {:ENO I' contains — Id,
Ny =
Ny otherwise,

and set

(2.2) Ei(z,s)= Y Im(y'z)’, where ' =ys;’,
YENQ\T
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where z € H and the sum ranges over any collection of coset representatives.
Then E; is the Eisenstein series corresponding to the i-th cusp of T'. It will play
a major role in our discussion and will be slowly introduced in §3. As we will
see, for each fixed i and z, the sum (2.2), considered as a map s — E;(z,s),
converges for Re(s) > 1 and has a meromorphic continuation to the complex
plane (for Re(s) < 1, the notation E;(z,s) refers to the analytic continuation).
We use this fact for the following important definition:

Definition 2.3. Let T, k, i be as above. The residual spectrum of Ei(z,s) is the
set of s € (1/2,1) for which s+ E;(z,s) has a pole at s. If there are no such
poles we say that the residual spectrum of E;(z,s) is trivial.

We remark that the choice of z in the above definition is unimportant as all
functions E;(z,-) have poles at the same values of s, see [Iwa, Thm. 6.10].

If Ei(z,) has a pole at s € (1/2,1) then A has an eigenvalue A = s(1—5s) €
(0,1/4). Thus, if T' is tempered then all of its cusps have trivial residual spectrum.
With regard to the converse, consider for instance principal congruence groups
(the principal congruence group of level n is the group of all matrices in SL,(Z)
congruent to Id mod n). In this case it is known that the Eisenstein series
associated to any cusp for any congruence group has trivial residual spectrum
(see [Iwa, Thm. 11.3]), but the question of whether all of these group are tempered
is a famous longstanding open question posed by Selberg.

With this terminology we will prove:

Theorem 2.4. Suppose T is a nonuniform lattice in G, Y = TI'v is a discrete
orbit for which the corresponding Eisenstein series has trivial residual spectrum.
Then there is cy > 0 such that

(2.3) |BO, R)N Y| = cy R? + O(R%).

Moreover, the asymptotic (2.3) holds when one replaces B(0, R) with the dilate
R -E of any centered ellipse E (with the constant cy and the implicit constant
in the O -notation depending on E).

In this result one also obtains a precise formula for the quadratic growth
constant cy, and an asymptotic expansion for the error in case the residual
spectrum is not trivial, with one term for every pole at s € (%, 1). See Theorem 4.1.
The error estimate in (2.3) is not new. In fact, as we saw in (1.2), Sarnak and
Veech could prove it already in 1993. However the proof we will give below will
be simpler than the proof outlined in [Vee2], which relies on difficult work of
Good concerning counting results in both R? and in H. See §2.3 for a more
detailed comparison with Good’s work.
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An interesting open question is whether the error term in Theorem 2.4 is
optimal. In this regard, note that for I' = SL,(Z), the error term in (1.2) can be
improved to o(R) (see [HN]); the same is true for congruence groups. However
we are not aware of any non-arithmetic non-uniform lattices for which a bound
better than that of (1.2) is known.

2.2. Counting in more general domains. We turn to new results. In these
results we strive to take sets more general than Euclidean balls in the counting
problem, while still obtaining a good bound for the error. We will need a further
definition.

For each y € G, we set ¢, =c, d, =d where y = (25). Note that ¢y, d,
only depend on the coset Ny. For each n € Z, and for T,T},s;, Ny as in the
discussion preceding (2.2), define a twisted Eisenstein series

ez +dy \ 2" _
(24)  Ei(z,8)m = E Im(y'z)* (ﬁ) where ' = ys; .
Y v

This is sometimes also referred to as the weight 2n Eisenstein series. Note that
this definition makes sense for any m in place of 2n but we are only interested
in the even values. Once again it is true that s — E;(z, )2, has a meromorphic
continuation to the entire complex plane, whose poles do not depend on z, and
we generalize Definition 2.3 as follows:

Definition 2.5. For i,n as above, the residual spectrum are those s € (1/2,1)
for which E;(z,-)2, has a pole at s. If there are no such s we say the residual
spectrum of E;(z,8)a, is trivial.

In particular, as before, Once again it is true that E;(z, s)2, has finitely many
poles and a tempered group I' has trivial residual spectrum for each i and n.

Let S C R? be a bounded closed set. We say that S is star shaped at 0 if
it can be written as

S = {r(cos@,sinf): 6 €[0,2x],r € [0, p(8)]}

for & — p(f) a non-negative bounded 2x -periodic function of compact support.
We say that S is a sector if it is of the above form with the function p the
indicator of a nondegenerate subinterval. We say S is a smooth star shape if it
is of the above form and p is smooth and everywhere positive. We write RS
for the dilated set {Rx : x € S}.
With these notations we have:
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Theorem 2.6. Suppose T" is a non-uniform lattice in G containing —1d, Y =T'v
is a discrete orbit corresponding to the i-th cusp, and suppose that for each n,
Ei(z,8)2n has trivial residual spectrum. Then:

o If S is a smooth star shape then there is cy,s > 0 such that for every ¢ > 0,

Y N R-S| =cy,sR> + O(RF ),

o If S is a sector then there is cy,s > 0 such that
2.5) Y NR-S| = crsR*+ O(R});

moreover, the asymptotic (2.5) is also valid if one replaces S with a sector
in a centered ellipse (i.e. the image of a sector under an invertible linear
map), with implicit constants depending also on the ellipse.

In the above results, the quadratic growth constants can be written down
explicitly and the implicit constants depend on the sets .

The fact that the error terms in Theorem 2.6 are worse than those in
Theorem 2.4 is an artifact of our method: when working in Iwasawa coordinates
(see §2.3) the functions which arise when counting in balls have a much simpler
form. In particular, their analysis does not require bounds on the twisted Eisenstein
series. We do not know whether one should expect the true error asymptotics for
balls to be significantly different from those of smooth star shaped domains.
Regarding counting in sectors, as is often the case, we incur a price for
approximating indicator functions by smooth functions. Thus it would not be
surprising if the optimal error terms for sectors are worse than those for balls.

2.3. Relation to the work of Good. Let G = KAN be the Iwasawa decomposi-
tion of G, that is K, A, N are respectively the subgroup of orthogonal, diagonal,
and unipotent upper triangular matrices, and let I' be a non-uniform lattice nor-
malized so that it contains Ny as a maximal unipotent subgroup. The counting
problem considered in Theorem 2.4 can be thought of as a counting problem in
the double coset space

& = NK\T/(NN).
In fact, one can easily verify that

[Te; N B, R)| = [{[y] € & :[lye:] = R}|
= |{[y] € & :Im(y~'i) > R7?}|
=[{(6 mod 27, y,x mod1):[rgayus] € S, y <R}

]
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where a, = diag(y,y™') and the last identification relies on the Iwasawa
decomposition of G. Fix y > 0, and set

Ky ={(6 mod 27, x mod 1) :[reayn,] € &}.
The character sums, for m,n € Z,y > 0,

S(m n, y) — Z: eimerninx
(e,x)EKy

indexed over the above Iwasawa double coset decomposition are a natural
generalization of the classical Kloosterman sums from number theory (which
appeared already in work of Poincaré about Fourier expansions of Eisenstein
series, see [Poi]). Note in particular that

[Te; N BO,R)| = Y _8(0,0,y).
Y=R

In [Goo, Thm. 4], Good proved bounds on the asymptotic growth of sums of
various generalizations of Kloosterman sums as above, meaning over various
double coset decompositions of I' in G. This corresponds to the problem we
have discussed above (counting for I"-orbits in the plane) as well as other counting
problems such as I'-orbits in H and in the space of geodesics. For the case of
the linear action on the plane, which is the one of interest here, Good obtains

Z Z eim0e27rinx — Cm,nR2 4 Om,n(Rg-)’
y<R (6,x)eK,

where ¢y, , > 0 if and only if m =n = 0. The dependence of implicit constants
in the remainder term on m,n is however not worked out explicitly (and difficult
to trace over the 100 pages of build-up Good relies on to prove this asymptotic). If
it were, one would be able to deduce results similar to Theorem 2.6 from [Goo].

2.4. Counting in still more general (well-rounded) domains. A common
assumption in the theory of counting lattice points in a family of domains in a
Lie group is that of well-roundedness, introduced in [DRS] and [EMc]. In [GN]
this assumption was combined with an estimate of the spectral gap that arises in
the automorphic representation of G on L%(G/ I') to prove an effective estimate
for the lattice point count. We will show that the problem we consider, namely
counting points in discrete orbits for the linear action of a lattice on the plane,
can be reduced to the lattice point counting problem for domains in SL;(R).
This will allow us to count orbit points in more general sets in the plane using
just the existence of a spectral gap, but this additional generality compromises
the error estimate, leading to bounds which are inferior to the ones stated above.
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Thus the techniques we describe in this subsection are applicable in more general
situations, but lead to weaker bounds.
We will show:

Theorem 2.7. Let T" be any non-uniform lattice in SLy(R), and Y = I'v any
discrete orbit of T in R?\ {0}. Let S C R? be a star-shaped domain at 0 with
p(0) a non-negative piecewise Lipschitz function, and let R -S be the dilation
of S by a factor of R. Then, for all ¢ >0

Y NR-S| = Cy,sR*+ 0 (RIT*?)

where the implicit constants in the O -notation depend on T',Y,S and e, and
with qr depending only on the spectral gap of the automorphic representation
of G on L3(G/T). In particular, if the lattice T is tempered, then we can set

_ 17
qr = 3.

Note that Theorem 2.7 applies, in particular, to all convex sets with piecewise
Lipchitz boundary (containing the origin in their interior), and in particular, to
all convex polygons.

3. A bit of Eisenstein series

In this section we go into more details about our main actor, the Eisenstein
series introduced in (2.2). We refer the reader to [Kub, Hej, Ter, Sar2] for more
information.

3.1. Some sums and their relation to the counting function. For a non-uniform
lattice I", a discrete orbit ¥ = I'v in the plane, g € G and s € C, we set

(3.1) E(g,s) =ETV(g,5)= Y [ul™%.
ueglv

Note that in (2.2), (3.1) we introduce the notation E and ET?) to denote two
different functions, one of which has an argument z € C and the other, g € G.
This ambiguity is common in the literature and is explained below, see (3.6). Our
first task will be to motivate this new definition, in the context of the counting
problem for points in I'v. For the moment we consider (3.1) as a formal sum,
postponing the discussion of convergence issues.

Warning (continued). In the literature, there are two conflicting conventions
regarding the definition of E(g,s). What is denoted E(g,s) in [Veel] is denoted
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E(g™',s) in [Kub]. We will follow Veech’s convention, and we say more about
the source of this discrepancy below.

Let N(g, R) = |B(0, R) N g¥|. Considering the measure v(&) = > ueglv Ous
which is a Radon measure on R? (since I'v is discrete), and considering the
radial function f®(w) = ||w|~2%, we have

* dN(g, R)
_ () 7,,(8) — " e’
Elg.s) = /mz foay /o R

where in the last equality we have written a Lebesgue—Stieltjes integral. Using
integration by parts (and recalling that convergence issues will be addressed
further below), we have

[o.@]
(3.2) E(g,s) = 2s / %Rl‘zsdk

0
We now recall the definition of the Mellin transform and Mellin inversion, which
are multiplicative analogues of the Fourier transform and Fourier inversion. Recall
that a Schwartz function is a function R — R which is infinitely differentiable and
for which all derivatives decay to zero at infinity faster than any power. We will
say that ¢ : Ry — R is a Schwartz function on Ry = (0,00) if f(x) = ¥ (e*)
is a Schwartz function. The Mellin transform of a Schwartz function ¢ : Ry — R
is given by

o
(33) My My = [ o,
and Mellin inversion says that for 0 € R we have
1 _
(34) VO =5 [ M)y
Tl JRe(s)=0

The above formulae follow immediately from the Fourier transform and Fourier
inversion formula, from which they are obtained by a change of variables
y = e*. As we will explain below, under suitable conditions the formulae extend
to functions which are not Schwartz functions. For the moment we proceed
considering them as formal identities.

Comparing equations (3.2) and (3.3), and making a change of variables y =
R™!, we see that %;Ls) is the Mellin transform of the function y — N(g, y~!)
evaluated at 2s. Applying Mellin inversion we recover the counting function N

as
1 E(g,s)

(3.5) N(g,R) = — Z0 T RS s
271 JRe(s)=0 S
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(this formal manipulation is given a precise meaning and justified in Corollary 3.3
below). The upshot of this discussion is that, at least formally, the counting function
which we are interested in has an integral representation in terms of the function
E(g,s). Furthermore, if we know (as will turn out to be the case) that s — E(g,s)
is holomorphic or meromorphic, then the integral of (3.5) can be evaluated using
standard tools of complex analysis like contour shifts, residue computations, etc.
Using this, after justifying our manipulations we will indeed be able to obtain
a detailed understanding of R — N(g, R) from an understanding of E(g,s).
Note also that up to this point no use has been made of the dependence of all
quantities on the variable g. This dependence will not play much of a role in
our discussion, but it is crucial when one wants to say something about E.

For the benefit of readers not satisfied with this non-rigorous derivation
of (3.5), we include another non-rigorous derivation. Let u € gl'v and consider
its contribution to both sides of (3.5). Assume for simplicity that gl'v does not
contain vectors of length precisely R, and set y = R/|u/||, so that u contributes 1
to N(g,R) when y > 1 and contributes 0 when y < 1. Recalling (3.1), and
exchanging the order of summation and integration in the right hand side of (3.5),
we see that each u contributes 5= JRe(s)=0 %ds. This integral is the limit as
T — oo of line integrals along the vertical lines Ly ={o +1if:-T <t <T}.
For each fixed 7 we can evaluate this line integral by Cauchy’s integral formula,
replacing Lo, with L¢7 (the total contribution along the horizontal lines
Im(s) = £7 becomes negligible as T — o0), where in case y > 1, we let
{ — —oo, and get a contribution of 1 due to the pole at the origin, and in case
y <1 we let { - +oc and get a contribution of 0.

3.2. Simple properties and the relation to Eisenstein series. Having motivated
our interest in the function defined by (3.1), we now make the link with
the functions defined by (2.2). Let I'y, = {y € ' : yv = v}. Note that
if ¢ = rodiag(y,y™")uy, where y > 0 and rg € K,u; € N (Iwasawa
decomposition), then y can be detected in both the linear action as |ge;|,
and in the action on the upper half-plane as Im(g‘li)"%. Using this observation,
the following properties follow readily from definition (3.1) and from the fact
that the Euclidean norm is K -invariant.

Proposition 3.1. (1) For rg € K and y € Ty, we have E(rggy,s) = E(g,s).
(2) For g,5€ G, if T'* =5~ 1Ts then E(I‘a,s—lv)(gs,s) — E(I',v)(g’s)_

(3) Suppose T' contains No as a maximal unipotent subgroup. If T does not
contain -1d then E{Te)(g 5) = 2 yeNAT Im(yg~Y4)*; if T contains -1d

then ET*(g,5) =2 ZyeNé\I‘ Im(yg ™).



272 C. BurriN, A. Nevo, R. RUur and B. WEiss

(4) If vi,v2 € R2~ {0} satisfy v, = tvy for t > 0, then ETV2(g s5) =
t~2 ETvi)(g 5).

By Property (1), the dependence of (3.1) on g is actually only a dependence
on the coset Kg, and we can identify these cosets with H via Kg < z = g~ li
to replace g with z. And with the normalization that the stabilize_r of v is Ny,

we see by rescaling and using Properties (2) and (3) that

(36) z=gi — Eigs) = {E,-(z,s) I' does not contain — Id,
2E;(z,s) otherwise.

Thus for each non-uniform lattice I' with k cusps, up to the trivial transformations
recorded above, there are k essentially different functions of this form. They are
normalized by conjugating so that I, = Ny and rescaling so that v = e;.
It will become clearer later why this normalization is convenient. It will also
develop that in order to understand these functions in detail, it is best not to
focus on one of them, but to consider their properties as a vector valued function
(z,5) = (E1(z,9), ..., Ex(z,9)).

The discrepancy between the notation used in [Veel] and that used in [Kub]
is related to the substitution z = g~ 'i above. If one followed the convention
of Kubota one would make the substitution z = gi instead. The convention of
Veech, which we follow, gives simpler formulae involving discrete orbits in R?
and is consistent with working with the space of left cosets G/I". The convention
of Kubota gives simpler formulae when discussing the action of G on H by
Moébius transformations, and is consistent with working with right cosets I'\G.
Thus the discrepancy between these notations is collateral damage in a larger
battle.

We now explain our interest in the twisted Eisenstein series (2.4). Above we
motivated Eisenstein series by explaining its relation to the counting problem in
the plane, where each orbit point is assigned the same mass 1. In this application
the counting function is K -invariant, and so we can equivalently view the first
parameter of the Eisenstein series as ranging in g € G or in z € I (as in the
preceding paragraph). In more general situations it is desirable to assign different
masses to different points, and in particular allow functions which depend on g
rather than on the coset Kg. This will arise when we deal with more refined
counting problems as in Theorem 2.6, and also arises in many other problems of
geometric origin.

For a vector u € R2~{0} 2 C ~{0} we define polar coordinates u = ||u| e,
where 0, € R/2nZ. Let I'v be a discrete orbit corresponding to the i -th cusp I,
normalized so that v = s;e;, and set

(3.7) Ei(g.9)0n =) [u| e

ucglv
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Note that these functions vanish for » odd when I' contains —Id. It is not hard
to formulate an analogue of Proposition 3.1 and, by comparing (2.4) and (3.7),
to verify that

yUz _xym1/2
(3.8) Ei(z,8)2n = Ei(g,5)2n when z =x+iy and g = 0 e |

Note that the choice of g in (3.8) ensures z = g~ 'i, and if we choose another

g with this property, this will only affect E;(g,s)», by multiplication with a
complex number of modulus 1.

Warning (continued). In (3.7), it would have been more natural, and consistent
with the Veech convention mentioned after Proposition 3.1, to define the Eisenstein
series using e”% instead of e "% . However this would have made it necessary
to introduce a change of signs in (2.4) and would have caused a discrepancy
between our notation and that of [Sel2, Sar2].

Treating more general weights of points on the plane also leads to the
®-transform which we will discuss in §3.6.

3.3. Convergence properties. We now begin our discussion of convergence
properties of the various series introduced so far, and give a more rigorous
justification of (3.5). Convergence rests on the following weak (and standard)
counting estimate.

Proposition 3.2. For each g € G we have N(g, R) = O(R?). Moreover the
implicit constant can be taken to be independent of g.

Proof. We will give a simple proof in which the implicit constant will appear to
depend on g. For a similar but more careful proof, which explains how to take
the constant independent of g, see [Vee3, Lemma 16.10].

Make a change of variables so that v = e; and I'y = Ny, and compare the
actions on R? and H. Let yv € 'v, and using Iwasawa decomposition, write

y = r@ayus.

Since v = e; is fixed by uy, the condition |yv| < R is equivalent to y, < R,
where a, = diag (yy, o 1). Furthermore, we can choose y mod Ny so that u
is bounded. Now apply y~' to i. Since rg preserves i, a,'i = y%i, and uy is
bounded, we see that y~'i is contained in a set Ag which is an r—yneighborhood
of the ray {ri: 7 > R72}, for some r > 0 independent of R. The hyperbolic area

of Ag is O(R?). On the other hand, since T'i C H is discrete and since G acts
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on H by isometries, there is r > 0 small enough so that the balls of radius r
around points of T'i are disjoint. So the intersection of Agp with I'i contains
O(R?) points. a

Corollary 3.3. The quantities in (2.2), (3.1) and (3.2) converge absolutely on
{Re(s) > 1} and converge uniformly on compact subsets of {Re(s) > 1}. For any
¢ > 1, (2.2) and (3.1) are bounded on {Re(s) > {} by a bound which can be
taken to be uniform as z and g vary in a compact set. For fixed g, and for
g >1,

N(g RN +N@ R) _ 1 . [T E@go+i)

— R2(0’+it) dt
2 2w T—oo -T o+ ir ’

(3.9)

where N(g, RT),N(g, R™) denote the one-sided limits of N(g, R) as x — R.

Proof. The claim regarding (2.2) and (3.1) follows easily from Proposition 3.2.
For instance, for (3.1), split the sum into sums over the ‘rings’

{w elv:|w|e [2",2”+1]}

for n € N. Also note that by discreteness, N(g, R) vanishes for all R close to
0, so the convergence of (3.2) is proved in the same way.

For (3.9), fix g € G and o9 > 2, and define the function ¥4,(7) =
N(g,e)e 0%, Then Vq,(r) has finitely many discontinuities on every bounded
interval, with well-defined one-sided limits, and vanishes when we take 7 — —oc0
(by discreteness of Y ). Also, by Proposition 3.2, we have g, (1) = O(e?700)7)
as T — 0o, and hence Vg, € L2(R) N L}(R). Write

o0
Voo (u) = f Voo (.L,)e—Zmurdr
—00
for the Fourier transform of . Using (3.2) and making changes of variables

R = e®, 25 = 09 + 2miu we have

E(g,s)
2s

Voo (u) =

where Re(s) > 1.

Then by Fourier inversion (see, e.g., [Ter, Ex. 1.2.7]), for all z € R we have

+ — T
11”<;r0('1—') + WUO(I) = [m / J;r; (u)ez"i"’du,
-

2 T —00



Effective counting for lattice orbits 275

and hence (with the changes of variables 0 = 0¢/2,t = nu, R=e%, s =0 +1it)

N(g R) + N@RY) _ g Yo (108 R) + Y (log R)
2 2
r E(g,o0 + miu)

lim R0 -
T—oo J_T oo + 2miu

i .
L lim / MRZ(U-H”dt. J
2n Tooo J_7 O+ 1t

RZJriu du

3.4. Selberg’s results: Meromorphic continuation and functional equation.
We now move beyond elementary results and come to much deeper results about
Eisenstein series. Most of these results are due to celebrated work of Selberg,
see [Sell, Sel2, Hej, Kub] (the introduction to [Sel2] contains some historical
notes). The proofs exploit the dependence of E(z,s) on the variable z, and we
content ourselves with two comments, in order to clarify the connection with
objects appearing in the preceding sections.

For s € C, the functions f(x +iy) = y® clearly satisfy Af =s(1—s)f, i.e.
are eigenfunctions for the Laplace-Beltrami operator. Since A is G -invariant,
formula (3.1) shows that for fixed s, the Eisenstein series also gives rise (at
least formally) to a Laplace—Beltrami eigenvector z — E;(z,s), thus furnishing
a connection between the Eisenstein series and the representation theory of G.
Similarly, the functions g +— E;(g,s), defined in (3.7) are eigenfunctions for the
Casimir operator on G.

Also recall our normalization sending a cusp of I' to oo so that the stabilizer
group becomes No. If T' has one cusp then this means that z — E(z,s)
has a periodicity property E(z,s) = E(u1z,5) = E(z + 1,5). We can exploit
this periodicity by developing E(z,s) = E(x + iy,s) in a Fourier series
> mam (y, s)e2™mx Fyrthermore, if I' has more than one cusp and i, j represent
two of them, then z > E;(sjz,s) =), a,-,j,m(y,s)ez”i'"x is also 1-periodic, and
this leads to interesting relations between the functions a; jm.

We now turn to Selberg’s results. By Corollary 3.3, as an absolutely convergent
series of holomorphic functions, the functions s — E;(g,s) are holomorphic on
{Re(s) > 1}. A fundamental issue is to extend the functions to the entire plane,
and here we have:

Theorem 3.4 (Selberg c. 1953). The functions s — E;(z,s) have a meromorphic
continuation to the complex plane. There is a pole at s = 1 with residue Evollﬁ
and all other poles with Re(s) > % are contained in (%, 1] (in particular there
are no poles at s = 1/2). All poles are simple.
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The second basic result is a functional equation according to which one may
recover the values of E;(g,:) at s from the values at 1 —s. To state this we
use the notation introduced after Definition 2.2, and let I' denote the classical
I' -function. For each 1 <i,j <k let

(s—1
(3.10) i (5) = JE% Dle™s, o) = (qoij(s))f,j:l

where the sum ranges over distinct representatives (g 3) of double cosets in
N{\s;'T's; /N§ with ¢ # 0. The function ¢;; has another definition in terms of
the constant term in the Fourier expansion of z > E;(s;z,s), see [Kub, §2.2].
The matrix ®(s) is sometimes called the constant term matrix corresponding to
I', and sometimes called the scattering matrix. The poles of s — E;(z,s) with
Re(s) > 1/2 are also poles of ®.

Theorem 3.5 (Selberg c. 1953). The matrix valued function © satisfies
O(s)P(1 —s) =1d,
and the column vector £(z,s) = (E1,..., Ey) satisfies

E(z,s) = P(s5)€(z,1 — ).

3.5. Main term asymptotics and quadratic constant. As Veech noted, it is
well-known to number-theorists that the existence of a meromorphic continuation
with a simple pole at s = 1, already implies Theorem 1.1, part (c). To see this,
recall the Wiener—Ikehara Tauberian theorem (see, e.g., [Wid, Theorem 17]), which
was developed in order to simplify proofs of the prime number theorem, and
states:

Suppose ¥ : Ry — Ry is monotone non-decreasing, A € R, and suppose the
integral f0°° e Sty (t)dt, where s = o +it, converges for o > 1 to a function
f(s) which satisfies that limg_14 (f(s) — &) exists, converges uniformly, and
defines a uniformly bounded function in every interval © € [—a,al, for all a > 0.

Then Y1) —> 1500 A.

el
To obtain part (c) of Theorem 1.1, suppose ['v is a discrete orbit for a
nonuniform lattice I" corresponding the i-th cusp of I', and apply the Wiener—
Tkehara theorem with A4 the residue of Ei(g,s) at s =1, and ¥ () = N(g,¢'/?).
The hypotheses of the Wiener—Ikehara theorem are justified by (3.2), a change of
variables R = ¢?/2, and Theorem 3.4. Here

1 .
——— [ does not contain -Id,
11 A= covol(T")

(3.11) i

Covol(T) 0therw1se,

will be the quadratic growth constant cr, provided v satisfies v = s;e;.
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Warning (continued). In [Veel] the quadratic growth constant is given as
ooy but the groups he considers do contain -Id. The discrepancy is due
to the fact that Veech only counts closed cylinders and saddle connections on
surfaces, and each of these gives rise to two holonomy vectors, depending on
orientation.

Veech was not content with deriving Theorem 1.1(c) from known results about
Eisenstein series. In 1998 he reversed the logic, reproving the result using ergodic-
theoretic ideas introduced in [EMc], and using this, obtained a continuation result
for E(g,s). Namely he showed that the limit lims— (s — 1)E(g,s) exists along
any sequence approaching s = 1 nontangentially from {z € C : Re(z) > 1},
and used this to provide an alternative derivation of the formula (3.11) for the
quadratic growth constant. See [Vee3, §16] for more details.

3.6. O-transform. Let I' be a non-uniform lattice in G, and T'v a discrete
orbit in the plane. We will assume throughout this section that v corresponds to
the i-th cusp of I' and is normalized so that v = s;e;. Putting different weights
on different points on the plane amounts to choosing f : R? — C, and defining

@7 :G/T >C, Ol = Y fw.

ueglv

We will refer to the map f +— Oy as the ®-transform. Note that this definition
extends (3.1), in that g — ETY(g,5) = O (g) for f(u) = |u||72. As before we
need to worry about convergence issues, and we will assume for the moment that f
has compact support contained in R?~{0}. Note that this is not satisfied for (3.1)
and it will make the ®-transforms we consider easier to handle analytically. This
will already be apparent in the following proposition, in which we discuss the
©® -transform of smooth functions which have a special form.

Write hg(x) = h(%). With this notation we have the following extension
of (3.5):

Proposition 3.6. Let f : R2~{0} — C be a smooth compactly supported function,
let p:R/2nZ — R4 be smooth, let y : Ry — C be smooth and compactly
supported, and let W = My be the Mellin transform of ¢ as in (3.3). Let 0 > 2
and denote by © the transform associated with the orbit T'v corresponding to
the i-th cusp of T, normalized so that v = s;e,. Then:

(D) If f(u) =y (|ul]) is purely radial, then

1 s
A2 e Iy=—sF W(s)Ei (g, =) R’ds.
(3.1 @ =35 [ WO (g.3) Rds
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(2) Suppose f(re') = V(5f), and p(0) = Y,ez on(5)e?? is the Fourier
expansion of p°. Then

(3.13) O, (gT) = 2mz [R o \Il(s)p_,,(s)E( f) RSds.

(3) Suppose f splits into angular and radial parts as f (rew) = Y (r)p(0), and
let p(6) =3, pne"® be the Fourier expansion of p. Then

(.14) O = Z pn [

8
W(HE; (g,=) Rds.
R i (2 2)"

Proof. There is no need to prove (1) since it is the special case of (2) with
p(0) = 1. We will write the Fourier expansion p(6)° = >, Pn(s)e?  as
>, p—n(s)e™%  The Fourier series converges absolutely for each s since p
is smooth, and the coefficients admit an upper bound

(3.15) 1Pn ()] <27 ||pllg,, where o = Re(s).
More generally, applying integration by parts twice, we see that

2
(3.16) 1n(5)] <€ = 'S'

where the implicit constant depends on o, || plloo, 10" locs and | p”||oo. The Mellin
transform My satisfies (Myg)(s) = R*(Mvy)(s) and so by Mellin inversion

1
va( ) | weyrpas
27” Re(s)=0

Plugging this into the definition of ©, and writing each u as [u[el% we obtain

0re(e) = Y vr (o)

ueglv

1
L W(s)R® ( ull (6 )S)ds
2]'['1 Re(s)=0c NE%I:‘U .
1 R _ s
- \v(s)RSZp_n(s)( > lul™e ‘"eu)ds
27” Re(s)=a neZ ueglv
W(s)h- <s)RS( e —'"eu)ds.
271:1 Z ,/l;e(s) =0 - ugl:“v

To justify switching order of integration and summation in the first line use the
quadratic growth of the set gI'v (Proposition 3.2) and the assumption ¢ > 2. In
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the second line, use also (3.15), and in the third line use Proposition 3.2, (3.16),
and the fact that W decays faster than any polynomial along the line Re(s) =o.
Formula (3.13) now follows by plugging in (3.7).

For (3), we have

Os(gD) = Y p(Gu)Vr (lul)

ueglv
; 1
- Z (Zﬁ—ne_meu) Z_f V()R [[ul| " ds
ueglv “nez 1 JRe(s)=0
1 . e s
Y be [ weR (X e )ds
7l neZ Re(s)=0 uecglv

and again we plug in (3.7), leaving it to the reader to justify changing the order
of sums and integrals. 0

3.7. Additional properties. We will need the extensions of the results of §3.4
to twisted Eisenstein series, and also some further properties. For convenience
we collect all the results we will need, including results already discussed above,
in the following list.

Theorem 3.7. Let T' be a nonuniform lattice in G with k cusps. Let s; be
the elements conjugating these cusps to oo as in the discussion preceding (2.2).
Let E;(z,s) (resp. Ei(z,S8)2n) denote the (twisted) Eisenstein series as in (2.2)
(resp. (2.4)). Then there is a function w : R — R (see (A.1) for an explicit
definition) such that the following hold:

(AC) The functions E;(z,s)2n are absolutely convergent for Re(s) > 1, and for
any ¢ > 0, they are uniformly bounded and uniformly convergent on sets
of the form {Re(s) > 1+ ¢}.

(M) The functions s — E;(z,5)2, have a meromorphic continuation to all of
C. '

(P) The poles of s — Ej(z,5)2, with Re(s) > 1/2 are all simple, lie in
(1/2,1], and are contained in the set (sy) of poles of the constant term
matrix © of (3.10).

(1)  There is a pole at s =1 if and only if n =0, with residue covol(I")™!.

(1/2) The functions E;(z,s)2n, have no poles on the line Re(s) = 1/2.

@) Forallt€R, w(t)>1,0(—t) = o) and for T > 1, [T o(t)dt < T2,
where implicit constants depend on T.

(G) If n € Z, Re(s) > 1/2 and |t| > |n| + 1 then Ei(z,8)an < |t]| Yo(2),
where t = Im(s) (implicit constants depend on z and T but not on n or
Re(s)).
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(G1/2) For all n, f_TT | E; (z,%Jrit)2n|2 dt <« (T + |n|))? (implicit constants
depend on T).

Proof. For n = 0, all items are given in [Sel2], see also [Hej, Kub]. The
extension of the first five properties to general n is given in [Kub, Chapter 6]
(see also [Sar2]). Property (G1/2) is extended to arbitrary n by Marklof and
Strombergsson in [MS] (in [MS] only the case of the integral over [0,7] is
discussed, but the proof extends verbatim to the interval [—T7,0]). To the best of
our knowledge, there is no presentation of property (G1) for general n in the
literature. We fill this gap in the appendix to this paper, see Theorem A.lL O

4. A bound O (R%)

The following is the main result of this section. It immediately implies
Theorem 2.4.

Theorem 4.1. Suppose T is a lattice in G, T'v is a discrete orbit corresponding
to the i-th cusp of ', Ei(g,s) is the corresponding Eisenstein series, and
so=1>58,>->5 > 1/2 are the poles of E;i(g,-). Then there are cy,...,cCr
such that

r
N(g, R) = coR? + Y cgR*t + O(R3).
£=1
Furthermore, if v is rescaled so that sije; = v, then the cy are the residues of
s > E"(f—’s) at the poles sy. In particular, the quadratic growth constant cq is

given by formula (3.11).

The basic idea for the proof of Theorem 4.1 is a ‘contour shift’ argument,
as follows. We recall (3.5) and (3.9), which imply that for o > 1, for a large
parameter 7, N(g,R) ~ ~21; fIT E(iz,o+ it)Rza(i;:")dt. This is a path integral
over the line segment L,1 = {0 +1it : ¢t € [-T,T]} introduced in §3.1. Since
s — E(z,s) is meromorphic in all of C, the Cauchy residue formula makes it
possible to replace this path integral over L, r with a path integral over L/, 1
and the two horizontal segments H* = {s +iT : s € [1/2,0]}, taking into
account the residues in the rectangle bounded by these segments. We need to
show that the contribution of the integral over the segments H* is negligible,
compute the contribution of the poles in the Cauchy formula, and evaluate the
integral over L;,, 7. Each of these steps presents difficulties as stated. To bypass
them we recall that if y = y[o,;] denotes the indicator function of [0,1] and

S() = x(lul]) then N(g,R) = Op,(gl'). We can justify the contour shift
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argument if f is replaced by a smooth compactly supported approximation f ()

(where U is an approximation parameter), and in this way, obtain bounds on the

growth of ® @) gl") as R — oo. To make use of this we bound the difference
R

IN(g, R) — ®f(U) (gT")| as well as the differences in the residues of the sums for
R

f and £, and optimize the choice of U as a function of R to make the
combined error as small as possible.
In order to justify the contour shift we will need the following:

Proposition 4.2. Let E be a meromorphic function on C, let a < b, and let ¥
be a holomorphic function defined in a neighborhood of {s € C : a < Re(s) < b},
such that:

(i) E has finitely many poles (sg) with Re(s) € [a, b]. They are all simple poles,
all on the real line, and there are no poles at s =a and s = b.

(ii) There is a function w : R — R satisfying the conclusions of Theorem 3.7,
Item (w), and such that for all |t| > 1, |E(s)| <€ o(t)|t| (Where
t = Im(s)).

(iii) For any k > 0 there is C’ such that for all o € [a,b],

!

) C
V(o +it)| < E
(tv) For 0 =a and o = b, the integrals

(4.1) /OOE(0+it) W (o +ir) dt

-0

converge absolutely.
Then

1

4.2) 2_1Ti./Re(s)=b E(s)llf(s)ds1

= — Es)V(s)ds + W(sg)Res|s=g, (E
= (5)¥(s) ; (s¢)Res|s=s, (E)

(Where Res|s=goh(s) = lims_,(s — s0)h(s)).

Proof. Let © > 1, and consider the integral of E(s) ¥(s) on the rectangle

R; = {s € C :Re(s) € [a,b],Im(s) € [r,7 + 1]}.
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We have

T+1 (i) 1 +1 b
f dt & —3f / | Bl -+ 1y)| dy des
T 7 J a

@ 1 [ot!
€ = f va(y) ydy
T —(t+1)

Cauchy-Schwarz | o | 1/2
() eoar) e
€ 1)

b
f E(o +it)¥(o +it) do

(@)
< T_1/2 —> 700 0.

Hence for each n € N there is t, € [n,n + 1] such that

(4.3) o0 0.

b
f E(o +it,)¥(o +it,)do
a

By the same argument, there are t—, € [-(r + 1), —n] such that (4.3) also holds
with 7_, instead of t,.

Since W is holomorphic, and E holomorphic outside a set of finitely many
poles, we can now apply the Cauchy residue formula for the contour integral of
E(s)W(s) over the boundary of the rectangle

{s € C : Re(s) € [a,b],Im(s) € [t_s, Tn]}.
The integrals along the horizontal boundaries [a, b]x{7+,} goto 0 as n — oo, and

the integrals along the vertical boundaries {a,b} x [t_,, 7,] tend to the integrals
in (4.1). The result follows. d

Proof of Theorem 4.1 Let B :R — [0, 1] be a smooth function satisfying

0 for x <0.1

1 forx=>1

B(x) = {
and for a parameter U > 2 let

-(U) — B(Ux) x<1/2 ) _ B(Ux) ¥<1/2
v = {ﬂ(U(l —x)) x>1/2 and §+T0 = {;3(1 +UQ-x) x>1/2°

Let y denote the indicator function of [0,1]. Our choices imply that ¥*U) are
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supported on a compact subset of the positive real line and satisfy
x>0 = ¥~ ) < x),

x> L = ) <y O,

- U
(4.4) 1 & X s _ o+ (O)
velog|u[i-gi+g] = v O@ =10 = O,
iy =) .
sip —r— = 0(vY).

From (4.4) we have

o () <o) sa(52) v ().

Thus if we define fz,u) = y=@ (%) since the ©-transform is order-
preserving, we have

R
(4.5) Ofzy @) < N@g R) < ©,1 (gT)+N (g, —U—) .

We will obtain bounds for & féky(gI‘) using (3.12) and a contour shift argument,

and then combine this with (4.5) and optimize the choice of U = U(R) to obtain
good bounds for N(g, R). To simplify notation we omit the superscript = from
now, that is fg,y stands for any one of fz, and W) stands for the Mellin

transform of any one of the y*U),

Step 1. Dependence of the residues on the approximation parameter. Let ¢,

be the residue of s > E;(g,s) at s = sy, let c¢; be the residue of s > Ef(f—’s)
at s = s¢ and let cg(U) be the residue of s > W) (s)E; (g,5) at s = 2s5;. The

c, are nonzero by (P) and the s; satisfy s¢ > 1/2, and we have ¢; = %’é and
ce(U) = 2¢, W) (2sy). By (4.4), we have

1

1 o0
— - 2sy)| < / y¥eldy — / w(U)(y)y“‘f‘ldy‘
25¢ 0 0
* U) 2sp—1
< [ 00 - x|y ay
4.4) u 1+1/U 1
< . (/ y2s5-1dy +/ yZSg—ldy =0 (_) ,
0 1-1/U U
and thus

(4.6) ¢t —ce(U) = 2¢; (2175 ~ qf(U)(zse)) =0 (%) :
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Step 2. Bounding the integral over Re(s) = 1. We will bound
fRe(s)=1 W (5)E; (g %) R%ds in terms of R and U, and to this end we will

bound -~ e
t ;
I =/ v (1 +in)E; (g, Jz” )Rl""“dt.
1

We first prove that for all U > 2,

U
4.7 >0 = D0 +in)=0 (W)
and

1
(4.8) l<it|<U = O +i)=0 (H)

Moreover we will establish such a bound for o +i¢ in place of '1+ir, where the
implicit constant is uniform as long as o varies in a closed interval of positive
reals. To see (4.7), apply integration by parts twice, and use that ¥’ and all
its derivatives vanish for y ¢ (0, 5] U[1— .1+ ], to obtain for s =0 +ir:
@
—/0 [W ](y)(+1)y|

oo ’ s
q:‘U)(a+it)'=/0 [x!f(”)] (y)dey
s+1

U
N /0 [W(U)] (y)s(s+ 1)

s+1

s+1

1+1/U
+ /1 e (v ] ) ( Y

1 U
=211 0 (U? 0(—————) =0(—),
(U?) Ult(t + 1)| |£]2
proving (4.7).
Nowif 1 <t <U and U > 2 then

(49 [¥D@ +in| = /0 ) [w‘”]'(y)y—sdy]

1+1/U

-1/ o] 0y + [ T

_ o+l 1 1 _ofl
=2 O(U)O(U)O( ,—02_1_{2)—0(1),
proving (4.8).

Writing E(t) for E; (g, 1+") and ¥(t) for W (1 + it), this leads to
(4.10)

1] < f1 ” \w(z)E(r)R‘“‘

U fore]
dt € R {/ |W(t)E(t)| dt +/ I\P(I)E(r)[dt:|
1 U
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and we bound each of these integrals separately. By assumption (G1/2) and
Cauchy-Schwarz, for 1 < A < B,

B B B
@.11) /A |E(t)|dt < \//A \E(t)[2dt \//A 1dt < B2,

Hence, by a dyadic decomposition,

v IEQL,
/1|E(t)||‘1’(t)|dt<</ :

1 U/2k
D | B

0<kxlogU U/2kt
3
4.11) 1 U\?2
< Y —(_)
k \ 7k
0<k<klogU U/2 2

«U?Y 278 « Ut
k=0

Similarly, in the range r > U we have

oo 4.7 [ U
/U |E(t)| W) dt <</U |E(t)|t—2dt

2k+] U

1
Lo 4 —/ E(r)|dt
Ié(:) (2kU)? Jyky |
(4.11) 1 k41,3
€0 oree (2 U)
k=0

«UtY 2% Ut
k>0

Putting these estimates together we obtain
I=0(RU?).

The bound on the ray {1 +if : ¢ < —1} is similar, and on the finite interval
{l+ir:—1 <t <1} the functions E; and W) are bounded independently of
U . For the last claim, note that the calculation in (4.9) holds also for 0 <t <1,
and the second to last equality there implies boundedness. In total we find

(4.12) / VO ()Ei (g, 5)Rods = O(RUB).
Re(s)=1 2
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Step 3. Justifying the contour shift. We want to show that for any R,U,

4.13) / w0)(5)E; (g, 5) RSds
Re(s)=0>2 2

=Y aWrs s [ W00 (¢3) R
7 Re(s)=1 2

where W) js the Mellin transform of ¥(), the sum ranges over the poles
(s¢) of Ei(g,-), and c¢(U) are the corresponding residues. This follows from
Proposition 4.2, with a = 1,b = o > 2, E(s) = E; (g, %), and W(s) = RS¥V)(s).
Note that by (3.8), for upper bounds as needed for Proposition 4.2, it makes no
difference if one works with the twisted Eisenstein series in (2.4) or in (3.7).
Hypotheses (i) and (ii) of Proposition 4.2 hold by Theorem 3.7, (iii) follows by
repeated integration by parts as in the proof of (4.7), and so we need to show (iv).
The case b = o is trivial because ¢t — E(b +it) is bounded, and the case o = 1
was proved in Step 2. Thus (iv) holds.

Step 4. Combining bounds. Using (4.13) with a main term Y, c¢R*¢, and
matching the errors incurred in (4.6) and (4.12) gives an error estimate
R2s_g R2

1
=X _Rrul,
R T T

This leads to a choice U = R¥ and the combined error becomes O(R?f). This
error is valid when using either one of fz; and f;: v - Proposition 3.2 implies

that )
R R
N(eg)=o(gz) =

Thus appealing to (3.12) and (4.5) completes the proof. O

Wi

Remark 4.3. We are grateful to Ze’ev Rudnick for explaining to us how to
replace our earlier result O(R43+3) with O(Ré). Specifically, Rudnick suggested
the use of dyadic decomposition in Step 2.

Remark 4.4. Any improvement in the bound (G1/2) gives a corresponding
improvement in the error term. In fact, for the case I' = SL,(Z), or its principal
congruence subgroups, and n = 0, one can replace the term 72 appearing
in the right hand side of (G1/2) by 7. Using this, and modifying (4.7) to a
bound O(ﬁ) in Step 2, yields an error term O(R!'*®) for any ¢ > 0, in
place of O(R’a’). The recent papers [HX] and [Nor] contain sup norm bounds for
Eisenstein series for some arithmetic groups I' which are not principal congruence
subgroups. These bounds lead to improvements for (G1/2), and using them, one
obtains a better estimate than R3 in (1.2) for the discrete orbits arising in these
cases.
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5. More general shapes

5.1. Counting in smooth star shaped domains. We first state a more detailed
version of the first part of Theorem 2.6, for counting in a smooth star shape.

Theorem 5.1. Suppose I is a non-uniform lattice in G containing —Id, ¥ =Tv
is a discrete orbit corresponding to the i-th cusp, and suppose that for each n,
E;(z,s), has trivial residual spectrum. Let p: R — R4 be a smooth 2x -periodic
function, S = {rel : 0 <r < p(8)}, and let cys = %&f&,) Then for every
e>0,

Y N RS| = cy,sR* + O(R ),

where the implicit constant depends on ¢ and p.

Proof. The proof follows the same steps as in the proof of Theorem 4.1. We define
the same approximants ¥*©) of the indicator function of the unit interval, so
that x > wi(U)(ﬁ) are approximations of the indicator function of the interval
[0, p(0)], in the sense of (4.4). Then we set

+ 0y _ . +(U) r
T e =9+ (o).

so that in analogy with (4.5), we have

maxg p(9))

(5.) O, (D) <Y NRS| <O+ (g1)+ N(g, B—p

R2

<6z, 61+ 0(1%).
As before we continue with fg y standing for one of the f RﬂfU and W@ standing
for the Mellin transform of one of the =), Using (3.13) we have

| §
\ = — @ (5)5_ (g.=) R
5D OrnoED =572 / o, VOODROE(s.7) B ds
(where o > 2).

Since we have assumed that —Id € I', the terms corresponding to odd n
all vanish. For each n # 0, the functions s > W) (s)p_,(s)E; (g, %)M are
holomorphic on {s € C : Re(s) > 1} by our assumption that all of the E;(g,s)2n
have trivial residual spectrum and by (P) and (1). For » = 0, the function
s > VWU (5)E; (g,£) has a simple pole at s =2, and by a computation as in
the proof of (4.6), the residue co(U) satisfies

1

(5.3) G0 —Eg(U1) = 0(5).
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Here co = po(2) covol(I))~!, and since $o(2) = 5= 02” p(0)? d#, computing the
area of § in polar coordinates we obtain co = nggig‘lg()r)
We now bound the integral of

s KOWE: (g.3) o where h(s) = WD) (s).

h

along the critical line {Re(s) = 1}, by a bound depending on both U and n.
Thus from now on implicit constants may depend on p but not on n and U.
We will use parameters k,A,e which we will optimize further below.

For each k > 0 we have

) u*
5.4 (1 + i) K Wc_—l—_l’
and for each A >0 and n # 0, we have
A |I|A .
(5.5) 1pn ()] < W, where s = 1 + it.
n

Indeed, we get (5.4) for |t| > U by performing integration by parts |k| + 1
times (see (4.7)), and for |f| < U by applying integration by parts |k] times.
The proof of (5.5) is similar. Using this and recalling that for |¢| <1 the integral
is bounded (see the discussion preceding (4.12)), we have

(5.6) f KD ($)E; (g.5), ds
Re(s)=1

e Uk tl 1+‘t
1
<</1 (T [t (5:38%), e
1/2

2 . 1/2
< vt e 11+E/2_"l dr * Eile. 1ﬁ;lt)”lzalt
|nll 1 tk+1 1 t2+e '

To ensure finiteness of the first integral we will assume that

(5.7) 2k >2A+1+es.

For the second integral, we define H(T) = flT |Ei(g, lgi’)nfdt, so that (G1/2)

gives H(T) < (T + n)?. Then integration by parts gives

[
1

2
ek dt < |n|=.

Using these estimates in (5.6) gives
(5.8) f v (5)E; (g, i) R*p_n(s)ds < |n|"*RUF,
Re(s)=1 2/n

and the implicit constant depends on e.
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For each fixed n, the contour shift replacing the integral along Re(s) = o
with the integral along the line Re(s) = 1 is justified by Proposition 4.2 (note
that in condition (ii) of the Proposition, the implicit constants are allowed to
depend on E and thus on n). We only pick up one residue, corresponding to
n =0 and s = 2. Thus collecting estimates we get

2
(5.9) Ofp ,(eT) = coR* + 0(%) +O(RUV?) + (Y Inl'™) O(RU¥)
neZ~{0}

. P2 R_2 1/2 k
= «oR? + 0( ) + O(RUY2) + O(RUF),

where we have used the bound (4.12) for n = 0, and where we set A =2+ ¢
to ensure convergence of the infinite series. Setting k& = % + 2¢ ensures (5.7),

and setting the two error terms equal to each other gives U = REFT , which also
ensures that that last term in (5.1) is negligible. Thus (5.9) becomes

Ofr (g = coR? + 0(R2—1/(%+2s)),

completing the proof. OJ

Remark 5.2. 1. As before, any improvement in the dependence on n, of
the bound (G1/2), would lead to a corresponding improvement in the
error estimate. For I' = SL,(Z) and principal congruence subgroups, this
improvement leads to an error estimate O(R%“).

2. We do not prove a version of Theorem 5. for lattices for which the
twisted Eisenstein series has nontrivial poles. If such poles s; existed,
in performing the contour shift argument, one would need to analyze the
sum Y, .z Res|s=s, E;i (g.5),,  As far as we are aware, this series is only
known to be summable in the sense of distributions, and thus analyzing it
leads to technical issues we prefer not to enter into.

3. 'The assumption —Id € I' ensured that we only need G(1/2) for n even,
which is the context in which it was proved in [MS]. We are not aware of
a proof of (G1/2) in the literature for n odd.

For the proof of Theorem 2.6 we will need another construction which
interestingly is also due to Selberg, see [Mon, Chap. 1, §2].

Proposition 5.3. For each interval J C R and each V € N there are
trigonometric polynomials P~ = P;‘fv such that

(1) for all x € R,
P(x) < xs(x) < P*(x)

(where yj is the indicator function of J);
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(2) the degree of P¥ is at most V;

(3) for each 0 < |k| <V, the k-th Fourier coefficient satisfies | P ;| <« %;
and

@ [(PE)o—(F7)o| < 2.

We now state a more detailed version of the second part of Theorem 2.6, for
counting in a sector.

Theorem 5.4. Suppose T" is a non-uniform lattice in G, Y = T'v is a discrete
orbit corresponding to the i-th cusp, and suppose that for each n, E;i(z,s), has
trivial residual spectrum. Suppose also that —Id € T'. Let J C R be an interval
of length |J| <2m, let S ={re? :0<r<1,60¢eJ}, and let Cy,s =
Then

L
27 covol(I") *

(5.10) ¥ N RS| = cy,sR? + O(RY),

where the implicit constant depends on J.

Proof. We follow the same steps with the same notations, but now we introduce
an additional approximation parameter V, and let p*(V?(6) be approximations
of the indicator function y; of J, namely they will satisfy

(5.11) Vs eR/2nZ, p~V)(0) < xs(8) < p*(0),
so that rel? — pEM @)Y+ () are approximations of the indicator function
of S. Then we set

+ 0y _ +() +w) (I
Euyre®) = p* V@) y*O(2).

so that

R2
(5.12) Orgpy @D IV NRS| <O+ (1) + O(775)-

U2
As before to lighten notation we omit the superscripts for upper and lower bounds.
Using (3.14) we have

1 s
_— 5 ) . S\ ps
Ofr.u.v(8T) 7 HEEZ P—n,v /R ) W) (5)E; (g, Z)HR ds,

(8)=c

where p, is the nth Fourier coefficient of p(V) and o > 2.

For each n we perform a contour shift to shift the integral to the line
{Re(s) = 1}, justifying it with Proposition 4.2. By our assumption on I', the
only residue co(U, V) that we need to take into account occurs for n = 0 at
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s = 2. Setting co = #J)l(l‘) the residue satisfies
1. /]
(513) C()—C()(U, V) =0|—=+ Pov ——1 |-
U 2

Motivated by this, for the functions p*(Y) we use the polynomials Pj'fV of
Proposition 5.3 with U = V. With this choice, using item (4) of Proposition 5.3,
(5.13) becomes

co—coU,V) = 0(5),

and we get a bound

S nllpayl < Y Inl

nez 0<|n|<U

1

—| < U

n

We now repeat the arguments in Step 2 of the proof of Theorem 4.1 to obtain

f \I'(U)(S)Ei(g, 5) RSds « |n|RUZ.
Re(s)=1 2/n

Note the explicit dependence on n which arises by using (G1/2) in (4.11).
Collecting estimates we get

2

Oy (8T) = coR* + 0(%) + O(RU%),

and equating the two error terms and plugging into (5.12) leads easily to (5.10).
O

5.2. Counting in well-rounded sets. In the present section we will prove
Theorem 2.7, using an argument based on a general lattice point counting result.
In order to state it, we recall the following:

Definition 5.5 (|[GN]). Let G be a connected Lie group with Haar measure mg .
Assume {G,} C G is a family of bounded Borel sets of positive measure such
that mg (G;) — oo as t — oo. Let O, C G be the image of a ball of radius 7
(with respect to the Cartan—Killing norm) in the Lie algebra under the exponential
map. Denote

G () = 0,60, = | J uGiv., Gr(p= ()] uGv.

u,ve® u,ve®
n n

The family {G,} is Lipschitz well-rounded if there exist positive c, g,y such
that for every O < n <o and ¢ > tg,

ma (G ) < (1 +cn) mg (G, (n)) -
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Theorem 5.6 ([GN]). Let G be any connected almost simple non-compact Lie
group (e.g., SLa(R)), and let {G,} be a Lipschitz well-rounded family of subsets
of G. Let T be a lattice in G, and let mg be Haar measure on G, normalized
so that covol(I') = 1. Define the corresponding averaging operators

1
ma(Gy)

Suppose the B, satisfy the following (operator-norm) bound:

Be(f)(x) = /G fg™x)dma(g), f € LA(G/T).

2 "L%(G/I‘) <Cmg(Gy)™ .
Then the lattice point counting problem in G, has the effective solution

I’ NG|

— —~FmeTT
mg(G;) L+ 0lms(Go) ).

The proof of Theorem 2.7 proceeds by reducing the problem of counting points
in the orbit I'v lying in bounded subsets of the plane, to counting lattice points in
suitable bounded domains in the group G = SL;(R). The domains constructed in
SL,(R) bijectively cover the domains in the plane, under the orbit map g +— gv,
and will depend non-trivially on the orbit under consideration, and not just on I".

et’2 0
a; = 0 3—1/2 .

Let v € R?~{0} and use polar coordinates in the plane to write g = rg,a,, where
v = ge; =rg,d;, e = ev/?rg e;. The stability group of v is N8 = gNg~!, and
for any ¢, x and 6,

In this section we write

_ _ 1
(5.14)  ro(garg ") (gnxg ") (v) = rogase; = ' *rov = €2 ry g ey .

This gives a bijective parameterization of R?~{0} by R x [0,2x), with each pair
(t,0) € R x [0,27) determining a unique vector rpga e; = e'/2rgv in R2~ {0}.
Since R2~{0} = G/N¥, we conclude that G = KA% N, and this decomposition
gives unique coordinates to each point in G. Note however that this is not an
Iwasawa decomposition, the latter being given by G = K8 A8 N¢&,

Let us denote

Apas = 10158 £1 <6}y Ny =10s 1 X1 £% € %)

and Kp, 9, ={rg:0: <6 <6,}.
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Let D C R? be a compact set in the Euclidean plane given in polar coordinates
by
D = {p(cosf,sinf) : 61, 0=<p=<pH))}

where I = [0;, 6;] C [0,2x] is an interval of angles contained in the unit circle,
and p(0) is a positive Lipschitz continuous function on the interval /. The set
D can also be written in the form

D = {rpae; : 0 €1, t<2logp(f)} U{0}.

Let b’ > 0 be such that I'v contains no points of norm less than b’. For any
T > 1 consider as before the dilated set 7-D = {Tx : x € D}, and also the set

Dr = {rgase, : 01, 2logh’ <t <2log(Tp())}.

Then Dy =T - D ~ B(0,b’), and hence [TvN Dy|=|TvNT-D].

We will now define bounded domains D 7 C G which bijectively cover Dr.
Fix a positive number xo = xo(g) so that the set N&(xo) = {gnxg™" : 0 < x < xo}
is a fundamental domain for the subgroup I' N N& = Z in the group N8 = R.
For each 0 € I define

/
b <t <2log To(6)

ol =~ o]l

and with respect to the decomposition G = KA N¢, define

J(T,0) = {t eR : 2log } = [t1,22(T, 0)]

Dr={ro_g,gaig™ : 0 cl,t €J(T,0))} NE(x).

Then, as the reader may verify using (5.14), the orbit map G — R?, g > gv,
restricted to I'N D 7, is a bijection with its image 'vN D7, and as a consequence
we obtain:

Lemma 5.7. [TvNT-D|=|T'nDr|.

To complete the proof of Theorem 2.7, it remains to prove that the fam-
ily (D7} is Lipschitz well-rounded. It will be convenient to use the following
two facts.

We will need the following result:

Lemma 5.8 (see [GN]). If {G,} is a Lipschitz well-rounded family of subsets
of G, then for each g,h € G, so are the families {gG;}, {G.:g} and {gG.h}.
Furthermore the corresponding constants c,ty,no are bounded above and away
from zero, as g varies on a compact set Q in G.
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It therefore suffices to prove that the sets
3Tg — {rg_gvga,nx 0el,teJ(T0),0<x< xo}

are Lipschitz well-rounded. Recalling that g = rg,a;, and setting T = e, we
have
Drg=0C = {roarse,ny : 0 €1,t € J(e",0),0<x < xp).

The Iwasawa coordinates K x A x N — G given by (k,a,n) > kan satisfy the
following Lipschitz property, established in [HoN, Prop. 4.4]. For every fixed
So € R, there exist C; = C1(Sp) > 0 and n; = n1(Sp) > 0, such that for all 6,
all x with 0 <x <xp, and all t > Sy, 0 <n < n;:

(5.15) OnrgarnxOn C Ko—cyp,0+C1nAr—Cin.e+CinNx—Cinx+Cyn -

Let So = 2logh’, let C; = C1(So), and let C = C1L, where L is Lipschitz
constant of the function p. Finally for

< min 7}_1_92—91 x_o
" iC’4C ac|’

let

W=(z, 1) = {kan : k € Ko, 1cn.9,-Cn: @ € Ayy1Cnazer.9)—Cno 1 € Nenxo—Cn) -

Applying (5.15) to g € W™ (z,n) it follows readily that W~ (z,n) C C_(n). A
straightforward verification, using the explicit form of Haar measure in Iwasawa
coordinates and the fact that p is Lipschitz, shows that mg(W™(z,n)) >
(1 —c1n) - mg(C;), for a suitable ¢; > 0. In the other direction, note that
C;t(n) = 0,C, 0, is contained in

W (z,n) = {kan : k € Kg,—cn,0,+Cns @ € At;~Cnt2(e7,0)+Cr »

ne N—Cn,xo+Cn}’

where for 6 € [0, — Cn, 6:] U [62, 6, + Cn] we define t2(e”, 8) = max(t2(e’, 61),
fa(e’, 92)). Again a similar direct verification shows that mg(W™(1,n)) <
(1 4+ ¢2n) - mg(Cy). The Lipschitz well-roundedness of the family C; follows,
and this completes the proof of Theorem 2.7. O

Remark 5.9. (1) Let us note that an error estimate established for the count in
the dilates R-S of any given figure (in the plane, say), immediately implies
an error estimate for the count in shells of shrinking width, namely with
the sets R-S ~(R— R™¥)-S for a suitable range of positive parameters
«. Similarly it is also possible to intersect shells with sectors of shrinking



Effective counting for lattice orbits 295

angle, namely with sets {r(cos 0,sinf) : 6 € [0y — R‘B,Go],r = ]R+}, for a
suitable range of positive parameters S, and obtain an effective estimate.
This follows from the fact that Theorem 5.6 allows counting in a variable
family of domains, provided that their Lipschitz well-roundedness parameters
are controlled.

(2) A straightforward modification of the proof of Theorem 2.7 applies to
counting in discrete orbits of non-uniform lattices in SL,(C) acting linearly
on C2, as well as discrete orbits of non-uniform lattices in SO?, (n,1) acting
linearly on R”*!. This is based on Theorem 5.6 and the Lipchitz property
of the Iwasawa decomposition, established in [HoN] for any non-exceptional
group of real rank one.

A. The growth estimate (G1) for general n, and the function (¢)

An important input to our argument is the estimate (G1) which is used to
bound the average growth of the Eisenstein series along vertical lines Re(s) = o,
for ¢ € [1/2,1]. This is a crucial input to our method, see condition (ii) of
Proposition 4.2. This growth estimate was proved by Selberg for n = 0 but as
far as we are aware, does not appear in the literature for the twisted Eisenstein
series for general n. In this appendix we close this gap in the literature, and also
provide estimates of the dependence of the implicit constant on ». Many of our
arguments are based on ideas in [CS, Sar2, Iwa, MS].

We first introduce standard notation. Let ®(s) = (¢i; (s))l.j be the constant
term matrix as in (3.10), let (s;) denote all the poles of the functions ¢;; in the
interval [1/2,1], let g = gr > 0 be a real number specified by Selberg (see [Sel2,
p. 655]) and set

(A.1) Wo(s) = det d(s), W*(s) =q>~ 1]‘[ T Wy(s),

s—1+s
w 1+it
w* \ 2 '

The function w : R — R thus defined is the function appearing in Theorem 3.7.
It satisfies w(t) > 1 for all ¢ (see [Sel2, p. 656]).

w(t)=1-

Theorem A.l. For any non-uniform lattice I in G, the twisted Eisenstein series
Ei(:)n corresponding to the i-th cusp as in (3.7) satisfies

(A.2) Res > % lt]| = n| +1 = Ei(z,5)2n < |t| Vo(t) (Where t = Im(s)),

where implicit constants depend on T" and z (but not on n).
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Proof. We will divide the proof into a series of steps. Throughout the proof we

will write '

o =Re(s), t=Im(s), and e=o0 — X
and will assume o € [3,32], which entails no loss of generality as E;(z,")2n
is uniformly bounded on {s : Re(s) > %} Implicit constants in the <« and
O notation depend on I" and z (and not on n or o). Since some of our arguments
will depend on the dependence of the Eisenstein series on the variable z, from

now on we will write zy instead of z and consider it as a fixed element of H.

Step 1. Bounding ® and the T -factor. Let ®(s) = (¢;;(s)), ; be the constant
term matrix as in (3.10). By [Sel2, p. 655], ® is uniformly bounded as long as
% <o < % and |t| > 1. Following [Kub, Chapter 6], define

Dop(s) = (‘Pij(S)Zn),-,j by  ®2,(s) = (=1)" Bu(s)P(s),

where ,

Bn(s) = 1 —%sr)(s i)
Then
(A.3) ] =1, 0 =1 = [Ba(s)| =1,
with equality for o = 1, and
(A4) t| > |n] = 1-|Bus(s)]* K e.

To see this, since B,(s) = B_,(s) we can assume that n > 0. Using the recurrence
formula I'(z + 1) = zI'(z) one obtains

O TG-m*(s—D...s—-n)" A s—k
B3 B = T A= DTG —np —E[m-

Since o > 5, |s —k| < |s +k—1| with equality when ¢ = % This implies (A.3).

For (A4), set zg =s +k—1=k—1 + &+ ir. Plugging into (A.5) gives

n
7%+ 2¢|? Zk|?> — 4eRe(zs k) + 462
’Bn(S)|2 1_[ Sk 1_[ (\ s I (2.5‘ )
ke1 Zs,k k=1 |Zs,k|
n N
Re(zs %) —e) ( 2k — 1)
= —Emk T ) 1—2e——_}).
[1 ( |Zs.k |2 [1 |zs |

k=1
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Write
2k — 1 - 5
flk) = o *° that F(n) = Y log(l —2ef(k)) = log(|B(s)I?).
s k=1

Let Kk < n and [t| = n, then f(k) < :—2 Taking a second order Taylor

approximation for x — log(l —x) we have

—log(1 —2&f(k)) = 2&f (k) + O(e2 f(k)?),
and hence

—F(n) < Y ef (k) + & f(k)> <& -}Z—} L e.
k=1 k=1

Now by second order Taylor approximation for x — 1 —e* we get
L= [Bu(s)P =1 —e"™ <« —F(n) e,

and we have shown (A.4).

Step 2. Regularized Eisenstein Series. We choose a parameter Y depending
on zo by

(A.6) Y =1+ maxIm(s;'z),
J
and define a regularized Eisenstein series
(A.7)
: Y T B 1-s if y; =Im(s;'z) > Y
E,-Y(Z,S)zn _ Ei(z,8)2n 6ljyj ©ij (8)2n Yj for some J, J
Ei(z,8)2n otherwise.

(note that the condition y; > Y can occur for at most one index ;). Let
E¥(z,8)2n = (E{(z,s)g,,,...,E,f(z,s)z,g)tr. Then (see, e.g., [Sar2, p. 727]) for
o> %, t # 0 we have the following inner product formula, which is known as
the Maass—Selberg relation:

—_—r
; EY(2,5)2nEY (2,8)2n dur(z)
r

1

e — .
= o (¥ o 020()®2() ¥ ) +

Bon(s) Y2 — By (5)¥ 20
2it '
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Step 3. Trace of Maass—Selberg Relations.

2 2
Let ”EJY(, $)2n ”2 = er |EJ¥(Z,S)2n\ dur(z), ||q>2n(s)”2 = Zij |ij (s)2n|2, and
set Wa,(s) = det ®2,(s). Then for o > 1, ¢ # 0 we have

(A.8) Z||EY Sanl; = E(Y“ ||<1>2n(s)||2 %)

j=1
+ 21t ( 2" Z @ii($)on — Y~ —2it Zﬁau(s)mz)

Indeed, this is a matrix computation that involves taking the trace of the inner
product formula. See [Iwa, p. 140] for the computation in case n = 0.

Step 4. Bounds on traces and norms. For n =0 and |7| > 1 we have
(A9) k=26 < ew@),

and for n e N, g € [%, %] and |t| > n we also have

(A.10) k —[|®2n(5)|* K e(2).

Indeed, (A.9) is proved in [Sel2, p. 657], and since

124 ($)1> = [Ba(s) P D)%,

(A.10) follows from (A.9), the boundedness of &, and (A.4).
As to L? bounds, for n € Z and o € [1,2] we have
2
(A1) |EY (. 9)2n], < 0),

where the implicit constant depends also on Y, and hence on zy. For this we
use Y*2¢ =14 Oy(e). Using (A.3) we have that ®,,(s) is uniformly bounded
for o € [3,3], and hence the right hand summand in (A.8) is bounded. For the
left hand summand, we have by (A.10)

1 1
55 (Y2 =Y @2,(9)[*) = = (k = [ @22(9)]I* + Oy (¢)) = Oy (@ (1) + 1).

Combining bounds and recalling w(¢) > 1 gives (A.11) for o > -;13 Since the
implicit constant in (A.11) is independent of ¢ we can take a limit and get the

same bound for o = %

Step 5. Convolution and point-pair invariant. For y = (¢4 5) €', n € Z5
and z € H, let
(cz + d)?n

)2" — :
lcz + d|?»

ey(z
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Say a function f on H is of weight 2n if it transforms like f(yz) = &,(2)*" f(z),
and denote the automorphic functions, whose restriction to a Dirichlet fundamental
domain for ' on H is in L?(Xr,ur), by L?(I',2n). For § € (0,1), let x5 be
the indicator function of [0,8], and for z,w € H define

u(z, w) __li.:_%
T 4Imz Imw

(w _ﬂZh

Hez,w) =1 o=

k(z, w) = kg(z, w) =H(z, w)xs(u(z, w)),

K(z,w) = Ks(z,w) = Zkg(z, yw)e, (w)*".
yel’

Functions such as k are called point pair invariants of weight 2n. They satisfy
(see [Hej, Vol. 1, Prop. 2.11, p. 359]) the following transformation rules:

H(yz,yw) = &, (2)*" H(z, w)ey () ™",
k(yz,yw) = &y(2)*"k(z, w)e, (w) 2",

The operator Lj defined by
(A.12) Lg f(z) = / k(z,w) f(w)dw = / K(z,w) f(w)dw,
H I'\H

is a bounded self-adjoint operator on L?(T,2n), see [Hej, Vol. 1, Prop 2.13,
p. 363]. Let A be as in (2.1), and let

d
Apu(z) = Au(z) + iny%(z) (where z = x +1iy)
be the weighted Laplacian. Then the Eisenstein series z — E;(z,5)2, is a
A,y -eigenfunction and therefore (see [Hej, Vol. 1, Prop. 2.14, p. 364]) is an

eigenfunction for Ly, that is there is h;,s(s) such that for all z € H,
LiE;(z,8)2n = hi,n,B(S)Ei (z,8)2n -

Step 6. Bounding the eigenvalue. The eigenvalue h; , s(s) satisfies a bound

13 1
A.13 =1, |t| = 1, 6 = —— h; —_—
w13 oelz 3] Mzl 8= = sl > o
Indeed, the bound (A.13) is proved in [MS, Lemma 2.1] for 0 = %, and the

proof goes through for general o € [1, 2].
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Step 7. Pointwise bounds. We now note that our choice (A.6) implies that
(A.14) Lk E} (zo,8)2n = Lk Ei(20,5)2n.

Indeed, considering (A.7) and the definitions of § and u we see that ElY (w, $)2n
and E;(w,s),, coincide for all w in the neighborhood of zy consisting of the
points for which the integrand in (A.12) is nonzero.

We now claim

(A.15) / |Ks(zo, w)|* dw < 8.
I'\H

Indeed, by [Hej, Vol. 1, Prop. 2.12b, p. 360] we have Kj(zgp,w) = Ks(w, zp).
Hence

(A.16) f | K, i o = [ Kol wiKoslom, e
'\H r\H

(A'—_l-z)[ ks(zo, w)Kg(w, zg)dw
H

- ; /H ks (Zo0, W)ks (w, y20)&y (20) " dw
< dw.
_; /H x5 (z0, w)) x5 (u(w, yz0))dw

To bound the sum on the right-hand side of (A.16), we note from [Iwa, p. 100]
that points zo which satisfy both u(w, yzg) <6 and u(zo, w) < § for some y, w,
also satisfy u(yzo, zo) < 48(§+1). By discreteness (see [Iwa, Cor. 2.12]), for fixed
zo and small enough §, the number of y for which this happens is bounded.
So the right-hand side of (A.16) is < [i; x5(u(zo, w))dw = [ x5(u(zo, w))dw,
where B is a hyperbolic ball of area <« §, as required.

To conclude the proof of (A.2), we apply Cauchy—Schwarz to find

(A.14) 1

|Ly E; (20, 8)2n| " = ] |LkEY (z0,5)2n]

By S| = e _ L
: " by s (5] |13 (S)
(A.13)
< |2 / Ky (o, WEY (5, $)as i
N\H
(A.11)
<P V) \/ f 1Ky (20, )2 dw
'\H

(A.13) (A.13)
&L Nt Vo) V8 K |t Volr). O
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