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Effective counting for discrete lattice orbits in the plane
via Eisenstein series

Claire Burrin, Amos Nevo, Rene Rühr and Barak Weiss

Abstract. In 1989 Veech showed that for the flat surface formed by gluing opposite
sides of two regular n-gons, the set Y C R2 of saddle connection holonomy vectors
satisfies a quadratic growth estimate |{y Y : ||y|| < R}\ ~ cyR2, and computed the

constant cy. In 1992 he recorded an observation of Sarnak that gives an error estimate

|{y e Y : ||><j| < R}\ cyR2 + O(Rï) in the asymptotics. Both Veech's proof of quadratic

growth, and Sarnak's error estimate, rely on the theory of Eisenstein series, and are valid
in the wider context of counting points in discrete orbits for the linear action of a lattice
in SL2(R) on the plane. In this paper we expose this technique and use it to obtain the

following results. For lattices T with trivial residual spectrum, we recover the error estimate

0(R 3), with a simpler proof. Extending this argument to more general shapes, and using
twisted Eisenstein series, for sectors Sa,p {re10 : r > 0, a < 6 < a + ß} we prove an

error estimate

|{y F : y e Sa.ß, M < *}| r2 + Oe(*S)-

For dilations of smooth star bodies R B,^ {re10 : 0 < r < R\j/(0)}, where R > 0 and

\j/ is smooth, we prove an estimate

\{y y : y R }| cy^R2 + 0^tE^R 1
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1. Introduction

We recall the Gauss circle problem, which aims to provide an estimate for
the cardinality \B n Z2| of the intersection of a large ball B in the plane with
the integer lattice. The estimate

\B{0,R) nZ2| txR2 + 0{R)

is easy to prove and is attributed to Gauss (here B(x, r) c R2 is the Euclidean

ball of radius r around x). There have been several improvements to the error
term and this is still the topic of intense investigation (see [IKKN] for a recent

survey). A more general problem in the same vein aims to replace the set Z2

with another discrete set Y, and replace large balls B with more general sets. For

more general sets Y, the first step is establishing quadratic growth, i.e., showing

15(0, R) fi y I — cy R2 + o(R2) for some cy > 0, and this can already be very
challenging. In cases where quadratic growth has been established, the natural

next questions are to evaluate the quadratic growth constant cy, and to obtain

error estimates. A well-studied example is when Y is the set of primitive points
in Z2, which is a discrete orbit under the group SL2(Z). This paper is concerned

with the case in which Y is a discrete orbit for a lattice in G SL2(R) acting

on the plane. An important contribution to the study of these discrete orbits

was made by Veech in a celebrated 1989 paper [Veel], and in the subsequent

papers [Vee2, Vee3]. We begin by recalling the context of Veech's work.

A translation surface is a compact oriented surface equipped with a translation

structure. Since the main results of this paper will not involve translation surfaces,

we omit the precise definitions, referring the interested reader to the surveys

[Vor, MT, Zor], For any translation surface M, the collection of holonomy
vectors of saddle connections is a discrete set Ym in R2, consisting of planar
holonomies of certain straightline paths on M. The group G acts on a moduli

space of translation surfaces, as well as on the plane by linear transformations,

satisfying an equivariance property Ysm g Ym For any M, its stabilizer group
(or Veech group) is

{g e G : gM M).

If Tm is a lattice in G, i.e., is discrete and of finite covolume, then M is called

a lattice surface (or Veech surface). These lattices are non-uniform and thus have

discrete orbits in the plane. Here is a summary of the results of [Veel] which

are relevant to this paper.

Theorem 1.1 (Veech 1989). (a) The surfaces Mn obtained by gluing sides in

two copies of a regular n -gon are lattice surfaces, and the corresponding
lattice is non-arithmetic unless n {3,4,6}.



Effective counting for lattice orbits 261

(b) For lattice surfaces, Ym is a finite union of Ym -orbits.

(c) Discrete orbits of lattices in G acting on the plane, satisfy quadratic growth.
In particular, the sets Ym satisfy quadratic growth when M is a lattice

surface.

(d) The quadratic growth constants for the surfaces Mn in (a) are computed.

Veech proved statement (c) by reducing the problem to previous work in
analytic number theory. We will review this below in §3. He also computed

quadratic growth constants for the examples in statement (a), and in [Vee2],

computed quadratic growth constants for more examples. Veech revisited statement

(c) in [Vee3], where he introduced a number of techniques which make it possible
to establish quadratic growth in more general situations, and compute quadratic

growth constants. Among other things he also reproved (c) by ergodic methods,

in particular using an ergodic-theoretic tool of Eskin and McMullen [EMc],
Another ergodic-theoretic proof of (c) was given by Gutkin and Judge in [GJ],
also using ideas of [EMc], In subsequent work, Eskin and Masur [EM] improved
on Veech [Vee3] and proved that almost every translation M (with respect to the

natural measures on the moduli spaces of translation surfaces) satisfies quadratic

growth. Their arguments are also ergodic-theoretic and rely on an ergodic theorem

appearing in [Nev],
In the presence of some spectral estimates, it is possible to improve on

quadratic growth by establishing effective quadratic growth, by which we mean

proving an error term of the form

for some <5 > 0. In [NRW], relying on spectral estimates established in [AGY, AG],
such an error bound was given for almost every translation surface. In particular,
the results of [NRW] imply effective quadratic growth for Veech surfaces. However
the constant S appearing in [NRW] is far from optimal, and a much better error
estimate for the case of lattice surfaces has long been known to experts. In fact,

already in [Vee2, Remark 1.12], Veech included the remark (which he attributed

to Sarnak) that work of Selberg and Good can be used to prove to an estimate

of the form

where Y is the orbit of tempered lattice in G (see §2). See also [RR, Tru] for
related results.

An initial goal of this paper was to provide an exposition of the method

sketched in [Vee2, Remark 1.12], specifically for the benefit of those who might

(1.1) 15(0, R) n Y\ CYR2 + 0(R2~s)

(1.2) 15(0, R)n Y\ cYR2 + 0(5t),
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be familiar with ergodic-theoretic counting techniques but not with the techniques
used in analytic number theory. While studying this topic, the authors obtained
several extensions and improvements. Thus the paper acquired an additional goal
of proving these new results; however we believe that a survey on these matters
has not lost its relevance, and we chose to write our paper on the level of a tutorial.

The structure of the paper is as follows. In §2 we define the objects which will
be the focus of our discussion and state our results, comparing our new results

with those which were obtained by previous authors (or could be easily deduced

from their work). Specifically we define the class of tempered lattices and the

larger class of lattices with trivial residual spectrum, which are the subgroups
for which the relevant spectral estimates are as strong as one could hope for.

As we will explain, our improvements concern counting points in more general

shapes than Euclidean balls; e.g., sectors or dilates of star-shaped bodies. In §3

we define Eisenstein series and collect some results about them. We also explain
how Veech obtained statement (c) of Theorem 1.1. In §4 we prove the bound

(1.2) (see Theorem 2.4) for counting in balls, and for lattices with trivial residual

spectrum. Our work bypasses difficult work of Good [Goo] by taking advantage
of the fact that in our particular setting, counting can be achieved by making a

contour shift of a truncated Eisenstein series to the critical line, for a general
lattice. This strategy is classical in analytical number theory (see, e.g., [Dav]),
and indeed goes back to the proof of the Prime Number Theorem, but in our
situation requires an extra averaging argument, see Proposition 4.2. In §5 we use

this idea to prove our improvements. Our analysis is further influenced by the

work of Sarnak [Sar4], Although §5 is the one containing the proof of the new
results, the proofs use the ideas involved in proving earlier results, and so we do

not recommend starting with §5. The results of §4 and §5 both rely on reducing

counting problems to fundamental estimates about Eisenstein series, which are

collected in §3, and whose proofs we do not explain.

2. Definitions and statement of results

In this section we set our notation, recall certain preliminary results, and state

our results.

2.1. Some actions and subgroups of G SL2OR). Recall that G acts on the

left on the upper half-plane H {z e C : Im(z) > 0} and on the plane R2

respectively, by the rules

(a and (» »1 M (-' + M
\c dl cz + d \c dI \y I \cx + dy I
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The G-action on H preserves the hyperbolic metric ds2 dx2+dy2 ancj hence

the hyperbolic area form Let

K — S02(M) — {rg : 9 e [0,27t]}, where re (C°Sf
1 ' \sin0 cosy /

Let i V—f so that K is the stabilizer of i. Also let || || be the Euclidean

norm on M2; it is also preserved by K. Let ei (1,0) so that the stabilizer

of e! is

i A
N — {us : s e K}, where us I I.

Let T c G be a discrete subgroup. It then acts properly discontinuously on H. We

call T a lattice if there is a finite G -invariant measure on G/ F or equivalently,
a fundamental domain for the T -action on EI of finite hyperbolic area. If there is

a compact fundamental domain then T is called cocompact or uniform. If T is

a lattice we write At H/T, denote the G-invariant measure on At induced

by the hyperbolic area form by jiy and write covol(r) jXy(Xy) •

A subgroup of F is called maximal unipotent if it is conjugate (in G to the

group
N0 {un : n e Z}

and is not properly contained in a subgroup conjugate to N0. For a lattice

T c G, the quotient H/T has a finite number of topological ends called cusps.
The number of cusps is zero if and only if T is cocompact, and in the non-uniform

case, there is a bijection between cusps and conjugacy classes (in F of maximal

unipotent subgroups. For a lattice F and v e M2 \ {0}, the orbit Tu is discrete

if and only if the stabilizer of v in T is a maximal unipotent group, and we
refer to the conjugacy class of the stabilizer of v as the cusp corresponding to

Tu. In particular a cocompact lattice has no discrete orbits in its action on !,2.
Clearly Tu is discrete if and only if r(tu) tTv is discrete for all t f 0, and

hence the number of discrete orbits, considered up to dilation, is the same as the

number of cusps. We are interested in counting points in discrete orbits for the

T-action on I2.

Warning. In the literature, one often works with PSL2(M) G/{±Id}, the

group of orientation-preserving isometries of HI. Since we are interested in point
sets in the plane, which need not be invariant under the action of —Id, it will
be more natural for us to work with G. This discrepancy may result in minor
deviations with other texts; there will be no discrepancy whenever F contains

-Id, and for many counting problems we can reduce to this situation as follows:
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Proposition 2.1. Let n : G -> PSL2(M) be the natural projection, and suppose
T is a lattice in G, which does not contain —Id. Let r(±) so
that r(±) is a degree 2 central extension of F. Then either F^u Ft' or
F^c Tt U — Tu (a disjoint union).

Proof. Since —Id and T generate T(±), we have F(±)t Tu U — Tu. If this is
not a disjoint union then there is m Ft for which —u e Tu, say u y\v and

—u y2v. Then

-v -yf\u) yfH-u) yfly2v

so that Tu — —ru.

Let A be the Laplace-Beltrami differential operator on H, which is expressed

in coordinates as

an Afix+ly)^(Lf+ LQ.
It is not hard to check that A is G -invariant and hence descends to a well-defined
differential operator on Ar which we continue to denote by A. The eigenvectors
for A which belong to L2 {Xr./rr) are called Maass forms. The corresponding
eigenvalues satisfy

0 Ao < Ai < A2 < • •

and the nontrivial small eigenvalues are those satisfying A,• e (0,

Definition 2.2. We say that T is tempered if it has no nontrivial small eigenvalues.

Examples of tempered subgroups are the Veech groups of the surfaces Mn

of Theorem 1.1(1): Veech showed that they are (2,h,oo) Schwarz triangle groups,
these triangle groups were shown to be tempered by Sarnak [Sari, §3], and all
triangle groups were shown to be tempered by Zograf [Zog], All but finitely
many non-uniform triangle groups arise as Veech groups of lattice surfaces,

see [BM, Hoo, Wri],
Suppose r is a non-uniform lattice with k cusps, and for i — 1.... ,k choose

Si e G so that T- Fs,- contains Nq as a maximal unipotent subgroup, where

the groups SiNoSf1 are mutually nonconjugate maximal unipotent subgroups of
T. Let

I±No
T contains —Id,

N0 otherwise,

and set

K

(2.2) Ei(z,s) ^ Im(y'z)s, where y' ysi1,
ysA^\r:
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where z e H and the sum ranges over any collection of coset representatives.
Then £, is the Eisenstein series corresponding to the i -th cusp of T. It will play
a major role in our discussion and will be slowly introduced in §3. As we will
see, for each fixed i and z, the sum (2.2), considered as a map s h» £j(z, s),
converges for Refv) > 1 and has a meromorphic continuation to the complex
plane (for Re(s) < 1, the notation £) (z, .v) refers to the analytic continuation).
We use this fact for the following important definition:

Definition 2.3. Let T,k, i be as above. The residual spectrum of Ej(z,s) is the

set of j e (1/2, 1) for which s h* £) (z, .s) has a pole at s. If there are no such

poles we say that the residual spectrum of Ej(z,s) is trivial.

We remark that the choice of z in the above definition is unimportant as all
functions Ei(z, •) have poles at the same values of s, see [Iwa, Ihm. 6.10].

If Ei(z, •) has a pole at s e (1/2,1) then À has an eigenvalue A s(l — s) e

(0,1/4). Thus, if T is tempered then all of its cusps have trivial residual spectrum.
With regard to the converse, consider for instance principal congruence groups
(the principal congruence group of level n is the group of all matrices in SL2(Z)
congruent to Id mod n In this case it is known that the Eisenstein series

associated to any cusp for any congruence group has trivial residual spectrum
(see [Iwa, Thm. 11.3]), but the question of whether all of these group are tempered
is a famous longstanding open question posed by Selberg.

With this terminology we will prove:

Theorem 2.4. Suppose T is a nonuniform lattice in G, Y — Tu is a discrete

orbit for which the corresponding Eisenstein series has trivial residual spectrum.
Then there is cy > 0 such that

(2.3) |5(0, R)nT| =cYR2 + 0(R§).

Moreover, the asymptotic (2.3) holds when one replaces 5(0, R) with the dilate
R E of any centered ellipse E (with the constant cy and the implicit constant
in the O-notation depending on E).

In this result one also obtains a precise formula for the quadratic growth
constant cy, and an asymptotic expansion for the error in case the residual

spectrum is not trivial, with one term for every pole at s e (j, l). See Theorem 4.1.

The error estimate in (2.3) is not new. In fact, as we saw in (1.2), Sarnak and

Veech could prove it already in 1993. However the proof we will give below will
be simpler than the proof outlined in [Vee2], which relies on difficult work of
Good concerning counting results in both M 2 and in H. See §2.3 for a more
detailed comparison with Good's work.
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An interesting open question is whether the error term in Theorem 2.4 is

optimal. In this regard, note that for T SL2(Z), the error term in (1.2) can be

improved to o(R) (see [HN]); the same is true for congruence groups. However

we are not aware of any non-arithmetic non-uniform lattices for which a bound

better than that of (1.2) is known.

2.2. Counting in more general domains. We turn to new results. In these

results we strive to take sets more general than Euclidean balls in the counting
problem, while still obtaining a good bound for the error. We will need a further
definition.

For each y e G, we set cY c, dY d where y (° bd). Note that cY,dY

only depend on the coset Ny. For each ne TL, and for T, T,-, s,, A)) as in the

discussion preceding (2.2), define a twisted Eisenstein series

This is sometimes also referred to as the weight 2n Eisenstein series. Note that

this definition makes sense for any m in place of 2n but we are only interested

in the even values. Once again it is true that s h» E) (z, .v)2„ has a meromorphic
continuation to the entire complex plane, whose poles do not depend on z, and

we generalize Definition 2.3 as follows:

Definition 2.5. For i,n as above, the residual spectrum are those .v e (1/2,1)
for which £;(z,-)2„ has a pole at s. If there are no such s we say the residual

spectrum of £) (z, ,v)2« is trivial.

In particular, as before, Once again it is true that E,(z,s)2m has finitely many
poles and a tempered group T has trivial residual spectrum for each i and n.

Let S C M2 be a bounded closed set. We say that S is star shaped at 0 if
it can be written as

for 9 M- p(0) a non-negative bounded 2tt-periodic function of compact support.
We say that S is a sector if it is of the above form with the function p the

indicator of a nondegenerate subinterval. We say S is a smooth star shape if it
is of the above form and p is smooth and everywhere positive. We write R S

for the dilated set {Rx : x e S}.
With these notations we have:

(2.4) where y' — yst 1.

S {r(cos 6, sin 9) : 6 e [0,2n],r e [0, p(0)]}
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Theorem 2.6. Suppose T is a non-uniform lattice in G containing —Id, Y Tu
is a discrete orbit corresponding to the i -th cusp, and suppose that for each n,
Ei(z,s)2n has trivial residual spectrum. Then:

• If S is a smooth star shape then there is cy,s > 0 such that for every s > 0,

\Y HR-S\= Cy,SR2 + 0(R1r+£).

• If S is a sector then there is cy,s > 0 such that

(2.5) \Y DR-S\ cy,sR2 + 0(R$);

moreover, the asymptotic (2.5) is also valid if one replaces S with a sector
in a centered ellipse (i.e. the image of a sector under an invertible linear
map), with implicit constants depending also on the ellipse.

In the above results, the quadratic growth constants can be written down

explicitly and the implicit constants depend on the sets S.
The fact that the error terms in Theorem 2.6 are worse than those in

Theorem 2.4 is an artifact of our method: when working in Iwasawa coordinates

(see §2.3) the functions which arise when counting in balls have a much simpler
form. In particular, their analysis does not require bounds on the twisted Eisenstein
series. We do not know whether one should expect the true error asymptotics for
balls to be significantly different from those of smooth star shaped domains.

Regarding counting in sectors, as is often the case, we incur a price for

approximating indicator functions by smooth functions. Thus it would not be

surprising if the optimal error terms for sectors are worse than those for balls.

2.3. Relation to the work of Good. Let G — KAN be the Iwasawa decomposition

of G, that is K,A,N are respectively the subgroup of orthogonal, diagonal,
and unipotent upper triangular matrices, and let T be a non-uniform lattice
normalized so that it contains No as a maximal unipotent subgroup. The counting
problem considered in Theorem 2.4 can be thought of as a counting problem in
the double coset space

6 (r n K)\ r/(r n N).

In fact, one can easily verify that

|rei n B(0, R)| |{[y] e 6 : llyeiH < R}|

|{[y] 6 6 : Im(y-1i) > 7?~2}|

|{(0 mod 2n,y,x mod 1) : [reayux] 6, y < /?}|,
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where ay — diag(y, y *) and the last identification relies on the Iwasawa

decomposition of G. Fix y > 0, and set

ICy — {(0 mod 2n,x mod 1) : [reaynx\ e 6}.

The character sums, for e Zj > 0,

S(m,n,y)= £ eimee2ninx

(d,x)e)Cy

indexed over the above Iwasawa double coset decomposition are a natural

generalization of the classical Kloosterman sums from number theory (which
appeared already in work of Poincaré about Fourier expansions of Eisenstein

series, see [Poi]). Note in particular that

|rei n B{0,R)\ ^ S(0,0, y).
ysR

In [Goo, Thm. 4], Good proved bounds on the asymptotic growth of sums of
various generalizations of Kloosterman sums as above, meaning over various
double coset decompositions of T in G. This corresponds to the problem we
have discussed above (counting for T -orbits in the plane) as well as other counting
problems such as T -orbits in H and in the space of geodesies. For the case of
the linear action on the plane, which is the one of interest here, Good obtains

£ £ eV* cm,„R2+C>m,„(*?),
y<R (6,x)eKy

where cm,„ >0 if and only if m n 0. The dependence of implicit constants

in the remainder term on m,n is however not worked out explicitly (and difficult
to trace over the 100 pages of build-up Good relies on to prove this asymptotic). If
it were, one would be able to deduce results similar to Theorem 2.6 from [Goo].

2.4. Counting in still more general (well-rounded) domains. A common
assumption in the theory of counting lattice points in a family of domains in a

Lie group is that of well-roundedness, introduced in [DRS] and [EMc]. In [GN]
this assumption was combined with an estimate of the spectral gap that arises in
the automorphic representation of G on Lq(G/T) to prove an effective estimate

for the lattice point count. We will show that the problem we consider, namely

counting points in discrete orbits for the linear action of a lattice on the plane,

can be reduced to the lattice point counting problem for domains in SL2(M).
This will allow us to count orbit points in more general sets in the plane using

just the existence of a spectral gap, but this additional generality compromises
the error estimate, leading to bounds which are inferior to the ones stated above.
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Thus the techniques we describe in this subsection are applicable in more general

situations, but lead to weaker bounds.

We will show:

Theorem 2.7. Let r be any non-uniform lattice in SL2(M), and Y Tv any
discrete orbit of F in R2 \ {0}. Let S C R2 be a star-shaped domain at 0 with

p(9) a non-negative piecewise Lipschitz function, and let R S be the dilation

of S by a factor of R. Then, for all s > 0

\Y DR-S\ Cy,sR2 + 0 (R"r+e)

where the implicit constants in the O-notation depend on r, Y, S and e, and
with c/r depending only on the spectral gap of the automorphic representation

of G on L^(G/T). In particular, if the lattice V is tempered, then we can set

qv j.
Note that Theorem 2.7 applies, in particular, to all convex sets with piecewise

Lipchitz boundary (containing the origin in their interior), and in particular, to
all convex polygons.

3. A bit of Eisenstein series

In this section we go into more details about our main actor, the Eisenstein

series introduced in (2.2). We refer the reader to [Kub, Hej, Ter, Sar2] for more
information.

3.1. Some sums and their relation to the counting function. For a non-uniform
lattice T, a discrete orbit Y Tu in the plane, g e G and s e C, we set

(3.1) E{g,s) E^v\g,s) £ MP2'.
uegVv

Note that in (2.2), (3.1) we introduce the notation E and £(r'") to denote two
different functions, one of which has an argument z e C and the other, g e G.
This ambiguity is common in the literature and is explained below, see (3.6). Our
first task will be to motivate this new definition, in the context of the counting
problem for points in Tu. For the moment we consider (3.1) as a formal sum,

postponing the discussion of convergence issues.

Warning (continued). In the literature, there are two conflicting conventions

regarding the definition of E(g,s). What is denoted E(g,s) in [Veel] is denoted
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E(g 1, s) in [Kub], We will follow Veech's convention, and we say more about

the source of this discrepancy below.

Let N(g, R) — |Z?(0, R) n gY\. Considering the measure £uegrv ^>u,

which is a Radon measure on M2 (since rv is discrete), and considering the

radial function f^(w) ||iü||~2,s, we have

where in the last equality we have written a Lebesgue-Stieltjes integral. Using
integration by parts (and recalling that convergence issues will be addressed

further below), we have

(3.2) E(g,s)=2sJ^^^-R^dR.
We now recall the definition of the Mellin transform and Mellin inversion, which

are multiplicative analogues of the Fourier transform and Fourier inversion. Recall

that a Schwartz function is a function M -* M which is infinitely differentiable and

for which all derivatives decay to zero at infinity faster than any power. We will
say that \fj : K+ ->B is a Schwartz function on M+ (0, oo) if f(x) x//(ex)

is a Schwartz function. The Mellin transform of a Schwartz function x// : M+ —>• M

is given by

rOO

(3.3) Mi> : C -> C, Mx/f(s) / \js(y)ys~1dy,
Jo

and Mellin inversion says that for o e E we have

(3.4) VOO y~sds.
jRe(s)=a

The above formulae follow immediately from the Fourier transform and Fourier
inversion formula, from which they are obtained by a change of variables

y ex. As we will explain below, under suitable conditions the formulae extend

to functions which are not Schwartz functions. For the moment we proceed

considering them as formal identities.

Comparing equations (3.2) and (3.3), and making a change of variables y
R~l, we see that is the Mellin transform of the function y m- N(g,y-1)
evaluated at 2s. Applying Mellin inversion we recover the counting function N
as

(3.5) N (g,R) ±-f ëlhllR2sds
2lrl URe(i)=CT s
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(this formal manipulation is given a precise meaning and justified in Corollary 3.3

below). The upshot of this discussion is that, at least formally, the counting function
which we are interested in has an integral representation in terms of the function

E(g, s). Furthermore, if we know (as will turn out to be the case) that s E(g, s)
is holomorphic or meromorphic, then the integral of (3.5) can be evaluated using
standard tools of complex analysis like contour shifts, residue computations, etc.

Using this, after justifying our manipulations we will indeed be able to obtain

a detailed understanding of Ä N(g,Ä) from an understanding of E(g,s).
Note also that up to this point no use has been made of the dependence of all

quantities on the variable g. This dependence will not play much of a role in
our discussion, but it is crucial when one wants to say something about E.

For the benefit of readers not satisfied with this non-rigorous derivation
of (3.5), we include another non-rigorous derivation. Let u e gru and consider
its contribution to both sides of (3.5). Assume for simplicity that gru does not
contain vectors of length precisely R, and set y R/\W\\, so that u contributes 1

to N(g,R) when y > 1 and contributes 0 when y < 1. Recalling (3.1), and

exchanging the order of summation and integration in the right hand side of (3.5),
2s

we see that each w contributes 2FT fRe(s)-a Th's integral is the limit as

T -> 00 of line integrals along the vertical lines Laj {a + it : —T < t < T}.
For each fixed T we can evaluate this line integral by Cauchy's integral formula,

replacing Laj with Lyj (the total contribution along the horizontal lines

Im(s) — ±T becomes negligible as T ->00), where in case y > 1, we let

£ — —00, and get a contribution of 1 due to the pole at the origin, and in case

y < 1 we let £ ->• +00 and get a contribution of 0.

3.2. Simple properties and the relation to Eisenstein series. Having motivated

our interest in the function defined by (3.1), we now make the link with
the functions defined by (2.2). Let {y e T : yv v}. Note that

if g re diag (y, _y_1) us, where y > 0 and rg e K. us e N (Iwasawa

decomposition), then y can be detected in both the linear action as ||gei||,
and in the action on the upper half-plane as Im(g_1i)-2. Using this observation,
the following properties follow readily from definition (3.1) and from the fact
that the Euclidean norm is K -invariant.

Proposition 3.1. (1) For r$ e K and y e r„ we have E(rggy, s) — E{g,s).

(2) For g,s 6 G, if T* =5-^5 then E^<s~iv\gs, s) E^r'v\g,s).

(3) Suppose T contains No as a maximal unipotent subgroup. If T does not
contain -Id then E^^'fg. s) — Imlyg-1^5; if F contains -Id
then £^r,ei)(g,s) 2£,,6^\rIm(>/£_li)'s-
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(4) If vi,V2 6 R2 ^ {0} satisfy V2 tvi for t > 0, then E^r'V2\g,s)
\g,s).

By Property (1), the dependence of (3.1) on g is actually only a dependence

on the coset Kg, and we can identify these cosets with HI via Kg -o- z g_1i

to replace g with z. And with the normalization that the stabilizer of v is No,

we see by rescaling and using Properties (2) and (3) that

Thus for each non-uniform lattice T with k cusps, up to the trivial transformations

recorded above, there are k essentially different functions of this form. They are

normalized by conjugating so that F„ No and rescaling so that v ej.
It will become clearer later why this normalization is convenient. It will also

develop that in order to understand these functions in detail, it is best not to
focus on one of them, but to consider their properties as a vector valued function

(z,s) (Ei(z,s),...,Ek(z,s)).
The discrepancy between the notation used in [Veel] and that used in [Kub]

is related to the substitution z g_1i above. If one followed the convention

of Kubota one would make the substitution z gi instead. The convention of
Veech, which we follow, gives simpler formulae involving discrete orbits in R2

and is consistent with working with the space of left cosets G/ T. The convention

of Kubota gives simpler formulae when discussing the action of G on HI by
Möbius transformations, and is consistent with working with right cosets T\G.
Thus the discrepancy between these notations is collateral damage in a larger
battle.

We now explain our interest in the twisted Eisenstein series (2.4). Above we
motivated Eisenstein series by explaining its relation to the counting problem in
the plane, where each orbit point is assigned the same mass 1. In this application
the counting function is AT-invariant, and so we can equivalently view the first

parameter of the Eisenstein series as ranging in g e G or in z e HI (as in the

preceding paragraph). In more general situations it is desirable to assign different

masses to different points, and in particular allow functions which depend on g
rather than on the coset Kg. This will arise when we deal with more refined

counting problems as in Theorem 2.6, and also arises in many other problems of
geometric origin.

For a vector u e R2^{0} ^ C ^{0} we define polar coordinates u ||w||e10",

where 6U e R/2jtZ Let Tu be a discrete orbit corresponding to the i -th cusp T,
normalized so that v =s,e i, and set

(3.6) z g H
T does not contain -Id,
otherwise.

(3.7)
uegTv
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Note that these functions vanish for n odd when T contains —Id. It is not hard

to formulate an analogue of Proposition 3.1 and, by comparing (2.4) and (3.7),

to verify that

Note that the choice of g in (3.8) ensures z g-1i, and if we choose another

g with this property, this will only affect Ei(g,s)2n by multiplication with a

complex number of modulus 1.

Warning (continued). In (3.7), it would have been more natural, and consistent

with the Veech convention mentioned after Proposition 3.1, to define the Eisenstein

series using emdu instead of e~m6u. However this would have made it necessary
to introduce a change of signs in (2.4) and would have caused a discrepancy
between our notation and that of [Sel2, Sar2],

Treating more general weights of points on the plane also leads to the

0-transform which we will discuss in §3.6.

3.3. Convergence properties. We now begin our discussion of convergence
properties of the various series introduced so far, and give a more rigorous
justification of (3.5). Convergence rests on the following weak (and standard)

counting estimate.

Proposition 3.2. For each g e G we have N(g,R) — 0(R2). Moreover the

implicit constant can be taken to be independent of g.

Proof. We will give a simple proof in which the implicit constant will appear to

depend on g. For a similar but more careful proof, which explains how to take

the constant independent of g, see [Vee3, Lemma 16.10].

Make a change of variables so that v ej and Tv N0, and compare the

actions on E2 and H. Let yv e Tu, and using Iwasawa decomposition, write

Since v ei is fixed by us, the condition ||yu|| < R is equivalent to yy < R,
where aY diag (yy,yfl). Furthermore, we can choose y mod N0 so that us

is bounded. Now apply y-1 to i. Since rg preserves i, a~l\ -yi, and us is
i yy

bounded, we see that y i is contained in a set A R which is an r -neighborhood
of the ray {ti : t > R~2}, for some r > 0 independent of R. The hyperbolic area

of Ar is 0(R2). On the other hand, since Ti c H is discrete and since G acts

(3.8) Ei(z,s)2n Ei(g,s)2n when z x + iy and g

y reavus.
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on H by isometries, there is r > 0 small enough so that the balls of radius r
around points of Fi are disjoint. So the intersection of Ar with Fi contains

0{R2) points.

Corollary 3.3. The quantities in (2.2), (3.1) and (3.2) converge absolutely on

{Re(.v) > 1} and converge uniformly on compact subsets of (Re(.v) >1}. For any
£ > 1, (2.2) and (3.1) are bounded on (Re(^) > £} by a bound which can be

taken to be uniform as z and g vary in a compact set. For fixed g, and for
a > 1,

m.g)±N(?. nJ_ |im £te.g + iQ R2(a+,„ du
2 271 T-*oo J—J1 CT + It

where N(g, R+),N(g, R~) denote the one-sided limits of N(g, R) as x —> R.

Proof. The claim regarding (2.2) and (3.1) follows easily from Proposition 3.2.

For instance, for (3.1), split the sum into sums over the 'rings'

{u; Tu : ||u;|| e [2",2"+1]}

for n e N. Also note that by discreteness, N(g, R) vanishes for all R close to

0, so the convergence of (3.2) is proved in the same way.

For (3.9), fix g 6 G and ct0 > 2, and define the function iACTo(t)

N(g, eT)e~a°T. Then i/tCT0(r) has finitely many discontinuities on every bounded

interval, with well-defined one-sided limits, and vanishes when we take r -> —oo

(by discreteness of Y Also, by Proposition 3.2, we have fo0(j) — 0(e(2~a°)r)

as t —> oo, and hence i/tao e L2(R) Fl Ll{R). Write

/OO too {t)e~2murdx
-OO

for the Fourier transform of fao. Using (3.2) and making changes of variables
R ez, 2s cto + 2^-iu we have

E(œ iO
fa0 (w) —J-—, where Re(^) > 1.

Then by Fourier inversion (see, e.g., [Ter, Ex. 1.2.7]), for all r e M we have

± ^(T) lim fa2 T-¥oo J—T
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and hence (with the changes of variables o — oo/2, t nu, R eT, s a + it)

N(g, R+) + N(g, R~) Vr+(log/;) +yr-Qogj?)
2 2

,im /r .,£(« ° +
r-»oo J„T (To + 2;nw

i_ Um [T D
27T 7* —»-oo J—T <T It

3.4. Selberg's results: Meromorphic continuation and functional equation.
We now move beyond elementary results and come to much deeper results about

Eisenstein series. Most of these results are due to celebrated work of Selberg,

see [Sell, Sel2, Hej, Kub] (the introduction to [Sel2] contains some historical

notes). The proofs exploit the dependence of E{z,s) on the variable z, and we

content ourselves with two comments, in order to clarify the connection with

objects appearing in the preceding sections.

For s e C, the functions f{x + 'iy) ys clearly satisfy A/ s(l -s)f, i.e.

are eigenfunctions for the Laplace-Beltrami operator. Since À is G-invariant,
formula (3.1) shows that for fixed s, the Eisenstein series also gives rise (at
least formally) to a Laplace-Beltrami eigenvector z £) (z, .v), thus furnishing
a connection between the Eisenstein series and the representation theory of G.

Similarly, the functions g t-> Ej(g, s)n defined in (3.7) are eigenfunctions for the

Casimir operator on G.

Also recall our normalization sending a cusp of E to oc so that the stabilizer

group becomes N0. If T has one cusp then this means that z E(z,s)
has a periodicity property E{z,s) E(u\Z,s) E(z + 1, s). We can exploit
this periodicity by developing E(z,s) E(x + iy,s) in a Fourier series

Um am(y, s)e2nlmx. Furthermore, if Y has more than one cusp and i,j represent
two of them, then z i-> Ei(SjZ,s) J2m ai,j,m(y, s)e2mmx is also 1-periodic, and

this leads to interesting relations between the functions

We now turn to Selberg's results. By Corollary 3.3, as an absolutely convergent
series of holomorphic functions, the functions s ^ Ei{g,s) are holomorphic on

{Ref.s) > 1}. A fundamental issue is to extend the functions to the entire plane,
and here we have:

Theorem 3.4 (Selberg c. 1953). The functions s Ej(z,s) have a meromorphic
continuation to the complex plane. There is a pole at s — 1 with residue eovo^r^,
and all other poles with Re(.v) > ^ are contained in (5,1] {in particular there

are no poles at s 1/2). All poles are simple.
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The second basic result is a functional equation according to which one may
recover the values of Ei(g, at s from the values at 1 -s. To state this we

use the notation introduced after Definition 2.2, and let T denote the classical

T-function. For each 1 <i,j<k let

(3.10) (pij(s) ^ ~ ^ ®(J) t

where the sum ranges over distinct representatives (a bd of double cosets in

A'q\s~' Vsj / Nq with c / 0. The function <pij has another definition in terms of
the constant term in the Fourier expansion of z h- Ei(sjz,s), see [Kub, §2.2].
The matrix 0(,s) is sometimes called the constant term matrix corresponding to

T, and sometimes called the scattering matrix. The poles of s h- £)(z, ,s) with
Re(s) >1/2 are also poles of 4>.

Theorem 3.5 (Selberg c. 1953). The matrix valued function <I> satisfies

4>(s)4>(l -s) — Id,

and the column vector £(z,s) (E\,.. £&) satisfies

£(z, s) $(s)£(z, 1 — s).

3.5. Main term asymptotics and quadratic constant. As Veech noted, it is
well-known to number-theorists that the existence of a meromorphic continuation
with a simple pole at s 1, already implies Theorem 1.1, part (c). To see this,
recall the Wiener-Ikehara Tauberian theorem (see, e.g., [Wid, Theorem 17]), which

was developed in order to simplify proofs of the prime number theorem, and

states:

Suppose i/r : M+ -> M+ is monotone non-decreasing, A R, and suppose the

integral /0°° e~st fi{t)dt, where s a +ir, converges for o > 1 to a function
f(s) which satisfies that lim(r_i.i+ (f(s) — exists, converges uniformly, and

defines a uniformly bounded function in every interval x e [—a, a], for all a > 0.

Then A.

To obtain part (c) of Theorem 1.1, suppose Tu is a discrete orbit for a

nonuniform lattice T corresponding the i -th cusp of T, and apply the Wiener-
Ikehara theorem with A the residue of Efig,s) at s 1, and f (t) N(g, e'!2).
The hypotheses of the Wiener-Ikehara theorem are justified by (3.2), a change of
variables R et/2, and Theorem 3.4. Here

{—/iTr,
T does not contain -Id,

cöroüT) otherwise,

will be the quadratic growth constant crv provided v satisfies v — s, ei.
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Warning (continued). In [Veel] the quadratic growth constant is given as

covoi(r) ' kut the groups he considers do contain -Id. The discrepancy is due

to the fact that Veech only counts closed cylinders and saddle connections on

surfaces, and each of these gives rise to two holonomy vectors, depending on

orientation.

Veech was not content with deriving Theorem 1.1(c) from known results about

Eisenstein series. In 1998 he reversed the logic, reproving the result using ergodic-
theoretic ideas introduced in [EMc], and using this, obtained a continuation result

for E(g,s). Namely he showed that the limit lirrq^i(.v - \)E(g,s) exists along

any sequence approaching s 1 nontangentially from {z e C : Re(z) > 1},
and used this to provide an alternative derivation of the formula (3.11) for the

quadratic growth constant. See [Vee3, §16] for more details.

3.6. ©-transform. Let T be a non-uniform lattice in G, and Tu a discrete

orbit in the plane. We will assume throughout this section that v corresponds to
the i -th cusp of Y and is normalized so that v s,-ei. Putting different weights
on different points on the plane amounts to choosing / : R2 -» C, and defining

We will refer to the map / i-» 0/ as the ©-transform. Note that this definition
extends (3.1), in that g i— E(r>v\g,s) 0/(g) for f(u) ||w||—2-s- As before we
need to worry about convergence issues, and we will assume for the moment that /
has compact support contained in M2 \ {()}. Note that this is not satisfied for (3.1)
and it will make the ©-transforms we consider easier to handle analytically. This

will already be apparent in the following proposition, in which we discuss the

©-transform of smooth functions which have a special form.

Write }îr(x) — h (j^). With this notation we have the following extension

Proposition 3.6. Let f : R2\{0} —> C be a smooth compactly supported function,
let p : R/2ttZ R+ be smooth, let f : M+ -»• C be smooth and compactly
supported, and let Mf be the Mellin transform of f as in (3.3). Let a >2
and denote by © the transform associated with the orbit Tu corresponding to
the i -th cusp of T, normalized so that v Sjej. Then:

(1) If f(u) i/f(||uII) is purely radial, then

©/ : g/y -> c, e/(gr)= £ m.
uegFv

of (3.5):

(3.12)
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(2) Suppose f(re,e) and p(6)s Ylnez Pn(s)e,ne is the Fourier

expansion of ps. Then

(3.13) ®fR{gV) -L W ns)P-n(s)Ei (g, *-) R
«ëz^Re(i)=CT

ds.

(3) Suppose f splits into angular and radial parts as f (re10) \jr{r)p{9), and

let p(9) Yin Pne'nd be the Fourier expansion of p. Then

(3.14) ®fR(gT) -L J2 ß-n f (*• I) RSds
neZ JReW=(T V 2/"

Proof There is no need to prove (1) since it is the special case of (2) with

p(9) 1. We will write the Fourier expansion p(9)s Yin Pn{s)eme as

Yin P—n {s)e~,n^. The Fourier series converges absolutely for each s since p
is smooth, and the coefficients admit an upper bound

(3.15) |p„(s)| < In llpllSo, where cr Re(s).

More generally, applying integration by parts twice, we see that

(3.16) |p„(s)| « ^4",
nz

where the implicit constant depends on a, ||p||oo, llp'lloo. and ||p"||oo • The Mellin
transform Mi// satisfies (M\//r)(s) Rs(Mf ){s) and so by Mellin inversion

ifR (-) [ V{s)y-sRspsds.
\p Zn\ JRe(s)=a

Plugging this into the definition of 0/R and writing each it as ||w||e10" we obtain

5." (S)
-4 [ v(s)Rs J2 Nrm/)2jtl ->Re(s)=o \egrv '
T-n f xi'(s)Rs^2p-n(s)( \\u\\~se~ln9A

7X1 jRe(s)=cj nZ \egTv '

[ y(s)P-n(s)Rs( M-ae^)ds.
neZjRe^)=cr \egTv 7

ds

ds

1

2:ri

To justify switching order of integration and summation in the first line use the

quadratic growth of the set gTv (Proposition 3.2) and the assumption o > 2. In
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the second line, use also (3.15), and in the third line use Proposition 3.2, (3.16),
and the fact that decays faster than any polynomial along the line Reds) a.
Formula (3.13) now follows by plugging in (3.7).

For (3), we have

®/,(sn= £ P(0u)fR (IMI)
uegr«

E {Yhp-ne~ind")[ v(s)Rs\\u\rsds
/ 2tti yRe(i)=a

-Lj2p-nf *(')**( E M~Se-indu)ds,
nëz, Jr^=° \7^v

'

and again we plug in (3.7), leaving it to the reader to justify changing the order

of sums and integrals.

3.7. Additional properties. We will need the extensions of the results of §3.4

to twisted Eisenstein series, and also some further properties. For convenience

we collect all the results we will need, including results already discussed above,

in the following list.

Theorem 3.7. Let T be a nonuniform lattice in G with k cusps. Let Si be

the elements conjugating these cusps to oo as in the discussion preceding (2.2).

Let Ef(z,s) (resp. Efiz, s)2n denote the (twisted) Eisenstein series as in (2.2)

(resp. (2.4)). Then there is a function co : E -> M (see (A.l) for an explicit
definition) such that the following hold:

(AC) The functions Ei(z,s)2n are absolutely convergent for Re(.v) > 1, and for
any Ç > 0, they are uniformly bounded and uniformly convergent on sets

of the form {Ref?) > 1 +£}.
(M) The functions s Ei(z,s)2n have a meromorphic continuation to all of

C.

(P) The poles of s h» Ei (z,s)2n with Re (.s) > 1/2 are all simple, lie in

(1/2,1], and are contained in the set (sf) of poles of the constant term

matrix <t> of (3.10).

(1) There is a pole at s 1 if and only if n — 0, with residue covol(r) 1.

(1/2) The functions £,, (z,5)2« have no poles on the line Re(.v) 1/2.

(co) For all t e M, co(t) > 1, co(—t) co(t) and for T > 1, f^Ta>(t)dt <£ T2,
where implicit constants depend on T.

(Gl) If n & Z, Re(s) >1/2 and \t\ > |n| + 1 then Et(z,s)2„ |f| -y/co(t),

where t — Im(.v) (implicit constants depend on z and T but not on n or
Re(*)).
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(Gl/2) For all n, f'[T \Ei (z, \ + it)2n j2 dt <3C (T + \n |)2 (implicit constants

depend on Y

Proof. For n 0, all items are given in [Sel2], see also [Hej, Kub]. The

extension of the first five properties to general n is given in [Kub, Chapter 6]

(see also [Sar2]). Property (Gl/2) is extended to arbitrary n by Marklof and

Strömbergsson in [MS] (in [MS] only the case of the integral over [0, T] is

discussed, but the proof extends verbatim to the interval [-T, 0] To the best of
our knowledge, there is no presentation of property (Gl) for general n in the

literature. We fill this gap in the appendix to this paper, see Theorem A.l.

4. A bound O

The following is the main result of this section. It immediately implies
Theorem 2.4.

Theorem 4.1. Suppose T is a lattice in G, Tu is a discrete orbit corresponding
to the i-th cusp of Y, Ei (g, s) is the corresponding Eisenstein series, and

Sq \ > s\ > • > sr > 1/2 are the poles of Ei(g, Then there are Co,...,cr
such that

r

N (g, R) c0R2 + Y<ctR2H +
l=l

Furthermore, if v is rescaled so that s,ei v, then the q are the residues of
s b-> at the poles S£. In particular, the quadratic growth constant Co is

given by formula (3.11).

The basic idea for the proof of Theorem 4.1 is a 'contour shift' argument,
as follows. We recall (3.5) and (3.9), which imply that for a > 1, for a large

parameter T, N(g,R) & fJT E(z,o + it)R dt. This is a path integral
over the line segment Laj {a + it : t e [-T, 7]} introduced in §3.1. Since

s k £(z,s) is meromorphic in all of C, the Cauchy residue formula makes it
possible to replace this path integral over Lgj with a path integral over L 1/2,7-

and the two horizontal segments H± {,v ± \T : ,v e [1/2,a]}, taking into

account the residues in the rectangle bounded by these segments. We need to

show that the contribution of the integral over the segments H± is negligible,

compute the contribution of the poles in the Cauchy formula, and evaluate the

integral over Li/2,t Each of these steps presents difficulties as stated. To bypass

them we recall that if / X[o,i] denotes the indicator function of [0,1] and

f{u) x(||w||) then N(g,R) &/R(gY). We can justify the contour shift
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argument if / is replaced by a smooth compactly supported approximation f(u^
(where U is an approximation parameter), and in this way, obtain bounds on the

growth of as R -> oo. To make use of this we bound the difference
JR

|N(g, R) — 0,(£/)(gr)| as well as the differences in the residues of the sums for
Jr

f and f{U), and optimize the choice of U as a function of R to make the

combined error as small as possible.

In order to justify the contour shift we will need the following:

Proposition 4.2. Let E be a meromorphic function on C, let a < b, and let
be a holomorphic function defined in a neighborhood of {s C : a < Re(s) < b),
such that:

(i) E has finitely many poles (sfi with Re(.v) [a, h]. They are all simple poles,

all on the real line, and there are no poles at s a and s b.

(ii) There is a function co : M M satisfying the conclusions of Theorem 3.7,

Item (co), and such that for all \t\ > 1, \E(s)\ <d. yjoj(t) \t (where

t Im(i)

(iii) For any k > 0 there is C' such that for all o e [a,b],

C'
^(a+iOl <

-p-.

(iv) For a a and a b, the integrals

/OO E (o + it) vp (a + if) dt
•00

converge absolutely.

Then

(4.2) -L f E(s)V(s)ds
jRe(s)=i

[ E(s)V(s)ds + y>(^)Res|,=^(£)
2^1 4Re(j)=a £

(iwhere Res|S=s0h(s) - limS-+S0(s - s0)h(s)).

Proof. Let z > 1, and consider the integral of E(s) 4>(.v) on the rectangle

Rz {s e C : Re(s) [a, è],Im(.î) e [z, x + 1]}.
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We have

fT+lrX-f-L

J X Ja
E(a + if)ifi(a + if) da

(iü) 1

dt « —
pT+1 nb

/ / \E{a + \y)\dy do
J x Ja

(ü) i /w
« -3 / Vffl(y) ydy

x J-(r+l)
Cauchy-Schwarz

«
(ft))

HClrMdy)
1/2

r3/2

« T 1/2
>1-^00 0.

Hence for each oeN there is x„ e [n,n + 1] such that

rb
(4.3) /Ja

E(a + ir„)*h(a + ir„) da 0.

By the same argument, there are r_„ e [-(n + 1 ~n] such that (4.3) also holds

with x-n instead of xn.

Since (f is holomorphic, and E holomorphic outside a set of finitely many
poles, we can now apply the Cauchy residue formula for the contour integral of
£(,vJiffs') over the boundary of the rectangle

{îêC: Refs) e [a, h], Imfs) e [r_n,r„]}.

The integrals along the horizontal boundaries [a, b]x{z±n} go to 0 as n -> 00, and

the integrals along the vertical boundaries {a,b} x [r_„,r„] tend to the integrals
in (4.1). The result follows.

Proof of Theorem 4.1. Let ß : M -»• [0,1] be a smooth function satisfying

f 0 for x < 0.1
ß(x)

1 for x > 1

and for a parameter U > 2 let

I ß{Ux) X < 1/2 _
\ß(U<}-x)) x > 1/2

and f ~\,
ß(Ux) X < 1/2

ß(\ + U(\-x)) x > 1/2
'

Let x denote the indicator function of [0,1]. Our choices imply that f±(U) are
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supported on a compact subset of the positive real line and satisfy

x > 0 =» < x(x)>

X > Ü
(4.4)

x £ 0,
V

u
1 1

1--.1 + -
sup
xeR dxl

X(x) < t/r+(C/)(x),

i/f~(C7)(x) x(x) — ty+<~U\x),

O

From (4.4) we have

Thus if we define f^v(u) since the 0-transform is order-

preserving, we have

(4.5) &f-u(?r) < N(g, R) < ®f+v(gV) + N (g,

We will obtain bounds for 0 ,± (gT) using (3.12) and a contour shift argument,
J R.U

and then combine this with (4.5) and optimize the choice of U U(R) to obtain

good bounds for N(g, R). To simplify notation we omit the superscript ± from

now, that is fntu stands for any one of f^v and stands for the Mellin
transform of any one of the \j/±(-u^.

Step 1. Dependence of the residues on the approximation parameter. Let c'e

be the residue of s i-> Ej (g, s) at s — s^, let q be the residue of s i-+

at s si and let ci(U) be the residue of h+ ^u\s)Ei (g, |) at ,v 2S£. The
c'

c't are nonzero by (P) and the si satisfy st > 1/2, and we have q and

ci(U) — 2c'\ ^)W)(2su). By (4.4), we have

2si
4/([/)(2^)

rl rOO

/ y2st~ldy — / ^u\y)y2s^1
Jo Jo

dy

fJo

(4.4)
< 2 (I

^{u\y)-x(y)
1IV

y2se~xdy

l+i/U
dy + i: .,2S£ — 1

1/U
dy

and thus

(4.6) ci~ci(U) (i " *(!"H 0 (w)
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Step 2. Bounding the integral over Re(s) 1. We will bound

/jje(,)=1 VlU)(s)Et (g, f) R'ds in terms of R and U, and to this end we will
bound

1 ^ V(U\l + it)Et (g, R1+i'dt.

We first prove that for all U >2,

(4.7) \t\ > U

and

(4.8) l<\t\<U

*«"(i + K) o(jjp)

•Vw>(l + if> o(Aj.
Moreover we will establish such a bound for a + it in place of 1 + if, where the

implicit constant is uniform as long as a varies in a closed interval of positive
reals. To see (4.7), apply integration by parts twice, and use that and all
its derivatives vanish for y £ (0, jj] U [l — jj, 1 + jj], to obtain for s a + it :

r[^rw4= rr^>]"w_^u,J o
L J s Jo L J s(s + 1)

rl/u r fTni" yi+1
/ f ] iy) n dy

Jo L -I s(s + 1)

rl+ l/U r v'5"'"'
+ /_w M

^,0^°(ï?iï5Ti)i)-0(ifF)-

dy

proving (4.7).
Now if 1 < t < U and U >2 then

(4.9)
y

(.y)-dy
S

y
(.y)—dy

s

^^(cr + if) J [V^j
rl/U vj rl + l/U _l M <y)Tiy + L,u \*

2°»o{u)0(L)o(
proving (4.8).

Writing E(t) for £, (g, and 4(r) for 4*(t/)(l + it), this leads to

(4.10)

l/l <r vp(0£(0* l+iî dt « £ i: FJu
\V(t)E(t)\dt + / |^(t)£(t)|dt
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and we bound each of these integrals separately. By assumption (Gl/2) and

Cauchy-Schwarz, for 1 < A < B,

(4.11) J \E(t)\dt<Jj \E(t)\2dt JJ 1 dt<£B%.

Hence, by a dyadic decomposition,

rU (A a\ rUr (4.8) ru \E(t)\
J \E(t)\ 1^(01 dt«j ^dt

^ i ru'2k
< E TTTïk+ï / \E^\dt

0<fctTog U U/2 Ju'2k+1

(4.11) 1 /f/\2
<<C

1r U/2k \2k J
0<£<3Clog U

<£ t/i E2"1 ^ U^
k> 0

Similarly, in the range t >U we have

noo (4.7) /•«> t/
|£(f)| |tf(f)|rff « Ju \E(t)\^dt

i r2k+xU

<<UL^L2kU

k>0 v 7

« c/2 E2_l ^t/^-
k>0

Putting these estimates together we obtain

I 0(RU2).

The bound on the ray {1 + it : t < — 1} is similar, and on the finite interval

{1 + if : — 1 < t < 1} the functions £,• and 4*([;) are bounded independently of
U. For the last claim, note that the calculation in (4.9) holds also for 0 < t < 1,

and the second to last equality there implies boundedness. In total we find

(4.12) [ ¥u\s)Ei(g,S-)Rsds 0(RUï).
7Re(î)=l v 4/
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Step 3. Justifying the contour shift. We want to show that for any R, U,

(4.13) [ 4/1u\s)Ei(g,S-)Rsds
jRe(s)=o>2 ^ 2/

+ [ 4>{u\s)Ei (g, S~) Rsds,
1 JRe(s)=l v 2/

where js the Mellin transform of \f/^u\ the sum ranges over the poles

(se) of Ei(g,-), and c<(£7) are the corresponding residues. This follows from

Proposition 4.2, with a \,b o > 2, E(s) £, (g, §), and 4/(s) R* 4/1^1 (s).
Note that by (3.8), for upper bounds as needed for Proposition 4.2, it makes no
difference if one works with the twisted Eisenstein series in (2.4) or in (3.7).

Hypotheses (i) and (ii) of Proposition 4.2 hold by Theorem 3.7, (iii) follows by

repeated integration by parts as in the proof of (4.7), and so we need to show (iv).
The case b a is trivial because t i-> E(b + \t) is bounded, and the case o 1

was proved in Step 2. Thus (iv) holds.

Step 4. Combining bounds. Using (4.13) with a main term J^£CeR2si, and

matching the errors incurred in (4.6) and (4.12) gives an error estimate

R2st R2 i

mr— u RUZ-

2 / 4 \This leads to a choice U and the combined error becomes O(R^). This

error is valid when using either one of and Proposition 3.2 implies
that

Thus appealing to (3.12) and (4.5) completes the proof.

Remark 4.3. We are grateful to Ze'ev Rudnick for explaining to us how to

replace our earlier result 0(Rï+e) with 0(R3). Specifically, Rudnick suggested
the use of dyadic decomposition in Step 2.

Remark 4.4. Any improvement in the bound (Gl/2) gives a corresponding
improvement in the error term. In fact, for the case T SL2(Z), or its principal
congruence subgroups, and n 0, one can replace the term T2 appearing
in the right hand side of (Gl/2) by T. Using this, and modifying (4.7) to a

bound 0(|t|/+£) in Step 2, yields an error term 0(/?1+£) for any e > 0, in

place of 0(R3). The recent papers [HX] and [Nor] contain sup norm bounds for
Eisenstein series for some arithmetic groups T which are not principal congruence
subgroups. These bounds lead to improvements for (Gl/2), and using them, one

4
obtains a better estimate than R3 in (1.2) for the discrete orbits arising in these

cases.
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5. More general shapes

5.1. Counting in smooth star shaped domains. We first state a more detailed
version of the first part of Theorem 2.6, for counting in a smooth star shape.

Theorem 5.1. Suppose Y is a non-uniform lattice in G containing —Id, Y — Tu
is a discrete orbit corresponding to the i -th cusp, and suppose that for each n,
Ei(z,s)n has trivial residual spectrum. Let p : M -»• R+ be a smooth lit -periodic
function, S — {reld : 0 < r < p{9)}, and let cy,s „cotoUT) ' ^en for every
£ > 0,

\Y n RS I cy,sR2 + 0(R1r+e),

where the implicit constant depends on s and p.

Proof. The proof follows the same steps as in the proof of Theorem 4.1. We define

the same approximants of the indicator function of the unit interval, so

that x h> are approximations of the indicator function of the interval
[0, p{9)\, in the sense of (4.4). Then we set

so that in analogy with (4.5), we have

(5.D 0/^ter) < I r n RS\ < Vf+Jgn + N(g,R max^p(6°)

setter,+ o(£).
As before we continue with Jrp standing for one of the fRU and *h(£/) standing

for the Mellin transform of one of the f±(-uK Using (3.13) we have

(5.2) &fRM(gD -L J2 [ V(U\s)p-n(s)Ei (g, S-) Rs ds

(where a > 2).

Since we have assumed that -Id e r, the terms corresponding to odd n

all vanish. For each n ^ 0, the functions s i-> ^u\s)ß~n{s)Ei (g, |)2 are

holomorphic on {se C : Re(^) > 1} by our assumption that all of the Ei(g,s)2n
have trivial residual spectrum and by (P) and (1). For n — 0, the function
s m. ty(ul(s)Ei (g, I) has a simple pole at s — 2, and by a computation as in
the proof of (4.6), the residue cq(U) satisfies

(5.3) co—co(u) o^y
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Here co Po(2) covol(r)-1, and since po(2) ~ p(6)2 d6, computing the

area of S in polar coordinates we obtain Co ^ Jovof(r) •

We now bound the integral of

^ h^u\s)Ei (g, where h^u\s) ^u\s)p-n(s),
V 2/ n

along the critical line {Re(.v) 1}, by a bound depending on both U and n.
Thus from now on implicit constants may depend on p but not on n and U.
We will use parameters k,X,s which we will optimize further below.

For each k > 0 we have

(5.4) *«"(1 + i() «
and for each A > 0 and «/0, we have

\t\x
(5.5) |p„CH| < —TT, where s 1 + it.

\n\A

Indeed, we get (5.4) for \t\ > U by performing integration by parts [k\ + 1

times (see (4.7)), and for \t\ < U by applying integration by parts [k\ times.

The proof of (5.5) is similar. Using this and recalling that for |f| < 1 the integral
is bounded (see the discussion preceding (4.12)), we have

(5.6) [ h^u\s)Ei (g, I) ds
jRe(s)=l "

<r&w* (-5*)."

To ensure finiteness of the first integral we will assume that

(5.7) 2k > 2A + 1 + e.

For the second integral, we define H(T) J7 | £) (g, ^j*L)n\2dt, so that (Gl/2)
gives H(T) <SC (T + n)2. Then integration by parts gives

roo IE (g, ^ j I2

I \2+;;- dt«i"i•
Using these estimates in (5.6) gives

(5.8) [ u\s)Ei(g,S~) Rs p-n(s) ds « \n\l~x RUk,
7Re(s)=l v

and the implicit constant depends on e.
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For each fixed n, the contour shift replacing the integral along Refs) a
with the integral along the line Refis) 1 is justified by Proposition 4.2 (note
that in condition (ii) of the Proposition, the implicit constants are allowed to

depend on E and thus on n). We only pick up one residue, corresponding to

n 0 and s — 2. Thus collecting estimates we get

(5.9) ©/«,£/(gr) C0R2 + + 0(RU112) + In\l-x)o{RUk)
«eZ-^{0}

c0R2 + O(^) + 0(RU112) + 0(RUk),

where we have used the bound (4.12) for n 0, and where we set A 2 + e

to ensure convergence of the infinite series. Setting k § + 2s ensures (5.7),

and setting the two error terms equal to each other gives U R which also

ensures that that last term in (5.1) is negligible. Thus (5.9) becomes

©/*,uOrr) cor2 + O(R2-1/(2+2£)),

completing the proof.

Remark 5.2. 1. As before, any improvement in the dependence on n, of
the bound (Gl/2), would lead to a corresponding improvement in the

error estimate. For T SL2(Z) and principal congruence subgroups, this

improvement leads to an error estimate 0{R^+S).
2. We do not prove a version of Theorem 5.1 for lattices for which the

twisted Eisenstein series has nontrivial poles. If such poles si existed,

in performing the contour shift argument, one would need to analyze the

sum J2nez Res|J=i£,- (g, f)2„- As far as we are aware, this series is only
known to be summable in the sense of distributions, and thus analyzing it
leads to technical issues we prefer not to enter into.

3. The assumption -Id e T ensured that we only need G(l/2) for n even,
which is the context in which it was proved in [MS]. We are not aware of
a proof of (Gl/2) in the literature for n odd.

For the proof of Theorem 2.6 we will need another construction which

interestingly is also due to Selberg, see [Mon, Chap. 1, §2].

Proposition 5.3. For each interval J c M and each V e N there are

trigonometric polynomials P± Pfv such that

(1) for all je G 1,
P-(x) < xj(x) < P+(x)

(where yJ A the indicator function of J);
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(2) the degree of P± is at most V ;

(3) for each 0 < \k\ < V, the k-th Fourier coefficient satisfies \ P± k jl
and

(4) |(^)o-Or7)o|«f
We now state a more detailed version of the second part of Theorem 2.6, for

counting in a sector.

Theorem 5.4. Suppose Y is a non-uniform lattice in G, Y — Yv is a discrete

orbit corresponding to the i -th cusp, and suppose that for each n, Ej(z, s)n has

trivial residual spectrum. Suppose also that —Id e T. Let ici be an interval

of length |/| < 27T, let S {rel° : 0 < r < 1, 0 /}, and let cy,s — 2ncovol(r) •

Then

(5.10) \Y n RS\ cy,SR2 + 0(R$),

where the implicit constant depends on J.

Proof. We follow the same steps with the same notations, but now we introduce

an additional approximation parameter V, and let p±(vfd) be approximations
of the indicator function /j of J, namely they will satisfy

(5.11) e M/27rZ, p-{V\6) < /j(d) < p+(K)(0),

so that reie i->- p±(-v\6) (r) are approximations of the indicator function
of S. Then we set

/w("">
so that

(5-12) ®w<sn < IK n RSI < e^fsn + o(F).
As before to lighten notation we omit the superscripts for upper and lower bounds.

Using (3.14) we have

®f*.u.vten J2p-n,v [ ^U\s)Ei(g,S-) Rs ds,
neZ iRe(i)=cr V 2/n

where pny is the nth Fourier coefficient of and o > 2.

For each n we perform a contour shift to shift the integral to the line

{Re(.y) 1}, justifying it with Proposition 4.2. By our assumption on Y, the

only residue cq(U, V) that we need to take into account occurs for n 0 at
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1Z1
s — 2. Setting c0 - 23rcovoi(r)

(5.13) c0 — cq(U, V)

the residue satisfies

+ n
1/1

PO,V - ZT~2n r
Motivated by this, for the functions p±(V) we use the polynomials Pfv of
Proposition 5.3 with U V. With this choice, using item (4) of Proposition 5.3,

(5.13) becomes

co-co{U, V) oQj),
and we get a bound

J2\nWPn,v\ « J2 I«]'1

0<\n\<UneZ
« u.

L

We now repeat the arguments in Step 2 of the proof of Theorem 4.1 to obtain

9(u}(s)Ei(g,z) Rs ds «\n\RUï.
Re(s)=l V 2/n

Note the explicit dependence on n which arises by using (Gl/2) in (4.11).

Collecting estimates we get

®fR.u(gr) coR2 + o(%) + o(ruî),
and equating the two error terms and plugging into (5.12) leads easily to (5.10).

5.2. Counting in well-rounded sets. In the present section we will prove
Theorem 2.7, using an argument based on a general lattice point counting result.

In order to state it, we recall the following:

Definition 5.5 ([GN]). Let G be a connected Lie group with Haar measure mg
Assume {Gt} G G is a family of bounded Borel sets of positive measure such

that mG (Gt) -» oc as t oc. Let Ö, C G be the image of a ball of radius r)

(with respect to the Cartan-Killing norm) in the Lie algebra under the exponential

map. Denote

Gf (jj) OvGtOv [J uGtv, G~ (77) Q uGtv.
u,vOn u,vön

The family {Gt} is Lipschitz well-rounded if there exist positive c,ij0,t0 such

that for every 0 < rj < rj0 and t > t0.

ma (Gt (rj)) < (1 + erf) mG (G, (rj))
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Theorem 5.6 ([GN]). Let G be any connected almost simple non-compact Lie

group (e.g., SL2(R)), and let {Gt} be a Lipschitz well-rounded family of subsets

of G. Let r be a lattice in G, and let mo be Haar measure on G, normalized
so that covol(r) 1. Define the corresponding averaging operators

ßt(f)(x) ]— f f(g~1x)dmG(g), f L20(G/T).
mG(Gt) JGt

Suppose the ßt satisfy the following (operator-norm) bound:

Wßt llz,g(G/r) — CmG(Gt) K.

Then the lattice point counting problem in Gt has the effective solution

=1 +

The proof of Theorem 2.7 proceeds by reducing the problem of counting points
in the orbit Tu lying in bounded subsets of the plane, to counting lattice points in
suitable bounded domains in the group G SL2 (M). The domains constructed in
SL2(R) bijectively cover the domains in the plane, under the orbit map g gv,
and will depend non-trivially on the orbit under consideration, and not just on T.

In this section we write

Let v e R2^{0} and use polar coordinates in the plane to write g — rgvaty where

v ge 1 rgvatvei e'v^2reve1. The stability group of v is Ng gNg^1, and

for any t, x and 9,

(5.14) re(gatg'1)(gnxg~1)(v) regate 1 e'/2rev e^t+'v)re+gve 1.

This gives a bijective parameterization of R2 \ {0} by R x [0.2n), with each pair
(it, 6) e R x [0,2n) determining a unique vector rggate 1 e'^rgv in R2 \ {0}.
Since R2 \{0} G/N8, we conclude that G KAg N8, and this decomposition
gives unique coordinates to each point in G. Note however that this is not an

Iwasawa decomposition, the latter being given by G K8AgN8.
Let us denote

Atut2 Wt h < t < t2), NXUX2 ={nx\x! <x < x2}

and K6u02 {re : 61 < 6 < 62}.
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Let D c I2 be a compact set in the Euclidean plane given in polar coordinates

by

D {p(cos0,sin0) : 0 e I 0 < p < p(0)}

where / [01, d2] C [0, 2jt] is an interval of angles contained in the unit circle,
and p(0) is a positive Lipschitz continuous function on the interval I. The set

D can also be written in the form

D {reatei : 0 e I t < 21ogp(0)} U {0}.

Let b' > 0 be such that Tu contains no points of norm less than b'. For any
T > 1 consider as before the dilated set T D {Tx : x e D}, and also the set

Dt {rgatei : 0 e I 21ogb' < t < 21og(Lp(0))}.

Then Dt T D ^ B(0,b'), and hence |ru IT Dt\ — ITu IT T D\.
We will now define bounded domains D j C G which bijectively cover D j.

Fix a positive number xo xo{g) so that the set -/Vs(xo) {g^xg-1 : 0 < x < xo}
is a fundamental domain for the subgroup T n N8 s Z in the group Ns M.

For each del define

I? eR : 21og^ <t <21og^^J [h,h(T,d)\

and with respect to the decomposition G KA8N8, define

Or {re-ovgatg-1 : 0 el, te J{T, 0)} • N8{x0).

Then, as the reader may verify using (5.14), the orbit map G -* M2,g gv,
restricted to TfT D r, is a bijection with its image rulT Dr, and as a consequence
we obtain:

Lemma 5.7. |runr-D| |Tn D t\-

To complete the proof of Theorem 2.7, it remains to prove that the family

{ D t} is Lipschitz well-rounded. It will be convenient to use the following
two facts.

We will need the following result:

Lemma 5.8 (see [GN]). If {Gt} is a Lipschitz well-rounded family of subsets

of G, then for each g,h e G, so are the families {gGt}, {Gtg} and {gGth}.
Furthermore the corresponding constants c,to,rjo are bounded above and away
from zero, as g varies on a compact set Q in G.
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It therefore suffices to prove that the sets

D Tg - {re-evgatnx : 9 el,t e J(T, 9), 0 < x < *0}

are Lipschitz well-rounded. Recalling that g — r$vatv and setting T er, we
have

D Tg =CT {reat+tvnx : 9 el,t e J(eT, 9), 0 < x < x0}.

The Iwasawa coordinates K x A x N -» G given by (k,a,n) i->- kan satisfy the

following Lipschitz property, established in [HoN, Prop. 4.4]. For every fixed
So M, there exist C1 Ci(5o) > 0 and rj 1 ?7i (^o) > 0, such that for all 9,
all x with 0 < x < xo, and all t > So, 0 < t] < 771 :

(5.15) O^rgütn^Ofi dKQ—C\-q,d+C\ri^t—Ciri,t+Ciri^x—C\ri,x+C\r]-

Let So 2logb', let C\ — Ci(5o), and let C C\L, where L is Lipschitz
constant of the function p. Finally for

w (T> {kan : k e Kgl+Cn,e2-Cri» a e Atl+Cll,t2(e^,e)-Cv> n e Ncr),x0-Cr,}

Applying (5.15) to g G W~(z,rj) it follows readily that VF~(r, rf) C C~{rj). A
straightforward verification, using the explicit form of Haar measure in Iwasawa

coordinates and the fact that p is Lipschitz, shows that mG(lf"(r, p)) >
(1 - cip) •mG(Cz), for a suitable c 1 > 0. In the other direction, note that

Q+(l) CgCtOrj is contained in

W+(t, rj) {kan : k e Kex-cv,e2+Cr], a e Atl-CT},t2{er,d)+Cr)

where for 6 e [9\ — Cr], 9\] U [02, Ö2 + Crj\ we define f2(er, 9) — max(t2(e', 0i),
^2(^,02))- Again a similar direct verification shows that mG{W+(z,r])) <
(1 + c2?7) mc{CT). The Lipschitz well-roundedness of the family Cr follows,

Remark 5.9. (1) Let us note that an error estimate established for the count in
the dilates R S of any given figure (in the plane, say), immediately implies
an error estimate for the count in shells of shrinking width, namely with
the sets R S v (R - R~a) S for a suitable range of positive parameters

a. Similarly it is also possible to intersect shells with sectors of shrinking

let

n e N-cn,x0+Cv} -

and this completes the proof of Theorem 2.7.
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angle, namely with sets {r(cos 9, sin 9) : 6 e [6o - R~ß,9o],r e K+}, for a

suitable range of positive parameters ß, and obtain an effective estimate.

This follows from the fact that Theorem 5.6 allows counting in a variable

family of domains, provided that their Lipschitz well-roundedness parameters
are controlled.

(2) A straightforward modification of the proof of Theorem 2.7 applies to

counting in discrete orbits of non-uniform lattices in SL2(C) acting linearly
on C2, as well as discrete orbits of non-uniform lattices in SO^(n, 1) acting

linearly on R"+1. This is based on Theorem 5.6 and the Lipchitz property
of the Iwasawa decomposition, established in [HoN] for any non-exceptional

group of real rank one.

A. The growth estimate (Gl) for general n, and the function co(t)

An important input to our argument is the estimate (Gl) which is used to
bound the average growth of the Eisenstein series along vertical lines Refis) a,
for <7 e [1/2,1]. This is a crucial input to our method, see condition (ii) of
Proposition 4.2. This growth estimate was proved by Selberg for n — 0 but as

far as we are aware, does not appear in the literature for the twisted Eisenstein
series for general n. In this appendix we close this gap in the literature, and also

provide estimates of the dependence of the implicit constant on n. Many of our
arguments are based on ideas in [CS, Sar2, Iwa, MS].

We first introduce standard notation. Let <h(.v) pij(s)).. be the constant
term matrix as in (3.10), let (si) denote all the poles of the functions <p,y in the

interval [1/2,1], let q qr > 0 be a real number specified by Selberg (see [Sel2,

p. 655]) and set

(A.l) %(s) det<D(s), 9*(s) q2s~x FT *7? *<>(*),y s-i + si

\p*' /1 \

The function co : M -» M thus defined is the function appearing in Theorem 3.7.

It satisfies w(t) > 1 for all t (see [Sel2, p. 656]).

Theorem A.l. For any non-uniform lattice T in G, the twisted Eisenstein series

Ej (•)„ corresponding to the i-th cusp as in (3.7) satisfies

(A.2) Res > -, |f| > \n\ + 1 => Ei(z,s)2n |t| yftMfi) (where t — Im(s)),

where implicit constants depend on T and z (but not on n
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Proof. We will divide the proof into a series of steps. Throughout the proof we

will write

a Re(.t), t Im(s), and s o — -,

and will assume o g [5. |] >
which entails no loss of generality as Ei(z,-)in

is uniformly bounded on {.v : Re(,v) > ||. Implicit constants in the <sC and

O notation depend on F and z (and not on n or o). Since some of our arguments
will depend on the dependence of the Eisenstein series on the variable z, from

now on we will write z0 instead of z and consider it as a fixed element of H.

Step 1. Bounding $ and the T -factor. Let <î>(.v) (<Pij(s)). be the constant

term matrix as in (3.10). By [Sel2, p. 655], $ is uniformly bounded as long as

5 < o < § and \t\ > 1. Following [Kub, Chapter 6], define

4>2n(s) (<Pij(s)2n)iJ by <J>2n(^) (-1)" Bn(s)<$>(s),

where

«.M=r, r<;>; -..T(s - n)T(s + n)

Then

(A.3) |f|>l, ct<1 \Bn(s)\<l,

with equality for a ~, and

(A.4) \t\ > \n\ =>• 1 — IBn(5)12 s.

To see this, since Bn (s) — B-n(s) we can assume that n > 0. Using the recurrence
formula T(z + 1) zT(z) one obtains

(A.5) «.(,) fj
(s — n)... (s + n — 1)T (s — n)z *_A s + k — 1

Since o > j, |s — < |s+ fc —1| with equality when o — \. This implies (A.3).
For (A.4), set zs^ — s + k — 1 k- \+ s + it. Plugging into (A.5) gives

n

\Bn{s)\2=n

nO-^)=n(—I
~zs,k + 2e

zs,k n( Zs,k I - 4eRe(z^fc) + 4e2

\zs,k\2



Effective counting for lattice orbits 297

Write

Ik — 1 "
f(k) -J ij, so that F(n) ^log(l-2sf(k)) log(|fi„(^)|2).

\zs,k\ k=1

Let k < n and \t \ > n, then f(k) < ^. Taking a second order Taylor

approximation for x h> log(l — x) we have

-log(l - 2sf(k)) 2sf(k) + 0(s2f(k)2),

and hence
n n k

-Fin) «; sf(k) + s2 f(k)2 «; £ ^ — « e.

k=1 k=1n

Now by second order Taylor approximation for xv+\—ex we get

1 - \Bn(s)\2 1 -eFW « -F(n) « e,

and we have shown (A.4).

Step 2. Regularized Eisenstein Series. We choose a parameter Y depending

on zo by

(A.6) T 1 + maxInhsT^o).
j

and define a regularized Eisenstein series

(A.7)

Ej (z,s)2n

Ei(z,s)2n otherwise.

(note that the condition yj > F can occur for at most one index j). Let
£Y(z,s)2n {E\{z,s)2n,---,EY{z,s)2nf Then (see, e.g., [Sar2, p. 727]) for

a > t 0 we have the following inner product formula, which is known as

the Maass-Selberg relation:

/ £Y(z,s)2n£Y(z,s)2nti d^riz)
JXr

^(F2£ ldkxk -<&2„(i)^fF-2£) + 2i(

JXr
1 L2£tj * n(s)Y-2U
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Step 3. Trace of Maass-Selberg Relations.
Let || Ej(-,s)2n\22 fXr \Ej(z,s)2n\2 dfiT(z), || (^) ||2 £y \<Pij(s)2n\2, and

set ty2n(s) det<î>2«(X). Then for a > t ^ 0 we have

k

(A.8) X] IIEj0' shn\\ T (kY2£ - ||d>2„(s)\\2 Y~2£)
l£

+
k k

^(t2" YjPiiishn - Y~2U YjPii(S)2n^-

Indeed, this is a matrix computation that involves taking the trace of the inner

product formula. See [Iwa, p. 140] for the computation in case n 0.

Step 4. Bounds on traces and norms. For n — 0 and |t| > 1 we have

(A.9) k-||<F(^)||2«£ui(0,

and for n e N, o e [j, |] and \t \ > n we also have

(A. 10) k - ||<t>2„(^)||2 « sco(t).

Indeed, (A.9) is proved in [Sel2, p. 657], and since

l|f2„(.)||2 |ß„(.)|2||<F(5)||2,

(A. 10) follows from (A.9), the boundedness of <F, and (A.4).
As to L2 bounds, for n e Z and a e [|, |] we have

(A. 11) \\Ej(;S)2n\22«(0(t),

where the implicit constant depends also on Y, and hence on z0. For this we
use Y±2s 1 + Oy(e). Using (A.3) we have that 4>2„(.v) is uniformly bounded

for a e [|, §], and hence the right hand summand in (A.8) is bounded. For the

left hand summand, we have by (A. 10)

J_ (ky2s _ r-2£||$2n(j)||2) ± (* - ||4>2„Cs)||2 + 0Y(s)) 0Y(co(t) + 1).

Combining bounds and recalling co(t) > 1 gives (A.ll) for a > ~. Since the

implicit constant in (A.ll) is independent of a we can take a limit and get the

same bound for a — |.

Step 5. Convolution and point-pair invariant. For Y (acd)e F, ne Z>o
and z e H, let

£ (z)2n
(cz + d)2"

^y I cz + d\2n



Effective counting for lattice orbits 299

Say a function / on HI is of weight 2n if it transforms like f(yz) — e},(z)2"/(z),
and denote the automorphic functions, whose restriction to a Dirichlet fundamental
domain for T on H is in L2(Xr,/xr), by L2(T, 2n). For 8 e (0,1), let xs be

the indicator function of [0,5], and for z.weH define

u(z, w)
w I2

4 Imz Imu) '

\w - z\2n

k{z, w) k$(z, w) =H(z, w)xs (m(z, w)),

K(z,w) Ks(z,w) 'Y2ks(z,yw)ey(w)2n.
yer

Functions such as k are called point pair invariants of weight 2n. They satisfy
(see [Hej, Vol. 1, Prop. 2.11, p. 359]) the following transformation rules:

H(yz,yw) ey(z)2nH(z, w)ey(w)~2n,

k(yz,yw) ey(z)2"k(z, w)ey(w)~2n.

The operator Lk defined by

(A.12) Lkf(z)= [ k(z,w)f(w)dw [ K(z,w)f(w)dw,
JH

' Jr\H

is a bounded self-adjoint operator on L2(T, 2n), see [Hej, Vol. 1, Prop 2.13,

p. 363]. Let A be as in (2.1), and let

du
Anu(z) Au(z) + my—iz) (where z x + iy)

ox

be the weighted Laplacian. Then the Eisenstein series z i->- £) (z, s)2n is a

A2n -eigenfunction and therefore (see [Hej, Vol. 1, Prop. 2.14, p. 364]) is an

eigenfunction for Lk, that is there is /t,>,^(j) such that for all z e H,
LkEi(z,s) 2n hi,ntS(s)Ei{z,s)2n.

Step 6. Bounding the eigenvalue. The eigenvalue hiAj(s) satisfies a bound

(A. 13) <j e I I
2' 2

> \n\ + 1, 8
100|f I2

\hi,n,s{s)\ ^
1

12'

Indeed, the bound (A. 13) is proved in [MS, Lemma 2.1] for a and the

proof goes through for general er e [i, |],
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Step 7. Pointwise bounds. We now note that our choice (A.6) implies that

(A. 14) LkEf(z0,s)2n LkEi(z0,s)2n-

Indeed, considering (A.7) and the definitions of 5 and u we see that Ej(w,s)2n
and Ei(w,s)2n coincide for all w in the neighborhood of z0 consisting of the

points for which the integrand in (A. 12) is nonzero.

We now claim

(A.15) [ \K${z0,w)\2 dw «; 5.
Jr\H

Indeed, by [Hej, Vol. 1, Prop. 2.12b, p. 360] we have K$(z0,w) — Ks{w,z0).
Hence

(A. 16) / \Ks{z0,w)\2 dw / Ks(z0,w)Ks(w,z0)dw
Jr\M. Jr\B.

(A=2) f k$(z0, w)Kg(w, z0)dw
J H

Y] / ks(z0,w)ks(w,yz0)ey(zo)2ndw
y

£ xs(u(z0,w))xs{u(w,yz0))dw.
„ J H

y

<

To bound the sum on the right-hand side of (A. 16), we note from [Iwa, p. 100]

that points zo which satisfy both u(w, yz0) < S and u(z0, w) <8 for some y, w,
also satisfy u(yzo,zo) < 45(5 + 1). By discreteness (see [Iwa, Cor. 2.12]), for fixed

z0 and small enough 5, the number of y for which this happens is bounded.

So the right-hand side of (A.16) is < JM xs(u(z0,w))dw fB /^(w(zo, w))dw,
where B is a hyperbolic ball of area <sC 5, as required.

To conclude the proof of (A.2), we apply Cauchy-Schwarz to find

\Ei(z0,s)2n\
1

\LkEi(z0,s)2n\ (A=4) -—— \LkE?(z0,s)2n\

(A.13)
«

(A.ll)
«

/ Kg(zo, w)Ej(w, s)2n dw
J r\e

\t\2 s/co{t) f \Ks(z0,w)\2 dw
y J r\H

(A.15) 0 /- (A.13)
« |f|2v+HOv5 « \t\s/w(t).
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