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From PDEs to Pfaffian fibrations

Francesco Cattafi, Marius Crainic and Maria Amelia Salazar

Abstract. We explain how to encode the essential data of a PDE on jet bundle into a

more intrinsic object called Pfaffian fibration. We provide motivations to study this new

notion and show how prolongations, integrability and linearisations of PDEs generalise to

this setting.

Mathematics Subject Classification (2010). Primary: 58A20, 58A15; Secondary: 58A10,

58A30.
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distributions.

The history and the importance of theory of Partial Differential Equations

(PDEs) are themselves subjects of entire monographs. Very briefly, one of the

central questions is that of integrability, i.e., the existence of local solutions of
a PDE passing through each point. There are various techniques to handle this

problem, each one with its own advantages. For instance, the Cartan-Kähler
theorem can be applied in many instances but it is bound to the analytic setting.
Another standard approach starts with the attempt to solve the PDE formally -
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and then one talks about formal integrability. One also discovers the notion of
prolongations, which allows one to replace a given PDE with a new, "larger"
one, but which may be easier to handle and, of course, has the same solutions as

the original one. Another standard technique is that of linearising a PDE - the

outcome is a PDE that is much easier to handle and which, although it usually
has different solutions than the original one, often carries important information
about the behaviour of the solutions one is looking for.

While the role of jets is clear already in the local study of PDEs, formalising
it was important for a more geometric approach to PDEs; this was carried out

by Charles Ehresmann [Ehr) in the 50's, leading to the notion of jet bundle as

the standard formalism to study PDEs on manifolds. Solutions of a PDE were
then becoming sections of a bundle R -> M over a manifold M, the PDEs

themselves were becoming subspaces P c Jk R of the bundles of jets of sections

of R, and the condition for a section s of R to be a solution of P was

that jks e P for all x e M. Many of the notions and techniques known in
the local study (e.g., prolongations, linearisations, etc.) were then recast in this

formalism; that process quickly revealed the notion of Cartan distribution(s), or
Cartan form(s), on the jet bundles JkR and its central role to the entire geometric
theory. The various ways of understanding these objects gave rise to different

schools/approaches to the subject, e.g., depending on whether (and how) one

works with vector fields or differential forms; see, among others, the monographs

[BCD+, KLV, Olv, Sau, Stoj. For instance, the Cartan-Kähler theorem mentioned
above is now part of the standard material on Exterior Differential Systems

[BCG+], Another example is the notion of difffety, due to Vinogradov and his

school [Vin], which arises from the theory of differential equations in the same

way the concept of algebraic variety arise from that of algebraic equations, ft is

important to mention that all these modern approaches to PDEs (including ours)
have been greatly influenced by the pioneering works by Sophus Lie [LF] and

by Élie Cartan [Carl, Car2],

The aim of this paper is to emphasise and (hopefully) to clarify the importance
of the Cartan distribution/form even further. The main message is that what is

needed for the theory to work is not the jet bundles Jk R but just the fibration
P —> M together with the induced Cartan distribution; or, in our language,

a Pfaffian fibration. Of course, there are points at which the jet bundles are

still important, but often they are just "noise" in the background, giving rise

to unnecessarily complicated formulae. Also, we are aware that this point may
be, in principle, rather obvious to the specialists (and there are similar theories

carried out at the level of infinite jet bundles), but we find it useful to spell it
out in detail, taking care of the subtleties that arise along the way. We hope that,
in this way, various techniques and notions that are often presented in a rather
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pragmatic way, via "down to earth" (but complicated) local formulae, become

more transparent to people with a more geometric background/interests.
On the other hand, our main motivation for carrying this out comes from

the study of Lie pseudogroups and of geometric structures: the theory is now

ready to be used right away to understand the main structures underlying the

theory of Lie pseudogroups T and, furthermore, of F -structures on manifolds.
For instance, one may say that the Pfaffian groupoids of [Sal] are just the

multiplicative version of the Pfaffian fibrations discussed in this paper. Again,
while this may still seem rather abstract for someone whose interest on Lie
pseudogroups comes from the study of symmetries of concrete PDEs, it reveals

the theory from a more geometric perspective, pinpointing the actual structure that
makes everything work, and uncovers rather unexpected bridges with other parts of
Differential Geometry. For instance, the abstract (Pfaffian) groupoids arising from
pseudogroups behave surprisingly similar to the symplectic groupoids of Poisson

Geometry. This similarity can really be exploited: for instance, the analogues of
the Hamiltonian spaces and of Morita equivalences of Poisson Geometry turn
out to be precisely what is needed to study general geometric structures and

their integrability - as carried out in [Cat]. In all of these, the notion of Pfaffian

fibration that is being discussed in this paper has the role of building block.

A few words on the structure of this paper. In Section 2 we review the basics

on PDEs: this include the notion of (finite-order) jet bundle and Cartan form, as

well as its linear counterpart, the classical Spencer operator. Moreover, we recall
the concepts of prolongation and of integrability of a PDE, and various important
theorems in this area, together with the necessary technical tools, i.e., tableaux

and Spencer cohomology.
In Section 3 we introduce the definition of Pfaffian fibration in a double

way, using either a differential form or a distribution. We define as well a

number of objects naturally inspired from the theory of PDEs, such as symbol

spaces and curvatures, and then we focus on the particular case of linear Pfaffian

fibrations and the process of linearising Pfaffian fibration along a solution. We

conclude with the discussion of the main examples that sparked our interest in
this field.

Section 4 is the core of the paper: we use the definitions and the ideas from
the previous section to develop a theory of prolongation in the context of Pfaffian

fibrations. In particular, we present first the general notions of morphism and

prolongation in the Pfaffian category, followed by the explicit construction of
a prolongation which is inspired from the classical notion of prolongation for
PDEs, and which is "universal" in a certain sense. Since this process is not

always possible, we show concrete criteria for the prolongability of a Pfaffian

fibration, and then see how these results translate to the linear picture.
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Last, in Section 5 we apply the theorems from Section 4 in order to tackle

integrability of Pfaffian fibrations up to a finite order, as well as formal integrability.
Borrowing ideas and terminology from the theory of G -structures, we associate

inductively to any Pfaffian fibration certain obstructions to formal integrability,
called the torsions. In this setting, we can prove fundamental result such as

the Goldschmidt criterion for formal integrability, the integrability criterion for
Pfaffian fibrations of finite type and the fact that analytic formally integrable
Pfaffian fibrations are integrable.

Notations and conventions. All manifolds and maps are smooth, unless stated

explicitly otherwise. By a fibration between two manifolds P and M we mean

a surjective submersion n : P -» M. Given a fibration n : P —> M, by Tn P

we denote the vertical bundle ker(dn c TP over P. By Qk( P,N~) we mean

the space of differential k -forms on the manifold P with coefficients in some

vector bundle Af -* P, i.e., Q.k(P,J\T) := F(akT* P <g) N). We say that a form
6 e Qk (P. AO is (pointwise) surjective if the linear map 0P : AkTp P > Mp is

surjective for every p c P. Often we are given a vector bundle E —> M, so that

one can consider the pullback n*E —> P ; when jt is clear from the context, we

may omit the pullback notation. In particular, we often write Ok(P.E) instead

of Vk(P,n*E).

The different notions which we will develop in the theory of Pfaffian fibrations
arise as a way to geometrically encapsulate the fundamental properties of PDEs.

In this section we review the various geometrical notions that motivated and

inspired the analogous ones for Pfaffian fibrations. In particular, we will restrict

our attention to PDEs defined on jets of sections of a fibration, which are easier

to deal with, more widely studied in the literature, and powerful enough for many
applications. We will therefore not consider the more general setting of jets of
submanifolds, even if we think that a suitable generalisation of Pfaffian fibrations

could be introduced also in that case.

2.1. Jets, PI)Es, and the Cartan form. A PDE of order k in the function

u u{x\,..., xn) : IR" —is an equation of the form

2. PDEs on jet bundles
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for all m-multi-indices a (aq ,am) with |or| oq -I \-am < k. However,

in order to describe a conceptual theory of PDEs on manifolds, the language of
jets will be very well suited, since it sees the PDE as a submanifolds of the k -jet
bundle given by the zero locus of F (see [KLV, Sau) as references for jets).

More precisely, the k -jet of 11 at x e R" is encoded by all the partial
derivatives of u up to order k : this means that two such functions u and v have

the same k -jet at at if they have the same Taylor polynomial of degree k at x. This

defines an equivalence relation ~kx on the space of smooth maps C°°(R",Rm);
the induced equivalence class of u, called the k -jet of u at x, is denoted by

jku. Such an element of this quotient has coordinates ua — „
g?'"'" with aA a*! — oxm

as above.

More generally, given a fibration (by which we mean a surjective submersion)

it : R -> M,

we denote by T(/f) the set of sections of :r, and by T|oc(/?) the local ones. For

any integer k> 0, the space of k-jets of sections of re is defined as

JkR := {jkß I ß e Tk)C(/?). x e dom(ß)}.

This set has a canonical manifold structure which fibres over M : indeed, the

collection of k -jets of functions u : R" -> 1R'" coincides with JkS, when

S R" x Rm is the trivial bundle over R" with fibre R"!, hence the coordinates

described above can be taken as local coordinates for Jk R when dim( M) n

and rk(f^) m.
In the case k — 1, a jet j\ ß is completely encoded by ß(x) e R and

the differential dxß : Tx M > Tß(X) R Actually, since ß is a section of re, its

differential is completely encoded by its image

Hß(x) Im(dxß) C Tß(x)R.

Indeed, dxß will be the inverse of djt\n Of course, H is not an arbitrary
subspace: it is a complement in Tß^R of the vertical subspace Tjf^R. Such a

complement is also called a horizontal subspace for n. Therefore, one has

J1 R ^ {(/?, Hp) I p e R, Hp CTPR horizontal}

{(P-0 I P e R-t, ' TxM -o- Tt;(x)R linear ,djt o Ç id).

The various jet bundles are related to each other by the obvious projection maps

> J2R -> JlR J°R R.

and each projection JkR —> Jk~1R is an affine bundle modelled on the pullback
of Sk(T*M) 0 TnR (see for example Theorem 6.2.9 of [Sau)). To simplify the



192 F. Cattafi, M. Crainic and M.A. Salazar

notation, we denote all the projections above by pr, and the fibration of JkR

over M by rc. Having at hand the language of jets, we can naturally formalise
the following definition (see [Gol2]): a PDE of order k on it is a (connected)
submanifold

(2) PcJkR
which fibres over M. Typically, a PDE is also asked to satisfy some mild

regularity conditions. While one could develop most of the theory with no further

assumptions, these conditions simplify the exposition and avoid unnecessary
technicalities. Accordingly, in the rest of the thesis we will follow Section 1.4

of [Yud] and require that, if F C JkR is a PDE, then pr(P) C Jk"1 R is a

submanifold as well, and the projections P —>• pr(P) and pr(P) —»• n(P) C M
are submersions.

A (local) solution of a PDE P is any (local) section ß of R with the property
that

jkß e P Vxs domOS);

this means that the (local) section jkß of JkR must be a (local) section of P.
In other words, the set of solutions of P, denoted by Sol(P), is made up by all

the sections a of P which are holonomic, i.e., of the form a jkß for ß a

section of R. Accordingly, in order to detect which sections are holonomic, we

introduce the Cartan 1-form

0can e n\jkR,vx*(T«(Jk~lR)))

with T7T(Jk~lR) := ker(J7r) the vector bundle over Jk~lR of vectors tangent
to the fibres of Jk~xR —> M. For instance, in the case k — 1, 0can is defined

as follows: if p := jxß, and X e TpJlR,

(3) (0can)„(Y) := dpr(X) - dxß(dir(X)) e T*(x)R.

In the general case, at level k, 0can is defined analogously (it is the difference

between the two canonical ways to move from the k- to the (k - 1 )-jet space).

Moreover, we let C := ker(0can) be the kernel of the Cartan form, called the

Cartan distribution (see [BCD+, KLV, Olvj).
The main property of this new object is the following:

Lemma 2.1. A section a of Jk R —> M is holonomic, i.e., of the form a jkß,
ß e T (R), if and only if a*9can 0 (equivalently, the section da : TM -> TJk R

takes values in C).

Conceptually this means that we can characterise the solutions of P only
in terms of P viewed as a bundle over M (and not as a subbundle of JkR),
together with the restriction of 0can to P :
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Sol(P) s r(P, 0can) := {a 6 r(P) I a*ec.dn ()}.

In other words, for the study of PDEs, the only relevant data is a fibration P -> M
endowed with an appropriate 1-form (or, equivalently, with its kernel): this will
be our starting point for the definition of a Pfaffian fibration (which forgets the

ambient jet space).

2.2. Linear PI)Es and Spencer operators. If R E is a vector bundle over

M, JkE is canonically a vector bundle over M with fibrewise addition and

multiplication by a scalar A e IR defined by

jxß + ./* r, := jk (ß + ri), A jkxß := jk (Xß).

A linear PDE of order k on E is a vector subbundle F C Jk E over M. As in
the general case, solutions of F are sections of F that are holonomic; however,

in this linear setting, the classical Spencer operator of E plays the role of the

Cartan form (3), i.e., detecting holonomic sections. As tor the Cartan form, we
will define explicitly this operator when k 1, using a very convenient way
to describe sections of known as the Spencer decomposition: it is the

canonical isomorphism of vector spaces

(4) r(JlE) s r(E) ®

This decomposition comes from the following short exact sequence of vector
bundles over M

(5) 0 -> Hom(TM, E) \ J1 E ^ E ^ 0,

where i, at the level of sections, is defined as i(df ® s) := fjls — j1 (fs).
Although the sequence (5) does not have a canonical right splitting, at the level

of sections it does: s i-> /1 .v. This gives the decomposition (4), so that the classical

Spencer operator /)clas is by definition the projection to the second component:

(6) Dclas : T(JlE) -» Q}(M, E).

This operator has been extensively studied, see for example [GS1, GS3, Spel, Spe2,

Quel, Que2]. Moreover, it is clear from its description that holonomic sections

of F C Jx E are precisely the sections a with the property that Z)clas(a) 0.
The same story can be also repeated for higher jets, obtaining classical Spencer

operators of the form Dclas : Y(JkE) -» S21 (M. Jk~l E). More precisely, since
JkE is a vector subbundle of J1{Jk~1E) (over M), we can consider the Spencer

operator of the vector bundle Jk~1E M (where Jk~l E now plays the role
of E) and restrict it to space of sections Y(JkE).
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This operator Dclas : Y(Jk E) —> Q1(M, Jk~1 E) vanishes on the solutions of
kth -order linear PDEs F C JkE\ hence, in analogy with the Cartan form, we

can characterise the solutions of F only in terms of F viewed as a vector bundle

(and not as a subbundle of JkE), together with the restriction of D Dclas

to F :

After defining Pfaffian fibrations as generalisation of PDEs with their Cartan

forms, their linear counterpart (the linear Pfaffian fibrations) will be in turn a

generalisation of linear PDEs with their classical Spencer operators.

Remark 2.2. We will also show (see Proposition 3.14 and Remark 3.18) that the

classical Spencer operator can be seen as the linearisation of the Cartan form in the

sense of Definition 3.17. Actually, the whole picture relating the two objects can

be more clearly seen in the world of Lie groupoids endowed with multiplicative
forms and Lie algebroids endowed with (non classical) Spencer operators: the

linearisation of a Lie groupoid is its Lie algebroid, and the linearisation of a

multiplicative forms is a Spencer operator. See [CSS] as a reference for this

topic. 0

2.3. Prolongations of PDEs. The theory of prolongations of a PDE is a powerful
tool to find its solutions; the literature on this topic is very rich and dates back

several decades: we mention [GS1, GS2, Olv, BCD+, Vin, Sto] and we briefly
and informally recall here some of these notions.

A prolongation of a PDE P of order k on n : R -> M can be thought
as the (k + 1)-order PDE on n obtained by taking the first order differential

consequences of P, with the fundamental property of having the same space of
solutions. The first naive guess to define the prolongation of P would be simply
J1 P {jl<j I a e F(P)}. However, one immediately sees that J1 P fails to be a

PDE of order k + I on it, since J1 P is by construction a subset of Jl(JkR),
not of Jk+lR c J1(JkR). The way to solve this (set-theoretical) problem is to
define the prolongation P( 1 ' as

However, P^ may fail to be a subbundle of Jk+lR\ even more, P^ may
fail to be smooth. The PDE P is said to be integrable up to order k + 1 if
P(1) happens to be "nice enough", meaning that it is indeed a new PDE, and

the projection P^ ->• P is a surjective submersion. If P is integrable up to

any order, it is said to be formally integrable. In this case we obtain a tower of
bundles over M

Sol(F) ^ r (F, D) := {a 6 T(F) | D(a) 0}.

(7) P(1) := JlP n Jk+1R.

(8) • • • —> pi2) />(D _> P
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each of them endowed with the restriction of the Cartan form at every order, and

all the maps being surjective submersions.

The study of formal integrability of a PDE is a very useful tool to prove
the existence of its solutions. This can be best seen in the analytic case, where

formal integrability becomes a sufficient condition for integrability, i.e., finding
local solutions at every point.

Theorem 2.3 (Theorem 9.1 of [Gol2]). If P c Jk R is an analytic formally
integrable PDE, then for every p C Jk+l R over x e M there is an

analytic local solution ß of P such that jk+I ß p on a neighbourhood of
x e dom(ß).

In particular, through every p P there exists a local (analytic) solution

of P.

However, in the smooth category Theorem 2.3 is not always true, since

there exist formally integrable PDEs admitting no solution: see the famous Lewy
counterexample [Lew].

To understand better the structure of the prolongations and the notion of
formal integrability, one arrives at the notion of a tableau (see [BCG+, Göll] and

Definition 2.6 in the next section). The tableaux are linear spaces that provide the

framework to handle the intricate linear algebra behind PDEs; they also provide
(Spencer) cohomological criteria for integrability of PDEs.

In particular, the symbol space 0 of the PDE P c Jk R is the following
tableau

0 := ker(r/pr : Tn P -» TJk~l R) c kerfofor :TnJkR-* TJk~x R)
(9)

S S (T*M) ® TnR.

This last isomorphism comes from the following short exact sequence:

(10) 0 - SkT*M ® TnR -> TnJkR ^ Tn Jk~l R -> 0,

where we assume that all vector bundles sit on top of Jk R as pullback by the

obvious maps (which we omit).
Using the definition of the Cartan form 0can, one checks that

0 {v e Tn P10can(v) 0} TK P n ker(0can) ^TnP n (Sk(T*M) <gi T*R).

We can use the symbol space to provide a sufficient criterion for formal

integrability of PDEs in terms of the prolongations and the Spencer cohomology
of 0, which we recall in the next section (see [Gol2] for the original result and

[Yud] for a more careful and modern proof):



196 F. Cattafi, M. Crainic and M.A. Salazar

Theorem 2.4 (Goldschmidt formal integrability criterion). Let P be a PDE whose

symbol space g is 2-acyclic, i.e., its Spencer cohomology Ilk,2(Q) vanishes

for every k >0. If moreover, P(l^ -> P is surjective and the prolongation
g(I) := {?/ e Sk+l (T* M) <g) Tn R \ Lxtj e g VA e X(M)} is of constant rank, then

P is formally integrable.

Remark 2.5. In the same way that the theory of Pfafhan fibrations (developed

in Section 3) is inspired from the theory of PDEs (recalled in Section 2.1), the

notion of prolongation of a Pfafhan hbration (developed in section 4) comes as a

geometrical way to describe the prolongation of a PDE only in terms of P and

the Cartan form, i.e., it isolates the properties that each map of (8) has in terms

of 0can, forgetting the ambient jet space where P lived. 0

2.4. Tableaux and Spencer cohomology. As stated in Theorem 2.4, Goldschmidt

provides in [Gol2| a cohomological criterion for formal integrability of a PDE

in terms of its tableau. In this section we recall the general notions of tableau

and Spencer cohomology, and state some facts relevant to the theory of PDEs.

We also describe a small variant of the Spencer cohomology which will appear
in the theory of Pfafhan hbrations, when dealing with a slightly more general

notion of tableau.

Definition 2.6. Let E, F be vector spaces. A tableau on (E, F) is a linear

subspace

g c Hom(£\ F).

We define the I s' prolongation of g as

g(1) := {r) e Hom(£,g) : r](X)(Y) r](Y)(X) V X,Y e E} Hom(£,Q)nS2E*®F,

and we define inductively the ith prolongation of g by

gd) ;= (g<,'-1))(1} Hom(£,g('-1)) n Si + Ï E* ® F.

Next, we recall from Section 6 of [Gol2] that the following operator on E,

8 : SkE* -* E* ® Sk~lE*, S(rj)(v) ivr) e Sk~lE*,

extends to a linear map

S : Aj E* ®SkE* —> Aj+lE* ® Sk~x E*, 8(a) <g> r?) (-1 )jm A 8(r]).

The resulting sequence of complexes (i.e., 808 0) is of the form

(11) 0 -* SkE* X E* ® Sk~xE* X---X anE* ® Sk~nE* -> 0
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tor each k (we set S1 E* 0 for I < 0). We tensor then the sequence (11)

by F, and the operator 8 by idp, keeping still the same notation 8. Note that,

for a tableau g C Hom(£\ F), each prolongation g(, can be described as the

kernel of the restriction of the appropriate 8 to HomfZs, :

(12)
5 8t : Hom(£,fl(i_1)) -» Hom(A2£, g(,^2)), 8(ri)(X, Y) - rj(X)(Y)-r](Y)(X).

Therefore, it is not difficult to see that the sequence of complex (11) tensored

with F contains the subsequence of complexes

0 -> 0(O A E* ® gO-1) X a2 E* ® 0(i~2) X---X AlE* ®gX Ai + 1E* ® F,

for each i. At amE* ® g*7', the cocycles are denoted by

Zl'm(g) := ker(5 : Am E* ® g(l) -> Am+1E* ® g(,_1)),

and the coboundaries by

Bl'm(g) := Im(5 : Am~lE* ® g('+1) AmE* ® g(/));

the resulting cohomology groups are denoted by

(13) Hl'm(g) := Zl'm(g)/Bl'm(g).

Note that by construction Hl,l(g) 0 for all I > 0. The resulting cohomology
is called the Spencer cohomology of the tableau g.

Definition 2.7. Let r > 1 be an integer. A tableau g is said to be r -acyclic if

Hl'm(g) =0, VI < m < r, / > 0,

and it is involutive if it is r -acyclic for all r > 1, i.e.,

Hl'm{g) 0, Vm >1, / > 0.

Later on, in the theory of Pfaffian fibrations, we will need a small variant

of the Spencer complex of a tableau g c HomtZLF), in which the inclusion

g Hom(£', F) is replaced by a linear map

3 : g —> Hom(£, F).

In this case we define the lrt prolongation of g (with respect to 3) by

(14) g(1>(3) := {rj e Horn(E,g) \ 3(rj(X))(Y) 3(ri(Y))(X), VA, Y 6 E).

We can regard g(1)(3) as a (classical) tableau on (E, g) and prolong it repeatedly,

giving rise to the higher prolongations
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g(')(9) := siE* <g)0nHom(£;,0(!'-1)), i> 1.

The Spencer sequence for g(1)(9) can be extended in the following way: we

extend 3 to the linear map

<5g : A•'£* <E> g —> AJ + 1E* <0 F, 8g(co <g> v) (—1)7&> A 3{v).

A simple computation shows that the sequence of Spencer complexes of g(1)(3)

extends to the sequence of complexes

(15) 0 -* g(,) X E*<S>Q(i~1} X X ai_1£'*00(1) X aX ai+1E*®F,

for each i. We call the 3-Spencer cohomology of g the cohomology of the

sequence (15).

Now, when dealing with vector bundles E, F over M instead of vector spaces,
all the notions discussed above extend naturally. In particular, a tableau bundle on

(E, F) is a bundle g C Hom(£\ F) of linear subspaces {gx C Hom(£'^; Fx)}x<=m

whose rank may vary; g is therefore a (smooth) vector subbundle over M only
when it is of constant rank. However, let us point out that the prolongations g("

may fail to be smooth even if we start with a smooth tableau bundle g ; at certain

points the rank of some prolongations may not be constant anymore. One of the

roles of the acyclicity condition from Definition 2.7 is to ensure the smoothness

of the prolongations (see [Gol2, Yud]):

Lemma 2.8. Let g c I lom( E, F) be a tableau bundle over a connected manifold
M. If g is 2-acyclic and g(1) c Hom(£\g) is a vector bundle of constant rank,
then g(') c Hom( E, is also a vector bundle of constant rank for all i > 0.

Remark 2.9. Lemma 2.8 above also holds when dealing with a tableau bundle

defined by a vector bundle map 3 : g —> 1 lom(E, F) over M ; in that case we are

considering of course the 1st prolongation g(l)(il) w.r.t. 3 from equation (14).
The proof follows the same lines as the proof of Lemma 2.8. 0

A fundamental result in the theory of prolongations of PDEs states that, even

if a tableau bundle is not involutive, it becomes so after a finite number of
prolongations (see [Gol3, Lemma 2]):

Theorem 2.10. Let g be a tableau bundle. There exists an integer /0 such that

g(/) is involutive for all I > Iq.

3. Pfaffian fibrations and their geometry

We present now the central object of this paper, which we obtain by replacing
the jet bundles with their hidden "PDE structures". Furthermore, we explain how
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to recover in this new formalism many concepts from the theory of PDEs. As

anticipated in the introduction (and discussed in the section of examples), we

stress that the leading idea in this picture is not to give an abstract generalisation
of the notion of PDE, but to shed light on its geometry.

3.1. Pfaffian fibrations.

Definition 3.1. A Pfaffian fibration P, 6) over M is a fibration n : P —> M
together with a pointwise surjective form 6 e £21(P,Af) with coefficients in some

vector bundle Af P such that

• 9 is jt -regular, i.e., the restriction of dit to ker(0) is pointwise surjective,

or equivalently, ker(0) is transversal to the 7r-fibres:

Tn P + ker(0) TP,

• 9 is 7r-involutive, i.e., the following distribution is involutive (in the sense

of Frobenius)

(16) g(0) := Tn P nker<9.

The form 0 satisfying the properties above is called a Pfaffian form, the vector
bundle Af the coefficient bundle, and the distribution g(0) the symbol space of 0.

From the 7r-regularity of the Pfaffian form 0 it follows that 0 has constant

rank, hence it defines a vector subbundle g(0) c TP over P, i.e., a regular
distribution (therefore it makes sense to ask it to be Frobenius-involutive).

Remark 3.2. (Pfaffian distributions) We can look at pointwise surjective n-
regular 1-forms from the equivalent point of view of distributions transversal

to the it -fibres (or re-transversal distributions). In particular, starting with a

TV -transversal distribution H a TP

TP H + Tn P,

one defines the symbol space of H

q(H) := TnP n H

and the normal bundle

Nh :=TP/H ^TnP/Q(H).

If, moreover, the symbol space of H is Frobenius-involutive, we call H a Pfaffian
distribution. We can then produce the surjective 1-form On (and say that Oh is

induced by H) given by the projection TP — AOh ' by construction 0# satisfies

ker(9h) H, is tv -regular, and its symbol space coincides with that of H.
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Vice versa, if some distribution Hg c TP is already the kernel of a surjective
7T-regular 1-form 9 e £il(P,N), then its normal bundle becomes isomorphic
to the coefficient bundle N via the map Nh 3 [»] d(u) e Af. Under this

isomorphism 9 can be trivially written as the projection map TP -> Nu
Clearly, Hg is jt -transversal and its symbol space coincides with that of 9.

Proposition 3.3. The previous construction (of Remark 3.2) gives a 1-1

correspondence:

IPfaffian
distributions I

_ J (equivalence classes) of Pfaffian forms I

H c TP j^( 9eQl(P,N) j

where two forms 9\, Sj are equivalent if there exists a vector bundle isomorphism

0 : A/"i —> A/2 between their coefficients such that f(9 i(u)) 62 (v) Vu e TP.

Accordingly, we have the equivalent notion of a Pfaffian fibration I', // over

M when dealing with a Pfaffian distribution; in the following, we will switch

freely between these two definitions (with forms or with distributions).
As we will see later (Proposition 3.22), PDEs on jet bundles are the main

example of Pfaffian fibrations. With this in mind, the correspondence from

Proposition 3.3 recovers the correspondence between the Cartan form and the

Cartan distribution.

Remark 3.4. (Pfaffian systems) Pfaffian fibrations are related to another way of

studying differential equations, namely exterior differential systems (EDSs): every
Pfaffian fibration induces a special kind of EDS.

An EDS is differential ideal of the exterior algebra of a manifold (see [BCG+]
for an introduction). In particular, a Pfaffian system is an EDS T C Q*( 1'),
generated as an exterior differential ideal in degree one, together with a transversal

(or independence) condition. It can be proved that a n -transversal distribution
H c TP induces such kind of Pfaffian systems, and moreover, if H is also n -

involutive, the induced Pfaffian system turns out to be linear (another notion from
the theory of EDSs, different from that of linear Pfaffian fibration in Section 3.2).

In conclusion, the framework of Pfaffian fibrations fits nicely in between two
classical ways of studying differential equations:

• The formalism of jet bundles becomes a particular case (we give up the jets
and retain the main structure given by the Cartan form).

• The formalism of exterior differential systems is a more general case (we

concentrate only on Pfaffian systems which have a transversal condition and

are linear). <>
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In both cases outlined above, a (local) solution of a PDE (i.e., a holonomic
section in the jet bundle language, an "integral manifold" in the EDS language)

corresponds to a (local) section of the Pfaffian fibration which pullbacks the

Pfaffian form to zero:

Definition 3.5. Given a Pfaffian fibration (P, 0), a holonomic {local) section of
(P, 0) is any (local) section ß of P with the property that ß*6 0. The set of
holonomic sections is denoted by T(P, 0) and that of local ones by fT0C(P, 0).

Analogously, a holonomic section of a Pfaffian fibration (P. H) is any section

ß of P tangent to H (i.e., dß :TM -> TP takes values in H). We denote by

T(P, H) the set of holonomic sections, and by IT0C(P, H) that of local ones.

One of the main questions for Pfaffian fibrations is the integrability from the

PDE point of view:

Definition 3.6. A Pfaffian fibration (P. 0) (or (P, H)) is PDE-integrable if
through each point p e P there is a local holonomic section ß e riOc(P-0) (or
ß e rioc(P. POX i.e., ß(jt{p)) p.

Remark 3.7. Of course the notion of holonomic section makes sense for any 1-

form 0 on a fibration P —* M without any a priori relation with Tn P ; however,

PDE-integrability implies 7r -regularity of 0, which is therefore a posteriori a

meaningful condition to ask in the definition. This can be more easily seen using
H ker 0 : if for any p there is a local section ß : M —> P passing through p
which is tangent to H, then

TXM d(n o ß)(TxM) dit(dß(TxM)) C dn(Hp),

where x n{p). This means that dit is surjective when restricted to H, i.e.,

H is jr-transversal (or 0 is 7r -regular). 0

A natural notion that comes into play when studying PDE-integrability is that

of integral element (see [BCG+j for the analogous notion for an EDS). Intuitively,
an integral element of (P, H) is a linear subspace V C TpP, p e P, which is a

"good" candidate to be the tangent space of a holonomic (local) section ß that

passes through p. Suppose that V is indeed tangent to ß, i.e., V dß(TxM),
x — 7t(p): this immediately implies that the dimension of V is the dimension

of M and that Tp P can be written as the direct sum V © T* P. Due to the

holonomicity of ß, one further obtains that

V C Pip, and [u, v\p 6 V,

for any u dß(X), v dß(Y) with X, Y e X(M).
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In order to rewrite this last condition independently of the extensions of up
and vp, we introduce the curvature map of H,

which is the C°°(P)-bilinear map defined at the level of sections by

(U, V) M* [U, V] mod H. The Leibniz identity of the Lie bracket of vector fields

implies that kh is indeed well defined. Alternatively, if H kcr 0, the curvature

map is denoted by kq : H x H -* AT and can be described by (U, V) i-> Ö([C7, V]) ;

therefore, it coincides with the restriction of dy9 to ker(0), where dy is the

De Rham-like differential associated to any linear connection V on P.

Definition 3.8. Given a Pfafhan fibration (P,H) (or I'. 9) a linear subspace
V c TpP of dimension equal to the dimension of M is called a partial integral
element if

V C Hp and TpP V (B T* P.

If, moreover, the restriction of the curvature map (kh)p to V x V is zero, then

V is called an integral element.

3.2. Linear Pfaffian fibrations and relative connections. In this section we
discuss the notion of Pfaffian fibrations in the linear case, i.e., when the fibration
P —> M is a vector bundle. We will also introduce an equivalent description in
terms of relative connections.

Let n : E —M be a vector bundle with zero section 0(x) (x, 0), fibrewise
addition a(e, f) e + f and multiplication by a scalar mx(e) Ac, for A e R.
Its tangent vector bundle is the vector bundle TE over TM defined as follows: the

fibrewise projection is the differential dn : TE -> TM, the zero section is d 0,
the fibrewise addition is given by the differential da : TE xTM TE —> TE and the

fibrewise multiplication by A e 1 is given by the differential dm\ .TE -> TE.

• A differential form 9 e G1 (E. ir * E) with values in the (pullback of the)

coefficient bundle F —> M is called linear if a*6 pr*0 + prj)9, where

prl5 pr2 : E xM E —E denote the canonical projections

• A distribution H c TE is called linear if it is a vector subbundle of TE
over the same base TM.

Lemma 3.9. Let H be a linear distribution on a vector bundle E M. Then

the distribution Ii H Tn E satisfies

Similarly, the normal bundle TE/H can be recovered from the n-pullback of
the vector bundle

(17) kh : H x H —»• Mh >

(18) H n TnE ^ u*{fH n T^E) |m).

Fh := (TE/H) \M-, M.

Moreover, H is n-transversal.
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Proof. First, we notice that we can right translate vectors tangent to the fibres

to the zero section. Indeed, any vector V at e e E tangent to the fibre Ex,
x n(e), moves to a vector based at (fix) (x,0) by taking the differential of
right translation ae{-) := a(-,—e) by —e:

(19) dae : Te(Ex) -» TX(EX), V h* da(V.0_e).

The advantage of this is that dae takes faH)e to g(H)x because H is linear,
hence we get (18).

Second, as H is linear, TM — dO(TM) c H\m and this shows that H
is jr -transversal on M. This, together with the identification (18), implies the

7T -transversality of H :

(20) TE H + T7tE.

Indeed, it is enough to compute rk(He + TfE) — rk(He) + rk(rT*E) - rk(g(//)e)
and compare it with the ranks at x ji(e).

Condition (20) implies in turn that the normal bundle can be rewritten as

TE/H Tn E/(H n TnE).

Using (19) and (18), and passing again to the normal bundle, we obtain the

isomorphism
n *Fh^TE/H. q.e.d.

Proposition 3.10. (Equivalence between linear forms and distributions) Any

pointwise surjective linear form 9 e C21 {E,ti* F) induces a linear distribution
He := ker(9) C TE.

Conversely, any linear distribution H on E arises as ker(0#), far 6h e

Q1(E,tt* Ffi) the linear form defined by the canonical projection TE TE/H
followed by the isomorphism TE/H n* Ffj of Lemma 3.9.

Analogously to Proposition 3.3, the result above defines a 1-1 correspondence

(equivalence classes) of
pointwise surjective linear forms >

6 e V.1{E,7t*F)

Proof. It is immediate to see that Hq is linear'. Conversely, let us prove that 6h
is linear (we omit the subscript on H for simplicity). Due to the transversality of
H one writes 6e(V) 0e( V — V), with V He ker(9e) any vector such that

dn(V) dn(V). Hence, for any other vectors W e TfE with dn(V) drt{W),
and W e Hf with dit(W) dn{W), we have

Linear distributions
H dTE
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6e(V) + df(W) 6»o(da(da(V - V, 0_e), da(W - W, 0_/)))

0o (da(da(V — V.W — W),da(0-e,0^f)fj

0O(da(da(V, W) - da(V, W), 0-e-fj)

6e+f(da(V, W) - da{V, W)) 9e+f(da(V, IT)),

where in the last line we used that da takes He xtm Hf to He+f by linearity
of H. Q.E.D.

Proposition 3.10 implies that the following definition is well given:

Definition 3.11. A linear Pfaffian fibration is a vector bundle n : E -> M,
together with either a pointwise surjective linear form 0 or a linear distribution
H c TE.

Proposition 3.12. If E, 0) is a linear Pfaffian fibration, then it is a Pfaffian

fibration in the sense of Definition 3.1. Analogously for a linear Pfaffian fibration
(E, H).

Proof. We say that a vertical vector field X e Y(Tn E) c X(E) is constant

along the fibres of it if, for every x e M, the vector dae(X) 6 TX(EX) (see

Equation 19)) does not depend on e e Ex It can be easily seen that such vertical

vector fields constant along the fibre of it commute.

Moreover, given a linear distribution H on u, we can write any vector
field tangent to q(H) c VIT^E) as a C°°(E)-linear combination of vector
fields tangent to g(//) and constant along the fibres; it follows that g(H) is

Frobenius-involutive. Together with Remark 3.9, this concludes the proof. Using
Proposition 3.10, the same holds for a linear Pfaffian fibration (E, IP). Q.E.D.

As promised, we explain now that linear forms and linear distributions can be

encoded by a generalised version of linear connections, called relative connections.

Starting from the well-known correspondence between linear connections V on
E —» M and distributions H c E which are horizontal and linear, relative

connections will turn out to be in correspondence with distributions which are

linear, but not necessarily horizontal.

Definition 3.13. Let E and F be two vector bundles over M ; a connection on

E, relative to a surjective vector bundle map a : E ^ F, is an 1R-linear map

D : r(£) Yl\M, F),
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satisfying, for any section s r(E) and function / e C°°(M), the Leibniz-type
identity

(21) D(fs)(X) fD(s)(X) + Lx(f)a(s) VXeX(M).
We also say that (D.o) is a relative connection and a is its symbol map.

In particular, any linear form 9 Q.X(M. F) is fully encoded by the operator

(22) D : r(£) S2'(M, F), s s*6.

together with the vector bundle map a : E —> F, o(v) 6(v). Indeed, we have

the following:

Proposition 3.14. The above procedure induces a 1-1 correspondence between

pointwise surjective linear 1-forms on a vector bundle Jt : E —* M and relative

connections on n.

Proof. The linearity of 9 is translated into the fact that D as in (22) is K -linear
and satisfies the Leibniz-type identity (21), where a : E —>• F is the vector bundle

map over M defined by

orx(u) 9f(u)
under the canonical identification TJ E Ex, for / E, x — n{f) e M.
Conversely, if D is a connection relative to ct, there is a well defined linear
form 9 e Q1(E, n*F) uniquely determined by s*9 — D(s) (for any .v e Fff?))
and 9(v) o(v) (for any v e E TnE\M). Q.E.D.

When there is no confusion, we denote a linear Pfaffian fibration by (E. D).
Of course, all definitions and properties can be translated from the point of view
of linear forms to the one of relative connections and vice versa. Accordingly,
we call

g(D) := ker(o)

the symbol space of D, we say that a section s is holonomic if D(,v) 0, and

we denote by F(E, D) the set of holonomic sections. As in the case of linear

distributions, the linearity of the form 9 associated to D implies that the natural

identification between Tn E and the pullback n* E restricts to the symbol spaces:

0(0) ^ n*g(D).

Remark 3.15. (Relative connections induced by linear distributions) We describe

directly the correspondence between linear distributions and relative connections,

bypassing Proposition 3.14 and Remark 3.9. As we anticipated, this can be also

thought as a generalisation of the well-known correspondence between linear
connections V : X(M)x L(E) —> r(£), and transversal linear distributions, given
by the horizontal distribution of V.
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For any linear distribution H on E, one produces a connection

D : F(£) -» Q.l(M, E/q),

relative to the projection pr : E -> E/q, for g c E the subbundle defined by

0 := &(H)\m CT*E\m E,

where we are identifying canonically Tn E with it* E. The connection D is

given by the formula

Dx(s)(x) := [,v, L](a) mod H

where X e 3c(M), X e X(E) is any jt-projectable extension of X, tangent
to H, and s is the vertical vector field constant along the fibres induced by

s. Of course, the above formula coincides with (22) when Oh is the canonical

projection TE -> n* Fh More generally, for any linear form 9, one can write
the associate relative connection (22) as

Dx{s){x)=9([s,X]x).

To check this formula one uses the flow of s to compute the bracket, and the

linearity of 9. This equation will play a role in the theory of prolongations of a

linear Pfaffian fibration. <>

Remark 3.16 (Relative connections as Spencer operators). Any vector bundle

E can be thought as a Lie algebroid with zero bracket and zero anchor. The

appropriate generalisation of relative connections in the world of algebroids is the

notion of Spencer operators: these are relative connections compatible with the Lie
bracket and the anchor; they play the infinitesimal counterpart of multiplicative
distributions (see [CSS]). These compatibility conditions are trivially satisfied

when the Lie algebroid is a vector bundle, so in this case the notions of Spencer

operator and relative connection coincide. 0

3.3. Linearisation of Pfaffian fibrations along holonomic sections. In this

section we discuss a natural process of linearisation in the context of Pfaffian

fibrations, which can be sketched as the following map:

Lin
Pfaffian fibrations and holonomic sections =*• linear Pfaffian fibrations

((P, 9),ß) (Linjg(P, 9), D^).

Let us describe this application Lin.
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Definition 3.17. Let (P, 9) be a Pfaffian fibration over M and ß e V(P,9) a

holonomic section, i.e., ß*9 0. The linearisation of (P,9) along ß is the pair

defined as follows. For any section s e r{ß*TnP), choose a smooth family ('>,

of sections of P such that

For Xx e Tx M, the family ß*(6)(Xx) e Nßt(X) defines a curve starting at 0^(x).
Accordingly, its speed is a vector in T0„(x)Af ^ Tß^P ® Mß(x) We define

It is straightforward to check that the operator Dß defined above is a

connection on Linß(P,9) relative to a 6 \t*p (Definition 3.13), hence

(Linß(P,9),D^) is a linear Pfaffian fibration. Moreover, its symbol space
coincides with the pull-back via ß of the symbol space g of (P,9)\

Remark 3.18 (Linearisation of a linear Pfaffian fibration). When a Pfaftian

fibration is already linear, linearising along the zero section becomes the identity,
i.e., Lino(«) • (of course, the zero section 0 is always holonomic for any linear
form 9).

Indeed, the linearisation of (E,9) along 0 recovers the vector bundle

E E° 0*(TnE) and the relative connection D associated to 9 as in

(22). To check this, note that a section s of E can by written as

(Linß(P,9),Dß),

where Linß(P,9) is the vector bundle over M

Linlg(/>, 9) := ß*Tn P,

and 1)9 is the operator

Dß : r(Lin/î(P,0)) -* El1 {M, ß*Af)

ßo — ß, 4 ßt(x) s(x).

ß(Linß(P,9)) ß*g.

d
s — — (0 + es),

hence

D°(s) — (0 + m)*(ö) - e(s*(9)) s*(9) D(s),
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where in the second equality we used again the linearity of 9 to write

(0 + es)*(0) — 0*9 + e(s*9) e(s*9). As 6 and D encode the same Pfaffian

fibration (see Remark 3.16), we see that linearising a linear Pfaffian fibration

along the zero section does not do anything; we end up recovering the same

linear Pfaffian fibration. 0

Remark 3.19 (Linearisation of a Pfaffian groupoid). Intuitively, a Pfaffian groupoid
is a Pfaffian fibration together with a multiplicative (group-like) structure; such

multiplicativity translates into a richer geometrical content and simpler objects.

Passing to the infinitesimal counterpart, we find Lie algebroids endowed with

Spencer operators (see Remark 3.16): the linearisation of a Pfaffian groupoid

along its unit map coincides precisely with the Spencer operator associated to a

multiplicative form as in [CSS]. 0

Remark 3.20 (Heuristics of the linearisation procedure). In this remark we aim to

give an intuitive explanation of the linearisation phenomenon, for which we will
use an infinite-dimensional picture in a heuristic way, without providing precise
details.

Let (P, 9) be a Pfaffian fibration over M, with 9 e and consider

the (infinite-dimensional) vector bundle F over the (infinite-dimensional) manifold

V Y(P) by setting the fibres

7ß\=Q}(M,ß*N), ßeV

and consider its global section

<P>:V ß^ß*9.

The holonomic sections of (P. 9) are now the zeroes of 0, hence 0 can be

called holonomator. The linearisation of (P, 9) around a holonomic section ß e V
becomes then the usual linearisation of the section 0 at the zero ß, i.e., the

7ß -component of the differential

dß& : TßV —> Tq7 TßV 0 JFß.

Since a vector tangent to V at ß is realised as the velocity of a path t f-> ßt e V
starting at ß, i.e., TßV Y(ß*Tn P), then the linearisation becomes an operator

Dß := dß@ : Y(ß*TnP) -» tll(M,ß*A).

Together with aß given by 9 restricted to 7"jT P, we obtain a relative connection

(Dß,oß) on ß*Tn P with coefficients in ß*F. This is precisely the linearisation

of (P, 9) along ß from Definition 3.17. 0



3.4. Examples.

Example 3.21 (PDEs). As we anticipated, jet bundles and PDEs are the

prototypical examples of Pfaffian fibrations.

Proposition 3.22. Let K > M be afibration; any PDE P c Jk R, together with

the restriction of the Cartan form 0can, is a Pfaffian fibration on M. Moreover,

its symbol space (Definition 3.1) coincides with the symbol space of P as a PDE

(.Equation (9)).

Proof. By the regularity conditions asked on P (see the discussion after equation

(2)), the projection n : P -> Jt(P) c M is a surjective submersion. Moreover,
since also pr : P —> pr(P) is a submersion, we can choose a splitting
£ : Tpr(P) pr*TP of dpt. It follows that, for every p — jk<p e P, we

can consider the map

TXM -* ker(0p) C TpP, m %(dx(jk~lo)(v)),

which is a splitting of dpn |ker(ö^)- ker(6P) —> dp7t{P)\ this proves that 6 is

jr-transversal.

Moreover, one notices that the Cartan form 0can restricted to ker(dit) is

simply the differential of the projection pr : P pr(P) c Jk~l P, hence

(23) ker(0can) n ker(dit) ker(r/pr : TP ^ Tpr(P)).

Since, by definition of PDE, we assume that pr : P — pr(P) is a submersion, its

kernel is a smooth submanifold and ker(Ocan) fl kcvidii) is an involutive regular
distribution on P, i.e., 0can is jt-involutive.

We conclude that (P,6) —> jv(P) is a Pfaffian fibration. In particular, by

equation (23), the symbol space of (P, 6) as a Pfaffian fibration coincides with
the symbol space of P as a PDE. 0

Here is a partial converse of the previous result; any Pfaffian fibration which
is "nice enough" can be realised from a jet bundle.

Proposition 3.23. Let n : (P. 9) -> M be a Pfaffian fibration, with 6 e Q1 P. A'),
and assume that the foliation on P defined by the symbol space is simple, i.e.,

g(0) ker(df) for some fibration f : P —> Q. Then there exist

• a fibration r : Q —M such that to f — n,

• a vector bundle isomorphism <f> : f*(TTQ) —> Af,
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• a unique bundle map (P,9) —» (Jx Q, 9can) such that

<Doi*0can 0,

for öcan e fü1 (./ 1

(2, pr*7'r0) the canonical Cartan form on JXQ.

Proof We define £> := P/~ as the leaf space of the foliation g(0). Then the

projection

t : g-> M, [/>] /(/>) i-> zr(/7)

is well defined, since djt vanishes on g(0), hence ji is constant on each leaf.

Moreover, r is a fibration since jt is so.

The linear isomorphism <$>p : Tj^Q -»• Mp is defined as the composition of
the inverse of the isomorphism

dpf : r; P/q(9p) -> Tf\p) Q, [u] -* <*/(„)

with the isomorphism

8P : T;P/Q(0p) TpP/ kcx(Op) -> [u] 0».
The bundle map i is defined as

'(p) := (/(p). £[/>])

where we interpret /'g as in Equation (1). Here £[p] is defined as the

composition of the isomorphisms Tn(p)M ker(9p)/g(9p) c TpP/g(9p) and

Tp P/g(9p) l[P] Q, i.e.,

£[/>] : Tn(P)M -» TpP, u h* dpf(v),

where ü is any vector in ker(0p) such that dpn(v) v.
To prove that <J> o / * 0can 9, we compute, for every v e TpP,

1>o (/*0can)p(v) d>o (9can)i{p)(dpi(v)] (fo (d(pr o i)(v) - Ç[p](d(jr o i)(v))^)

cp o (dp f(v) ~ Ç[p](dpn(v))^J O o (dpf(v) - dp f{v))

<i>(dpf(v - f)) 0p{v — v) 9p(v).

Last, for the uniqueness of i, assume there is another bundle map / : P -o-

JlQ, p I—> (/(/>)> £ [p]) with the same properties; then, for every v e TP,

(9can)i(p) (di(u)) ($can}j(P){djfvf).

The previous computations tells us that

dpf(v — v) dp f(v) - £ [p](dpjt(v)),

which implies that £ £ i.e., that j must coincide with ;. 0
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Proposition 3.23 will be improved in the next section (see Corollary 4.35). 0

Example 3.24 (Linear PDEs). Let E —>• M be a vector bundle; any linear PDE

F c JkE, together with the restriction of the Cartan form 0can, is a linear
Pfaffian fibration on M. Indeed, a simple computation shows the linearity of
^can •

Note that the coefficient bundle of 0can is Jk~x E because we have the

canonical identification pr*Tn{Jk~x E) ^ ic*Jk~xE, with pr the projection
JkE —» Jk~xE. This explains also why the Cartan form and the classical

Spencer operator play the same role in the theory of linear PDEs. More precisely,
the classical Spencer operator Z)clas : Y{JkE) -> QX(M, Jk~x E) is just the

connection relative to the projection Jk E Jk~xE and defined by equation

(22) via 9Can ;

D(S) S*6can.

In other words, the Cartan form on a linear jet space is fully encoded by the

classical Spencer operator (see also Sections 2.1 and 2.2).
Note also that, applying Remark 3.18, the linearisation of the Cartan form

on a linear jet bundle JkE is precisely the classical Spencer operator of
JkE -> M 0

Example 3.25 (Lie Pseudogroups). An important source of examples of Pfaffian

fibrations comes from Lie pseudogroups. Recall from [Yud] that a pseudogroup

on a manifold X is a set F C Diffi0C(A) of diffeomorphisms between opens of
X, which is closed under composition, inversion, restriction and glueing. A Lie
pseudogroup is a pseudogroup T satisfying further regularity conditions, namely
the subspace

JkY := { jk<p I 0 e T, x e dom(0)} c Jk(X, X) := Jk{prl : X x X —> X)

must be a smooth submanifold for every k.
In particular, JkY is endowed with the restriction of the Cartan form $can of

Jk(X,X), denoted by 0, as well as with two fibrations:

s:JkY^X, jk(p^x,
t : JkY -» X, jk(p^<p(x).

We claim that (JkT, 9) is a Pfaffian fibration w.r.t. both fibrations.

Indeed, s : JkY ->• X is a PDE on the fibration X x X -* X, hence is a

Pfaffian fibration by Proposition 3.22. On the other hand, it is easy to check that

the two maps s and t are related to the Cartan form 6 by the following equation:

(24) ker(0) O ker(c/.v) ker(0) (T ker(dt)
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The fact that 6 is t -transversal follows then by a dimensional argument: for every

geJk r,

dim^J^T) dim(ker(dg.s)) + dim(0?) — dim(ker(4g.v) fl ker(0g))

dim(ker(Jgt)) + dim(0?) — dim(ker(^f) n kcr(Og)).

Moreover, since 6 is .v-involutive and (24) holds, 9 is also t -involutive, hence

t : {Jkr, 0) -* X is a Pfaffian fibration as well.
Here is an important property of Pfaffian fibradons of the kind ./k F : they

are all PDE-integrable (Definition 3.6). Indeed, for every g jk<p e JkY, there

exists the local section jk(f> e Yioc(.v), which is holonomic by construction and

sends x to g; similarly, the local section jk<po<j)~l e Fioc(f) is holonomic and

sends <j>(x) to (j;*0)(0-1(0(x))) (jk</>)(*) g-
Last, we remark that equation (24) establishes a compatibility between the

two structures of Pfaffian fibrations on JkY. This becomes more meaningful if
we realise that Jk F possesses a Lie groupoid structure compatible with 9 in an

appropriate sense, i.e., JkY is an example of Pfaffian groupoid (see Remark 3.19).

The fact that ker(0) ft ktx(ds) ker(Ö) Dker(dt) says that the Pfaffian groupoid

(J V, 0) is of a special kind, called of Lie type: we will however not discuss

here the consequence of this property, for which we refer to [Sal, CS]. <)

Example 3.26 G -structures). Many geometric structures defines a Pfaffian

fibration: this happens with Riemannian metrics, almost symplectic structures,
almost complex structures, etc. More precisely, let P c Fr(M) be any G-
structure on M", i.e., i' is a reduction of the structure group of Fr(M) to

a Lie subgroup G c GIAn, If) ; then P defines a Pfaffian fibration over M as

follows. Consider

P {(x,y,£) I x, y e M,

Ç : TXM > TyM linear isomorphism preserving frames in P),

and the projections it\ and 7t2 on the first and second component. Then

jri : (P,co) -> M is a Pfaffian fibration, where the form a> e Ql(P
is defined by

(0(x,y,Ç)(v) := d7T2(v) - $(d7T1(v)).

This follows easily by realising f as a subbundle of := y1 (prx :

M x M M) via equation (1), and noticing that o:> is the restriction of the Cartan

form of Of course, swapping m and :r2 and replacing £ with £-1

would yield another form a>' e O1 (P, n*TM) which makes 7T2 : (P,<w') -> M a

Pfaffian fibration.
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Here is an interesting application: the PDE-integrability of f as a Pfaffian

fibration is a necessary condition for the integrability of P as a G -structure (e.g.,
the flatness of a Riemannian metric, the closedness of an almost symplectic form,
etc.). Recall that a G-structure P is integrable if it admits an atlas of charts

"adapted" to P, meaning that their induced diffeomorphisms between opens
of M preserve the frames of P. In particular, using such an atlas, for every
(x, y, Ç) e P one finds adapted charts Xx U -* 111" around x and Xy ^ ^
around y such that / := (Xyffi1 o Xx is a local diffeomorphism of M, sending

x to y and such that dxf £.
On the other hand, a section of P is a function a : U P of the type

o(x) — (x, /(x),£x), for / : U -> V some smooth map (not necessarily a

diffeomorphism). By the definition of co, the section a is holonomic precisely if
and only if %x dxf It follows that, if P is integrable, for every (x. y, £) e P

there is a holonomic section through it, i.e., P is PDE-integrable.
As for Example 3.25, one can also notice that P has a structure of

Lie groupoid; this is more transparent by establishing the isomorphism P

(P x P)/G, where P x P is quotiented by the diagonal action of G (this is

also known as the gauge groupoid of the principal bundle P Then P is also a

Pfaffian groupoid (see Remark 3.19), which is of Lie type since it clearly satisfies

ker(fti) n ker(<i7ri) ker(co) (T ker(d jt2). 0

4. Prolongations

The purpose of this section is to understand geometrically and intrinsically the

notion of prolongation of a Pfaffian fibration and its fundamental properties. We

start by exploring the type of morphisms between Pfaffian fibrations which induce

maps on the set of holonomic sections, and then move forward to study morphisms
with more specific requirements. These extra conditions extract, in a sense, all
the fundamental properties of the prolongations of a PDE (see Section 2.3), in
the same way that the conditions of a Pfaffian fibration extract the fundamental

properties of the solutions of a PDE.

4.1. Morphisms of Pfaffian fibrations. Given two Pfaffian fibrations over the

same manifold, the most natural notion of morphism between them consists of a

bundle map preserving the two Pfaffian forms.

Definition 4.1. A weak Pfaffian morphism between two Pfaffian fibrations (P',6
(P,9) over M is a smooth fibre bundle map <fi : P' —> P with the property that

(25) cj)*e ^cpod'
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for some vector bundle map $ : W -> (p*Af between the coefficient bundles.

Note that, since 0' and 0 are surjective, the map <t> in the previous definition
is unique.

Remark 4.2. It follows immediately from the definition that a weak Pfaffian

morphism (p induces a map on the sections which preserves the holonomic ones:

(26) (p : rloc(P', 9') —> rk,c(P, 6).

Moreover, since n' jt o (p, the differential dip maps the symbol space g(0')
to g(0). 0

Example 4.3. An example of weak Pfaffian morphism is given by a PDE

P —> JkR: in this case, the form 0 / *0can on P is just the pullback of
the Cartan form 0can on Jk R by the injection i.

Similarly, if a PDE P c Jk R is integrable up to order k+ 1 (see Section 2.3),

the projection

pr: (P(1),0(1)) -> (P, 9)

is a weak Pfaffian morphism, where 0^ is the restriction of the Cartan form of
Jk+lR, and 0 the restriction of the Cartan form of Jk R.

Note that, in both cases, O is the identity and the results from Remark 4.2

hold trivially. 0

Example 4.4. Given any Pfaffian fibration (P, 0) whose symbol space satisfies

the hypothesis of Proposition 3.23, the induced bundle map

i:(P,9)-*(J1Q,eaan)

is a weak Pfaffian morphism, with <f> the inverse of the isomorphism between

the coefficients. <>

However, there are a number of reasons to add some constraints to the above

definition of weak Pfaffian morphism. First, such notion does not behave well with

respect to important objects associated to Pfaffian fibrations, such as curvature

or integral elements. Second, given a bundle map cp : I" > (P. 0), we cannot

always produce a weak Pfaffian morphism by endowing P' with the form (p*9

(as we did in Example 4.3 for PDEs), since <p*9 might not be n -involutive,
7T-regular, or even pointwise surjective. In conclusion, even if Definition 4.1 is

very natural, it reveals to be too weak for our further study of prolongations of
Pfaffian fibrations; we are therefore going to introduce the following notion.
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Definition 4.5. A Pfaffian morphism between two Pfaffian fibrations (P',0'),
(P,0) over M is a surjective submersion cp : P' —> P which is also a weak

Pfaffian morphism.

A Pfaffian morphism satisfies many properties, which we list below for future
reference:

Proposition 4.6. Given a Pfaffian morphism tp : (P',0') (P,9),

(1) (p sends holonomic sections of (P',0') to holonomic sections of (P,0).

(2) dcp sends the symbol space q(0') to the symbol space g(0).

(3) If (P',0') is PDE- in teyrah le, (P,0) is PDE-integrable.

(4) The curvature maps k$/ and kq are related by the equation

(27) <P*Ke — 4> o k8'.

(5) dtp sends (partial) integral elements of (P', 0') to (partial) integral elements

(P,0).

Proof. The first two properties holds for any weak Pfaffian morphism, as we

noticed in Remark 4.2.

The third property requires the surjectivity of cp. Indeed, under such assumption,

consider any p e P ; then we can pick a point p' e tp~l(p) c P', around

which there exists a holonomic section o' of P', and check that a := tp on' is

a holonomic section of P around p.
For the fourth property, we use Equation (25) and 0-projectable vector fields

to conclude that <P*kq /c<j>o0' • Then we choose two linear connections V'
and V, respectively on the coefficient bundles W and M, and we show that

d^*v(<i> ° d') Oo dy(O'). Last, we argue that the restrictions of /c$o0' and

<t> o Kg' to ker(0') coincide (see the discussion after Equation (17)).

For the fifth property, it is enough to use the relations (25) and (27), which

imply that dtp preserves (partial) integral elements (Definition 3.8). Q.E.D.

Example 4.7 (Pullback Pfaffian fibration). Let jv : (P, 6) —r M be a Pfaffian

fibration, n' : P' -* M a fibration and <p : P' -> P a surjective submersive

bundle map. Then P' can be endowed with the pullback 0' := tp*6, so that

(P',0') becomes a Pfaffian fibration (the pullback Pfaffian fibration) and tp

becomes a Pfaffian morphism (where 0 is just the identity).
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In order to prove this claim, as anticipated above, the hypothesis that f
is a submersion is crucial. One checks immediately that the pullback f*9 is

pointwise surjective. Moreover, f*9 is 7r' -regular: indeed, for every p e P',
the maps dpf : TpP' -> T<p(p)P and : T^^P Tn>(p)M are surjective
when restricted to ker{f*9)p and ker(0)0(p), and the diagram

ker(<p*9)p —ker(0)0(p)

T,i'(P)M

commutes, hence dpji' is surjective as well when restricted to ker(cp*9)p. Last,

to prove the 7r'-involutivity of f*9, consider any two vector fields X, Y tangent
to ç\(<p*9); then we have

k+*0(X, Y) Ke{d<l>{X),d<p{Y)) 0

thanks to properties 2 and 4 of Proposition 4.6 and because g(0) is Frobenius-

involutive. This says on one hand that the bracket [X, Y] belongs to ker(0*0);
on the other hand, since Tn P' is Frobenius-involutive, that the bracket [X, Y] is

also tangent to Tn' P', hence to g(cp*9), proving that f*9 is 7r'-involutive. Q

Example 4.8. A PDE P r--* JkR, which is a weak Pfaffian morphism by

Example 4.3, is not a Pfaffian morphism, since i is not a surjective submersion;

similarly for the morphism from Example 4.4.

On the other hand, given a PDE P c Jk R integrable up to order k + 1,

its prolongation pr : (P, 9) is a Pfaffian morphism. In fact, this

projection has a richer geometrical structure, which is manifested in the properties
of a normalised prolongation (see Definition 4.10 and Example 4.12 below). {>

Remark 4.9. (weak Pfaffian morphisms between Pfaffian distributions) Paraphrasing

this section in the language of Pfaffian distributions H' C TP', PI C TP,
one obtains the corresponding conditions of weak Pfaffian morphisms only in

terms of the distributions, when applied to the associated Pfaffian forms 9 9h
and 9' 9w First of all, (25) corresponds to

(28) d(p(H') c H.

The map 4> : TP'/H' -> cf>*TP/H is forced to be [u] h-> [d(p(u)\ and it is well
defined by (28); in this case we denote <t> by [d<p]. Hence, in this setting, a

weak Pfaffian morphism is a bundle map <p : P' —> P satisfying (28); as in (26),

f preserves holonomic sections.
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A weak Pfaffian morphism <p is called a Pfaffian morphism when it is also

a surjective submersion. Again, such condition will imply an equation on the

curvatures analogous to (27):

(p*KH [d(j>] OKH'-

Moreover, as in Proposition 4.6, <p sends (partial) integral elements to (partial)
integral elements, and the PDE-integrability of (P'.H') implies the PDE-

integrability of (P. H). <)

4.2. Abstract prolongations. Going back to the definition of prolongation of a

PDE P c JkR (see Equation (7)), one finds that, for P integrable up to order
k + 1, the projection P(1) —>• P maps ker(0(1^) at a given point p e P^ to

a single integral element of (P, 9) (Definition 3.8), where both 6^ and 9 are

restrictions of the Cartan forms of Jk+1R and Jk R. This will be explained in

Example 4.12; the following definition extracts the right properties so that the

phenomenon described above happens in general for a Pfaffian morphism:

Definition 4.10. An (abstract) prolongation of a Pfaffian fibration (P. 6) over M
consists of a Pfaffian fibration (P', 6') over M together with a Pfaffian morphism
(p : (P',9') —> (P,9), such that

(29) 0(0') c ker(dtp),

and, for any u.v e ker(C'),

(30) kq(c14>(u), dcp(v)) 0.

We say that f : P' —» P is a normalised prolongation if o(0') ker(dcp).

As already mentioned, we obtain a practical criterion to test when a Pfaffian

morphism is a prolongation in terms of integral elements (Definition 3.8).

Proposition 4.11. A Pfaffian morphism <p : (P',9') —>• (P. 0) is an abstract

prolongation if and only if, for every point p' e P', the subspace r/0(ker(0^,)) c
T<i>{p')P is an integral element.

Proof. Assume that <p is an abstract prolongation and choose any partial
integral element V c ker(9P>) of P'. By property 4 of Proposition 4.6

dcp(V) C d<p(ker6'pl) is a partial integral element. Since dcp(V) is transversal

to the it -fibres, then d<p(kev9'pl) is also transversal. Condition (29) says that

dip (ker 0'p,) d<fi(V © q(Q')p') d<p(V), implying that c/^(ker0^,) is a partial
integral element. With Equation (30) we conclude that it is actually an integral
element.
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Conversely, if d(p(ker9',) is an integral element then Equation (30) follows.
To show (29) we use that d(p(ker9'p,) is, in particular, a partial integral element.

As before, choose any partial integral element V C ker(0/,'); then we obtain

by Proposition 4.6 that dcp(V) C <:/</> (keréP,) is a partial integral element. By
dimensional reasons dcp(V) d(p(ker 0'p,), hence

d(p(V) d<j>(keréf,) dcp(V © g(9')p>), and d<p(g(9p>)) C g(9)p

for p 4>(p'). The last equation holds again by Proposition 4.6. This implies that

d<f>(g{6p')) C g(9)p IT d<f>(V) CP1 P ndcp(V) 0, hence it shows (29). Q.E.D.

Example 4.12. As anticipated in Example 4.8, given a PDE P c Jk R integrable

up to order k + 1, the projection r/pr : (P^,#^) -> (P, 6) is a normalised

prolongation. In fact this is the content of Proposition 4.30, together with the

discussion at the beginning of this section. Moreover, it is immediate to see that

ker(Jpr) g(0(1)).

Indeed, by definition of 9^ as the restriction of the Cartan form (3), we see

that 0(1)|T7T/j(i) </pr; therefore g(0(1)) ker(0(1)|r7r/>(i)) ker(^pr). <0

Remark 4.13 (Cartan -Ehresmann connections). Consider an abstract prolongation
cj> : (P\9') (P,6); as a consequence of Proposition 4.11, any section

(T : P —> P', induces the following distribution Ha c ker(0) on P, which
is made of integral elements of 9 and is n-horizontal:

Ha,p := da(p)4>(ker(9^p))) for each p e P.

Such a distribution Hn is also called a Cartan-Ehresmann connection of P. 0) ;

in this paper it will be only used once as a technical tool (in the proof of
Proposition 5.8), so we refer to [Yud| for more details. 0

Remark 4.14 (Alternative definition of prolongation). Because cp is a Pfafhan

morphism, the relation (27) between the curvatures of 9 and 9' holds, hence we

can replace condition (30) for the following equivalent one:

t>)) 0 Vw, v e ker(6>^). 0

Again, as in Remark 4.9, Definition 4.10 can be reformulated using distributions
instead of forms: we say that <fi : (/", //') —> (P, H) is a Pfaffian prolongation if
it is a Pfafhan morphism (i.e., dcp(H') C H) and

(31) g(H') C ker{dcp), and Kfj(dcp{u), d(p(v)) 0 for all u, v H'.
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The second equation can be equivalently written as [d<p\(KH'(u,v)) 0. The

prolongation <p is normalised when

(32) q(H') ker(dtp).

where [dtp] : TP'/H' —>• <p*(TP/H) is the induced map on the quotient. In this

picture, the name normalised has a natural explanation:

Lemma 4.15. A Pfaffian prolongation <p : (/", H') —y P. H) is normalised if
and only if its differential dcp descends to an isomorphism between TP'/H' and

the pullback via <p of Tn P :

(33) TpP'/H'p s T$(p)P> M ^ dcpfi - V),

where v e H'p is any vector with the property that dn'(u) — dn'(v).

Proof. The jr'-transversality of II' implies that its normal bundle is isomorphic
to Tn' P'/q(H'):

(34) TP'/H' ^ TP'/q(H), [u] [u - v],

where v e H is as in the Lemma 4.15. On the other hand, dcp(ffiH')) 0

implies that map df induces

(35) T71' P'/q( H') -> Tn P. [tn] d<p(w).

The fact that 0 is a prolongation implies that the map (35) is well defined and

surjective. Then, the map (33) comes from composing the maps (35) and (34),
and it is an isomorphism if and only if (35) is injective, which is equivalent to
condition (32). Q.E.D.

The lemma above suggests that, if (p is not normalised, we could "fatten" H'
by ker (dcp) c T71 P' to a new distribution

(36) H' := H' + ker(#).

Proposition 4.16. Let (p : I". II') -* P. H) be a prolongation of Pfaffian

fibrations; then (P', H'), for H' as in equation (36), is a Pfaffian fibration
which makes (p : P' —>• P into a normalised prolongation.

We call (P'. H') from the previous proposition the canonical normalised

prolongation.
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Proof. We prove first that q(H') H' nker(dn1) H' nker(d(p). Indeed, on the

one hand, 0 is a bundle morphism, hence ker(r/0) C ker{dn') ; on the other hand,

the first condition for the prolongation 0 is the inclusion g(H') C H' fl ker(r/0).
Then, the fact that H' has constant rank follows from dimension counting:

rk(//') — rk(//') + rk(ker(c/0)) — rk(//' (T ker(d<p))

rk(//') + rk(ker (d<p)) — rk(g(//')).

The 7r'-transversality of H' follows from the transversality of H' C H', and its

n'-involutivity is just the Frobenius-involutivity of ker(dtp).
Last, the prolongation is normalised by Lemma 4.15, since (35) becomes

injective when we replace q(H') by q(H') ker(dtp). Q.E.D.

Remark 4.17 (Normalised prolongations in terms of Pfaffian forms). If we look
at normalised prolongations in terms of 1-forms, we have various identifications
that put us in the following case. Lemma 4.15 identifies the quotient TP'/ ker(d')
with the pullback of Tn P via 0 on the one hand, and 6' identities this quotient
with its coefficient bundle Af ; hence, we can think that the coefficient bundle is

Tn p.
ar cp*(Tn p).

Moreover, under this identification, the maps c/0 : T71' P' —» T71 P and 0' :

T71'P' -> Af coincide; it follows that a prolongation 0 : (P',9') -» (P. 9) is

normalised if 6' takes values on Tn P. i.e.,

9' Ql(P',cp*(Tn P)),

and the differential df coincides with 9', seen as a map on Tn' P'. The remaining
conditions for a prolongations of course remain the same, namely

0*0 0o0', and 9(k0>(u, v)) Ke(d<j>(u), d<j>(v)) 0

for all u, v e ker(0'). 0

4.3. The partial prolongation. To simplify the exposition, we will adopt from

now on the point of view of distributions; at the end of the next section

(Remark 4.31), we will make the appropriate comments about how this picture is

adapted using 1-forms.

In analogy with the classical notion of prolongation of a PDE (Section 2.3),
the classical prolongation of a Pfaffian fibration ir : P. IT M may be thought
of as the space of its first order differential consequences; more precisely, the

prolongation consists of all the integral elements of (P. H) (Definition 3.8). Those

can be reinterpreted, using Equation (1), as the images of all linear splittings
Ç : 'Pn(p) M -» TpP of dp ji such that
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Im(£)C Hp, Ç*(KH) 0.

The partial prolongation of (P, H) takes care of the first condition.

Definition 4.18. The partial prolongation of a Pfaffian fib ration it : I', II M,
denoted by P, is the set of all its partial integral elements. In other words,
modulo the identification (1), it is the subset of J1 P defined by

JlHP := {(p,Ç) e JlP I f{Tn(p)M) c Hp).

The classical prolongation of (P, H will sit inside J^P, hence many of its

properties are inherited from .Jh P. In particular, we will prove later that both

the partial and the classical prolongation can be seen as universal, the first in the

world of Pfaffian morphisms (Proposition 4.28), and the second in the world of
Pfaffian prolongations (Proposition 4.23).

Proposition 4.19. The partial prolongation JP from Definition 4.18 is a smooth

manifold and pr : Jjj P -> P is an affine bundle modelled on Hom(it*TM, g(//)).

Proof As explained above and in equation (1), we represent the points of J1 P as

pairs (pfi) with p e P and £ : Tx M —> TpP splitting of dpit, where x it(p).
Recall from Section 2.1 that pr : JlP -> P is an affine bundle over P with
underlying vector bundle Hom(jr*TAf, Tn P). Indeed, any two points and

(/?,£') in the same fibre of J1 P above p e P differ by

?Ç:=?-Ç:TXM -+T£P,

which can be arbitrary. We remark also that J^ P is the kernel of the map

e : J1 P —> Hom(it*TMe(jxß) ' v ^ dxß(v) mod Hß(x>,

and that e is an affine map with underlying vector bundle map

~e : Hom(7r*TA/, Tn P) ^ Hom(ii*TM,ATh), f Ç mod H.

Since PI is 7r-transversal and therefore pr : Tn P —> Tn P /q(H) — Nh. dob
mod H is surjective, it follows that pr : JXH P ->• P is an affine bundle with

underlying vector bundle

ker("^) Hom(n*TM, q(H)). Q.E.D.

We study now the "Pfaffian structure" of P, as well as its main properties.
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Theorem 4.20. The partial prolongation Jh I' of a Pfaffian fibration (P. H) is

the largest subbundle of Jx P such that, when endowed with the restriction of
the Cartan distribution

(37) Z/'1* := C n TjjjP, (where C is the kernel of 6?can of Equation (3))

the restriction of the projection pr : J^P —y P becomes a Pfaffian morphism

(Definition 4.5).

Proof. Let us prove first that (J^P, //(l)) is a Pfaffian fibration. To see that
H(1) is 7r-transversal, we compute its vertical part //(1) CiT71 J^P, which is the

same as the kernel of the Cartan form 0can when restricted to Tn J^P. From the

explicit definition (3) of 0can, we see that the Cartan form restricted to Tn JXH P

is precisely dpr : TnJ^P —> T71 P. However, the kernel of dpi is the first term

of the exact sequence over Jh P,

(38) 0^g(//(1)) Horn (rr * TAT pr*(0(//))) -» TnJxHPd-X pr*(TnP) -* 0,

where this sequence comes from restricting

(39) 0 Hom(jr*rA/.pr*(r7rP)) TnJlP ^ pr*(T71 P) -» 0.

to TJ^P. This also shows that, since dpi : T^J^P —> T71 P is point-
wise surjective, 0tan on TJ^P D T71.1jr I' is surjective as well; hence

//(') k&i(9can\Tj\^p) is a distribution and

(40) rk(//(1)) rk(TJ^P)-rk(r7IP).

The 7T-transversality of H^ follows from dimension counting using (38) and

(40):

rk(//(1) + T71 Jfl P) tk(H{l)) + rk(T7ljj1P)-ik(Hom(ji*TM,Q(H))^

— ik{TJjjP).

The Frobenius-involutivity of the vertical part of is immediate as it is the

intersection of the tangent space of a submanifold with the Frobenius-involutive
distribution CHT71 J1 P.

We have proved that (JjjP, //(1)) is a Pfaffian fibration; now we see that it is

also the biggest submanifold of J1P so that pr becomes a Pfaffian morphism.
Indeed, a vector v TjißJ1 P belongs to the Cartan distribution if and only if

0 0can(v) dpr(v) -dxß(dn(v)).
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As the image of dxß is in Hß(X) by definition of JjjP, then r/pr(n)
dxß(dn(v)) e Hß(x) \ hence dpr(H^) c H, i.e., pr is a Pfaffian morphism.

Conversely, if P' c J1 P is a Pfaffian morphism over P, with H' := CHTP',
then any v e H', „ satisfies

Jxß

dxß(dn(v)) dpr(u) e Hß(x).

This implies that j\ ß e jjjP, hence P' c J^P. Q.E.D.

Remark 4.21. From the proof above we see that the symbol space g(//(") of
the partial prolongation is precisely the kernel of the differential of the projection

pr : JXH P -» P,

g(//(1)) ker(Jpr) Hom(jr*TA/,pr*(fl(//))).

This condition is shared with normalised prolongations (see Definition 4.10) and

it means that we have an isomorphism for each p e J^P,

TP Jh P/H^l) ^ T*(p) P, [h] i-> d pr(u - v),

where v e Hpis any vector with dn(u) dit(v)\ compare this with
Lemma 4.15. 0

Remark 4.22. Being a Pfaffian morphism, the projection pr : Jjj P -> P induces

a map between holonomic sections (Proposition 4.5)

V(J^P,Hw)^r(P,H), £h+pr*(£).

In fact, this map defines a 1-1 correspondence with inverse given by T(P, H) 3

ß i-> jlß. Indeed, by Lemma 2.1, /1 ß is a section of J1P tangent to the

Cartan distribution C. Moreover, since ß is holonomic, dxß(TxM) c Hß(x) for
all x g dom(ß), i.e., j ' ß actually takes values in J^P, and therefore it is

tangent to TJ^P (T C. 0

As anticipated above, another possible characterisation of the partial prolongation

Jh P is that it is "universal" among the world of Pfaffian morphisms with

target (P,H).

Proposition 4.23. Any Pfaffian morphism f ' (P',H') -> (P,H) with the

property that q(H') c ker(c/0) factors through a unique bundle morphism
(p : P' —> JflP over P so that

d(p(H') c H^ and [r/pr] ocp*KHo) [d(p] °kh',
where [Jpr] \MHo) * pr*Nh, [w] i-* [r/prfw)] and [df] : Nh< -* <P*Afti, [u\ i->

[d<p{u)] are the induced maps on the normal bundles.
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Proof. The condition d(p(H') c forces the definition of <p to be as follows:
for v e Hp, d<p(v) is an element of H^y This means that for j^i^ß — <p{p),

0 dpr{d(p{v)) — dn'^ß (dir (d<p(v))^ — df(v) — dn^p)ß(dji' {v)).

where in the second equality we are using that <p is a bundle map over P (and

hence, over M), thus pro (p <p and n o <p jr'. This defines uniquely <p(p)

as the linear splitting <p(p) : -» H^,(P) of dn given by X i-> d<p(v),
where v is any vector tangent to 11'p with the property that d n'(v) X. Of
course, we still need to check that <p is indeed well-defined, but this is a direct

consequence of g{PP) c ker(df), as one can see easily.
The equality involving the curvatures is a direct consequence of the relations

between the curvatures of the Pfaffian morphisms 0 and pr, with the curvature

of H (Remark 4.9):

4>*kh [df] o kh' and pr*/c/r [c/pr] o kho).

We apply then <p* to the second equation and use prop f to substitute in the

first equation. Q.E.D.

4.4. The classical prolongation. Recall that the classical prolongation of a

Pfaffian fibration (P. PI) may be thought as the space of first order consequences
of the Pfaffian fibration, in analogy with the notion of prolongation of a PDE. More

precisely, it is defined as the set of integral elements of {P. PI) (Definition 3.8),

and hence it sits inside the partial prolongation JXH P C ./1P (Definition 4.18) as

the subset where the second part of condition (31) holds, i.e.,

pr*kh 0.

Indeed, if jxß is an element of /' such that for any u, v e /7(''
JxP

KH(dpr(u),pr(v)) 0, then

KH(dxß{dit(u)),dxß(dn(v))) 0

because dpr(u) — dxß(dn(u)) 0 (i.e., u e and analogously for v. This
JxP

is exactly saying that jx ß is an integral element.

Definition 4.24. The classical prolongation of a Pfaffian fibration (P. H), denoted

by Prol(P,//), is the set of all its integral elements. In other words, it is the

subset of the partial prolongation jjjP (Definition 4.18) given by

Prol(P, H) := {(M) e J^P \ ?(kh) 0},

where Ç*(kh)(u, v) := kh(Ç(u), Ç(v)) Vw,r e
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Studying the smooth structure of Prol(P, H) is a bit more subtle than in the

case of the partial prolongation. The classical prolongation is the zero-set of the

map

(41) 7h : JXHP -> Hom(tr* A2 TM.ATh), (p.O^+Fkh,

hence the smoothness of Prol( F, H) can be studied by understanding 7h • Indeed,

7h is an affine map, and a simple computation reveals that the underlying vector
bundle morphism is precisely the map

8h : Hom(jr*TM,g(H)) Uom(jt*(A2TM),AfH)

8H(r)p)(X, Y) dH(r,p(X))(Y) - dH(rjp(Y))(X).

Here 9//, called the symbol map of (P. H), is given by

(42) dH : dH(v)(Y) kh(v, Y)

with Y any vector tangent to Hp that projects to Y, i.e., dn{Y) Y. One can

check that 3# is well-defined because g{H) is Frobenius-involutive. We deduce

that:

Lemma 4.25. Prol(P, H) is a smooth affine subbundle of J1 P if and only if:

(1) 8h has constant rank, and

(2) pr : Prol(P, H) —» P is surjective.

Related to (1) in the previous lemma, we see that the kernel of 8h is the first

prolongation
0(«r)(I) := 0(1)O)

of the generalised tableau bundle : g(H) Uom(n*TM,AfH), in the sense of
Equation (14). Accordingly, g(//)(1) C Hom(jr*PA/,g(H)) is a bundle of vector

spaces whose rank may vary; of course, 8h has constant rank if and only if
is of constant rank.

Now, related to (2), we see that for any two (p, £), (p, £') e P, the difference

jj'-Ç-Ç' lies in Horn(Tn^M,g(H)p) and

S*Kh-?*kh=8H(TI).

Therefore, 7h descends to the following map, called the torsion of (P, H):

(43) r : P ^ Hom(n*(A2TM),J\fn)/lm(8H), p \-a-\7h(p,Ç)]-

It is now a simple exercise to check that the zero-set of r is precisely the image
of pr : Prol(P, H) —» P. In particular:
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Theorem 4.26. For any Pfaffian fibration n : P, II) M, the following are

equivalent:

(1) The prolongation Prol(P,H) is a smooth affine subhundle of J1R.

(2) The prolongation g(//)'1' of g(//) is of constant rank, and r 0 (or,

equivalently, pr : Prol(P, II) —» P is surjective).

Moreover, in this case:

• the vector bundle underlying the affine bundle Prol( P. H) is precisely

g (//)<».

• if we denote the restriction of the Cartan distribution C ker(0can) (see

Equation (3)) of J1 P to Prol(P, H) by

(44) H(1) : C n 7Trol(P, H),

then (Prol( P, H), H<l)) becomes a Pfaffian fibration over M with symbol

space pr*g(//)(1) c Y\om(rt*TM, pr*g(//)).

• Prol( P. H is the biggest submanifold of J1 P such that, when endowed

with the restriction of the Cartan distribution C, the projection pr becomes

a normalised prolongation.

Proof. From Lemma 4.25 and the discussion thereafter we know that the first

two items are equivalent. Checking that lffix) as in (44) is a Pfaffian distribution
is completely analogous to the proof given for the partial prolongation (see

Theorem 4.20).
Let us prove that ker(dpr) restricted to the vertical tangent of the classical

prolongation TnPro\(P, H) coincides with g(//)(1). We know that g(//)^ C

Hom(n*TM, g( H)) is the vector bundle that models the affine bundle pr :

Prol (P. H) -» P, and hence it can be computed as the kernel of

t/pr : T^ProfiP, H) -> T71 P

(see sequences (38) and (39)). On the other hand,

ker(dpr : T^ProKP, H) -> T71 P)

by the very definition of as the kernel of the Cartan form 0can when

restricted to Prol(P,H). In conclusion, g(//0) pr*g(//)^.
To prove that pr : (Prol(P, H), H-> (P, H) is a normalised prolongation,

note that Prol(/'. H) is a subbundle of Jh P and recall from Theorem 4.20 that

the projection from (JjjP.H^) to (P,H) is a Pfaffian morphism. The only

thing left to see is that pr*kh 0, which holds by construction of Prol(P, H)
(see the discussion previous to the Definition 4.24).
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Last, if P' C J1 P is another normalised prolongation over P. H together
with PI' := C n TP', then P' c JjjP by Theorem 4.20. Moreover, since

(P'.H') is a Pfaffian fibration, for any j\ß e P' and ui,u2 TXM, there

exist vi,v2 e H[\ such that dn(vi) M;. In particular, u,- e C, so that
Jx P

dxß(dn(vi)) <7pr(u;); we conclude therefore that

{dxß)*KH{u i,w2) /c//^/J(£/rr(ui)), Jxjß(t/7r(u2))j /f/r(Jpr(ui), tfpr(u2))

0 WUl,u2eTxM,

where the last equality holds by condition (30). This implies that j\ß e

Prol(P, H), i.e., />' c Prol(P, //). Q.E.D.

Remark 4.27. A Remark analogous to 4.22 goes here. More precisely, whenever

pr : Prol(P,H) —> P is a smooth bundle map, there is a 1-1 correspondence
between holonomic sections

T(Prol(P, H), H{1)) -* V(P, H), Ç ^ pr*(f),

with inverse r(P, H) 3 ß i-> jlß.
To check this, recall from Remark 4.22 that jlß e F(i^P, //(1)). As ß is

tangent to H and

[dß(X),dß(Y)] dß([X,Y]) C H\ß(M) for X,Y e X(M)

(where the tildes indicate n -projectable extensions of the vectors), then

(dß)*Kfi(X, Y) dß([X, T]) mod H — 0. This implies that jlß is a section of
Prol(P,H). 0

Again, the classical prolongation can be thought as "universal" among
prolongations. Let us assume that pr : Prol (P, H) -» P is a (smooth) bundle

map.

Proposition 4.28. Any Pfaffian prolongation <p : (P'. H') (P, H) factors
through a unique bundle map (p : P' —> Prol( /', PI) over P, so that

(45) d(p(H') c f/(1\ and [c/pr] oç*kho) — [d(f>\ o kh' 0,

where [r/pr] : J\THm -> pr*A//, [m] \-± [Jpr(w)], and [dcp] : Mh' <P*APh,

[u] [dtp(u)], are the induced maps on the normal bundles.

Remark 4.29. Actually the above proposition can be stated in a slightly greater
generality. Even if Prol(P, H) is not smooth, any prolongation factors through
the map <p : P' —>• J^P given in Proposition 4.23. We can slightly modify the

above statement by saying that this map takes values in the subset Prol{P.H),
and that the relations with the distributions and the curvatures hold when we take
//(1) as the Pfaffian distribution (37) of P.
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As a consequence we obtain that when (P, H) admits a prolongation then

the projection pr : Prol(P, H) —>• P is surjective. Accordingly, we will give the

proof of the above proposition without the smoothness assumption. <>

Proof. We let <p : P' — J^P defined as in the proof of Proposition 4.23,

and we show that it takes values in Prol(P.H). A closer look to <p(p) :

Tni(P)M Plp shows that its image <p(p)(TJI'(p)M) coincides with df(H'p),
because cI<P(q(H')) 0. By Proposition 4.11 ,dtp(Hp) is an integral element,

hence tp(p) belongs to Prol (P.H).
The left hand side condition (45) for the distributions is immediately implied by

the same condition in Proposition 4.23 for the partial prolongation, and the right
hand side condition (45) also follows from the commutativity of the curvatures in

the same proposition taking into account that on JXH P, pr*kh [r/pr] o KHm is

zero at points of Prol(P, H). and that ft satisfies <P*kh [d<p]oKß' 0. Q.E.D.

Again, the motivating and inspiring example comes from the classical

definition (7) of prolongation of a PDE P c Jk R\ the next result states that it
coincides with our definition of classical prolongation.

Proposition 4.30. Let P c Jk R be a PDE, so that (P.H) is a Pfaffian fibration
by Proposition 3.22, for H C n TP. Then,

Prol (P. H) P{1) :=JlP n Jk+1R. g(//)(1) g(1),

where gO is as in Theorem 2.4. Moreover, if P is integrable up to order
k + 1, then pr : (P(1),//(1)) -> (P.H) is a normalised prolongation with

//"I C IT TP(l\ and pr : ^ P is an affine subbundle modelled on

0(1)-

Proof. We first recall that Jk+lR sits inside Jl(JkR) as the splitting rr : TXM ->
TqJk R of die tangent to the Cartan distribution C C T(JkR). It follows that (it
can be checked in local coordinates) that

KC((r(X),o(Y)) 0, for all X,Y TXM.

Since P(1) is the intersection of J1(JkR) with J1 P, then the splittings a that

belong to Pare the ones satisfying the previous conditions plus the fact that

its image n(TxM) lies in TqP. Putting all these conditions together, we see that

a is an element of P(1) if and only if it belongs to the classical prolongation
Prol(P, H).

To conclude, we observe that the definition of integrability up to order

k + 1 is saying precisely that pr : -» P is a bundle map, hence, by
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Theorem 4.26, pr is a normalised prolongation. Moreover, in this case, we have

the inclusion g(//) c kerfc/pr : Tn Jk R —* Jk~1 R) SkT*M <g> Tn R (see the

exact sequence (10)), and 3# is precisely the restriction of

dc : SkT*M <g> T*R -> Horn(TM,Sk~lT*M <g> Tn R). rj (-» dc(rj)(X) ixrj.

Therefore, g(H)^ g(1), and the rest follows from Theorem 4.26. Q.E.D.

Coming back to Pfaffian fibrations using the language of forms we have the

following remark:

Remark 4.31 (Classical prolongation for forms). Let us go back to the picture
of Pfaffian fibrations (P, 9) in terms of 1-forms: all the definitions related to
the partial and classical prolongation can be written directly in terms of 9. For

example, instead of considering the distribution H(l> as in (37) and (44), we look
at the dual 1-form denoted by given by the restriction of the Cartan form
0can on J1 P to the partial or classical prolongation. Similarly, all the results go
through in this setting with the appropriate modifications. For Theorems 4.20 and

4.26, since the projection pr in both cases is a weak Pfaffian morphism, then the

forms 9^ and 6 are related by

pr*0 6o9(1\

where 9 : pr*{TnP) -> pr*A/", v i-> 0(v) is the vector bundle map between the

coefficient bundle of 0(1), and 9. fn Propositions 4.23 and 4.28, the condition
for the distributions translate into

<p*9^ [dcp] o 9

where [dcp] : A/7 -> cp*Tn P is the composition between the identification
T71' P'/q{H') with M' via 9' and the map Tn'/g,(H') Tn P, [?;] [d<p(y)].
fn the same Propositions, the relation between the curvatures becomes

9 o (p*kqu) o kq>,

where 4> : Af -> cp*Af is the vector bundle map between the coefficient bundles,
associated to the Pfaffian morphism cp (see $ in Definition 4.1). Of course, in

Proposition 4.28 this last expression is equal to zero. 0

Other results about prolongations. There are some other nice consequences
about the Pfaffian distributions and the prolongations involving the curvature and

the prolongation of the symbol space; we list some of them.

Corollary 4.32. Assume that g(///has constant rank; then (P. H) admits a

Pfaffian prolongation if and only if the torsion z vanishes.
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Proof. If (P, H) admits a prolongation, then Remark 4.29 says that the projection

pr : Prol( P. H) P is surjective, hence r 0 by part of Theorem 4.26. The

converse is Theorem 4.26. Q.E.D.

Corollary 4.33. The Pfàffian distribution II C I P is Frobenius-involutive if and

only if Prol(P.H) coincides with J^P and the symbol map 3h from equation

(42) vanishes.

Proof. If H is Frobenius-involutive then all partial integral elements are integral
elements, hence Prol(P, H) J}jP \ moreover, 3h vanishes trivially.

Conversely, if we let p e P, we can split Hp as a direct sum V ® q(H)p
where F is a partial integral element. Because Prol(P, H) J^P, V is actually
an integral element. In conclusion, we compute the bracket modulo H using the

direct sum: for v + u. v' + u' e V © q(H)p

Kh(v + u, v' + u') Kh(v, v') -T KH (v, u') + KH(u, v') + Kfj (u, if)
— —dH(u')(dn(v)) - 3h(u)(dit{v')) 0,

where we used the Frobenius-involutivity of &(H). Q.E.D.

Corollary 4.34. Let H c TP be a Pfaffian distribution whose torsion r vanishes;

then, if two of the following three conditions hold, the third holds as well:

(1) pr : Prol( P. H) —> P is a bijection;

(2) q(H) is zero;

(3) H is Frobenius-involutive.

Proof. That (1) and (2) imply (3) follows from a computation similar to
that of Corollary 4.33. Assuming (1) and (3), we have that (3) implies that

Prol(P, H) JjjP by Corollary 4.33, and by (1) we have that for the fibre bundle

pr : JjjP —> P, the kernel ker(dpr) Hom(7r*TA/, pr*g(//)) (Remark 4.21) is

zero because pr is a bijection, hence (2). Last, to show that (2) and (3) imply (1),

we see that H is a horizontal distribution if and only if q(H) is zero; in this

case pr : P -> P is a bijection. If, moreover, H is Frobenius-involutive, then

jjjP Prol(P,H) by Corollary 4.33. Q.E.D.

Corollary 4.35. In the setting of Proposition 3.23, assume that the symbol map
0(0) —> Hom(;r*rM,A0 from equation (42) is injective; then the bundle map
i : P —> J1 Q is an immersion.

Proof. It is enough to show that di is injective when restricted to ker(df) g(0).
In turn, this follows after noticing that di\g^ coincides with the symbol map,
which is injective by hypothesis. Q.E.D.
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4.5. Abstract prolongations in the linear case. In this section we discuss

the theory of abstract prolongations for linear Pfaffian fibrations (introduced in

Section 3.2). In order to do that, we will use the equivalent approach using
relative connections (see Proposition 3.14).

Let (E'.D'), (E.D) be linear Pfaffian fibrations over M, with (D',a') a

relative connection taking values in E, and (D,er) a relative connection taking
values in F :

(46) D' : T(E') -»• E), D : r(E) -> Ql(M, F).

The following definition will play the role of normalised prolongations between

Pfaffian fibrations in the non-linear case.

Definition 4.36. The relative connections (D'.cr') and (D,cr) as in (46) are

compatible if
1) Doff' (joD';

(2) Dx o D'y — Dy o D'x —no D[x y] 0 for all A, Y X(M).

The two conditions of Definition 4.36 above have a clear cohomological
interpretation, which appeared already in [GS1, Quel]. For a relative connection

(£>,<t) there exists a linear operator, denoted by the same letter D,

(47) D : Ç2*(M, E) —» Q*+1(M, F),

uniquely defined by the following two properties: it coincides with the connection
D on F(£) Q°{M, E), and it satisfies the Leibniz identity relative to er,

D(w <8> .v) dco <g> ct(.v) + (— 1 )ku> A £>(.v),

for any k-form co e and any section s T(£). This operator D can be

given explicitly by the Koszul formula

Dr,(Xo, ...,Xk) Ç(-l Y Dx-iniX0, Xk))
i

+ EC-1^^([XuXj], Xo Xi Xj,..., Xk))
i<j

for any rj e Q.k(M, E). A direct check shows the following lemma:

Lemma 4.37. Let (D'.cr'), and (I), o be relative connections as in (46). If
dim A4 > 0, then the relative connections are compatible if and only if the

composition

Q*(M, E') ß*+1(M, E) Q*+2(M, F)

is zero.
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For compatible relative connections (D\a') and (D,a) as above, the first
condition of Definition 4.36 implies that a' preserves holonomic sections. In

general, the resulting map

T{E', D') T(E, D), s I—> cr'(s)

is not necessarily surjective; its surjectivity is measured, in the sense of
Proposition 4.39 below, by some map S which we now present.

Denote by 3' : g' -> Hom(7,M, E) the map given by the restriction of D'
to its symbol space g' ker(a'); it is linear by Equation (21). Condition (1) of
Definition 4.36 implies that the image of 3' lies inside Hom(77ff,g), g ker(rr),
hence 3' takes the form

3' : g' -> Horn(TM. g), 3' D'\a>.

By the very definition of the operators (47) we get that at higher order

3'(co 0 s) (—l)kco A 3'(.v), for any <u e £2k(M) and any section s e T(g');
hence, together with Lemma 4.37, this implies that the composition

AkT*M 0 g' Ak+xT*M (gig —^ Ak+2T*M 0 F

of vector bundles over M is zero. Interpreting g' as the "prolongation" of g, we

consider the following quotient

rr01/x ker{3 : T* M (gig -» a2T* M 0 F}
H

Im{9' : g' ~ T*M 0g} '

Lemma 4.38. The following map is well defined:

S :r{E,D)^ s i-> [£)'(.?)].

where s is a section of E' such that o"'(^) s.

Proof If s' f(C) is another section with the same property as s, then

a := s — s' belongs to g' and 3'(a) D'{s) - D'(s'). This means that D'(.v) and

D'(s'), which are a priori sections of Hom(TM, g) (since a(D'(.v)) D(n'(s)) —

D{s) 0, and the same for ,v'), represent the same class on the quotient by

Im(3'). Moreover, for vector fields X, Y e X(M),

3 (D'(s))(X,Y) DxD'y{S)-DyD'x(s)-OD{xy](S),

which is zero by condition (2) of Definition 4.36. Hence, S is indeed well
defined. Q.E.D.
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Proposition 4.39. For compatible connections as in (46), the following sequence
is exact

T(£", D') X r(£, D) //M(g).

Proof. If a is a holonomic section of D', then S (a'(a)) is equal to the class

of D'{a) 0, so S on' — 0. Moreover, if S(s) [D'(.v)] 0, then there is

a section ß of g' so that D'(.v) d'{ß) D'(ß). In particular, the section

s' s - ß of E' is holonomic and is such that o'{s') rr'(.v) s, so the

sequence is exact. Q.E.D.

When looking at linear Pfaffian fibrations in terms of the linear Pfaffian forms,

we realise that the definition of compatible connections coincides with the linear

counterpart of normalised prolongations (see Remark 4.17). Let 9' and 9 be

linear forms, and let D' associated to 9' as in (22):

D' : V(E') -> E), s i—> s*9',

and D associated to 9 in the same way: D(n) u*9, u 6 r(£').

Lemma 4.40. Two relative connections (D'.o') and D.o as in Equation (46)

are compatible (Definition 4.36) if and only if a' : (E',9') —> (E,9) is

a normalised prolongation. Moreover; any other normalised prolongation 0 :

(E',9') —^ (E.9) with cp linear is, up to automorphisms of E, of the form
<t>=a' 9\.
Proof. First of all, as a' is by definition the restriction of 9' to

g(0') ker(ö') nP E', and as cj' is linear, its differential do' coincides with
n' when restricted to T* E' E'n,^ for any v e E' (we are using the canonical

identification of these vector spaces). From this we get for free the condition that

g(éf') jr'*g(D) n'* ker(a') ker do'.

It follows that the coefficient bundle of 8' (which is, up to isomorphism, the

normal bundle TP'/ker(9') s T11' P/q(9') by n' -regularity of 9') is precisely
tz'*E (see also Remark 4.17).

From the correspondence (22), the relation o'*9 oo9' between the Pfaffian

forms is translated into the equivalent condition (1) of Definition 4.36, i.e.,

D o o' — o o D' in terms of the relative connections.

To see that the condition on the curvatures of 9' and 9 is the same as

condition (2) of Definition 4.36 for compatible connections, we write o o Kgr as

the restriction to ker(0') of the skew-symmetric bilinear map

TE' x TE' tx'*F, (u,v) -dD9'(u,v).
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Here dod e Q.2{E', n'*(F)) at U, V e X(E') is defined by the De-Rham-type
formula

dD6(U, V) D$(9'(Vj) - Dy (Q'{U)) - a(9'[U, V)),

with Dn' : X(E') x E) -* T(n'*F) the pullback of D via n' : E' -» M ; of
course, when H, K belong to ker(ö'). -do9(U, V) coincides with a(k$>(U, V)).
As o o kq' — o'*kq, and do' is zero on the vertical part ker(ö') n Tn E' because

it coincides with a' on g(D') kern', then a straightforward check shows that

o o kq> is zero if and only if s*(o ° kq>)x 0 for any x e M and any s e r(E')
such that s*(0')x 0. However,

,v> o Ke')x(X, Y) s*{dD9')x(X, Y)

Dx o D'y(s)(X) - Dy O D'x(S){X)-O o D'[x y](.v)(x),

so we conclude that rro/rö/ is zero if and only if condition (2) of Definition 4.36

holds.

Last, consider a normalised prolongation (p : (E',9') (E,9) between linear

Pfaffian fibrations and assume that 0 is also linear; then, in view of Remark 4.17,

we can assume that 6' takes values on cp*TnE, which, in turn, is isomorphic
to <p*7i*(E) n'*E (again we use the canonical isomorphism of Tn E with

7T*(£)). We also assume that, under these isomorphisms, d(p coincides with 9'

on T71' E'. Again, as 0 is linear, its differential dxp when restricted to the vertical

vector bundle Tn'E' n'*E' coincides with 0; hence, on E' — Tn'E'\m

0 dcp 9' a'. Q.E.D.

4.6. Partial and classical prolongations in the linear case. Let us continue
the discussion on prolongations for linear Pfaffian fibrations; we will find again

that many objects, which were in general over E. become linear objects over M
described in terms of relative connections.

Definition 4.41. The partial prolongation of a linear Pfaffian fibration (E,D) is

JxdE := {./> 6 JXE I D(s){x) 0}.

Since the linear form 0 associated to D is characterised by s*9 /)(,v) and

9\e o, it is immediate to check that the partial prolongation of (E, D) as a

linear Pfaffian fibration from Definition 4.41 coincides with the partial prolongation
of (E, 6) as a Pfaffian fibration from Definition 4.18, i.e., JxdE — Jq E. Similarly
to Theorem 4.20 (together with the fact that the JXE is a linear Pfaffian fibration),
we can characterise Jp E as the largest vector subbundle of Jx E over M, with
the property that the projection pr : J^E —> E is a Pfaffian morphism. In this
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language, this means that JXDE is the largest subbundle so that condition (1) of
Definition 4.36,

a o D(l) D o pr.

holds for the restriction : T(J^E) -* QX(M,E) of the classical Spencer

operator from Equation (6).

At the level of sections, the partial prolongation can be also described as

follows

Proposition 4.42. Let P. D) be a linear Pfaffian fibration; then

(48) rfaxDE) {(a,m) e T(£) ® E) \ D(a) a ow}.

Proof Using the decomposition (4), a section (a,co) of J ' E at x is precisely
the splitting

(49) dxa -a)x :TX M Ta(x)E,

where cox is viewed as a map from TXM to Tf^E, when canonically identifying

T£(X)E with Ex. Therefore, the image of (a,a>)x belongs to ker(0) if and only
if for all X eTx M

0 e(dxa(X) - co(X)) 6{dxa(X)) - d{co(X)) a*6x(X) -ct(eo(X))

Dx{a)-a(co(X)). Q.E.D.

Let us repeat the same discussion for the classical prolongation.

Definition 4.43. The classical prolongation of a linear Pfaffian fibration (E. D)
is

Prol(£, D) := ker(A'),

where K is the vector bundle map

(50) K : JxdE Hom(A2TM, F)

defined at the level of sections, for any X, Y e X(M), as

K(a,co)(X, Y) Dx(co(Y)) - DY(to(X)) - a(m[X, P]).

As a consequence of the Lemma 4.44 below, one sees that the classical

prolongation of (E, D) as a linear Pfaffian fibration from Definition 4.43

coincides with the classical prolongation of (E, 6) as a Pfaffian fibration from

Definition 4.24, i.e., Prol(£\ D) Prol)^, 9). As the relative connection D(1) of
J}) E is the projection to the second component of V(J^E) c T(£) ® fi'(M, £),
the classical prolongation can be alternatively written as
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Prol(£, D) {jlxs JxdE I DxoD$\s)(x)-Dr°D$\s)(x)

i.e., Prol(£\ D) is the largest bundle of vector subspaces of JqE, where the

condition (2) of Definition 4.36 holds.

Lemma 4.44. Let (E.9) be a linear Pfaffian fibration, with 9 Qx E, jt* F
and let (D.cr) be the associated relative connection. Then the map Tc // : JXD E -a
Hom(jr* a2TM, jt* F) from Equation (41) is precisely —ji*K, with K as in (50).

Proof. Using the Spencer decomposition (48), let (a.co) r(JpE); in terms of
the form 9, this means that a*9 9 oa>. Following (49), for X. Y 6 X(M) we

regard da(X) — w(X) as a n -projectable vector field on ker(0), so that a>(X)
is the vector field constant along the fibres of E and extending m(X) (strictly
speaking, we choose a 7r-projectable extension inside ker(C) so that it coincides

with da(X) — co(X) along a(M) C TE); we do the same for da(Y) — to(Y).
With this,

(a.co)*Ke(X.Y)

9([du(X) - co(X), da(Y) - m(F)])

9[da{X),dct(Y)]~ 9([da(.X).co(Y)fj ~ 9([œ(X),da(Y) ~ co(Y)fj

a*9([X. Y]) - 0([<*«(*),m(F)]) + DY(co(X))

D[x,Y-\{a) - 9{yda{X),m{Y)^j + Dy(M(X)),

where in third line we use Remark 3.15 saying that DY(w(X)) is precisely
9([co(X), du(Y) — cu(F)]) ; recall also that (a,co) belonging to J^E — J^E
means precisely that da(X) - co(X) e ker(0) for all X e 3L(M). Now, using
the fact that vector fields constant along the fibres of E commute, we get that

[a)(X),co(Y)] — 0, and therefore 9({dot{X), (ß{Y)]) can be computed as

9[[da(X),cü(Y)]^j 9([da{X),co(Y)fj - 9([co{X). m(Y )]) + 0([t«j(J().tu(L)])

9([da{X) - m(X),co{Y)]^j -Dx(co).

Putting the two equations above together and using that D(a) cr(a>), we

conclude the proof. Q.E.D.

As pointed out in the general discussion, Prol(E, D) might fail to be a

(smooth) fibre bundle over E, the reasons being the lack of surjectivity of the

projection pr : Prol( D) ->• E, and that the rank over M might vary. However,
in this linear picture things simplify and the exact sequence (5) for J1 E restricts

to the exact sequence of vector bundles over M,
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(51) 0 g(D)(1) -> Prol(£\ D) E.

Here g(D)(1> is the first prolongation of the symbol space g D viewed as a

tableau in the sense of Equation (14), with

3/, : 0(D) -> Horn (DM, F), dD(v)(X) Dx(v);

using g(D) ker(cr) and the Leibniz identity of D w.r.t. a, one can easily

verify that 3d is a well-defined linear map. One checks that the sequence (51) is

exact by considering a section of J^E that belongs to Prol(£\D), which lives

inside ker(pr), i.e., its second component in the decomposition (48) is zero.

Now, the surjectivity of pr : Prol(£, D) -> E is of course related to the map
K of equation (50). Indeed, letting

8d : Hom(DM,g(D)) -» Hom(A2DM, F),

defined by 8o(r])(X,Y) — 3ß{q{X)){Y) — 3o{q{Y)){X), we see that K descends

to a vector bundle map

T : E -> Horn (a2 DM, F)/lm(8D), p [#(£)],

where Ç e JpE is any element that projects to p ; it is a straightforward
computation using the decomposition (48) that T is well defined. It is now

a simple exercise to check that the zero-set of T is precisely the image of
pr : Prol(£\ D) —> E. Thus, we have just proved the following:

Proposition 4.45. The classical prolongation Prol( E. D) is a {smooth) subbundle

of JlE -> E if and only if T 0 and the prolongation g(D)^1^ has constant
rank. In this case, the restriction of the Spencer operator

D(1) : r(Prol(£, D)) -» Yll{M, E),

is compatible with D.

As in Remark 4.22, even not assuming any smoothness condition on

Prol(£\ D), the map

r(Prol(£, D), D(1)) -* T{E, D), Ç i-* pr o ^

defines a bijection, with inverse s G F( E. D) i-> j1 .v. Moreover, D( is universal

among the connections compatible to D in the following sense:

Proposition 4.46. If (E',D') is a relative connection compatible with {E,D),
then there exists a unique vector bundle map j : E' —> ProljD, D) so that

D' D(1) o /.
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Of course the above proposition is consequence of Proposition 4.28 for
nonlinear prolongations. We only remark that, in this case, j <p is defined in terms
of D', and at the level of sections is given by

j(s) (ct'O), D'(s)) e r(E) E).

The conditions for compatible connections mean that j(s) actually lands in

Prol(£, £>).

Remark 4.47. As we had remarked on 3.15, in the linear case many of the

objects associated to a Pfaffian fibration sit on top of M. Of course, for any
linear distribution H, the symbol map '<)// of Equation (42), the prolongation
g^(H) := 0^(9) of Equation (14), and the torsion map r of Equation (43), are

just pullbacks of the analogous objects for the associated relative connection D.
In fact, from Remark 3.15 we know that q(H) n*g(D) and this isomorphism
comes from the canonical identification of TnE with n*E by translating vertical
vectors to the zero section, Therefore, using the description of D in terms of H
as in Remark 3.15 we have

dH=n*dD, 0(1)(//) ^ 7T*0(l)(D), r n*T. 0

Remark 4.48 (Linearisation of Pfaffian prolongations along holonomic sections).
As we did for Pfaffian fibrations (Section 3.3), we can linearise Pfaffian normalised

prolongations

<p : (P',6') -> (P,0)

along a holonomic section £ e r(P',9') and its image <p(Ç) e V(P, 9), and

obtain compatible connections

/y£ /)<£(£)

Un^P',9')^Unm(P,e)

As a particular case, if P' — Prol(P, 0), cp pr and £ jlß, for ß a holonomic
section of (P, 9) (so that pr(Ç) ß), the functoriality of linearisation implies
that

Prol(Linß(P,6),Dß) Linyl/;(Prol(P, 0)), D(1) Dj'ß.

This linearisation becomes particularly nice when applied to Pfaffian groupoids
along the unit section, where the multiplicativity allows us to translate
properties of the linearisation to the analogous properties of the Pfaffian groupoid
(see Remark 3.19). <0
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5. Integrability of Pfaffian fibrations

Informally speaking, when we prolong a Pfaffian fibration (P. H), we are

trying to determine if an element of {P. H) comes from a section which is

"holonomic up to order 1"; if we prolong again then we are looking for sections

which are "holonomic up to order 2", etc. If we can repeat this process indefinitely,
we find a formal holonomic section of the Pfaffian fibration, i.e., a Taylor series

of a potential holonomic section of (P. H).
Let us be more specific. To simplify the notation, denote by

;= ProIff, H)

the classical prolongation of (P,H) from Definition 4.24. Under the conditions
of Theorem 4.26, the projection l'(l> -» P is a fibration and the prolongation
is in turn a smooth Pfaffian fibration over M. We could therefore build the

classical prolongation of P^ and denote it by (P^2\ H^); this sits inside a jet
bundle, as P(2) c JlHmP{l) C J1 P(I), but may not be a smooth submanifold,

and the projection over /J<1) may not be a fibration. However, if we apply again

Theorem 4.26, we find conditions under which also P® is a Pfaffian fibration

over M. When this process can be carried out up to "infinity" we say that (P, H)
is formally integrable. The goal of this section is to formalise this procedure and

describing precisely the obstructions to formal integrability.

5.1. Integrability up to finite order.

Definition 5.1. A Pfaffian fibration (P, H) (P(()). is called integrable up
to order k > 1 when, for all i — 1 ,k, the classical prolongations

P(,) := Prol(P0_1), c J^l}P(i~l)
are smooth submanifolds, and the projections P(,) -> P(' '* are surjective
submersions.

In particular, if P. H) is integrable up to order k, it follows from Theorem

4.26 that each P^ is a Pfaffian fibration over M, when endowed with
the distribution := and pr : (p('\ H^) -> is

precisely the classical prolongation of the Pfaffian fibration We

call (P^'\H^1) the i'h classical prolongation of the Pfaffian fibration (P,H),
for i ,k.

Remark 5.2. Let (P. H) be a Pfaffian fibration integrable up to order k. Then,

for every integers i.l < k with i +1 <k,
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• (P, H) is also integrable up to order i.
• The Pfaffian fibration (P^, //(,)) is integrable up to order /, and its I th -

prolongation (p(0)(0 coincide with the (/ + /)th-prolongation P(l+r> of
(P, H).

• The holonomic sections of (P, H) are in bijections with the holonomic

sections of (P(,\ H^).
Properties 1 and 3 are immediate from the definition and from Remark 4.27.

For the second property, note that I'"' c J1 P is a PDE, and recall from

Proposition 4.30 that prolongations of Pfaffian fibrations and PDEs coincide. Our
claim becomes then precisely [Gol2, Theorem 7.2], <>

Example 5.3. If P c J1 R is a PDE, the notion of integrability up to order k

in the sense of Pfaffian fibrations coincides with the notion of integrability up
to order k in the sense of PDEs (see Section 2.3); this follows directly from

Proposition 4.30. 0

We describe now the main obstructions for integrability up to finite orders. The

first step, which takes care of the first prolongation P(1\ was already discussed

in Theorem 4.26. In particular, one needs two conditions:

(1) the projection pr : P(1) P is surjective, which, in turn, was shown to be

equivalent to the vanishing of the torsion map (43).

(2) the prolongation gt1) q(H)^ of the symbol space g g (H) is of
constant rank, where g^ is given by (14), applied to 3// : g q(H) ->
Hom(jt*TM,J\fH)

Under these conditions, P'1' becomes an affine bundle over P modelled on gO,
as well as a smooth Pfaffian fibration (over M Moving one step upwards, we
unravel now these conditions 1 and 2 when applied to the prolongation of P(1);

pr : P(2) —>• P^l\ and then we continue this analysis inductively. First of all, the

(higher) prolongations that are relevant in condition 2 will be precisely the ones

from Section 2.4:

g(i) n*SiT*M ® g n Hom(jr*TM, g('~1}) ker(^), for i > 1,

with Si as in (12). This can also be rewritten using the following inductive lemma

(see also Lemma 6.3 of [Gol2]):

Lemma 5.4. If a Pfaffian fibration P,H is integrable up to order k > 1, then

we have the following canonical isomorphisms of bundles of vector spaces over

P(l\ 1 < i < k

(52) pr*g(!+1) ^ pr*g(//(1))(0 pUg(//(,"1))(2) ^ g(//(i))(I).
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Moreover, for every i <k — \, is a vector bundle, whose pullback pr*g^
over P('~0 models the affine bundle pr : -> p('~l\

Proof. First of all, we regard sitting inside of jr* S'T* M ®>g C ti*(S1T* M)£g>

Tn P. Having in mind the exact sequence (10) of vector bundles over J'P, and

recalling that the symbol space of (J1 P,C) is precisely ker(c/pr : TnJkR
TJk~lR) jr*Sl~lT* M <® prT* P, one can check that 5,- coincides with the

restriction of the symbol map

Sc : Horn(n*TM,n*Sl~lT*M ® pr*Tn P)

-> Hom(;r* A2 TM,jt*Si~2T*M ®pr*TnP)

(see also the proof of Proposition 4.30, where we look at this Bc Also, we can

regard (P^, H^), for i — I k, as a PDE endowed with the restriction
of the Cartan distribution C c TJl P. Having all these in mind, and using the

equality of the prolongations from Proposition 4.30, we can prove inductively the

canonical isomorphisms (52). Moreover, pr : P^ pb-i) js an affine bundle
modelled on the vector bundle pr*g^ (g*7-1-1)^ (we set g(0^ g). Q.E.D.

We now move to the condition 1. For a Pfaffian fibration (P.H) integrable

up to order k, the discussion after Definition 4.24 tells us that the prolongation
(p(D pi^l) is the kernel of the map (41)

7hW : JlHWP(k) Hom(7r* A2 TM,pr*T" P«~»)

j\a (nr*KH(k))x (tcH(k))x(dxa{-),dxo{f).

In the last Horn-space we have used the identification of the normal bundle

AfH(k) with pr*TKP(-k~1l (via the differential dpv) because pr : (P^k\ H(k">) ->•

(pd-1), tfik-i)-j js a normalised prolongation (see Remark 4.17). Also, 7Ho<) is

an affine map of affine bundles over P^k\ where J^(k)P^ - P^ is modelled

on Hom(jr*TM, g(//^)), with

g(Hik)) pr*g(//(fe"1))(1) pr*g(/c)

where the hrst equality is by (part of) Theorem 4.26, and the second by Lemma
5.4. Thus, the underlying vector bundle morphism of 7Ha) is of the form

7ha) : Horn (n*TM, pr*g(fc)) -> Hom(jr* A2 TM,pr*Tn P(k~l)),

and a computation reveals that it is precisely the pullback via pr of the

Spencer differential Sk from Equation (12) (see the proofs of Lemma 5.4 and

Proposition 4.30). Thus, P(k+l> Prol(R®, H(k^) is a smooth affine subbundle
of Jjj(k)P^ P^ if and only if
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y p(k+1) p(k) js surjective;

2'. 8k has constant rank, i.e., ker(^) g^+L has constant rank.

Related to 1', this discussion also implies that £"#<*) descends to the following
map:

Definition 5.5. Let P. H) be a Pfaffian fibration integrable up to order k > 1.

The torsion of order k + I of (P. H) is defined to be the torsion (43) of
(/>(*),//(*)), i.e., the map

r*« := t(Pm| Pm^Hom(»-ATM.pr'T'P»-n)
5(Hom(^*TA/, pr*glfc)))

p h* [a *(Kff (*>)*] [)?h(«(Â1(T)]'

where j\a is any element of the partial prolongation J}jlk) Pik) s.t. a(x) p.

By definition we set P(0) P and r1 r.

From the general discussion of the classical prolongation, we know already
that the zero-set of vk is precisely the image of l>{k M -> P(k 1. Hence, from
Theorem 4.26 we obtain:

Proposition 5.6. Let (P,H) he a Pfaffian fibration integrable up to order k.
Then (P. H) is integrable up to order k + 1 if and only if
• the torsion xk+i vanishes,

• the prolongation is smooth.

Moreover, the classical prolongation

pr • ^/>(*+!) p[(k+i)^ (^pih) //(^)^

has symbol g(//^+1^) pr*g^+1^, and it is an affine bundle over P(k^ modelled

on pr*g^+l).

Remark 5.7 (Pfaffian fibrations and geometric structures). The name torsion

originates from the theory of G-structures. More precisely, given a G-structure

P, its torsions are objects defined recursively, whose vanishing are obstructions

to the integrability of P. In particular, the torsion of P are the same thing as

the torsions of the Pfaffian fibration P associated to P (see Example 3.26).
More generally, one can revise the theory of Pfaffian fibrations by taking into

account the presence of a symmetry group(oid), in order to define more refined

obstructions to integrability, called intrinsic torsions. These can be used to study

(formal) integrability of a large class of geometric structures (which includes G-
structures as a particular case), namely those described by any Lie pseudogroup:
see [Cat].
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To understand better zk+l we look at its image; at the end of the section we

will prove the following:

Proposition 5.8. Let (P, H) be a Pfaffian fibration intertable up to order k > 1.

Then its torsion x +1 takes values in the Spencer cohomology groups (13) of the

tableau bundle g g(()) g(//)

kerfs : Homfrr* A2 TM, g(t_1^) -> Homtrr* A3 TM, g(*"2)))
ff*"ll2(0) - S

ImfS : Horn(jc*TM,qW) -> Hom(;r* A2 TM, g(fc~^) j
where we set g^1^ Mh and we regard the prolongations g(,) sitting on top

of P(fc) via the pullback by pr.

If we assume that some prolongation g(,) of the symbol space has rank 0, then

the Spencer cohomology group H1'2(q) vanishes. In particular, by Proposition 5.8,

the torsion r'+2 is zero; this suggests that for certain types of Pfaffian fibrations,

Proposition 5.6 becomes simpler.
This leads us to the following definition:

Definition 5.9. A Pfaffian fibration P,H is of finite type I if / is the smallest

integer / > 0 such that g(,) 0. We say that (P, H) is of infinite type if g(/) f 0

V/.

With this, it follows from Proposition 5.8 that

Corollary 5.10. Let (P, H be a Pfaffian fibration of finite type I. If (P, H is

integrable up to order k and I < k, then it is integrable up to order k + i,
i > 0. Moreover, pr : P^l pL~P /.y a Injection for all j >1.

Proof. Because i > 0, then the finite type condition says that o

(as k + i — 1 > /), and therefore xk+l+1 vanishes (see the discussion before

Definition 5.9). Also g(fc+i + 1) has obviously constant rank equal to 0, and we

can apply Proposition 5.6 inductively on i to conclude that (P, H) is integrable

up to order k + i. Now, Lemma 5.4 tells us that P^ -» pL~P js an affine bundle

modelled on pr*g^, so if j > I, then g^ 0, and therefore P^ —> pC-1)
is a bijection. Q.E.D.

Proof of Proposition 5.8. We check the case k 1, using the Pfaffian form 6

associated to H cTP, and the Pfaffian form 0(1) associated to //(l) c TP^K
The general case k > 1 follows similarly.

First of all, we check that the map 1c H<d /reu) of Equation (53) takes

values in
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Hom(jr* A2 TM, g) c Hom(jr* A2 TM,pr*TK P).

Indeed, an element j^o belongs to if dxo(TxM) C H^x)- thus,

since the classical prolongation pr : (P^\ H^) -> (P, H) is normalised

(Theorem 4.26), we have

0(icem(dxo(X),dxo{Yj)} 0,

for any X, Y TXM (see Remark 4.17). In conclusion, Tc H(\)(jx(j)(X, Y) 6

ker(0), therefore it is in g ker(0) n Tn P.
Now, we check that lc eu> takes values in the kernel of

8g =8h Hom(7T* A2 TM.q g(0)) Hom(jr* A3 TM,NH 0(_1))-

In order to do that, let j*a e J^m P(i> and X, Y, Z vector field on M ; we need

to compute

9h{kH( oOx1or)(2f, T))(Z) dHUHm(dxo{X),dxa{Y))\z)
(54) / \

KH\KHm(dxa(X),dxa{Y)),a{X){Z)y

First, we extend da(X), da(Y), da(Z) e TP^ to local vector fields X,Y,Z on

P^ which are simultaneously n- and pr-projectable; in particular, this means

drt(X) X, and similarly for Y and Z. These extensions are always possible as

pr is a submersion and a fibre bundle map over M, hence one can simultaneously
trivialise P(1) around a(x) as K^+"+m, P around pr(rr(x)) as M"+m, and M
around x as K" so that pr and the two maps to M become standard projections.

Moreover, consider the pullback via pr : P{[) —> P of some torsion-free
linear connection V : X(P) x X(P) —> X(P) (e.g., the Levi-Civita connection of
some fixed Riemannian metric on P ); in the following we will use the same

notation V also tor the pullback connection on pr*TP. We can now compute
the term KHm(dxo(X), dxa(Y)) in Equation (54) using V (see the discussion

after Equation (17)):

(55)

K6m(dxa(X),dxa(Y)) dyd(l) (dxa(X), dxa(Y))

(v*0(1)(n)a{x) - (V^W(X))ffW - e<l\[x, ?ux)).

From the definition (3) of 0(1) as Cartan form, we see that the last term vanishes:

l)(&^UX)) eol)(dxo{[x, y]))= o.

Note that we use a{x) also to denote the splitting n(x) : TXM -> Tpr(„(xy) P.
In the second equality we also used that [X, Y]a(x) da([X, Y]x) because X, Y
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are 7r-projectable and a is a section of jr. In the second equality we used the

fact that jxo is an element of therefore o dxa — 0.

On the other hand, in order to rewrite the other two terms of (55) we use

e^(X) dppr(X) - p(X) dppv(X) - .(X)(p), Vp e P(1>

where we write again p for the induced splitting p : Tn^M -> Tpr(p)P, and we

denote by »(Ä) the section of pr*(TP) --> P(1) defined by •(X)(p) p(X).
We have therefore written 6^\X) as the sum of two sections of pr*(TP)\ doing
the same also for Y we get

6
Vrfpr(X)(^Pr(^)) - Vrfpr(T)(^PrW) - Vz("(}/)) + Vf («(*))

[dpr(X),dpr(Y)] - Vj(.(r» + Vf (.(X))
r/pr[Â,f]-Vf(.(F)) + Vf(.(A)).

Here we used in the first line the definition of pullback connection via pr,
i.e., V^(r/pr(K)) Xdpr(^(dpx(Y)), because the section dpx{Y) e r(pr*7T)
is already the pullback of the section pr*(Jpr(Ë)) e X(P) (recall that they are

pr-projectable vector fields). The first equality of the second line follows from the

fact that V is torsion-free. For the last equality, as dxa takes values in

we have dpv(Xa^x)) — ct(x)(A); in particular, r/pr[Ä, Y]a(xy dpvdxa[X,Y]
o(x)[X, Y}.

We compute the last two terms of (56) at a(x) e P(1^: since •(X)a(x)
ct(jc)(A) JTCT(X), and similarly for Y, we have

(57) _(v* (.(y)))ffW + (vf (<X)j)aM -V.(xUxMY))+V.(YUxMXï)-

Now, choose a local Cartan-Ehresmann connection C C H extending a(x)(TxM)
C Pfpr(rj(x)) (see Remark 4.13). As p : Tn(p)M -> TpP denotes an

integral element of (P, H) for p P^l\ then locally p(X) CP{X) + r]p{X)
for every X e X(M), with r)p some element in 0^,)- It follows that, locally,

• (A) pr*C(A) + S,

where 5 is a finite sum of terms of the form fpr*(rj)(X), for rj e r(@(1)) and

/ e C°°(P(1)) such that/(a(x)) 0 (as Ca(x) dxa, and cr(x)(X) dxa(X)).
To simplify notation, we assume that locally S is given by a single term, i.e.,

• (X) pr*C(A) + /pr*(i0(A), r, e r(0(1>), / e C°°(/>(1>), f{o(x)) 0,

VA e X(M).
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A direct calculation shows that the right-hand side of (57) is (up to pullbacks and

coefficients) a C0O(f^1')-linear combinations of five kinds of terms (the first three

come from V being torsion-free, and the last two from its Leibniz property):

(i) [C(A), C(Y)\, (ii) [ii(X),r,(Y)\,
(58) (iii) [C(X) + r,(X),C(Y) + ri(Y)l (iv) V(X),

(v) r,(Y).

In conclusion, we plug our results in equation (54) to get
(59)

(r„(1 >(./>)(*, b))(Z)

Ke(ds/9{l\dxcT(X),dxa(Y)),a(x)(Z))

Kg(o{x)[X, Y],a{x){Z)) + /ce(?i(iv) + t2(y), cr(x)(Z))

+ Ke.awMi) + r2(ii) + ^"3(iii)» C(Z) + f??(Z))

where the enumeration indicates terms as in (58), t\,t2 £ ®L and r1.r2.r3 e

C°°(fO). Now, the theorem is proved once we show that

Sö(^(„ (./>))(*, Y, Z)

do(icH(i)(jx(j)(X, T), Z) + cyclic permutations of (A, Y, Z) 0.

Indeed, terms like the first one in the second line of (59) are zero because a{x)
is an integral element, i.e., o{x)*Kg — 0. Terms involving /](•) and n(x)(-), such

as the second one in the second line of (59), vanish as well, since r] e g(9.
Last, all the terms inside kq in the third line of (59) are vector fields taking

values in H : indeed, [C(A),C(T)] and [C(X) + r](X), C(Y) + r](Y)] are in H
because C is a Cartan-Ehresmann connection, and the same holds for C + r\,
since 77 e and ï](X),t](Y) e g c H. Therefore, Kg evaluated in these terms

can be computed as 0([-,-]); we can use the Jacobi identity to show that the part
of 8g involving these terms vanishes. Q.E.D.

5.2. Formal integrability.

Definition 5.11. A Pfaffian fibration is called formally integrable when it is

integrable up to any order.

When a Pfaffian fibration (P, H) is a PDE, it follows from Corollary 5.2

that the definition of formal integrability coincides with the homonymous one,
introduced in Section 2.3. In particular, formal integrability is not always a

sufficient condition for PDE-integrability. However, as for PDEs, the situation is

nicer in the analytic setting, where we can use Theorem 2.3, to prove the following
result:
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Theorem 5.12 (Existence of analytic local holonomic sections). If (P,H is an

analytic formally integrable Pfaffian fibration, then for every p e P(k^ C Jk P

over x e M there is an analytic local holonomic section ß of [P. H) such

that jkß — p on a neighbourhood of x 6 dom(/j). In particular, (P,H) is

PDE-integrable.

Proof. If (P,H) is formally integrable, its classical prolongation P(1) C J1 P is

a formally integrable PDE. Moreover, since P is an analytic manifold, Jfi P is

analytic as well, being the kernel of the analytic bundle map e of Equation (4.3).

Similarly, C JXH P is analytic because it is the kernel of Te h which is also

an analytic bundle map. We conclude that P^ is an analytic formally integrable
PDE, so we can apply Theorem 2.3, which gives precisely the first part of our
statement.

In particular, for every p 6 (pO)^-1) over x, there exists a solution

ß of the PDE P(1) such that jkß p. This means that a jlß sits inside
P(1), i.e., a is a holonomic section of (P(1\ //(1)), and therefore pr(a) ß is a

holonomic section of (P, H). The PDE-integrability of (P, H) follows from the

PDE-integrability of P(1^ and the fact that pr : P(1) P is surjective. Q.E.D.

We look now for sufficient conditions for formal integrability. An immediate

one follows from Corollary 5.10:

Proposition 5.13. Let (P. H) be a Pfaffian fibration of finite type I. If P is

integrable up to order k > I, then it is formally integrable.

This proposition follows also as a corollary from a straightforward generalisation

of the cohomological integrability criterion of Goldschmidt (Theorem 2.4):

Theorem 5.14. Let (P, H) be a Pfaffian fibration such that

• The symbol space g is 2-acyclic, i.e., //'^(g) 0 V/ > 0,

• g(^ is smooth and P^ —> P is surjective.

Then P is formally integrable.

Proof. From the fact that g is 2-acyclic and g(is smooth, it follows from
Lemma 2.8 and Remark 2.9 that g(/) is smooth also for / > 1. Moreover, thanks

to our hypotheses, P is already integrable up to order 1 by Theorem 4.26.

Assume now that P is integrable up to order I > 1 : then the torsion
Tl+1 p(l) fjl-i>2(g) p must vanish, hence P is integrable up to order / + 1

by Proposition 5.6. By induction we find that P is formally integrable. Q.E.D.
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