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From PDEs to Pfaffian fibrations

Francesco Carrari, Marius Crainic and Maria Amelia SALAZAR

Abstract. We explain how to encode the essential data of a PDE on jet bundle into a
more intrinsic object called Pfaffian fibration. We provide motivations to study this new
notion and show how prolongations, integrability and linearisations of PDEs generalise to
this setting.
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1. Introduction

The history and the importance of theory of Partial Differential Equations
(PDEs) are themselves subjects of entire monographs. Very briefly, one of the
central questions is that of integrability, i.e., the existence of local solutions of
a PDE passing through each point. There are various techniques to handle this
problem, each one with its own advantages. For instance, the Cartan—Kéhler
theorem can be applied in many instances but it is bound to the analytic setting.
Another standard approach starts with the attempt to solve the PDE formally —
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and then one talks about formal integrability. One also discovers the notion of
prolongations, which allows one to replace a given PDE with a new, “larger”
one, but which may be easier to handle and, of course, has the same solutions as
the original one. Another standard technique is that of linearising a PDE — the
outcome is a PDE that is much easier to handle and which, although it usually
has different solutions than the original one, often carries important information
about the behaviour of the solutions one is looking for.

While the role of jets is clear already in the local study of PDEs, formalising
it was important for a more geometric approach to PDEs; this was carried out
by Charles Ehresmann [Ehr| in the 50’s, leading to the notion of jet bundle as
the standard formalism to study PDEs on manifolds. Solutions of a PDE were
then becoming sections of a bundle R — M over a manifold M, the PDEs
themselves were becoming subspaces P C JXR of the bundles of jets of sections
of R, and the condition for a section s of R to be a solution of P was
that j;‘s € P for all x € M. Many of the notions and techniques known in
the local study (e.g., prolongations, linearisations, etc.) were then recast in this
formalism; that process quickly revealed the notion of Cartan distribution(s), or
Cartan form(s), on the jet bundles J kR and its central role to the entire geometric
theory. The various ways of understanding these objects gave rise to different
schools/approaches to the subject, e.g., depending on whether (and how) one
works with vector fields or differential forms; see, among others, the monographs
[BCD+, KLV, Olv, Sau, Sto]. For instance, the Cartan—Kihler theorem mentioned
above is now part of the standard material on Exterior Differential Systems
[BCG+]. Another example is the notion of diffiety, due to Vinogradov and his
school [Vin], which arises from the theory of differential equations in the same
way the concept of algebraic variety arise from that of algebraic equations. It is
important to mention that all these modern approaches to PDEs (including ours)
have been greatly influenced by the pioneering works by Sophus Lie [LF] and
by Elie Cartan [Carl, Car2].

The aim of this paper is to emphasise and (hopefully) to clarify the importance
of the Cartan distribution/form even further. The main message is that what is
needed for the theory to work is not the jet bundles J* R but just the fibration
P — M together with the induced Cartan distribution; or, in our language,
a Pfaffian fibration. Of course, there are points at which the jet bundles are
still important, but often they are just “noise” in the background, giving rise
to unnecessarily complicated formulae. Also, we are aware that this point may
be, in principle, rather obvious to the specialists (and there are similar theories
carried out at the level of infinite jet bundles), but we find it useful to spell it
out in detail, taking care of the subtleties that arise along the way. We hope that,
in this way, various techniques and notions that are often presented in a rather
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pragmatic way, via “down to earth” (but complicated) local formulae, become
more transparent to people with a more geometric background/interests.

On the other hand, our main motivation for carrying this out comes from
the study of Lie pseudogroups and of geometric structures: the theory is now
ready to be used right away to understand the main structures underlying the
theory of Lie pseudogroups I' and, furthermore, of [I'-structures on manifolds.
For instance, one may say that the Pfaffian groupoids of [Sal| are just the
multiplicative version of the Pfaffian fibrations discussed in this paper. Again,
while this may still seem rather abstract for someone whose interest on Lie
pseudogroups comes from the study of symmetries of concrete PDEs, it reveals
the theory from a more geometric perspective, pinpointing the actual structure that
makes everything work, and uncovers rather unexpected bridges with other parts of
Differential Geometry. For instance, the abstract (Pfaffian) groupoids arising from
pseudogroups behave surprisingly similar to the symplectic groupoids of Poisson
Geometry. This similarity can really be exploited: for instance, the analogues of
the Hamiltonian spaces and of Morita equivalences of Poisson Geometry turn
out to be precisely what is needed to study general geometric structures and
their integrability — as carried out in [Cat]. In all of these, the notion of Pfaffian
fibration that is being discussed in this paper has the role of building block.

A few words on the structure of this paper. In Section 2 we review the basics
on PDEs: this include the notion of (finite-order) jet bundle and Cartan form, as
well as its linear counterpart, the classical Spencer operator. Moreover, we recall
the concepts of prolongation and of integrability of a PDE, and various important
theorems in this area, together with the necessary technical tools, i.e., tableaux
and Spencer cohomology.

In Section 3 we introduce the definition of Pfaffian fibration in a double
way, using either a differential form or a distribution. We define as well a
number of objects naturally inspired from the theory of PDEs, such as symbol
spaces and curvatures, and then we focus on the particular case of linear Pfaffian
fibrations and the process of linearising Pfaffian fibration along a solution. We
conclude with the discussion of the main examples that sparked our interest in
this field.

Section 4 is the core of the paper: we use the definitions and the ideas from
the previous section to develop a theory of prolongation in the context of Pfaffian
fibrations. In particular, we present first the general notions of morphism and
prolongation in the Pfaffian category, followed by the explicit construction of
a prolongation which is inspired from the classical notion of prolongation for
PDEs, and which is “universal” in a certain sense. Since this process is not
always possible, we show concrete criteria for the prolongability of a Pfaffian
fibration, and then see how these results translate to the linear picture.
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Last, in Section 5 we apply the theorems from Section 4 in order to tackle
integrability of Pfaffian fibrations up to a finite order, as well as formal integrability.
Borrowing ideas and terminology from the theory of G -structures, we associate
inductively to any Pfaffian fibration certain obstructions to formal integrability,
called the rorsions. In this setting, we can prove fundamental result such as
the Goldschmidt criterion for formal integrability, the integrability criterion for
Pfaffian fibrations of finite type and the fact that analytic formally integrable
Pfaffian fibrations are integrable.

Notations and conventions. All manifolds and maps are smooth, unless stated
explicitly otherwise. By a fibration between two manifolds P and M we mean
a surjective submersion 7 : P — M. Given a fibration = : P —- M, by T*P
we denote the vertical bundle ker(dw) C TP over P. By Q%(P,N) we mean
the space of differential k-forms on the manifold P with coefficients in some
vector bundle N’ — P, ie., QK(P,N):=T(A¥T*P @ N). We say that a form
6 € QX(P,N) is (pointwise) surjective if the linear map 0, : AKT, P — N, is
surjective for every p € P. Often we are given a vector bundle £ — M, so that
one can consider the pullback n*FE — P; when x is clear from the context, we
may omit the pullback notation. In particular, we often write Q¥ (P, E) instead
of QK(P,n*E).

2. PDEs on jet bundles

'The different notions which we will develop in the theory of Pfaffian fibrations
arise as a way to geometrically encapsulate the fundamental properties of PDEs.
In this section we review the various geometrical notions that motivated and
inspired the analogous ones for Pfaffian fibrations. In particular, we will restrict
our attention to PDEs defined on jets of sections of a fibration, which are easier
to deal with, more widely studied in the literature, and powerful enough for many
applications. We will therefore not consider the more general setting of jets of
submanifolds, even if we think that a suitable generalisation of Pfaffian fibrations
could be introduced also in that case.

2.1. Jets, PDEs, and the Cartan form. A PDE of order k£ in the function
= v 55 xp) : R" — R™ is an equation of the form

aledy
Flx,u,— | =0
(Xz u Hx‘fl Bx;)fﬂm)
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for all m-multi-indices « = (o, ..., o) With |o| = ) +---+ o, < k. However,
in order to describe a conceptual theory of PDEs on manifolds, the language of
jets will be very well suited, since it sees the PDE as a submanifolds of the & -jet
bundle given by the zero locus of F (see [KLV, Sau] as references for jets).
More precisely, the k-jet of u at x € R" is encoded by all the partial
derivatives of u up to order k : this means that two such functions u and v have
the same k -jet at x if they have the same Taylor polynomial of degree &k at x. This

defines an equivalence relation wﬁ on the space of smooth maps C*(R",R™);

the induced equivalence class of u, called the k-jet of u at x, is denoted by

: A ; : la| :
j¥u. Such an element of this quotient has coordinates u® = a—o,?—a—a“aﬁ, with «
T ox

as above.
More generally, given a fibration (by which we mean a surjective submersion)

7:R—> M,

we denote by I'(R) the set of sections of x, and by I'l,c(R) the local ones. For
any integer k > 0, the space of k -jets of sections of m is defined as

JER == (kB | B € Tioe(R), x € dom(p)}.

This set has a canonical manifold structure which fibres over M : indeed, the
collection of k-jets of functions u : R” — R™ coincides with JXS, when
S = R"xIR™ is the trivial bundle over R" with fibre IR™, hence the coordinates
described above can be taken as local coordinates for J¥R when dim(M) = n
and rk(R) =m.

In the case k = 1, a jet j!pB is completely encoded by B(x) € R and
the differential dxp : TxM — Tgx)R. Actually, since p is a section of m, its
differential is completely encoded by its image

H‘B(x) = Im(dx/ﬁ) C Tﬁ(x)R.

Indeed, d,pB will be the inverse of dx|y. Of course, H is not an arbitrary
subspace: it is a complement in Tg(,)R of the vertical subspace TEo K- Such a
complement is also called a horizontal subspace for m. Therefore, one has

J'R = {(p,H,) | p€ R, H, C TR horizontal}

(1
~2{(p.O)| peR.E:TxM — T¢g)R linear ,dmo{ =id}.
The various jet bundles are related to each other by the obvious projection maps
> J*R - J'R—> J'R =R,

and each projection J¥R — J¥~'R is an affine bundle modelled on the pullback
of SK(T*M)® T™R (see for example Theorem 6.2.9 of [Sau]). To simplify the
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notation, we denote all the projections above by pr, and the fibration of J kR
over M by m. Having at hand the language of jets, we can naturally formalise
the following definition (see [Gol2]): a PDE of order £ on z is a (connected)
submanifold

2) PcJ*R

which fibres over M. Typically, a PDE is also asked to satisfy some mild
regularity conditions. While one could develop most of the theory with no further
assumptions, these conditions simplify the exposition and avoid unnecessary
technicalities. Accordingly, in the rest of the thesis we will follow Section 1.4
of [Yud] and require that, if P C JKR is a PDE, then pr(P) C J¥7'R is a
submanifold as well, and the projections P — pr(P) and pr(P) — n(P)C M
are submersions.

A (local) solution of a PDE P is any (local) section g of R with the property
that

j¥ge P Vvxedom(p):

this means that the (local) section j%¥8 of JXR must be a (local) section of P.
In other words, the set of solutions of P, denoted by Sol(P), is made up by all
the sections « of P which are holonomic, ie., of the form « = j*B for B a
section of R. Accordingly, in order to detect which sections are holonomic, we
introduce the Cartan I-form

Ocan € Q' (JER. pr*(TT(J¥71R)))

with 77(JK~1R) := ker(dw) the vector bundle over J¥~!R of vectors tangent
to the fibres of JK~'R — M. For instance, in the case k = 1, Oean is defined
as follows: if p:=j!p, and X € T,J'R,

3) (Ocan)p(X) = dpr(X) —dxB(dn(X)) € T§,R.

In the general case, at level k, 6., is defined analogously (it is the difference
between the two canonical ways to move from the k- to the (k — 1)-jet space).
Moreover, we let C := ker(O.a,) be the kernel of the Cartan form, called the
Cartan distribution (see [BCD+, KLV, Olv]).

The main property of this new object is the following:

Lemma 2.1. A section « of J*R — M is holonomic, i.e., of the form o = j*B,
B € I'(R), if and only if a*Ocan = 0 (equivalently, the section doa: TM — TJ*R
takes values in C).

Conceptually this means that we can characterise the solutions of P only
in terms of P viewed as a bundle over M (and not as a subbundle of J*R),
together with the restriction of 6.y to P:
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Sol(P) = T(P, ) := {a € T'(P) | ™ Bean = 0}.

In other words, for the study of PDEs, the only relevant data is a fibration P — M
endowed with an appropriate 1-form (or, equivalently, with its kernel): this will
be our starting point for the definition of a Pfaffian fibration (which forgets the
ambient jet space).

2.2. Linear PDEs and Spencer operators. If R = E is a vector bundle over
M. JXE is canonically a vector bundle over M with fibrewise addition and
multiplication by a scalar A € R defined by

JEB+ jkn =R+, Akp = k0B

A linear PDE of order k on E is a vector subbundle F C JKE over M. As in
the general case, solutions of F are sections of F that are holonomic; however,
in this linear setting, the classical Spencer operator of E plays the role of the
Cartan form (3), i.e., detecting holonomic sections. As for the Cartan form, we
will define explicitly this operator when k = 1, using a very convenient way
to describe sections of J!'E, known as the Spencer decomposition: it is the
canonical isomorphism of vector spaces

4) INJ'E)Y~T(E)® QY(M, E).

This decomposition comes from the following short exact sequence of vector
bundles over M

(5) 0— Hom(TM.E) > J'E ™ E 0,

where i, at the level of sections, is defined as i(df ® s) := fj's — j1(fs).
Although the sequence (5) does not have a canonical right splitting, at the level
of sections it does: s > j's. This gives the decomposition (4), so that the classical
Spencer operator D! s by definition the projection to the second component:

(6) D - (JYE) > QYUM, E).

This operator has been extensively studied, see for example [GSI1, GS3, Spel, Spe2,
Quel, Que2]. Moreover, it is clear from its description that holonomic sections
of F C J'E are precisely the sections a with the property that D% (x) = 0.

The same story can be also repeated for higher jets, obtaining classical Spencer
operators of the form D¢ : ['(JKE) — QY(M,J*"'E). More precisely, since
J¥E is a vector subbundle of J'(J*¥~1E) (over M), we can consider the Spencer
operator of the vector bundle J¥"'E — M (where JX"'E now plays the role
of E) and restrict it to space of sections ['(JXE).
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This operator D : I'(J¥E) — QY(M, J¥"1E) vanishes on the solutions of
k'* -order linear PDEs F C JXE; hence, in analogy with the Cartan form, we
can characterise the solutions of F only in terms of F viewed as a vector bundle
(and not as a subbundle of JXE), together with the restriction of D = D13
itc WV

Sol(F) =~ I'(F, D) :={a € I'(F) | D(a) = 0}.

After defining Pfaffian fibrations as generalisation of PDEs with their Cartan
forms, their linear counterpart (the linear Pfaffian fibrations) will be in turn a
generalisation of linear PDEs with their classical Spencer operators.

Remark 2.2. We will also show (see Proposition 3.14 and Remark 3.18) that the
classical Spencer operator can be seen as the linearisation of the Cartan form in the
sense of Definition 3.17. Actually, the whole picture relating the two objects can
be more clearly seen in the world of Lie groupoids endowed with multiplicative
forms and Lie algebroids endowed with (non classical) Spencer operators: the
linearisation of a Lie groupoid is its Lie algebroid, and the linearisation of a
multiplicative forms is a Spencer operator. See [CSS]| as a reference for this

topic. O

2.3. Prolongations of PDEs. The theory of prolongations of a PDE is a powerful
tool to find its solutions; the literature on this topic is very rich and dates back
several decades: we mention [GS1, GS2, Olv, BCD+, Vin, Sto] and we briefly
and informally recall here some of these notions.

A prolongation of a PDE P of order kK on # : R - M can be thought
as the (k + 1)-order PDE on 7 obtained by taking the first order differential
consequences of P, with the fundamental property of having the same space of
solutions. The first naive guess to define the prolongation of P would be simply
J1P = {jlo | o € T'(P)}. However, one immediately sees that J! P fails to be a
PDE of order k +1 on 7, since J!P is by construction a subset of J'(JXR),
not of JKt1R ¢ J1(J¥R). The way to solve this (set-theoretical) problem is to
define the prolongation PV as

(7 PV .— jlpn gktip

However, P may fail to be a subbundle of J¥+'R; even more, PV may
fail to be smooth. The PDE P is said to be integrable up to order k + 1 if
PM happens to be “nice enough”, meaning that it is indeed a new PDE, and
the projection P() — P is a surjective submersion. If P is integrable up to
any order, it is said to be formally integrable. In this case we obtain a tower of
bundles over M

(8) ey P 5 PO 4 P
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each of them endowed with the restriction of the Cartan form at every order, and
all the maps being surjective submersions.

The study of formal integrability of a PDE is a very useful tool to prove
the existence of its solutions. This can be best seen in the analytic case, where
formal integrability becomes a sufficient condition for integrability, i.e., finding
local solutions at every point.

Theorem 2.3 (Theorem 9.1 of [Gol2]). If P C JXR is an analytic formally
integrable PDE, then for every p € P® c J** 'R over x € M there is an
analytic local solution B of P such that jka B = p on a neighbourhood of
x € dom(f).

In particular, through every p € P there exists a local (analytic) solution
gl P

However, in the smooth category Theorem 2.3 is not always true, since
there exist formally integrable PDEs admitting no solution: see the famous Lewy
counterexample [Lew].

To understand better the structure of the prolongations and the notion of
formal integrability, one arrives at the notion of a tableau (see [BCG+, Goll] and
Definition 2.6 in the next section). The tableaux are linear spaces that provide the
framework to handle the intricate linear algebra behind PDEs; they also provide
(Spencer) cohomological criteria for integrability of PDEs.

In particular, the symbol space g of the PDE P C J¥R is the following
tableau

g:= ker(dpr: T™P — TJ*"'R) C ker(dpr: T*J*R — TJ*"'R)

®) k(o
~ SK(T*M)® T™R.

This last isomorphism comes from the following short exact sequence:

d
(10) 0= S*T*M @ T*R — T*JFR & 77 jk—1R 5 0,

where we assume that all vector bundles sit on top of J*¥R as pullback by the
obvious maps (which we omit).
Using the definition of the Cartan form 6., one checks that

g=1{v e T™P|Ocan(v) = 0} = T™ P Nker(fean) = T™ P N (SK(T*M) ® T™R).

We can use the symbol space to provide a sufficient criterion for formal
integrability of PDEs in terms of the prolongations and the Spencer cohomology
of g, which we recall in the next section (see [Gol2] for the original result and
[Yud] for a more careful and modern proof):
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Theorem 2.4 (Goldschmidt formal integrability criterion). Let P be a PDE whose
symbol space g is 2-acyclic, i.e., its Spencer cohomology H k2(g) vanishes
for every k = 0. If. moreover, PV — P is surjective and the prolongation
gD = {ne SHUT*M)RT"R | ixn€g VX € X(M)} is of constant rank, then
P is formally integrable.

Remark 2.5. In the same way that the theory of Pfaffian fibrations (developed
in Section 3) is inspired from the theory of PDEs (recalled in Section 2.1), the
notion of prolongation of a Pfaffian fibration (developed in section 4) comes as a
geometrical way to describe the prolongation of a PDE only in terms of P and
the Cartan form, i.e., it isolates the properties that each map of (8) has in terms
of O.an, forgetting the ambient jet space where P lived. O

2.4. Tableaux and Spencer cohomology. As stated in Theorem 2.4, Goldschmidt
provides in [Gol2] a cohomological criterion for formal integrability of a PDE
in terms of its tableau. In this section we recall the general notions of tableau
and Spencer cohomology, and state some facts relevant to the theory of PDEs.
We also describe a small variant of the Spencer cohomology which will appear
in the theory of Pfaffian fibrations, when dealing with a slightly more general
notion of tableau.

Definition 2.6. Let E,F be vector spaces. A tableau on (E,F) is a linear
subspace
g C Hom(E, F).

We define the 1% prolongation of g as
gV = {np e Hom(E,g) : n(X)(Y) = n(Y}(X)V X.Y € E} = Hom(E, g)NS2E*®F,
and we define inductively the i”" prolongation of g by
0@ = (g9 )" = Hom(E, g/~ V) N ST E* @ F.
Next, we recall from Section 6 of [Gol2] that the following operator on FE,
§:S¥E* > E* @ SKTYE*,  8(p)(v) = 1on € SKTLE*,
extends to a linear map
§:NE*Q@SKE* 5> AMVTIE* @ SFTE*, S(w®n) = (=) o AS().
The resulting sequence of complexes (ie., §od = 0) is of the form

') $ )
(11) 0> SkE* S F*S1E* S ... S APE*®@ SE"E* 50
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for each k (we set S'E* = 0 for [ < 0). We tensor then the sequence (11)
by F, and the operator § by idr, keeping still the same notation §. Note that,
for a tableau g C Hom(E, F), each prolongation g can be described as the
kernel of the restriction of the appropriate § to Hom(E,g@~V):

(12)
§ =& : Hom(E, g® P) — Hom(A%E,g"" ), S(n(X,Y) = n(X)(¥Y)—n(¥)(X).

Therefore, it is not difficult to see that the sequence of complex (11) tensored
with F contains the subsequence of complexes

0— g(i) i E* ®g(i_1) —5> AZE* ®g(i_2) i i ANE* ® g —5> ANTIE*Q F,
for each i. At A™E* ® g, the cocycles are denoted by
Zl’m(g) = ker(8 n JoltE JF ®g(l) — ATTLE* & g(l_l)),
and the coboundaries by
BYM(g) :=Tm(8 : A" E* @ gD AME* ® gP);
the resulting cohomology groups are denoted by
(13) HY™ (g) := Z'"(9)/ B"" (9).

Note that by construction H%!(g) = 0 for all / > 0. The resulting cohomology
is called the Spencer cohomology of the tableau g.

Definition 2.7. Let r > 1 be an integer. A tableau g is said to be r-acyclic if
Hl"”(g) =0 ¥Y¥li€m<r [ >0,
and it is involutive if it is r-acyclic for all r > 1, i.e.,

H'™(@g) =0, Vm=>1,1>0.

Later on, in the theory of Pfaffian fibrations, we will need a small variant
of the Spencer complex of a tableau g € Hom(E, F), in which the inclusion
g < Hom(E, F) is replaced by a linear map

d:g — Hom(E, F).
In this case we define the 1% prolongation of g (with respect to 3) by
(14 g(3):= {n e Hom(E,g) | 3(n(X))(Y) = d(n(¥))(X), VXY € E}.

We can regard g()(d) as a (classical) tableau on (£, g) and prolong it repeatedly,
giving rise to the higher prolongations
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dD@) =S E*®gN Hom(E,g(i_l)), i> 1.

The Spencer sequence for g(")(d) can be extended in the following way: we
extend o to the linear map

§9 : NE*®@g—> ANTVE*Q F, 8w ®@v) = (1) o A ).

A simple computation shows that the sequence of Spencer complexes of g(1(d)
extends to the sequence of complexes

(15) 0 g® 5 E*@gt0 & . L A pr g L AT Ereg B AT ET R,
for each i. We call the d-Spencer cohomology of g the cohomology of the
sequence (15).

Now, when dealing with vector bundles E, F over M instead of vector spaces,
all the notions discussed above extend naturally. In particular, a tableau bundle on
(E, F) is abundle g € Hom(E, F) of linear subspaces {g, C Hom(Ey: Fx)}xem,
whose rank may vary; g is therefore a (smooth) vector subbundle over M only
when it is of constant rank. However, let us point out that the prolongations g
may fail to be smooth even if we start with a smooth tableau bundle g; at certain
points the rank of some prolongations may not be constant anymore. One of the

roles of the acyclicity condition from Definition 2.7 is to ensure the smoothness
of the prolongations (see [Gol2, Yud]):

Lemma 2.8. Let ¢ C Hom(E, F) be a tableau bundle over a connected manifold
M. If g is 2-acyclic and gV c Hom(E,g) is a vector bundle of constant rank,
then g c Hom(E, g~V) is also a vector bundle of constant rank for all i > 0.

Remark 2.9. Lemma 2.8 above also holds when dealing with a tableau bundle
defined by a vector bundle map o : g — Hom(E, F) over M ; in that case we are
considering of course the 1% prolongation g("(d) w.rt. d from equation (14).
The proof follows the same lines as the proof of Lemma 2.8. O

A fundamental result in the theory of prolongations of PDEs states that, even
if a tableau bundle is not involutive, it becomes so after a finite number of
prolongations (see [Gol3, Lemma 2]):

Theorem 2.10. Let g be a tableau bundle. There exists an integer ly such that
g(” is involutive for all | > I.

3. Pfaffian fibrations and their geometry

We present now the central object of this paper, which we obtain by replacing
the jet bundles with their hidden “PDE structures”. Furthermore, we explain how
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to recover in this new formalism many concepts from the theory of PDEs. As
anticipated in the introduction (and discussed in the section of examples), we
stress that the leading idea in this picture is not to give an abstract generalisation
of the notion of PDE, but to shed light on its geometry.

3.1. Pfaffian fibrations.

Definition 3.1. A Pfaffian fibration (P,0) over M is a fibration 7 : P — M
together with a pointwise surjective form 6 € Q(P, N') with coefficients in some
vector bundle N/ — P such that

e 0 is m-regular, i.e., the restriction of dx to ker(f) is pointwise surjective,
or equivalently, ker(6) is transversal to the m -fibres:

T7P + ker(§) = TP,

® 6 is m-involutive, i.e., the following distribution is involutive (in the sense
of Frobenius)

(16) g(6) := T" P Nkerd.

The form @ satisfying the properties above is called a Pfaffian form, the vector
bundle N the coefficient bundle, and the distribution g(6) the symbol space of 0.

From the n -regularity of the Pfaffian form 6 it follows that 6 has constant
rank, hence it defines a vector subbundle g(6#) € TP over P, ie., a regular
distribution (therefore it makes sense to ask it to be Frobenius-involutive).

Remark 3.2. (Pfaffian distributions) We can look at pointwise surjective -
regular 1-forms from the equivalent point of view of distributions transversal
to the m-fibres (or m-transversal distributions). In particular, starting with a
m -transversal distribution H C TP

TP=H+T"P
one defines the symbol space of H
g(H)=T"PNH
and the normal bundle
Ny :=TP/H =T"P/g(H).

If, moreover, the symbol space of H is Frobenius-involutive, we call H a Pfaffian
distribution. We can then produce the surjective 1-form 0y (and say that Oy is
induced by H) given by the projection TP — N : by construction fg satisfies
ker(6y) = H, is m-regular, and its symbol space coincides with that of H .
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Vice versa, if some distribution Hg C T'P is already the kernel of a surjective
w-regular I-form 6 € Q'(P,N), then its normal bundle becomes isomorphic
to the coefficient bundle N via the map Ny > [u] +— O(u) € N. Under this
isomorphism 6 can be trivially written as the projection map TP — Njp.
Clearly, Hy is m-transversal and its symbol space coincides with that of 0. ¢

Proposition 3.3. The previous construction (of Remark 3.2) gives a I-1 corre-
spondence:

Pfaffian distributions - (equivalence classes) of Pfaffian forms
<« .
HCTP 0 e QUP.N)

where two forms 0y, 0, are equivalent if there exists a vector bundle isomorphism
¢ : N1 — Ny between their coefficients such that ¢(6,(v)) = 6,(v) Yv e TP.

Accordingly, we have the equivalent notion of a Pfaffian fibration (P, H) over
M when dealing with a Pfaffian distribution; in the following, we will switch
freely between these two definitions (with forms or with distributions).

As we will see later (Proposition 3.22), PDEs on jet bundles are the main
example of Pfaffian fibrations. With this in mind, the correspondence from
Proposition 3.3 recovers the correspondence between the Cartan form and the
Cartan distribution.

Remark 3.4. (Pfaffian systems) Pfaffian fibrations are related to another way of
studying differential equations, namely exterior differential systems (EDSs): every
Pfaffian fibration induces a special kind of EDS.

An EDS is differential ideal of the exterior algebra of a manifold (see [BCG+]
for an introduction). In particular, a Pfaffian system is an EDS 7 C Q*(P),
generated as an exterior differential ideal in degree one, together with a transversal
(or independence) condition. It can be proved that a s -transversal distribution
H C TP induces such kind of Pfaffian systems, and moreover, if H is also m-
involutive, the induced Pfaffian system turns out to be linear (another notion from
the theory of EDSs, different from that of linear Pfaffian fibration in Section 3.2).

In conclusion, the framework of Pfaffian fibrations fits nicely in between two
classical ways of studying differential equations:

e The formalism of jet bundles becomes a particular case (we give up the jets
and retain the main structure given by the Cartan form).

e The formalism of exterior differential systems is a more general case (we
concentrate only on Pfaffian systems which have a transversal condition and
are linear). O
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In both cases outlined above, a (local) solution of a PDE (i.e., a holonomic
section in the jet bundle language, an “integral manifold” in the EDS language)
corresponds to a (local) section of the Pfaffian fibration which pullbacks the
Pfaffian form to zero:

Definition 3.5. Given a Pfaffian fibration (P, 0), a holonomic (local) section of
(P, 0) is any (local) section g of P with the property that g*6 = 0. The set of
holonomic sections is denoted by I'(P, ) and that of local ones by I',.(P,0).
Analogously, a holonomic section of a Pfaffian fibration (P, /) is any section
B of P tangent to H (i.e., dff:TM — TP takes values in H). We denote by
I'(P, H) the set of holonomic sections, and by 'l (P, H) that of local ones.

One of the main questions for Pfaffian fibrations is the integrability from the
PDE point of view:

Definition 3.6. A Pfaffian fibration (P,0) (or (P, H)) is PDE-integrable if
through each point p € P there is a local holonomic section B € [Ny (P, 0) (or
B € Loc(P, H)), ie., B(r(p)) =p.

Remark 3.7. Of course the notion of holonomic section makes sense for any 1-
form € on a fibration P — M , without any a priori relation with 7" P ; however,
PDE-integrability implies x-regularity of 6, which is therefore a posteriori a
meaningful condition to ask in the definition. This can be more easily seen using
H =ker@: if for any p there is a local section f§ : M — P passing through p
which is tangent to /, then

TeM = d(r o B)(TeM) = dr(dB(TeM)) C dr(H,),

where x = 7(p). This means that dx is surjective when restricted to H, i.e.,
H is m-transversal (or 6 is m-regular). &

A natural notion that comes into play when studying PDE-integrability is that
of integral element (see [BCG+] for the analogous notion for an EDS). Intuitively,
an integral element of (P, H) is a linear subspace V C T, P, p € P, which is a
“good” candidate to be the tangent space of a holonomic (local) section g that
passes through p. Suppose that V' is indeed tangent to f, ie., V = dB(T M),
x = n(p): this immediately implies that the dimension of V is the dimension
of M and that 7, P can be written as the direct sum V & 7 P. Due to the
holonomicity of £, one further obtains that

V.Cc H, and [u,v], €V,

for any u = dp(X),v =dp(Y) with XY € X(M).
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In order to rewrite this last condition independently of the extensions of u,
and v,, we introduce the curvature map of H,

(17) kg H xH — Ny,

which is the C®°(P)-bilincar map defined at the level of sections by
(U,V)— [U,V] mod H. The Leibniz identity of the Lie bracket of vector fields
implies that kg is indeed well defined. Alternatively, if H = ker @, the curvature
map is denoted by kg : H x H — N and can be described by (U, V) 0([U, V]);
therefore, it coincides with the restriction of dyf to ker(8), where dy is the
De Rham-like differential associated to any linear connection V on P.

Definition 3.8. Given a Pfaffian fibration (P, H) (or (P,0)), a linear subspace
V C T, P of dimension equal to the dimension of M is called a partial integral
element if

VCH, and T,P=V&T;SP.

If, moreover, the restriction of the curvature map (kg), to V x V is zero, then
V is called an integral element.

3.2. Linear Pfaffian fibrations and relative connections. In this section we
discuss the notion of Pfaffian fibrations in the linear case, i.e., when the fibration
P — M is a vector bundle. We will also introduce an equivalent description in
terms of relative connections.

Let w : E — M be a vector bundle with zero section 0(x) = (x,0), fibrewise
addition a(e, f) = e + f and multiplication by a scalar mj(e) = Ae, for A € R.
Its tangent vector bundle is the vector bundle TE over TM defined as follows: the
fibrewise projection is the differential dn : TE — TM , the zero section is d0,
the fibrewise addition is given by the differential da : TE xpp TE — TE and the
fibrewise multiplication by A € R is given by the differential dm, : TE — TE.

e A differential form 6 € Q!(E,7*F) with values in the (pullback of the)
coefficient bundle F — M is called linear if a*6 = prj0 + pr30, where
pry.pr, : £ xp E — E denote the canonical projections

° A distribution H C TE is called linear if it is a vector subbundle of TE
over the same base TM .

Lemma 3.9. Letr H be a linear distribution on a vector bundle E — M . Then
the distribution H N T™E satisfies

(18) HNTPE=a*(HNTTE) |m).

Similarly, the normal bundle TE/H can be recovered from the m-pullback of
the vector bundle
Fy .= (TE/H) |y— M.

Moreover, H is m-transversal.
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Proof. First, we notice that we can right translate vectors tangent to the fibres
to the zero section. Indeed, any vector V at ¢ € E tangent to the fibre FE,,
x = m(e), moves to a vector based at 0(x) = (x,0) by taking the differential of
right translation a,.(-) := a(-, —e) by —e:

(19) dae : TA(Ex) — To(Ex), V s da(V,0_,).

The advantage of this is that da, takes g(H). to g(H), because H is linear,
hence we get (18).

Second, as H is linear, TM = dO0(TM) C H|p and this shows that H
is m-transversal on M . This, together with the identification (18), implies the
m -transversality of H:

(20) TE=H+T"E.

Indeed, it is enough to compute tk(H, + T E) = rk(H,) +rk(T] E) —rk(g(H ).)
and compare it with the ranks at x = x(e).
Condition (20) implies in turn that the normal bundle can be rewritten as

TE/H = T"E/(H N T"E).

Using (19) and (18), and passing again to the normal bundle, we obtain the
isomorphism
w Fg=TE/H, Q.ED.

Proposition 3.10. (Equivalence between linear forms and distributions) Any
pointwise surjective linear form 0 € QY (E,x*F) induces a linear distribution
Hg = ker(0) C TE.

Conversely, any linear distribution H on E arises as ker(0y), for 0y €
QUE, n*Fy) the linear form defined by the canonical projection TE — TE/H
followed by the isomorphism TE/H =~ n*Fg of Lemma 3.9.

Analogously to Proposition 3.3, the result above defines a 1-1 correspondence

pointwise surjective linear forms

0 c QUE, n*F)

Linear distributions
HCTE

} (equivalence classes) of

Proof. It is immediate to see that Hy is linear. Conversely, let us prove that 0y
is linear (we omit the subscript on H for simplicity). Due to the transversality of
H one writes 0,(V) = 0,(V — V), with V € H, = ker(6,) any vector such that
dm(V) = dn(V). Hence, for any other vectors W € Ty E with dr(V) = dmx(W),
and W € Hy with dn(W) = dz(W), we have
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0e(V) + 0, (W) = 0y (da(da(V _V,0_), da(W — W,o_f)))
= O (da(da(v — V. W = W).da(0-.0_)))

= bo(da(da(V,W)—da(V,W),0__r))
= O r(da(V, W) —da(V,W)) = Or p (da(V, W)),

where in the last line we used that da takes H, xrp Hy to H,y s by linearity
of H. Q.E.D.

Proposition 3.10 implies that the following definition is well given:

Definition 3.11. A linear Pfaffian fibration is a vector bundle = : £ — M,
together with either a pointwise surjective linear form 6 or a linear distribution
HCTE.

Proposition 3.12. If (E,0) is a linear Pfaffian fibration, then it is a Pfaffian
fibration in the sense of Definition 3.1. Analogously for a linear Pfaffian fibration
(E,H).

Proof. We say that a vertical vector field X € I'(T™E) C X(E) is constant
along the fibres of n if, for every x € M, the vector da.(X) € T (Ex) (see
Equation (19)) does not depend on e € E,. It can be easily seen that such vertical
vector fields constant along the fibre of 7 commute.

Moreover, given a linear distribution H on m, we can write any vector
field tangent to g(H) C I'(T"FE) as a C°(FE)-linear combination of vector
fields tangent to g(//) and constant along the fibres; it follows that g(/) is
Frobenius-involutive. Together with Remark 3.9, this concludes the proof. Using
Proposition 3.10, the same holds for a linear Pfaffian fibration (E, H). Q.E.D.

As promised, we explain now that linear forms and linear distributions can be
encoded by a generalised version of linear connections, called relative connections.
Starting from the well-known correspondence between linear connections V on
E — M and distributions H C E which are horizontal and linear, relative
connections will turn out to be in correspondence with distributions which are
linear, but not necessarily horizontal.

Definition 3.13. Let £ and F be two vector bundles over M ; a connection on
E, relative to a surjective vector bundle map o : E — F, is an R-linear map

D:T(E)— Q' (M, F),
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satisfying, for any section s € I'(£) and function f € C°°(M), the Leibniz-type
identity

(21) D(fs)(X)= fDG)X)+ Lx(f)o(s) VX € X(M).

We also say that (D,o) is a relative connection and o is its symbol map.

In particular, any linear form 0 € QY(M, F) is fully encoded by the operator
(22) D:T(E)—> QY M, F), s s%0.

together with the vector bundle map o : E — F, o(v) = 6(v). Indeed, we have
the following:

Proposition 3.14. The above procedure induces a I-1 correspondence between
pointwise surjective linear I-forms on a vector bundle w : E — M and relative
connections on .

Proof. The linearity of @ is translated into the fact that D as in (22) is R-linear
and satisfies the Leibniz-type identity (21), where o : E — F is the vector bundle
map over M defined by
ox(u) = 0r(u)

under the canonical identification TJZ’E = Ey, for f e E, x=mn(f) e M.
Conversely, if D is a connection relative to o, there is a well defined linear
form 0 € QY(E,n*F) uniquely determined by s*0 = D(s) (for any s € I'(E))
and O(v) = o(v) (for any v € E =T"E|y). Q.E.D.

When there is no confusion, we denote a linear Pfaffian fibration by (E, D).
Of course, all definitions and properties can be translated from the point of view
of linear forms to the one of relative connections and vice versa. Accordingly,
we call

g(D) := ker(o)
the symbol space of D, we say that a section s is holonomic if D(s) =0, and
we denote by ['(E, D) the set of holonomic sections. As in the case of linear
distributions, the linearity of the form 6 associated to D implies that the natural
identification between T7 E and the pullback 7*E restricts to the symbol spaces:

9(0) = 7 g(D).

Remark 3.15. (Relative connections induced by linear distributions) We describe
directly the correspondence between linear distributions and relative connections,
bypassing Proposition 3.14 and Remark 3.9. As we anticipated, this can be also
thought as a generalisation of the well-known correspondence between linear
connections V : X(M)xI'(E) — I'(E), and transversal linear distributions, given
by the horizontal distribution of V.
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For any linear distribution H on E, one produces a connection
D:T(E)— Q' (M, E/qg),
relative to the projection pr: £ — E/g, for g C E the subbundle defined by
g:=g(H)\mM@ CT"E|m = E,

where we are identifying canonically T"™E with n*E. The connection D is
given by the formula

Dx (s)(x) := [? X](x) mod H

where X € ¥(M), X € X(E) is any -projectable extension of X, tangent
to H, and § is the vertical vector field constant along the fibres induced by
s. Of course, the above formula coincides with (22) when @y is the canonical
projection TE — n* Fy. More generally, for any linear form 6, one can write
the associate relative connection (22) as

Dx ()(x) = 6([5, X1.).

To check this formula one uses the flow of § to compute the bracket, and the
linearity of 6. This equation will play a role in the theory of prolongations of a
linear Pfaffian fibration. O

Remark 3.16 (Relative connections as Spencer operators). Any vector bundle
E can be thought as a Lie algebroid with zero bracket and zero anchor. The
appropriate generalisation of relative connections in the world of algebroids is the
notion of Spencer operators: these are relative connections compatible with the Lie
bracket and the anchor; they play the infinitesimal counterpart of multiplicative
distributions (see [CSS]). These compatibility conditions are trivially satisfied
when the Lie algebroid is a vector bundle, so in this case the notions of Spencer
operator and relative connection coincide. O

3.3. Linearisation of Pfaffian fibrations along holonomic sections. In this
section we discuss a natural process of linearisation in the context of Pfaffian
fibrations, which can be sketched as the following map:

~ - . . Lin . -
Pfaffian fibrations and holonomic sections == linear Pfaffian fibrations

((P,6),B) r> (Ling (P, 0), DP).

Let us describe this application Lin.
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Definition 3.17. Let (P,60) be a Pfaffian fibration over M and B € I'(P,0) a
holonomic section, i.e., B*6 = 0. The linearisation of (P,0) along B is the pair

(Ling (P, 0), D?),
where Ling(P.0) is the vector bundle over M
Ling(P.0) := B*T™ P,
and D# is the operator
DP : T'(Ling (P, 0)) — QY(M, B*N)

defined as follows. For any section s € I'(B*T” P), choose a smooth family f,
of sections of P such that

d
Bo=8, —

Tr|  Bex) =s(x).

t=0

For X, € Ty M, the family B;(6)(Xx) € N, (x) defines a curve starting at Og(y, .
Accordingly, its speed is a vector in Ty, N = Tgx) P & Np(r). We define

d
PEWI) = prng, (57| (B0 O ) € Nioco,

dt

t=0

It is straightforward to check that the operator D? defined above is a
connection on Ling(P,60) relative to o = 0 |r=p (Definition 3.13), hence
(Ling(P.0), DP) is a linear Pfaffian fibration. Moreover, its symbol space
coincides with the pull-back via g of the symbol space g of (P,0):

g(Ling (P, 8)) = p™g.

Remark 3.18 (Linearisation of a linear Pfaffian fibration). When a Pfaffian
fibration is already linear, linearising along the zero section becomes the identity,
i.e., Ling(e) = e (of course, the zero section 0 is always holonomic for any linear
form 0).

Indeed, the linearisation of (FE,0) along 0 recovers the vector bundle
E = E" = 0*(T™E) and the relative connection D associated to 6 as in
(22). To check this, note that a section s of E can by written as

Yy = ==

de

(0 + €s),
0

€=

hence

d
DYs)= —
©= 2|

€=

d
(0 + e5)*(0) = T

e(s¥(0)) = s¥(0) = D(s).
0

€=
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where in the second equality we used again the linearity of 6 to write
(0 4+ €5)*(0) = 070 + e(s*0) = e(s*0). As 6 and D encode the same Pfaffian
fibration (see Remark 3.16), we see that linearising a linear Pfaffian fibration
along the zero section does not do anything; we end up recovering the same
linear Pfaffian fibration. O

Remark 3.19 (Linearisation of a Pfaffian groupoid). Intuitively, a Pfaffian groupoid
is a Pfaffian fibration together with a multiplicative (group-like) structure; such
multiplicativity translates into a richer geometrical content and simpler objects.
Passing to the infinitesimal counterpart, we find Lie algebroids endowed with
Spencer operators (see Remark 3.16): the linearisation of a Pfaffian groupoid
along its unit map coincides precisely with the Spencer operator associated to a
multiplicative form as in [CSS]. O

Remark 3.20 (Heuristics of the linearisation procedure). In this remark we aim to
give an intuitive explanation of the linearisation phenomenon, for which we will
use an infinite-dimensional picture in a heuristic way, without providing precise
details.

Let (P,0) be a Pfaffian fibration over M, with 6 € Q!(P,N), and consider
the (infinite-dimensional) vector bundle F over the (infinite-dimensional) manifold
P :=T(P) by setting the fibres

Fp:=QY M, B*N), BeP
and consider its global section
Q:P—>F, B B*0.

The holonomic sections of (P,6) are now the zeroes of ®, hence ® can be
called holonomator. The linearisation of (P, 8) around a holonomic section g € P
becomes then the usual linearisation of the section ® at the zero f, i.e., the
JFp -component of the differential

dﬂ@ : Tﬁp — TyF = T‘B’P@}_’g.

Since a vector tangent to P at f is realised as the velocity of a path 7 +— ; € P
starting at B, i.e., TgP = ['(B*T™ P), then the linearisation becomes an operator

DP = dg® : T(B*T™P) — Q'(M, B*N).

Together with o# given by 6 restricted to 77 P, we obtain a relative connection
(DB,oP) on B*T™ P with coefficients in 8* F. This is precisely the linearisation
of (P,0) along B from Definition 3.17. ¢



3.4. Examples.

Example 3.21 (PDEs). As we anticipated, jet bundles and PDEs are the
prototypical examples of Pfaffian fibrations.

Proposition 3.22. Let R — M be a fibration; any PDE P C J¥R, together with
the restriction of the Cartan form 0., is a Pfaffian fibration on M. Moreover,
its symbol space (Definition 3.1) coincides with the symbol space of P as a PDE
(Equation (9)).

Proof. By the regularity conditions asked on P (see the discussion after equation
(2)), the projection & : P — n(P) C M is a surjective submersion. Moreover,
since also pr : P — pr(P) is a submersion, we can choose a splitting
g : Tpr(P) — pr*TP of dpr. It follows that, for every p = jk¢ € P, we
can consider the map

TeM — ker(y) C T, P, v s E(de(j¥ o) (1)),

which is a splitting of dpm |yerg,): ker(6p) — dpm(P); this proves that 6 is
m -transversal.

Moreover, one notices that the Cartan form 6., restricted to ker(dmw) is
simply the differential of the projection pr: P — pr(P) C J¥~1 P, hence

(23) ker(Ocan) Nker(dw) = ker(dpr : TP — Tpr(P)).

Since, by definition of PDE, we assume that pr: P — pr(P) is a submersion, its
kernel is a smooth submanifold and ker(6.a,) M ker(d ) is an involutive regular
distribution on P, i.e., O., iS m-involutive.

We conclude that (P,0) — =(P) is a Pfaffian fibration. In particular, by
equation (23), the symbol space of (P, 60) as a Pfaffian fibration coincides with
the symbol space of P as a PDE. O

Here is a partial converse of the previous result; any Pfaffian fibration which
is “nice enough” can be realised from a jet bundle.

Proposition 3.23. Let w : (P,0) — M be a Pfaffian fibration, with 0 € Q'(P,N),
and assume that the foliation on P defined by the symbol space is simple, i.e.,
g(0) = ker(df) for some fibration f : P — Q. Then there exist

e «a fibration T : Q — M such that to [ =,

e a vector bundle isomorphism ® : f*(T*Q) — N,
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e  a unique bundle map (P,0) LA (J1Q, Ocan) such that
do f*gcan =6,
for Oean € QUJ'Q,pr*TT Q) the canonical Cartan form on J'Q.
Proof. We define Q := P/~ as the leaf space of the foliation g(d). Then the
projection
t:Q—>M. [pl= f(p) 7(p)

is well defined, since dm vanishes on g(0), hence m is constant on each leaf.
Moreover, t is a fibration since m is so.

The linear isomorphism @, : 77 O — N, is defined as the composition of
the inverse of the isomorphism

dp [ 2T P/g(p) = T7y Q. [v] > df(v)
with the isomorphism
0 : 7 P/9(0p) = Tp P/ ker(6p) = Np.  [v] = 0p(0).
The bundle map i is defined as
i(p) = (f(P):§p)

where we interpret J'Q as in Equation (1). Here &, is defined as the
composition of the isomorphisms Tn,M = ker(6,)/9(8,) C T,P/g(6,) and
TP ad;) = 115 @, ie,

o)t TayM — Tp P, v > dp f(D),

where v is any vector in ker(6,) such that d,7(v) =v.
To prove that ® oi* 0O = 0, we compute, for every v e T,P,

®o (i*ecan)p(i)) =do (Qcan)i(p) (dpi(v)) = do (d(pr oi)(v)— g;:[p](d(n' o 1)(”)))
= o (dp f(0) = Ep1(dpm(©))) = @0 (dp f(1) = dp [ ()
= ®(dp f(v = 1)) = (v — V) = G, (v).

Last, for the uniqueness of i, assume there is another bundle map j : P —
JYO, pre (f(p), &p) with the same properties; then, for every v € TP,

(Qcan)i(p) (di(v)) = (Qcan)j(p) (d](v))

The previous computations tells us that

dp f(v —T) = dp f(0) — E [p)(dp(v)),

which implies that & = E i.e., that j must coincide with i. O
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Proposition 3.23 will be improved in the next section (see Corollary 4.35). ¢

Example 3.24 (Linear PDEs). Let £ — M be a vector bundle; any linear PDE
F c JKE, together with the restriction of the Cartan form 0.,, is a linear
Pfaffian fibration on M . Indeed, a simple computation shows the linearity of
Ocan -

Note that the coefficient bundle of 6. is J¥ 'E because we have the
canonical identification pr*T7(J¥~'E) = n*J*¥"1E, with pr the projection
JKE — JK7'E. This explains also why the Cartan form and the classical
Spencer operator play the same role in the theory of linear PDEs. More precisely,
the classical Spencer operator D¢ : I'(J¥E) - QY (M, J*'E) is just the
connection relative to the projection J¥E — J*¥“'E and defined by equation
(22) via Ocan:

D(5) = 5" O

In other words, the Cartan form on a linear jet space is fully encoded by the
classical Spencer operator (see also Sections 2.1 and 2.2).

Note also that, applying Remark 3.18, the linearisation of the Cartan form
on a linear jet bundle JXE is precisely the classical Spencer operator of
JKE > M. O

Example 3.25 (Lie Pseudogroups). An important source of examples of Pfaffian
fibrations comes from Lie pseudogroups. Recall from [Yud] that a pseudogroup
on a manifold X is a set I' C Difl}o.(X) of diffeomorphisms between opens of
X, which is closed under composition, inversion, restriction and glueing. A Lie
pseudogroup is a pseudogroup [I' satisfying further regularity conditions, namely
the subspace

JAD = kg | ¢ e N x e dom(@)} € J¥ (X, X) = ¥ (pry : X x X — X)

must be a smooth submanifold for every k.
In particular, J¥T is endowed with the restriction of the Cartan form 6., of
JK(X, X), denoted by 6, as well as with two fibrations:

s J T — X, jfgi) = X,
1:J T > X, jEp e (x).
We claim that (J kT 0) is a Pfaffian fibration w.r.t. both fibrations.
Indeed, s: JKI' — X is a PDE on the fibration X x X — X, hence is a

Pfaffian fibration by Proposition 3.22. On the other hand, it is easy to check that
the two maps s and ¢ are related to the Cartan form 6 by the following equation:

(24) ker(6) Nker(ds) = ker(0) N ker(dt)
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The fact that 6 is ¢-transversal follows then by a dimensional argument: for every
k
ge J T,

dim(7T J*T) = dim(ker(dgs)) + dim(8,) — dim(ker(dgs) N ker(6y))
= dim(ker(dg1)) + dim(6,) — dim(ker(dgt) Nker(6y)).

Moreover, since 6 is s-involutive and (24) holds, 6 is also -involutive, hence
t:(JKT,0) — X is a Pfaffian fibration as well.

Here is an important property of Pfaffian fibrations of the kind J*T': they
are all PDE-integrable (Definition 3.6). Indeed, for every g = j)’c‘qb e JKT, there
exists the local section jX¢ € I'ue(s), which is holonomic by construction and
sends x to g; similarly, the local section j¥¢ o ¢~ € Iye(t) is holonomic and
sends ¢(x) to (j¥¢) (¢~ (@ (x) = (j*P)(x) = g.

Last, we remark that equation (24) establishes a compatibility between the
two structures of Pfaffian fibrations on J¥I'. This becomes more meaningful if
we realise that J*I" possesses a Lie groupoid structure compatible with 6 in an
appropriate sense, i.e., J*¥I" is an example of Pfaffian groupoid (see Remark 3.19).
The fact that ker(0) N ker(ds) = ker(0) Nker(dt) says that the Pfaffian groupoid
(JXT,0) is of a special kind, called of Lie type; we will however not discuss
here the consequence of this property, for which we refer to [Sal, CS]. O

Example 3.26 (G -structures). Many geometric structures defines a Pfaffian
fibration: this happens with Riemannian metrics, almost symplectic structures,
almost complex structures, etc. More precisely, let P C Fr(M) be any G-
structure on M", i.e., P is a reduction of the structure group of Fr(M) to
a Lie subgroup G C GL(n,R); then P defines a Pfaffian fibration over M as
follows. Consider

Pi={(x,y.0) | xyeM,
£:TyM — Ty, M linear isomorphism preserving frames in P},

and the projections m; and m, on the first and second component. Then
w1 : (P,w) - M is a Pfaffian fibration, where the form w € QI(F,JTZ*TM)
is defined by

O(x,p.6)(V) 1= d 12 (v) — E(d 1 (v)).

This follows easily by realising P as a subbundle of JY M, M) = JYpr, :
M xM — M) via equation (1), and noticing that  is the restriction of the Cartan
form of J'(M,M). Of course, swapping m; and 7, and replacing £ with &7
would yield another form o’ € QI(F, iy TM) which makes 75 : (F,w’) - M a
Pfaffian fibration.
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Here is an interesting application: the PDE-integrability of P as a Pfaffian
fibration is a necessary condition for the integrability of P as a G -structure (e.g.,
the flatness of a Riemannian metric, the closedness of an almost symplectic form,
etc.). Recall that a G-structure P is integrable if it admits an atlas of charts
“adapted” to P, meaning that their induced diffeomorphisms between opens
of M preserve the frames of P. In particular, using such an atlas, for every
(x,y,8) € P one finds adapted charts y, : U — R" around x and x, :V — R”
around y such that f := (xy) ' o y, is a local diffeomorphism of M, sending
x to y and such that dy f = £.

On the other hand, a section of P is a function o : U — P of the type
o(x) = (x, f(x),&), for f : U — V some smooth map (not necessarily a
diffeomorphism). By the definition of w, the section ¢ is holonomic precisely if
and only if & = d, f . It follows that, if P is integrable, for every (x,y.§) € P
there is a holonomic section through it, i.e., P is PDE-integrable.

As for Example 3.25, one can also notice that P has a structure of
Lie groupoid; this is more transparent by establishing the isomorphism P ~
(P x P)/G, where P x P is quotiented by the diagonal action of G (this is
also known as the gauge groupoid of the principal bundle P). Then P is also a
Pfaffian groupoid (see Remark 3.19), which is of Lie type since it clearly satisfies
ker(w) Nker(dmy) = ker(w) N ker(d 3). O

4. Prolongations

The purpose of this section is to understand geometrically and intrinsically the
notion of prolongation of a Pfaffian fibration and its fundamental properties. We
start by exploring the type of morphisms between Pfaffian fibrations which induce
maps on the set of holonomic sections, and then move forward to study morphisms
with more specific requirements. These extra conditions extract, in a sense, all
the fundamental properties of the prolongations of a PDE (see Section 2.3), in
the same way that the conditions of a Pfaffian fibration extract the fundamental
properties of the solutions of a PDE.

4.1. Morphisms of Pfaffian fibrations. Given two Pfaffian fibrations over the
same manifold, the most natural notion of morphism between them consists of a
bundle map preserving the two Pfaffian forms.

Definition 4.1. A weak Pfaffian morphism between two Pfaffian fibrations (P’, 0),
(P,0) over M is a smooth fibre bundle map ¢ : P/ — P with the property that

(25) $ 0 = dod
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for some vector bundle map ® : NV — ¢*N between the coefficient bundles.

Note that, since 8’ and 6 are surjective, the map @ in the previous definition
iS unique.

Remark 4.2. It follows immediately from the definition that a weak Pfaffian
morphism ¢ induces a map on the sections which preserves the holonomic ones:

(26) ¢ Floc(Pla 9/) — Tiec (P, 8).

Moreover, since n’ = m o ¢, the differential d¢p maps the symbol space g(6")

to g(0). O

Example 4.3. An example of weak Pfaffian morphism is given by a PDE

P 5 J¥R: in this case, the form 0 = i*0qn on P is just the pullback of
the Cartan form @, on JXR by the injection i.
Similarly, if a PDE P C J¥R is integrable up to order k+ 1 (see Section 2.3),
the projection
pr: (PD,0M) 5 (P,0)

is a weak Pfaffian morphism, where 6™ is the restriction of the Cartan form of
JETIR and @ the restriction of the Cartan form of JKR.

Note that, in both cases, ® is the identity and the results from Remark 4.2
hold trivially. O

Example 4.4. Given any Pfaffian fibration (P, #) whose symbol space satisfies
the hypothesis of Proposition 3.23, the induced bundle map

i:(P,0)— (JIQ,Qcan)

is a weak Pfaffian morphism, with & the inverse of the isomorphism between
the coefficients. O

However, there are a number of reasons to add some constraints to the above
definition of weak Pfaffian morphism. First, such notion does not behave well with
respect to important objects associated to Pfaffian fibrations, such as curvature
or integral elements. Second, given a bundle map ¢ : P’ — (P,0), we cannot
always produce a weak Pfaffian morphism by endowing P’ with the form ¢*6
(as we did in Example 4.3 for PDEs), since ¢*6 might not be x-involutive,
w-regular, or even pointwise surjective. In conclusion, even if Definition 4.1 is
very natural, it reveals to be too weak for our further study of prolongations of
Pfaffian fibrations; we are therefore going to introduce the following notion.



From PDEs to Pfaffian fibrations 215

Definition 4.5. A Pfaffian morphism between two Pfaffian fibrations (P’,0),
(P,0) over M is a surjective submersion ¢ : P’ — P which is also a weak
Pfaffian morphism.

A Pfaffian morphism satisfies many properties, which we list below for future
reference:

Proposition 4.6. Given a Pfaffian morphism ¢ : (P’,0") — (P,6),

(1) ¢ sends holonomic sections of (P’,0") to holonomic sections of (P,0).
(2) d¢ sends the symbol space g(0') to the symbol space g(0).

(3) If (P',0") is PDE-integrable, (P,0) is PDE-integrable.

(4) The curvature maps kg and kg are related by the equation

(27) ¢*rg = Doy

(5) d¢ sends (partial) integral elements of (P’,0") to (partial) integral elements
(P,0).

Proof. The first two properties holds for any weak Pfaffian morphism, as we
noticed in Remark 4.2.

The third property requires the surjectivity of ¢. Indeed, under such assump-
tion, consider any p € P; then we can pick a point p’ € ¢~ '(p) C P’, around
which there exists a holonomic section o’ of P’, and check that 0 := ¢ oo’ is
a holonomic section of P around p.

For the fourth property, we use Equation (25) and ¢ -projectable vector fields
to conclude that ¢*xy = kgosr. Then we choose two linear connections V'
and V, respectively on the coefficient bundles N’ and N, and we show that
dp=v(®o 8') = ®ody(6'). Last, we argue that the restrictions of kgosr and
d okgr to ker(0) coincide (see the discussion after Equation (17)).

For the fifth property, it is enough to use the relations (25) and (27), which
imply that d¢ preserves (partial) integral elements (Definition 3.8). Q.E.D.

Example 4.7 (Pullback Pfaffian fibration). Let = : (P,0) — M be a Pfaffian
fibration, 7' : P/ — M a fibration and ¢ : P’ — P a surjective submersive
bundle map. Then P’ can be endowed with the pullback 6’ := ¢*60, so that
(P',0") becomes a Pfaffian fibration (the pullback Pfaffian fibration) and ¢
becomes a Pfaffian morphism (where @ is just the identity).
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In order to prove this claim, as anticipated above, the hypothesis that ¢
is a submersion is crucial. One checks immediately that the pullback ¢*0 is
pointwise surjective. Moreover, ¢*6 is m’-regular: indeed, for every p € P’,
the maps dpp : T P" — Typy P and dypymw : Ty(p) P — Tw(pyM are surjective
when restricted to ker(¢*0), and ker(6)s(p), and the diagram

* d¢
ker(¢*0), —— ker(0)y(p)

|

Tn’(p) M

commutes, hence d,n’ is surjective as well when restricted to ker(¢*@),. Last,
to prove the z’-involutivity of ¢*60, consider any two vector fields X,Y tangent
to g(¢*0); then we have

kpro(X.Y) = kg (dp(X). dp(Y)) = 0

thanks to properties 2 and 4 of Proposition 4.6 and because g(f) is Frobenius-
involutive. This says on one hand that the bracket [X, Y] belongs to ker(¢*0);
on the other hand, since T P’ is Frobenius-involutive, that the bracket [X, Y] is
also tangent to 7™ P’, hence to g(¢*0), proving that ¢*0 is ='-involutive. {

Example 4.8. A PDE P N J¥R, which is a weak Pfaffian morphism by
Example 4.3, is not a Pfaffian morphism, since i is not a surjective submersion;
similarly for the morphism from Example 4.4.

On the other hand, given a PDE P C JKR integrable up to order k + 1,
its prolongation pr: (PW W) — (P.4) is a Pfaffian morphism. In fact, this
projection has a richer geometrical structure, which is manifested in the properties
of a normalised prolongation (see Definition 4.10 and Example 4.12 below). ¢

Remark 4.9. (weak Pfaffian morphisms between Pfaffian distributions) Paraphras-
ing this section in the language of Pfaffian distributions H < TP', H C TP,
one obtains the corresponding conditions of weak Pfaffian morphisms only in
terms of the distributions, when applied to the associated Pfaffian forms 6 = 0y
and 6’ = Oy. First of all, (25) corresponds to

(28) d¢(H') C H.

The map & : TP'/H' — ¢*TP/H is forced to be [u] — [d¢(u)] and it is well
defined by (28); in this case we denote ® by [d¢]. Hence, in this setting, a
weak Pfaffian morphism is a bundle map ¢ : P/ — P satisfying (28); as in (26),
¢ preserves holonomic sections.



From PDEs to Pfaffian fibrations 217

A weak Pfaffian morphism ¢ is called a Pfaffian morphism when it is also
a surjective submersion. Again, such condition will imply an equation on the
curvatures analogous to (27):

¢ kg = [dop] o kg

Moreover, as in Proposition 4.6, ¢ sends (partial) integral elements to (partial)
integral elements, and the PDE-integrability of (P’, H’) implies the PDE-
integrability of (P, H). O

4.2. Abstract prolongations. Going back to the definition of prolongation of a
PDE P c J¥R (see Equation (7)), one finds that, for P integrable up to order
k + 1, the projection P — P maps ker(8") at a given point p € PV to
a single integral element of (P,0) (Definition 3.8), where both 6" and 6 are
restrictions of the Cartan forms of J¥*'R and JXR. This will be explained in
Example 4.12; the following definition extracts the right properties so that the
phenomenon described above happens in general for a Pfaffian morphism:

Definition 4.10. An (abstract) prolongation of a Pfaffian fibration (P,0) over M
consists of a Pfaffian fibration (P’, ") over M together with a Pfaffian morphism
¢ (P',0") — (P,0), such that

(29) 9(0") C ker(dg),
and, for any u,v € ker(0’),

(30) ko (dp (). dp(v)) = 0.
We say that ¢ : P’ — P is a normalised prolongation if g(0') = ker(d¢).

As already mentioned, we obtain a practical criterion to test when a Pfaffian
morphism is a prolongation in terms of integral elements (Definition 3.8).

Proposition 4.11. A Pfaffian morphism ¢ : (P’,8") — (P,0) is an abstract
prolongation if and only if, for every point p' € P’, the subspace d(f)(ker(ﬂ;,,)) C
Typy P is an integral element.

Proof. Assume that ¢ is an abstract prolongation and choose any partial
integral element V C ker(6,r) of P’. By property 4 of Proposition 4.6
dep(V) C dqb(kcr@l’),) is a partial integral element. Since d¢(V') is transversal
to the m-fibres, then dqb(ker@l’),) is also transversal. Condition (29) says that
dp(kert),) = dp(V & g(8'),') = d¢(V), implying that de(kerd),) is a partial
integral element. With Equation (30) we conclude that it is actually an integral
element.
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Conversely, if d¢(ker 91’),) is an integral element then Equation (30) follows.
To show (29) we use that d¢(ker 6’1’),) is, in particular, a partial integral element.
As before, choose any partial integral element V C ker(6,/); then we obtain
by Proposition 4.6 that d¢(V) C d¢(ker6),) is a partial integral element. By
dimensional reasons d¢ (V) = d¢(ker 9]’,,), hence

dp(V) = dp(ker0,) = dp(V @ g(0)), and dg(a(6,)) C g(0),

for p = ¢(p’). The last equation holds again by Proposition 4.6. This implies that
de(g(0,)) C g(0), Ndp(V) C T* P Ndg(V) = @, hence it shows (29). Q.E.D.

Example 4.12. As anticipated in Example 4.8, given a PDE P C J¥R integrable
up to order k + 1, the projection dpr: (P, 01) — (P,0) is a normalised
prolongation. In fact this is the content of Proposition 4.30, together with the
discussion at the beginning of this section. Moreover, it is immediate to see that

ker(dpr) = g(0WV).

Indeed, by definition of 61 as the restriction of the Cartan form (3), we see
that 0| p1y = dpr; therefore g(0) = ker(8W |7z pa1y) = ker(dpr). o

Remark 4.13 (Cartan—Ehresmann connections). Consider an abstract prolongation
¢ = (P,0) — (P,0); as a consequence of Proposition 4.11, any section
o : P — P’, induces the following distribution H, C ker(f) on P, which
is made of integral elements of 6 and is x-horizontal:

Hop := do(py¢(ker(0, )  for each p e P.

Such a distribution H, is also called a Cartan—Ehresmann connection of (P,0);
in this paper it will be only used once as a technical tool (in the proof of
Proposition 5.8), so we refer to [Yud] for more details. O

Remark 4.14 (Alternative definition of prolongation). Because ¢ is a Pfaffian
morphism, the relation (27) between the curvatures of # and 6’ holds, hence we
can replace condition (30) for the following equivalent one:

®(kgr(u,v)) =0 Vu,v € ker(dM). O

Again, as in Remark 4.9, Definition 4.10 can be reformulated using distributions
instead of forms: we say that ¢ : (P’, H') — (P, H) is a Pfaffian prolongation if
it is a Pfaffian morphism (i.e., d¢(H') C H) and

(31)  g(H') Cker(dp), and kg (dp(u).dp(v)) =0 for all u,v € H'
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The second equation can be equivalently written as [d¢](kg/(u,v)) = 0. The
prolongation ¢ is normalised when

(32) g(H") = ker(dg).

where [d¢] : TP'/H' — ¢*(TP/H) is the induced map on the quotient. In this
picture, the name normalised has a natural explanation:

Lemma 4.15. A Pfaffian prolongation ¢ : (P',H') — (P, H) is normalised if
and only if its differential d¢ descends to an isomorphism between TP’ /H' and
the pullback via ¢ of T™ P:

(33) T,P'/H, = T7 P, [u] > dp(u—v),

where v € H) is any vector with the property that dn'(u) = d='(v).

Proof. The r'-transversality of H’ implies that its normal bundle is isomorphic
to T P'/g(H'):

(34) TP /H =~T" P'/g(H), [u]+— [u—"1]

where v € H is as in the Lemma 4.15. On the other hand, d¢(g(H’)) = 0
implies that map d¢ induces

(35) T P'Jg(H') — T™P, [w] — dé(w).

The fact that ¢ is a prolongation implies that the map (35) is well defined and
surjective. Then, the map (33) comes from composing the maps (35) and (34),
and it is an isomorphism if and only if (35) is injective, which is equivalent to
condition (32). Q.E.D.

The lemma above suggests that, if ¢ is not normalised, we could “fatten” H'
by ker(d¢) C 77" P’ to a new distribution

(36) H' = H' + ker(d¢).

Proposition 4.16. Let ¢ : (P',H') — (P,H) be a prolongation of Pfaffian

fibrations; then (P',H'), for H' as in equation (36), is a Pfaffian fibration
which makes ¢ : P' — P into a normalised prolongation.

We call (P’, H') from the previous proposition the canonical normalised
prolongation.
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Proof. We prove first that g(H’) = H' Nker(dn') = H' Nker(d¢). Indeed, on the

one hand, ¢ is a bundle morphism, hence ker(d¢) C ker(d n'); on the other hand,

the first condition for the prolongation ¢ is the inclusion g(H’) C H' Nker(d¢).
Then, the fact that H’ has constant rank follows from dimension counting:

rk(H") = rk(H') + rk(ker(d¢)) — rk(H' N ker(d¢))
= tk(H') + rk(ker(d¢)) — rk(g(H")).

The n’-transversality of H’ follows from the transversality of H' C H’, and its
n’ -involutivity is just the Frobenius-involutivity of ker(d¢).

Last, the prolongation is normalised by Lemma 4.15, since (35) becomes
injective when we replace g(H') by g(H’) = ker(d¢). Q.E.D.

Remark 4.17 (Normalised prolongations in terms of Pfaffian forms). If we look
at normalised prolongations in terms of I-forms, we have various identifications
that put us in the following case. Lemma 4.15 identifies the quotient 7P’/ ker(6’)
with the pullback of 77 P via ¢ on the one hand, and €’ identifies this quotient
with its coefficient bundle A/; hence, we can think that the coeflicient bundle is
T™P:
N = ¢*(T™ P).

Moreover, under this identification, the maps d¢ : T P — T™P and ' :
T™ P — N’ coincide; it follows that a prolongation ¢ : (P'.6") — (P.0) is
normalised if 6’ takes values on T™ P, i.e.,

0' € Q' (P ¢*(TT P)),

. ~ . . . . 14 . .
and the differential d¢ coincides with 6’, seen as a map on 77 P’. The remaining
conditions for a prolongations of course remain the same, namely

p*0=000", and (kg (u,v)) = kg(dpu),dp(v)) =0
for all u,v € ker(0’). O

4.3. The partial prolongation. To simplify the exposition, we will adopt from
now on the point of view of distributions; at the end of the next section
(Remark 4.31), we will make the appropriate comments about how this picture is
adapted using I-forms.

In analogy with the classical notion of prolongation of a PDE (Section 2.3),
the classical prolongation of a Pfaffian fibration = : (P, H) — M may be thought
of as the space of its first order differential consequences; more precisely, the
prolongation consists of all the integral elements of (P, H) (Definition 3.8). Those
can be reinterpreted, using Equation (1), as the images of all linear splittings
¢ TyyM — T, P of d,m such that
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Im($) C Hy, C*(ky) = 0.

The partial prolongation of (P, H) takes care of the first condition.

Definition 4.18. The partial prolongation of a Pfaffian fibration = : (P, H) — M,
denoted by Jj P, is the set of all its partial integral elements. In other words,
modulo the identification (1), it is the subset of J!P defined by

JEP ={(p.0) € J'P | {(TumyM) C H,}.

The classical prolongation of (P, H) will sit inside J},P, hence many of its
properties are inherited from J }IP. In particular, we will prove later that both
the partial and the classical prolongation can be seen as universal, the first in the
world of Pfaffian morphisms (Proposition 4.28), and the second in the world of
Pfaffian prolongations (Proposition 4.23).

Proposition 4.19. The partial prolongation Jj; P from Definition 4.18 is a smooth
manifold and pr : Ji; P — P is an affine bundle modelled on Hom(zx*TM, g(H)).

Proof. As explained above and in equation (1), we represent the points of J! P as
pairs (p,§) with pe P and § : TxM — T, P splitting of d,m, where x = m(p).
Recall from Section 2.1 that pr: J!P — P is an affine bundle over P with
underlying vector bundle Hom(z*7'M,T”™ P). Indeed, any two points (p,&) and
(p.&") in the same fibre of J!P above p € P differ by

—

=t -E:TxM > TJ P,
which can be arbitrary. We remark also that Jj, P is the kernel of the map
e:J'P — Hom(zw*TM , Ng), e(jlB):vi>df(v) mod Hg(y,
and that ¢ is an affine map with underlying vector bundle map
@ :Hom(n*TM,T™P) — Hom(n*TM, Ny). Er & mod H.

Since H is m-transversal and therefore pr:T"P — T™P/g(H) = Ny, v > v
mod F is surjective, it follows that pr: J4 P — P is an affine bundle with
underlying vector bundle

ker(€¢) = Hom(z*TM, g(H)). Q.E.D.

We study now the “Pfaffian structure” of J 1; P, as well as its main properties.
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Theorem 4.20. The partial prolongation J3 P of a Pfaffian fibration (P, H) is
the largest subbundle of J'P such that, when endowed with the restriction of
the Cartan distribution

(37 HD :=¢n TJIf, P, (where C is the kernel of Ocan of Equation (3))

the restriction of the projection pr : JI;P — P becomes a Pfaffian morphism
(Definition 4.5).

Proof. Let us prove first that (Jf‘I P, HMV) is a Pfaffian fibration. To see that
H® is m-transversal, we compute its vertical part H(D N T™ Jg P, which is the
same as the kernel of the Cartan form 0., when restricted to 7%J ;IP. From the
explicit definition (3) of 0.an, we see that the Cartan form restricted to T7J ,; P
is precisely dpr:T™J} P — T™P. However, the kernel of dpr is the first term
of the exact sequence over J 1}, Py

(Y — * * Tl dpr * T
(38) 0 — g(H'") =Hom(n*TM,pr*(g(H))) = T"Jy P = pr*(T* P) — 0,

where this sequence comes from restricting

d
(39) 0 — Hom(*TM, pr*(T™ P)) — T™J' P =5 pr*(T™ P) — .

to TJ4P. This also shows that, since dpr : T"J,P — T™P is point-
wise surjective, Ogn on TJLP D T™JLP is surjective as well; hence
HO = ker(@caanJ;IP) is a distribution and

(40) tk(HW) = tk(TJ} P) — 1k(T™ P).

The = -transversality of H() follows from dimension counting using (38) and
(40):

tk(HD + 77 7L Py = tk(HD) + rk(T™ I} P) — rk(Hom(Jr*TM, g(H)))
= rk(TJ} P).
The Frobenius-involutivity of the vertical part of H( is immediate as it is the
intersection of the tangent space of a submanifold with the Frobenius-involutive
distribution CNT™J! P,
We have proved that (J, P, H) is a Pfaffian fibration; now we see that it is

also the biggest submanifold of J!P so that pr becomes a Pfaffian morphism.
Indeed, a vector v € 714/ 'P belongs to the Cartan distribution if and only if

0 = Oean(v) = dpr(v) — dxﬁ(d”(v))
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As the image of d B is in Hg(y by definition of J}IIP, then dpr(v) =
dxB(dm(v)) € Hpx); hence dpr(HMW) c H, ie., pr is a Pfaffian morphism.

Conversely, if P’ C J'P is a Pfaffian morphism over P, with H' :=CNTP’,
then any v € HJ{} satisfies

dxp(dn(v)) = dpr(v) € Hp(y).-
This implies that j!p € J4 P, hence P/ C J4P. Q.E.D.

Remark 4.21. From the proof above we see that the symbol space g(H®) of
the partial prolongation is precisely the kernel of the differential of the projection
pr:J é P— P,

g(HY) = ker(dpr) = Hom(x*TM,pr* (g(H))).

This condition is shared with normalised prolongations (see Definition 4.10) and
it means that we have an isomorphism for each p € J 111P’

T,JgP/HD =TT P, [u] — dpr(u—v),

where v € H,El) is any vector with dn(v) = dn(v); compare this with
Lemma 4.15. O

Remark 4.22. Being a Pfaffian morphism, the projection pr: J I;P — P induces
a map between holonomic sections (Proposition 4.5)

TJLP,HYY - (P, H), & pr).

In fact, this map defines a 1-1 correspondence with inverse given by I'(P, H) 3
B +— j!'B. Indeed, by Lemma 2.1, j'B is a section of J!P tangent to the
Cartan distribution C. Moreover, since g is holonomic, dxp(TxM) C Hg(y) for
all x € dom(B), ie., j!B actually takes values in J,}IP, and therefore it is
tangent to HV =TJ P NcC. O

As anticipated above, another possible characterisation of the partial prolon-
gation Jy P is that it is “universal” among the world of Pfaffian morphisms with
target (P, H).

Proposition 4.23. Any Pfaffian morphism ¢ : (P',H') — (P, H) with the
property that g(H') C ker(d¢) factors through a unique bundle morphism
¢ P — J}IP over P so that

de(H") c HY and [dpr] o o*kgay = [d¢] o kg,

where [dpr] : Ngay — pr*Ng, [u] v [dpr(u)] and [d@]: Ny — ¢*Nu, [u] —
[do(u)] are the induced maps on the normal bundles.
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Proof. The condition de(H') C H'V forces the definition of ¢ to be as follows:

1

for v e H,, do(v) is an element of Hé( y- This means that for j;,(p)ﬁ = p(p),

)
p
0 = dpr(de(v)) — dnf(p)ﬁ(dn(dgo(v))) = dp(v) — dy(pB(dn'(v)),

where in the second equality we are using that ¢ is a bundle map over P (and
hence, over M), thus prog¢ = ¢ and 7 o ¢ = n’. This defines uniquely ¢(p)
as the linear splitting ¢(p) : Ty (M — Hypy of dm given by X — d¢(v),
where v is any vector tangent to H, with the property that d='(v) = X. Of
course, we still need to check that ¢ is indeed well-defined, but this is a direct
consequence of g(H') C ker(d¢), as one can see easily.

The equality involving the curvatures is a direct consequence of the relations
between the curvatures of the Pfaffian morphisms ¢ and pr, with the curvature
of H (Remark 4.9):

¢ kg = [doplokyr and  prikg = [dpr] ok gya).
We apply then ¢* to the second equation and use prog = ¢ to substitute in the

first equation. Q.E.D.

4.4. The classical prolongation. Recall that the classical prolongation of a
Pfaffian fibration (P, H) may be thought as the space of first order consequences
of the Pfaffian fibration, in analogy with the notion of prolongation of a PDE. More
precisely, it is defined as the set of integral elements of (P, ) (Definition 3.8),
and hence it sits inside the partial prolongation J}, P C J'P (Definition 4.18) as
the subset where the second part of condition (31) holds, i.e.,

pricg = 0.

Indeed, if j!B is an element of JjP such that for any u,v € HJ,(,]),
kg (dpr(u), pr(v)) = 0, then

ki (dxﬁ(dn(u)),dxﬁ(dn(v))) —0

because dpr(u) —d, pB(dx(u)) =0 (ie., u € Hj(f‘)g ), and analogously for v. This

is exactly saying that j!p is an integral element.

Definition 4.24. The classical prolongation of a Pfafhian fibration (P, H), denoted
by Prol(P, H), is the set of all its integral elements. In other words, it is the
subset of the partial prolongation Jj, P (Definition 4.18) given by

Prol(P, H) := {(p.) € J4 P | {*(kn) =0},
where (*(kg)(u,v) == kg (E(u), i) Yu,v e TypnM.
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Studying the smooth structure of Prol(P, H) is a bit more subtle than in the
case of the partial prolongation. The classical prolongation is the zero-set of the
map

(41) Ky JyP — Hom(x* A2 TM, Ny), (p.0) = C*ky.,

hence the smoothness of Prol( P, H) can be studied by understanding « g . Indeed,
K g is an affine map, and a simple computation reveals that the underlying vector
bundle morphism is precisely the map

S8 Hom(*T M. g(H)) — Hom(x*(A*TM ), Ny)
811 (p) (X, ¥) = Dz (np (X))(Y) — Bz (mp (Y)) (X).
Here g, called the symbol map of (P, H), is given by
(42) Iy 1 g(H) - Hom(x*TM, Ny), g @)(¥) = kg (v, Y)

with Y any vector tangent to H, that projects to Y, i.e., dw(Y) =Y. One can
check that dy is well-defined because g(H) is Frobenius-involutive. We deduce
that:

Lemma 4.25. Prol(P. H) is a smooth affine subbundle of J'P if and only if:

(1) 6y has constant rank, and

(2) pr:Prol(P, H) — P is surjective.

Related to (1) in the previous lemma, we see that the kernel of &y is the first
prolongation
g(H)W = g (a)

of the generalised tableau bundle dg : g(H) — Hom(x*TM, Ny), in the sense of
Equation (14). Accordingly, g(H)"") ¢ Hom(z*TM, g(H)) is a bundle of vector
spaces whose rank may vary; of course, §m has constant rank if and only if
g(H)M is of constant rank.

Now, related to (2), we see that for any two (p, ), (p,{’) € Jér P, the difference
n:=<¢—1{ lies in Hom(Ty,») M, g(H),) and

e — e = 8 ().
Therefore, «k p descends to the following map, called the torsion of (P, H):
(43) t: P — Hom(z*(A*TM), Ng)/Im@x), pr[€u(p.0)].

It is now a simple exercise to check that the zero-set of 7 is precisely the image
of pr:Prol(P, H) — P. In particular:
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Theorem 4.26. For any Pfaffian fibration n : (P, H) — M, the following are
equivalent:

(1) The prolongation Prol(P, H) is a smooth affine subbundle of J'R.

(2) The prolongation g(H)V of g(H) is of constant rank, and © = 0 (or,
equivalently, pr: Prol(P, H) — P is surjective).

Moreover, in this case:

e the vector bundle underlying the affine bundle Prol(P,H) is precisely
g(H)D.

e if we denote the restriction of the Cartan distribution C = ker(6can) (see
Equation (3)) of J'P to Prol(P, H) by

(44) HW := ¢ n TProl(P, H),

then (Prol(P, H), HM) becomes a Pfaffian fibration over M with symbol
space prrg(H)M ¢ Hom(x*TM, prg(H)).

o Prol(P,H) is the biggest submanifold of J'P such that, when endowed
with the restriction of the Cartan distribution C, the projection pr becomes
a normalised prolongation.

Proof. From Lemma 4.25 and the discussion thereafter we know that the first
two items are equivalent. Checking that H () as in (44) is a Pfaffian distribution
is completely analogous to the proof given for the partial prolongation (see
Theorem 4.20).

Let us prove that ker(dpr) restricted to the vertical tangent of the classical
prolongation T7Prol(P, H) coincides with g(H)". We know that g(H)"
Hom(x*TM, g(H)) is the vector bundle that models the affine bundle pr :
Prol(P, H) — P, and hence it can be computed as the kernel of

dpr: T"Prol(P,H) > T™ P
(see sequences (38) and (39)). On the other hand,
g(H®™) = ker(dpr : T"Prol(P,H) — T™ P)

by the very definition of H(V as the kernel of the Cartan form 6., when
restricted to Prol(P, H). In conclusion, g(HM) = prrg(H)W.

To prove that pr: (Prol(P, H), HW) — (P, H) is a normalised prolongation,
note that Prol(P, H) is a subbundle of J }1 P and recall from Theorem 4.20 that
the projection from (J P, H®) to (P,H) is a Pfaffian morphism. The only
thing left to see is that pr*xy = 0, which holds by construction of Prol(P, H)
(see the discussion previous to the Definition 4.24).
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Last, if P’ C J!P is another normalised prolongation over (P, H), together
with H := C N TP, then P C JlflP by Theorem 4.20. Moreover, since
(P',H’) is a Pfaffian fibration, for any ;!B € P’ and u;,up € TyM, there
exist vy,vp € H',  such that dz(v;) = u;. In particular, v; € C, so that
deB(dm(v;)) = dp}(vi); we conclude therefore that

(deP) (Ui, u2) =k (dxﬁ(dff(vl))»dxﬁ(dif(vz))) = kp (dpr(vy). dpr(v2))
=0 VYuj,ure M,

where the last equality holds by condition (30). This implies that jlg €
Prol(P, H), i.e., P’ C Prol(P, H). Q.E.D.

Remark 4.27. A Remark analogous to 4.22 goes here. More precisely, whenever
pr : Prol(P,H) — P is a smooth bundle map, there is a I-1 correspondence
between holonomic sections

I(Prol(P, H), HY) - T'(P, H), £+ prr(£),
with inverse ['(P,H)> B jlB.

To check this, recall from Remark 4.22 that j!'8 € I'(JL P, HW). As B is
tangent to A and

[dB(X).dB(Y)| =dB([X.Y]) C H|gm) for X.Y € X(M)

(where the tildes indicate m-projectable extensions of the vectors), then
(dB)*kg(X.Y) =dB([X.Y]) mod H = 0. This implies that j!8 is a section of
Prol(P, H). O

Again, the classical prolongation can be thought as “universal” among
prolongations. Let us assume that pr : Prol(P, H) — P is a (smooth) bundle
map.

Proposition 4.28. Any Pfaffian prolongation ¢ : (P',H') — (P,H) factors
through a unigue bundle map ¢ : P’ — Prol(P, H) over P, so that

(45) dp(H"Y c HV, and [dpr] o p*kyy = [dep] o kgr = 0,

where [dpr] : Ngay — pr’Ny, [u] — [dpr(u)], and [dp] @ Ny — ¢*Ny,
[u] > [do(u)], are the induced maps on the normal bundles.

Remark 4.29. Actually the above proposition can be stated in a slightly greater
generality. Even if Prol(P, H) is not smooth, any prolongation factors through
the map ¢ : P’ — JJ, P given in Proposition 4.23. We can slightly modify the
above statement by saying that this map takes values in the subset Prol(P, H),
and that the relations with the distributions and the curvatures hold when we take
H" as the Pfaffian distribution (37) of J} P.
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As a consequence we obtain that when (P, H) admits a prolongation then
the projection pr: Prol(P, H) — P is surjective. Accordingly, we will give the
proof of the above proposition without the smoothness assumption. O

Proof. We let ¢ : P' — J éP defined as in the proof of Proposition 4.23,
and we show that it takes values in Prol(P, H). A closer look to ¢(p) :
T (M — Hp shows that its image @(p)(Tyr/(pyM) coincides with d¢(H,),
because d¢p(g(H')) = 0. By Proposition 4.11,d¢(H,) is an integral element,
hence ¢(p) belongs to Prol(P, H).

The left hand side condition (45) for the distributions is immediately implied by
the same condition in Proposition 4.23 for the partial prolongation, and the right
hand side condition (45) also follows from the commutativity of the curvatures in
the same proposition taking into account that on J;IP, prikg = [dpr]okga) is
zero at points of Prol(P, H), and that ¢ satisfies ¢*xyg = [dploky = 0. Q.E.D.

Again, the motivating and inspiring example comes from the classical
definition (7) of prolongation of a PDE P C JKR; the next result states that it
coincides with our definition of classical prolongation.

Proposition 4.30. Let P C J*R be a PDE, so that (P, H) is a Pfaffian fibration
by Proposition 3.22, for H =CNTP. Then,

Prol(P, H) = PM = J1p A J¥HIR, g(H)D = ¢,

where gV is as in Theorem 2.4. Moreover, if P is integrable up to order
k + 1, then pr : (PY HWY — (P, H) is a normalised prolongation with

HD =cnTPWD, and pr: PV — P is an affine subbundle modelled on
(1)
g,

Proof. We first recall that J¥+1R sits inside J'(J*R) as the splitting o : T, M —
T,J¥R of dm tangent to the Cartan distribution C C T(JXR). It follows that (it
can be checked in local coordinates) that

ke(o(X).0(Y)) =0, forall X,Y € T M.

Since P is the intersection of J1(J*R) with J! P, then the splittings o that
belong to P are the ones satisfying the previous conditions plus the fact that
its image o(TyM) lies in T, P . Putting all these conditions together, we see that
o is an element of P if and only if it belongs to the classical prolongation
Prol( P, H) -

To conclude, we observe that the definition of integrability up to order
k + 1 is saying precisely that pr : P — P is a bundle map, hence, by
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Theorem 4.26, pr is a normalised prolongation. Moreover, in this case, we have
the inclusion g(H) C ker(dpr : T"JKR — JK-1R) =~ SkT*M @ T™R (see the
exact sequence (10)), and dy is precisely the restriction of

dc: SKT*M @ T™ R — Hom(TM, S*"'T*M & T™R), n+> dc(n)(X) = x1.
Therefore, g(H)™ = g, and the rest follows from Theorem 4.26. Q.E.D.

Coming back to Pfaffian fibrations using the language of forms we have the
following remark:

Remark 4.31 (Classical prolongation for forms). Let us go back to the picture
of Pfaffian fibrations (P, 6) in terms of I-forms: all the definitions related to
the partial and classical prolongation can be written directly in terms of 6. For
example, instead of considering the distribution H (M as in (37) and (44), we look
at the dual I-form denoted by 6, given by the restriction of the Cartan form
fcan on J1 P to the partial or classical prolongation. Similarly, all the results go
through in this setting with the appropriate modifications. For Theorems 4.20 and
4.26, since the projection pr in both cases is a weak Pfaffian morphism, then the
forms 6 and @ are related by

pr*é = 0 o0 0W,

where 0 : pr*(T™ P) — pr*A, v > 0(v) is the vector bundle map between the
coefficient bundle of 9V, and #. In Propositions 4.23 and 4.28, the condition
for the distributions translate into

¢*0) = [dg] o0,

where [d¢] @ N/ — @*T™P is the composition between the identification
T P'/g(H’) with N’ via 6’ and the map T7 /g(H') — T™ P, [v] — [d¢(v)].
In the same Propositions, the relation between the curvatures becomes

6 09 kg = D oKy,

where ®: N' — ¢*N is the vector bundle map between the coefficient bundles,
associated to the Pfaffian morphism ¢ (see @ in Definition 4.1). Of course, in
Proposition 4.28 this last expression is equal to zero. o

Other results about prolongations. There are some other nice consequences
about the Pfaffian distributions and the prolongations involving the curvature and
the prolongation of the symbol space; we list some of them.

Corollary 4.32. Assume that g(H)V has constant rank; then (P, H) admits a
Pfaffian prolongation if and only if the torsion t vanishes.
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Proof. If (P, H) admits a prolongation, then Remark 4.29 says that the projection
pr: Prol(P, H) — P is surjective, hence © = 0 by part of Theorem 4.26. The
converse is Theorem 4.26. Q.E.D.

Corollary 4.33. The Pfaffian distribution H C TP is Frobenius-involutive if and
only if Prol(P, H) coincides with Jg P and the symbol map 3y from equation
(42) vanishes.

Proof. If H is Frobenius-involutive then all partial integral elements are integral
elements, hence Prol(P,H) =J }IP; moreover, dg vanishes trivially.

Conversely, it we let p € P, we can split H, as a direct sum V @ g(H),,
where V is a partial integral element. Because Prol(P, H) = JL P, V is actually
an integral element. In conclusion, we compute the bracket modulo H using the
direct sum: for v +u,v' +u' € V@ g(H),,

kg +u, v +u') =k, v) +eg,u’) + g, v) +eg(u,u’)
= —du W) (dn(v)) — 0a W) (d7(v)) =0,

where we used the Frobenius-involutivity of g(H). Q.E.D.

Corollary 4.34. Let H C TP be a Pfaffian distribution whose torsion t vanishes;
then, if two of the following three conditions hold, the third holds as well:

(1) pr:Prol(P,H)— P is a bijection;
(2) g(H) is zero;

(3) H is Frobenius-involutive.

Proof. That (1) and (2) imply (3) follows from a computation similar to
that of Corollary 4.33. Assuming (1) and (3), we have that (3) implies that
Prol(P, H) = J}; P by Corollary 4.33, and by (1) we have that for the fibre bundle
pr: Ji; P — P, the kernel ker(dpr) = Hom(z*TM,pr*g(H)) (Remark 4.21) is
zero because pr is a bijection, hence (2). Last, to show that (2) and (3) imply (1),
we see that H is a horizontal distribution if and only if g(H) is zero; in this
case pr: J 15[" — P is a bijection. If, moreover, H is Frobenius-involutive, then
Jg P = Prol(P, H) by Corollary 4.33. QED.

Corollary 4.35. In the setting of Proposition 3.23, assume that the symbol map
g(0) — Hom(z*TM,N) from equation (42) is injective; then the bundle map
i: P — JYO is an immersion.

Proof. It is enough to show that di is injective when restricted to ker(df) = g(0).
In turn, this follows after noticing that dijyp) coincides with the symbol map,
which is injective by hypothesis. Q.E.D.
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4.5. Abstract prolongations in the linear case. In this section we discuss
the theory of abstract prolongations for linear Pfaffian fibrations (introduced in
Section 3.2). In order to do that, we will use the equivalent approach using
relative connections (see Proposition 3.14).

Let (E’, D), (E,D) be linear Pfaffian fibrations over M, with (D’,0’) a
relative connection taking values in £, and (D,o) a relative connection taking
values in F':

(46) D' :T(E") - QYM,E), D:T(E)— Q'(M,F).

The following definition will play the role of normalised prolongations between
Pfaffian fibrations in the non-linear case.

Definition 4.36. The relative connections (D’,¢’) and (D,o) as in (46) are
compatible if
(1) Doo’ =00 D’;

(2) Dx oDy~ DyoDy—00Dlyy =0 foral X,¥ €X(M).

The two conditions of Definition 4.36 above have a clear cohomological
interpretation, which appeared already in [GSI, Quel]. For a relative connection
(D, o) there exists a linear operator, denoted by the same letter D,

47) D:Q*M, E)— Q*TY (M, F),

uniquely defined by the following two properties: it coincides with the connection
D on I'(E) = Q%M. E), and it satisfies the Leibniz identity relative to o,

Do®s)=do ®a(s) + (—l)ka) A D(s),

for any k-form w € Q¥(M), and any section s € I'(E). This operator D can be
given explicitly by the Koszul formula

Dn(Xo., ..., Xi) =Y (=1 Dx,(n(Xo..... Xi..... Xy))

+ Y Do (X X1 X X X X1))

i<j
for any ne QXK(M,E). A direct check shows the following lemma:
Lemma 4.37. Let (D',0"), and (D,o) be relative connections as in (46). If

dimM > 0, then the relative connections are compatible if and only if the
composition

Q*(M, E') 25 @+ (M, E) 25 @ 2(M, F)

is zero.
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For compatible relative connections (D’,0") and (D,c) as above, the first
condition of Definition 4.36 implies that ¢’ preserves holonomic sections. In
general, the resulting map

[(E',D"y - T'(E,D), s~ ad'(s)

is not necessarily surjective; its surjectivity is measured, in the sense of
Proposition 4.39 below, by some map S which we now present.

Denote by o' : g — Hom(TM, E) the map given by the restriction of D’
to its symbol space g = ker(c’); it is linear by Equation (21). Condition (1) of
Definition 4.36 implies that the image of 9’ lies inside Hom(7M, g), g = ker(o),
hence o' takes the form

d:g — Hom(TM,g), o = D'|y.

By the very definition of the operators (47) we get that at higher order
V(w®s) = (=) ko A d(s), for any o € QK(M) and any section s € I'(g');
hence, together with Lemma 4.37, this implies that the composition

i d
ANT*M @y —> AT Meg— A2T*M Q F

of vector bundles over M is zero. Interpreting g’ as the “prolongation” of g, we
consider the following quotient

ker{d: T*M ® g —> N’T*M @ F}
Im{&’ g - T*M® g}

H" (g) ==

Lemma 4.38. The following map is well defined:
S:T(E.D)— H"'(g). s = [D'(5)],

where § is a section of E' such that ¢'(5) = s.

Proof. It s’ € T'(E’) is another section with the same property as s, then
a :=5—4s" belongs to g’ and o'(a) = D'(5) — D’(5"). This means that D’(s5) and
D’(s”), which are a priori sections of Hom(7M, g) (since o(D'(5)) = D(0’(5)) =
D(s) = 0, and the same for s’), represent the same class on the quotient by
Im(d"). Moreover, for vector fields X, Y € X(M),

d(D'(5))(X,Y) = Dx Dy (5) — Dy Dy (5) — 0Dy y(5),

which is zero by condition (2) of Definition 4.36. Hence, S is indeed well
defined. Q.E.D.
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Proposition 4.39. For compatible connections as in (46), the following sequence
Is exact
: 5
['(E'.D') 2> T(E, D) —> H%\(g).

Proof. If « is a holonomic section of D', then S(o'(«)) is equal to the class
of D'(¢) =0, so Soag’" = 0. Moreover, it S(s) = [D'(5)] = 0, then there is
a section B of g so that D'(s) = d'(B) = D’(B). In particular, the section
s := §—pB of E’ is holonomic and is such that ¢'(s’) = o'(5) = s, so the

sequence is exact. Q.E.D.

When looking at linear Pfaffian fibrations in terms of the linear Pfaffian forms,
we realise that the definition of compatible connections coincides with the linear
counterpart of normalised prolongations (see Remark 4.17). Let 68’ and 6 be
linear forms, and let D’ associated to 8’ as in (22):

D' :T(E")— QYM.E), s+ s*¢,
and D associated to 6 in the same way: D(u) = u*0, u € I'(E).

Lemma 4.40. Two relative connections (D', 0") and (D,o) as in Equation (46)
are compatible (Definition 4.36) if and only if o : (E',0") — (E,0) is
a normalised prolongation. Moreover, any other normalised prolongation ¢ :
(E',0")y — (E,0) with ¢ linear is, up to automorphisms of E, of the form
p=0"=0"y.

Proof. First of all, as o’ is by definition the restriction of 6 to
g(8") = ker(8') N T7E', and as o' is linear, its differential do’ coincides with
o’ when restricted to TJE' = E’ for any v € E’ (we are using the canonical

7’ (v)
identification of these vector spaces). From this we get for free the condition that

(@) = n"*g(D) = n"™* ker(0') = kerdo’.

It follows that the coefficient bundle of 8’ (which is, up to isomorphism, the
normal bundle 7P’/ ker(6') = T™ P/g(0") by n’-regularity of ') is precisely
"™ E (see also Remark 4.17).

From the correspondence (22), the relation 0'*0 = o 06" between the Pfaffian
forms is translated into the equivalent condition (1) of Definition 4.36, i.e.,
D oo’ =0 oD’ in terms of the relative connections.

To see that the condition on the curvatures of 6" and 6 is the same as
condition (2) of Definition 4.36 for compatible connections, we write o o kg, as
the restriction to ker(6’) of the skew-symmetric bilinear map

TE'xTE' — 7'"F, (u,v) — —dp0'(u,v).
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Here dpf € Q?(E',n'*(F)) at U,V € X(E') is defined by the De-Rham-type
formula
dpO(U,V) = DE (6’ (V)) - DE (0"(U)) — o (0'[U, V]),

with D™ : X(E)x'(n'*E) — I'(«'*F) the pullback of D via =’ : E/ — M ; of
course, when U,V belong to ker(8"), —dp6(U,V) coincides with o(kg (U, V)).
As 0 oky = 0'*ky, and do’ is zero on the vertical part ker(§’)NT™ E’ because
it coincides with ¢’ on g(D’) = kero’, then a straightforward check shows that
o okg is zero if and only if s*(o0okg )y =0 for any x € M and any s € ['(E’)
such that s*(0'), = 0. However,

s (o oke)x(X,Y) =s"(dp0)c(X.Y)
= Dx o Dy (s)(x) — Dy o Dy (s)(x) — 0 0 Dy () (%),

so we conclude that o oy is zero if and only if condition (2) of Definition 4.36
holds.

Last, consider a normalised prolongation ¢ : (E’,0") — (E, ) between linear
Pfaffian fibrations and assume that ¢ is also linear; then, in view of Remark 4.17,
we can assume that 6’ takes values on ¢*T™FE, which, in turn, is isomorphic
to ¢*n*(E) = n'*E (again we use the canonical isomorphism of 77 E with
7*(E)). We also assume that, under these isomorphisms, d¢ coincides with 6’
on T™ E'. Again, as ¢ is linear, its differential d¢ when restricted to the vertical
vector bundle 77 E’ = n’*E’ coincides with ¢; hence, on E' = T™ E'|y

b =dp =0 =0 Q.ED.

4.6. Partial and classical prolongations in the linear case. Let us continue
the discussion on prolongations for linear Pfaffian fibrations; we will find again
that many objects, which were in general over E, become linear objects over M
described in terms of relative connections.

Definition 4.41. The partial prolongation of a linear Pfaffian fibration (E, D) is
JAE := {jls e J'E | D(s)(x) = 0}

Since the linear form 0 associated to D is characterised by s*6 = D(s) and
O|g = o, it is immediate to check that the partial prolongation of (£, D) as a
linear Pfaffian fibration from Definition 4.41 coincides with the partial prolongation
of (E,0) as a Pfaffian fibration from Definition 4.18, i.e., JJE = J, E. Similarly
to Theorem 4.20 (together with the fact that the J!E is a linear Pfaffian fibration),
we can characterise J}E as the largest vector subbundle of J'E over M, with
the property that the projection pr: JyE — E is a Pfaffian morphism. In this
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language, this means that Jj E is the largest subbundle so that condition (1) of
Definition 4.36,
ooDW = D opr,

holds for the restriction DM : I(JLE) — QUM, E) of the classical Spencer
operator from Equation (6).

At the level of sections, the partial prolongation can be also described as
follows

Proposition 4.42. Let (P, D) be a linear Pfaffian fibration; then

(48) FUHE) = {(a,w) €eT(E)® Q' (M,E) | D(a) =0 ow}.

Proof. Using the decomposition (4), a section (a,w) of J'E at x is precisely
the splitting

(49) dyot —wx : TxM — Ton)E,

where wy is viewed as a map from XM to T7  E, when canonically identifying

T(f(x)E with E,. Therefore, the image of («,w), belongs to ker(#) if and only
if forall X e .M
0= 0(dxa(X) — w(X)) = 0(dca(X)) — 0(w(X)) = a*0x(X) — o (w(X))
= Dx (a) — o (w(X)). Q.E.D.
Let us repeat the same discussion for the classical prolongation.
Definition 4.43. The classical prolongation of a linear Pfaffian fibration (E, D)

is
Prol(£, D) := ker(K),

where K is the vector bundle map
(50) K : J)E — Hom(A’TM, F)
defined at the level of sections, for any X,Y € X(M), as

K, 0)(X.Y) = Dy(w(Y)) — Dy (0(X)) — o (w[X, Y]).

As a consequence of the Lemma 4.44 below, one sees that the classical
prolongation of (E, D) as a linear Pfaffian fibration from Definition 4.43
coincides with the classical prolongation of (E,6) as a Pfaffian fibration from
Definition 4.24, i.e., Prol(E, D) = Prol(E. #). As the relative connection D) of
J})E is the projection to the second component of F(JII)E) CT(E)Y® QY (M, E),
the classical prolongation can be alternatively written as
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Prol(E. D) = {j!s € JJE | Dxo DY (5)(x)—Dy oD’ (5)(x) = 00Dy 1 (5)(x)}.

i.e., Prol(E, D) is the largest bundle of vector subspaces of J IgE, where the
condition (2) of Definition 4.36 holds.

Lemma 4.44. Let (E,0) be a linear Pfaffian fibration, with 0 € QY (E, n*F),
and let (D,0) be the associated relative connection. Then the map K g - JH)E —
Hom(x* A2TM, n*F) from Equation (41) is precisely —n*K , with K as in (50).

Proof. Using the Spencer decomposition (48), let (¢, w) € F(J,; E); in terms of
the form 6, this means that «*6 = 0 o w. Following (49), for X,Y € X(M) we
regard da(X)— w(X) as a m-projectable vector field on ker(f), so that w(X)
is the vector field constant along the fibres of E and extending w(X) (strictly
speaking, we choose a 7w -projectable extension inside ker(6) so that it coincides
with da(X) — w(X) along a(M) C TE); we do the same for da(Y) — w(Y).
With this,

(@, w) kg (X, Y)
— 9([da(X) — (X)), da(Y) — a)(Y)])
= O[da(X), da(Y)] - 9([da(X), a)(Y)]) -~ (9([a)(X), da(Y) — a)(Y)])
= a*0(1X, Y1) - 0 ([da(X), 0(1)]) + Dy (X))
= Dixyy(@) — 0([da(X), @(Y)]) + Dy (@(X),

where in third line we use Remark 3.15 saying that Dy (w(X)) is precisely
O([w(X),da(Y) — w(Y)]); recall also that («,®) belonging to JL‘)E = J(}E
means precisely that do(X) — w(X) € ker(f) for all X € X(M). Now, using
the fact that vector fields constant along the fibres of E commute, we get that
[w(X),w(Y)] =0, and therefore O([dx(X),w(Y)]) can be computed as

(9([da(X),a)(Y)]) = 9([a’a(X),a)(Y)]) . 0([w(X),w(Y)]) + 9([w(X),a)(Y)])
= 0([da(X) — 0(X).0(Y)]) = —Dx ().

Putting the two equations above together and using that D(x) = o(w), we
conclude the proof. Q.E.D.

As pointed out in the general discussion, Prol(£, D) might fail to be a
(smooth) fibre bundle over FE, the reasons being the lack of surjectivity of the
projection pr: Prol(E, D) — E, and that the rank over M might vary. However,
in this linear picture things simplify and the exact sequence (5) for J'E restricts
to the exact sequence of vector bundles over M,
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(51) 0 — g(D)YV > Prol(E, D) 55 E.

Here g(D)( is the first prolongation of the symbol space g(D), viewed as a
tableau in the sense of Equation (14), with

dp :g(D) - Hom(TM, F), dp)(X)+ Dx(v);

using g(D) = ker(o) and the Leibniz identity of D w.rt. o, one can easily
verify that dp is a well-defined linear map. One checks that the sequence (51) is
exact by considering a section of JﬁE that belongs to Prol(E, D), which lives
inside ker(pr), i.e., its second component in the decomposition (48) is zero.

Now, the surjectivity of pr: Prol(E, D) — E is of course related to the map
K of equation (50). Indeed, letting

§p : Hom(TM, g(D)) — Hom(A*TM, F),

defined by dp(n)(X,Y) = dp(n(X))(Y)—0dp(n(Y))(X), we see that K descends
to a vector bundle map

T : E — Hom(A’TM, F)/Im(p), p > [K(€)].

where & € Jll)E is any element that projects to p; it is a straightforward
computation using the decomposition (48) that 7 is well defined. It is now
a simple exercise to check that the zero-set of T is precisely the image of
pr: Prol(E, D) — E. Thus, we have just proved the following:

Proposition 4.45. The classical prolongation Prol(E, D) is a (smooth) subbundle
of J'E — E if and only if T =0 and the prolongation g(D)") has constant
rank. In this case, the restriction of the Spencer operator

DM T (Prol(E, D)) — Q' (M, E),

is compatible with D.

As in Remark 4.22, even not assuming any smoothness condition on
Prol(E, D), the map

I'(Prol(E, D), DW) = T(E,D), &rsprog

defines a bijection, with inverse s € I'(E, D) — jls. Moreover, D! is universal
among the connections compatible to D in the following sense:

Proposition 4.46. If (E’, D) is a relative connection compatible with (E, D),
then there exists a unique vector bundle map j : E' — Prol(E, D) so that

Bf = pHig g
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Of course the above proposition is consequence of Proposition 4.28 for non-
linear prolongations. We only remark that, in this case, j = ¢ is defined in terms
of D’, and at the level of sections is given by

j(s) = (o'(s), D'(s)) € T(E) & 2" (M, E).

The conditions for compatible connections mean that j(s) actually lands in
Prol(E, D).

Remark 4.47. As we had remarked on 3.15, in the linear case many of the
objects associated to a Pfaffian fibration sit on top of M. Of course, for any
linear distribution H, the symbol map dy of Equation (42), the prolongation
gV (H) := gV (9) of Equation (14), and the torsion map t of Equation (43), are
just pullbacks of the analogous objects for the associated relative connection D .
In fact, from Remark 3.15 we know that g(H) =~ n*g(D) and this isomorphism
comes from the canonical identification of 77 E with =™ E by translating vertical
vectors to the zero section, Therefore, using the description of D in terms of H
as in Remark 3.15 we have

g =n*dp, gW(H) =a*gV(D), T=7n*T O

Remark 4.48 (Linearisation of Pfaffian prolongations along holonomic sections).
As we did for Pfaffian fibrations (Section 3.3), we can linearise Pfaffian normalised
prolongations

¢:(P,0)— (P,0)

along a holonomic section & € I'(P’,0’) and its image ¢(&) € I'(P,0), and
obtain compatible connections

. i DE Do) N
LmE(P ,9 ) — L1n¢(§)(P, (9) = q’)(g) N.

As a particular case, if P’ = Prol(P,0), ¢ = pr and £ = j!8, for 8 a holonomic
section of (P,0) (so that pr(§) = f), the functoriality of linearisation implies
that

Prol(Ling (P, 0), D) = Lin;14(Prol(P,0)), DM = pJ'8,

This linearisation becomes particularly nice when applied to Pfaffian groupoids
along the unit section, where the multiplicativity allows us to translate prop-
erties of the linearisation to the analogous properties of the Pfaffian groupoid
(see Remark 3.19). O
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5. Integrability of Pfaffian fibrations

Informally speaking, when we prolong a Pfaffian fibration (P, H), we are
trying to determine if an element of (P, H) comes from a section which is
“holonomic up to order 17; if we prolong again then we are looking for sections
which are “holonomic up to order 27, etc. If we can repeat this process indefinitely,
we find a formal holonomic section of the Pfaffian fibration, i.e., a Taylor series
of a potential holonomic section of (P, H).

Let us be more specific. To simplify the notation, denote by

PY .= Prol(P, H)

the classical prolongation of (P, /) from Definition 4.24. Under the conditions
of Theorem 4.26, the projection P — P is a fibration and the prolongation
is in turn a smooth Pfaffian fibration over M. We could therefore build the
classical prolongation of P and denote it by (P®, H®); this sits inside a jet
bundle, as P@ c J},, P C J'PD, but may not be a smooth submanifold,
and the projection over P! may not be a fibration. However, if we apply again
Theorem 4.26, we find conditions under which also P® is a Pfaffian fibration
over M . When this process can be carried out up to “infinity” we say that (P, H)
is formally integrable. The goal of this section is to formalise this procedure and
describing precisely the obstructions to formal integrability.

5.1. Integrability up to finite order.

Definition 5.1. A Pfaffian fibration (P, H) = (P©, H©) is called integrable up
to order k > 1 when, for all i =1,..., k, the classical prolongations

P® = Prol(P4—Y, BV c Iy PEY

are smooth submanifolds, and the projections P — PG=D are surjective
submersions.

In particular, if (P, H) is integrable up to order k, it follows from Theo-
rem 4.26 that each P is a Pfaffian fibration over M, when endowed with
the distribution H® := (HE=® "and pr: (PO, HO) » (pU-D HE-1) jg
precisely the classical prolongation of the Pfaffian fibration (P¢—D HG=1) We
call (PO, HW) the i*" classical prolongation of the Pfaffian fibration (P, H),

Remark 5.2. Let (P, H) be a Pfaflian fibration integrable up to order k. Then,
for every integers i,/ <k with i +/ <k,
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e (P, H) is also integrable up to order i.

e The Pfaffian fibration (P®, H@) is integrable up to order /, and its [*"-
prolongation (PW)® coincide with the (i + /)"-prolongation PG+D of
(s s

e The holonomic sections of (P, H) are in bijections with the holonomic
sections of (P®, H®).

Properties 1 and 3 are immediate from the definition and from Remark 4.27.
For the second property, note that P%¥) < JiP is a PDE, and recall from
Proposition 4.30 that prolongations of Pfaffian fibrations and PDEs coincide. Our
claim becomes then precisely [Gol2, Theorem 7.2]. O

Example 5.3. If P c J'R is a PDE, the notion of integrability up to order k
in the sense of Pfaffian fibrations coincides with the notion of integrability up
to order k in the sense of PDEs (see Section 2.3); this follows directly from
Proposition 4.30. O

We describe now the main obstructions for integrability up to finite orders. The
first step, which takes care of the first prolongation P, was already discussed
in Theorem 4.26. In particular, one needs two conditions:

(1) the projection pr: P — P is surjective, which, in turn, was shown to be
equivalent to the vanishing of the torsion map (43).

(2) the prolongation gV = g(H)(® of the symbol space g = g(H) is of
constant rank, where g is given by (14), applied to 9y : g = g(H) —
Hom(z*TM,Ny).

Under these conditions, P becomes an affine bundle over P modelled on gV,
as well as a smooth Pfaffian fibration (over M ). Moving one step upwards, we
unravel now these conditions 1 and 2 when applied to the prolongation of P,
pr: P@ — P and then we continue this analysis inductively. First of all, the
(higher) prolongations that are relevant in condition 2 will be precisely the ones
from Section 2.4:

gD =2*SIT*M ®@gn Hom(=*TM, g(ifl)) = ker(8;), fori>1,

with §; as in (12). This can also be rewritten using the following inductive lemma
(see also Lemma 6.3 of [Gol2]):

Lemma 5.4. If a Pfaffian fibration (P, H) is integrable up to order k > 1, then
we have the following canonical isomorphisms of bundles of vector spaces over
PO, 1<i<k

(52) pr*g(i+l) - pr*g(H(l))(i) o pr*g(H(i—l))(Z) o~ g(H(i))(l)‘
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Moreover, for every i <k —1, g¥) is a vector bundle, whose pullback pr*g®
over PY=Y models the affine bundle pr: P — pi-1,

Proof. First of all, we regard g@¥) sitting inside of 7*S'T*M ®g C n*(S'T*M)®
T™ P . Having in mind the exact sequence (10) of vector bundles over J? P, and
recalling that the symbol space of (J'P,C) is precisely ker(dpr: T*J¥R —
TJK'R) = x*S*='T*M ® pr*T™ P, one can check that &; coincides with the
restriction of the symbol map

8¢ : Hom(x*TM,n*S'"'T*M ® pr*T™ P)
— Hom(z* A> TM. n*S'">T*M Q@ pr*T™ P)

(see also the proof of Proposition 4.30, where we look at this d¢). Also, we can
regard (P® H®) fori=1,..., k , as a PDE endowed with the restriction H ¥
of the Cartan distribution ¢ C TJ* P. Having all these in mind, and using the
equality of the prolongations from Proposition 4.30, we can prove inductively the
canonical isomorphisms (52). Moreover, pr: P% — PG@=1 j5 an affine bundle
modelled on the vector bundle pr*g® = (g¥=")M (we set g =g). Q.E.D.

We now move to the condition I. For a Pfaffian fibration (P, H) integrable
up to order k, the discussion after Definition 4.24 tells us that the prolongation
(P& H®) is the kernel of the map (41)

b P — Hom(x* A2 TM, pr* 7™ p&-1)

Jro e (0 kgw)x = (Kpw)x (dea (), dxo ().

=z . 1
K gy - g

(53)

In the last Hom-space we have used the identification of the normal bundle
Ny with pr*T7 P&=D (via the differential dpr) because pr: (P® H®)
(P®=D g &=1) i5 a normalised prolongation (see Remark 4.17). Also, ¥ y@) is
an affine map of affine bundles over P®) where J[ir(k) P® — p® is modelled
on Hom(z*TM, g(H®)), with

Q(H(k)) = PF*Q(H(k_l))(l) < pr*g(k)

where the first equality is by (part of) Theorem 4.26, and the second by Lemma
5.4. Thus, the underlying vector bundle morphism of & j«) is of the form

Ko : Hom(x*TM, pr*g(k)) — Hom(r* A2 TM,pr*T™ P(k—l))‘

and a computation reveals that it is precisely the pullback via pr of the
Spencer differential §; from Equation (12) (see the proofs of Lemma 5.4 and
Proposition 4.30). Thus, P*+1 := Prol(P®), H®)) is a smooth affine subbundle

of Jp P — P® if and only if
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1. P&+ 5 pl) s surjective;
2’. & has constant rank, i.e., ker(8;) = g**1 has constant rank.

Related to 17, this discussion also implies that K g« descends to the following
map:

Definition 5.5. Let (P, H) be a Pfaffian fibration integrable up to order k > 1.
The torsion of order k + 1 of (P,H) is defined to be the torsion (43) of
(P® H®) ie. the map

Hom(n* A2 TM,pr*T™ p&=1)
§(Hom(x*TM, pr*gk)))

k= (Pp®) ;. p®

p > [0*(kgw)x] = [Kpw (1)),

where jlo is any element of the partial prolongation J;l(k)P(k) s.t. o(x) = p.

By definition we set P = P and 7! = 1.

From the general discussion of the classical prolongation, we know already
that the zero-set of ¥ is precisely the image of P**+1D — p®) Hence, from
Theorem 4.26 we obtain:

Proposition 5.6. Let (P, H) be a Pfaffian fibration integrable up to order k.
Then (P, H) is integrable up to order k + 1 if and only if

k+1

) the torsion 1 vanishes,

e the prolongation g**V is smooth.

Moreover, the classical prolongation
pr: (PUHD_ &ty (p®) 1))

has symbol g(H*+V) = pr*g*+V and it is an affine bundle over P modelled
* _(k+1)
g :

on pr
Remark 5.7 (Pfaffian fibrations and geometric structures). The name torsion
originates from the theory of G -structures. More precisely, given a G -structure
P, its torsions are objects defined recursively, whose vanishing are obstructions
to the integrability of P . In particular, the torsion of P are the same thing as
the torsions of the Pfaffian fibration P associated to P (see Example 3.26).

More generally, one can revise the theory of Pfaffian fibrations by taking into
account the presence of a symmetry group(oid), in order to define more refined
obstructions to integrability, called intrinsic torsions. These can be used to study
(formal) integrability of a large class of geometric structures (which includes G -
structures as a particular case), namely those described by any Lie pseudogroup:
see [Cat].



From PDEs to Pfaflian fibrations 243

To understand better %!

will prove the following:

we look at its image; at the end of the section we

Proposition 5.8. Let (P, H) be a Pfaffian fibration integrable up to order k > 1.
Then its torsion T takes values in the Spencer cohomology groups (13) of the
tableau bundle g = g = g(H)

ker(8 : Hom(x* A2 TM, g*~D) — Hom(n* A3 TM, g*~2)
H ' (g) =

Im(5 - Hom(r*TM, g®) — Hom(z* A2 TM, g(k—l)))

where we set gV = Ny, and we regard the prolongations g\ sitting on top
of P% via the pullback by pr.

If we assume that some prolongation g of the symbol space has rank 0, then
the Spencer cohomology group H%2(g) vanishes. In particular, by Proposition 5.8,
the torsion /12 is zero; this suggests that for certain types of Pfaffian fibrations,
Proposition 5.6 becomes simpler.

This leads us to the following definition:

Definition 5.9. A Pfaffian fibration (P. H) is of finite type | if | is the smallest
integer / > 0 such that g0 = 0. We say that (P, H) is of infinite type it g # 0
vi.

With this, it follows from Proposition 5.8 that

Corollary 5.10. Ler (P, H) be a Pfaffian fibration of finite type [. If (P, H) is
integrable up to order k and | < k, then it is integrable up to order k + i,
i > 0. Moreover, pr: PY) — PU=YD s q bijection for all j > 1.

Proof. Because i > 0, then the finite type condition says that g*+i=D = o
(as k +i— 1> 1), and therefore 5*t!*! vanishes (see the discussion before
Definition 5.9). Also g**+1D has obviously constant rank equal to 0, and we
can apply Proposition 5.6 inductively on i to conclude that (P, /) is integrable
up to order k+i. Now, Lemma 5.4 tells us that P) — PU=D 5 an affine bundle
modelled on pr*g"), so if j =1, then g} =0, and therefore PV) — pU—D
is a bijection. Q.ED.

Proof of Proposition 5.8. We check the case k = 1, using the Pfaffian form 6
associated to H C TP, and the Pfaffian form () associated to HW c 7P,
The general case k& > 1 follows similarly.

First of all, we check that the map ¥ za) = ¥ gy of Equation (53) takes
values in
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Hom(rn* A* TM.g) C Hom(n* A* TM,pr*T™ P).

Indeed, an element jlo belongs to J! . PN if dyo(TM) C H(gg); thus,
since the classical prolongation pr : (P, H®) — (P, H) is normalised

(Theorem 4.26), we have
Q(Kgm(dxa(X),dxo(Y))) -

for any X,Y € ToM (see Remark 4.17). In conclusion, & g (jlo)(X,Y) €
ker(0), therefore it is in g = ker(8) N T" P
Now, we check that « 4, takes values in the kernel of

89 = 8u : Hom(n* A2 TM, g = ¢°) — Hom(n* A3 TM, Ny = g'™V).

In order to do that, let jlo € JI;(,, PM and X,Y.,Z vector field on M :; we need
to compute

D (ke (1o)X, V))(Z) = b (kg (deor (X). deo (V) ) (2)

(54)
— gy (KH“, (deo(X). dya(Y)). o(X)(Z)).

First, we extend do(X),do(Y),do(Z) e TPW to local vector fields X,Y,Z on
PM which are simultaneously m- and pr-projectable; in particular, this means
dn(X) = X, and similarly for ¥ and Z. These extensions are always possible as
pr is a submersion and a fibre bundle map over M, hence one can simultaneously
trivialise P around o(x) as R¥T#+7 P around pr(c(x)) as R**, and M
around x as R”, so that pr and the two maps to M become standard projections.

Moreover, consider the pullback via pr : PO . P of some torsion-free
linear connection V : X(P) x X(P) — X(P) (e.g., the Levi-Civita connection of
some fixed Riemannian metric on P ); in the following we will use the same
notation V also for the pullback connection on pr*7P. We can now compute
the term «gya)(dy0(X),dxo(Y)) in Equation (54) using V (see the discussion
after Equation (17)):

(55)
kg (dxa (X),dxa(Y)) = dv0 PV (deo(X). dxo(Y))

1) i 7 s &
= (Vg0 (1), oy — (V30 (0), oy — 0V (X, Yo (y)-
From the definition (3) of 8" as Cartan form, we see that the last term vanishes:

él(l)([x y]o(x)) = 9§(x) (dxrr([X, Y])) —

Note that we use o(x) also to denote the splitting o(x) : TxM — Tpr((,(x))P
In the second equality we also used that [X, Y]U(x) = do([X,Y],) because X,V
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are m-projectable and o is a section of w. In the second equality we used the

fact that j!o is an element of J} , PO, therefore 0V o do = 0.

On the other hand, in order to rewrite the other two terms of (55) we use
05 (X) = dppr(X) — p(X) = dppr(X) —e(X)(p). VYpe PW

where we write again p for the induced splitting p : T ()M — Ty P, and we
denote by e(X) the section of pr*(7P) — P defined by o(X)(p) = p(X).
We have therefore written 6(1(X) as the sum of two sections of pr*(TP); doing
the same also for ¥ we get

V(8D (7)) — V5 (60(X))
= Vo (dpr(Y)) = Vo (dpr(X)) — Vg (o(Y)) + Vi (o(X))

= [dpr(X).dpr(Y)] — Vg (e(Y)) + Vj (o(X))
= dpr[X,Y]— Vg(e(Y)) + Vy(e(X)).

(56)

Here we used in the first line the definition of pullback connection via pr,
ie., Ve(dpr(Y)) = vdpr(X)(dpr()?)), because the section dpr(Y) € I'(pr*TP)
is already the pullback of the section pr*(dpr(Y)) € X(P) (recall that they are
pr-projectable vector fields). The first equality of the second line follows from the
fact that V is torsion-free. For the last equality, as dyo takes values in H(El(l),
we have dpr(X,(x)) = o(x)(X); in particular, dpr[X, Y],y = dprdyo[X.Y] =
o(x)[X,Y].

We compute the last two terms of (56) at o(x) € PM: since o(X)ox) =

o(x)(X) = Xs(x), and similarly for Y, we have

(57) - (V}? (.(Y)))U(x) + (V? (.(X))) ) = _V°(X)a(x) (.(Y)) +v'(y)rr(.\') (.(X))

o(x

Now, choose a local Cartan—Ehresmann connection C C H extending o (x)(Tx M)
= dpr(Ho(ra)) C Hpo(x)) (see Remark 4.13). As p: Tp,M — T, P denotes an

integral element of (P, H) for p € PV, then locally p(X) = Cp(X) + n,(X)

for every X € X(M), with n, some element in gl(;zp). It follows that, locally,

o(X) =pr*C(X) + S,

where S is a finite sum of terms of the form fpr*(n)(X), for n e I'(g'") and
f e C=(PW) such that f(0(x)) =0 (as Cy(x) = dyx0, and o (x)(X) = dyo(X)).
To simplify notation, we assume that locally § is given by a single term, i.e.,

o (X)=pr*C(X) + fprrm(X), nel(g?). fec>PrW), f(ox)) =0,
VX € X(M).
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A direct calculation shows that the right-hand side of (57) is (up to pullbacks and
coefficients) a C°°(PM)-linear combinations of five kinds of terms (the first three
come from V being torsion-free, and the last two from its Leibniz property):

i) [C(X).C(Y)], (i) [n(X),n(¥)],
(58) (i) [C(X) +n(X), C(Y)+n(¥).  @Gv) n(X),

v)  nY).
In conclusion, we plug our results in equation (54) to get

(59)
dp (K1 (¢ 0)(X. Y))(Z)

= kg (dv0 P (dro(X), dyo(Y)),0(x)(Z))
= ko (0 (X)[X, Y], 0(x)(2)) + ko (11(iV) + 12(v), 0(x)(2))
+ Kg.0(x) (r1() + r2(ii) + r3(ii), C(2) + fn(2))

where the enumeration indicates terms as in (58), f1.1> € R, and ry,r,r3 €
C®(PW). Now, the theorem is proved once we show that

So(Kp(jro))(X.Y,Z)
= 0y (T(JH(I)(_].)(I(T)(X, Y),Z) + cyclic permutations of (X,Y, Z) = 0.

Indeed, terms like the first one in the second line of (59) are zero because o(x)
is an integral element, i.e., o(x)*ky = 0. Terms involving 7(-) and o(x)(-), such
as the second one in the second line of (59), vanish as well, since n € g(".
Last, all the terms inside «y in the third line of (59) are vector fields taking
values in H : indeed, [C(X),C(Y)] and [C(X) + n(X),C(Y) +n(Y)] are in H
because C is a Cartan—Ehresmann connection, and the same holds for C + n,
since n € gV and n(X),n(Y) € g C H. Therefore, kg evaluated in these terms
can be computed as 6([-,-]); we can use the Jacobi identity to show that the part
of dg involving these terms vanishes. Q.E.D.

5.2. Formal integrability.

Definition 5.11. A Pfaffian fibration is called formally integrable when it is
integrable up to any order.

When a Pfaffian fibration (P, H) is a PDE, it follows from Corollary 5.2
that the definition of formal integrability coincides with the homonymous one,
introduced in Section 2.3. In particular, formal integrability is not always a
sufficient condition for PDE-integrability. However, as for PDEs, the situation is
nicer in the analytic setting, where we can use Theorem 2.3, to prove the following
result:
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Theorem 5.12 (Existence of analytic local holonomic sections). If (P, H) is an
analytic formally integrable Pfaffian fibration, then for every p € P® c jkp
over x € M there is an analytic local holonomic section B of (P, H) such
that jfﬂ = p on a neighbourhood of x € dom(f). In particular, (P, H) is
PDE-integrable.

Proof. 1If (P,H) is formally integrable, its classical prolongation PO CJip is
a formally integrable PDE. Moreover, since P is an analytic manifold, Jj P is
analytic as well, being the kernel of the analytic bundle map e of Equation (4.3).
Similarly, PV C J} P is analytic because it is the kernel of % g, which is also
an analytic bundle map. We conclude that P is an analytic formally integrable
PDE, so we can apply Theorem 2.3, which gives precisely the first part of our
statement.

In particular, for every p € P®) = (PU)YK=D over x, there exists a solution
B of the PDE PM such that j¥B = p. This means that « = j'B sits inside
PO je. o is a holonomic section of (P, HM) and therefore pr(a) = B is a
holonomic section of (P, H). The PDE-integrability of (P, H) follows from the
PDE-integrability of P and the fact that pr: P(V — P is surjective. Q.E.D.

We look now for sufficient conditions for formal integrability. An immediate
one follows from Corollary 5.10:

Proposition 5.13. Let (P, H) be a Pfaffian fibration of finite type [. If P is
integrable up to order k > [, then it is formally integrable.

This proposition follows also as a corollary from a straightforward generalisa-
tion of the cohomological integrability criterion of Goldschmidt (Theorem 2.4):

Theorem 5.14. Let (P, H) be a Pfaffian fibration such that
e  The symbol space g is 2-acyclic, i.e., H%2(g) =0 VI >0,
o g is smooth and PV — P is surjective.

Then P is formally integrable.

Proof. From the fact that g is 2-acyclic and g is smooth, it follows from
Lemma 2.8 and Remark 2.9 that g(” is smooth also for / > 1. Moreover, thanks
to our hypotheses, P is already integrable up to order 1 by Theorem 4.26.
Assume now that P is integrable up to order / > 1: then the torsion
it pO 5 {I=1.2(g) = 0 must vanish, hence P is integrable up to order [+ 1
by Proposition 5.6. By induction we find that P is formally integrable. Q.E.D.
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