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Prime and coprime values of polynomials

Arnaud Bopin, Pierre DEsgs and Salah NaJis

Abstract. The Schinzel Hypothesis is a celebrated conjecture in number theory linking
polynomial values and prime numbers. In the same vein we investigate the common divisors
of values Pi(n),..., Pg(n) of several polynomials. We deduce this coprime version of the
Schinzel Hypothesis: under some natural assumption, coprime polynomials assume coprime
values at infinitely many integers. Consequences include a version “modulo an integer” of
the original Schinzel Hypothesis, with the Goldbach conjecture, again modulo an integer,

as a special case.

Mathematics Subject Classification (2010). Primary: 12E05; Secondary: 11A0S5, 11A41.

Keywords. Prime numbers, irreducible polynomials, gcd, Schinzel Hypothesis.

Given polynomials with integer coefficients, famous results and long-standing
questions concern the divisibility properties of their values at integers, in
particular their primality. The polynomial x? + x + 41 which assumes prime
values at 0,1,...,39 is a striking example, going back to Euler. On the
other hand, the values of a nonconstant polynomial P(x) cannot be all prime
numbers: if P(0) is a prime, then the other value P(kP(0)) is of the form
ag (kP + .-« + a1kP(0) + P(0), so is divisible by P(0), and, for all but
finitely many k € Z, is different from =+ P(0), and hence cannot be a prime.

Whether a polynomial may assume infinitely many prime values is a deeper
question. Even for P(x) = x?41, whether there are infinitely many prime numbers
of the form n? + 1 with n € Z is out of reach. Bunyakowsky conjectured that
the question always has an affirmative answer, under some natural assumption
recalled below. The Schinzel Hypothesis generalizes this conjecture to several
polynomials, concluding that they should simultaneously take prime values; see
Section 2.
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We follow this trend. Our main results are concerned with the common divisors
of values Py(n),..., Py(n) at integers n of several polynomials, see Theorem 1.1
in Section 1 (proved in Section 3) and further complements in Section 4. We can
then investigate the coprimality of values of polynomials. Generally speaking, we
say that n integers, with n = 2, are coprime if they have no common prime
divisor. While the Schinzel Hypothesis is still open, we obtain this “coprime”
version: under some suitable assumption, coprime polynomials assume coprime
values at infinitely many integers (Corollary 1.2).

We deduce a “modulo m” variant of the Schinzel Hypothesis, and versions
of the Goldbach and the Twin Primes conjectures, again “modulo m”; see
Section 2. A coprimality criterion for polynomials is offered in Section 5. Finally,
in Section 6, we discuss generalizations for which Z is replaced by a polynomial
ring.

1. Common divisors of values and the coprimality question

For the whole paper, f1(x),..., [s(x) are nonzero polynomials with integer
coefficients.
Assume that the polynomials fi(x),..., fs(x) are coprime (s = 2), i.e. they

have no common root in C. Interesting phenomena occur when considering the
greatest common divisors:

dn = ged(fi(n),.... fs(n))  with n € Z.

It may happen that fj(x),..., fs(x) never assume coprime values, i.e., that none
of the integers d, is 1. A simple example is f;(x) = x> —x = x(x — 1) and
fo(x) = x2—x +2: all values f;(n) and f>(n) are even integers. More generally
for fi(x) = x? —x and f3(x) = x?» — x + p with p a prime number, all
values f1(n), f»(n) are divisible by p, by Fermat’s theorem. Rule out these
polynomials by assuming that no prime p divides all values fi(n),..., fs(n)
with n € 7,. Excluded polynomials are well-understood: modulo p, they vanish
at every element of Z/pZ, hence are divisible by x? —x = [],,ez/,z(x —m);
so they are of the form pg(x) + A(x)(x? —x) with g(x),h(x) € Z[x] for some
prime p.

With this further assumption, is it always true that f1(n),..., fy(n) are coprime
for at least one integer n? For example this is the case for n and n + 2 that are
coprime when n is odd. In other words, does the set

D* = {d, |neZ)

contain 1? Studying D*, which, as we will see, is quite intriguing, is a broader
goal.
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Example 1. Let fi(x) = x>—4 and f>(x) = x>+ 3x +2. These polynomials are
coprime since no root of f; is aroot of f,. The values d, = gcd( f1(n), f>(n)),
for n =0,...,20 are:

2 316 1 6 1 4 3 2 1 24 1 2 3 4 1 6 1 64 3 2

We have in fact D* = {1,2,3,4,6,8,12,16,24,32,48,64,96,192}. It seems
unclear to highlight a pattern from the first terms, but at least the integer I
occurs.

A first general observation is that the set D* is finite. This was noticed for
two polynomials by Frenkel-Pelikdn [FP]. In fact they showed more: the sequence
(dn)nez is periodic. We will adjust their argument. A new result about the set D*
is the stability assertion of the following statement, which is proved in Section 3.

Theorem 1.1. Let f1(x),..., fs(x) € Z[x] be nonzero coprime polynomials
(s = 2). The sequence (dy)nez is periodic and the finite set D* = {d,}nez
is stable under gcd and under lcm. Consequently, the gcd d* and the lem m*
of all integers d, (n € Z) are in the set D*.

The stability under gcd means that for every ny,n, € Z, there exists n € 7
such that gcd(dy, , dn,) = d,. In Example 1, the sequence (d,),ez can be checked
to be periodic of period 192 and the set D* is indeed stable under gcd and lem.

A consequence of Theorem 1.1 is the following result, proved in [Sch3,
Theorem 1]; as discussed below in Section 3, it is a “coprime” version of the
Schinzel Hypothesis.

Corollary 1.2. Assume that s =2 and f1(x), ..., fs(x) are coprime polynomials.
Assume further that no prime number divides all integers fi(n),..., fs(n) for
every n € Z. Then there exist infinitely many n € Z such that fi(n),..., fs(n)
are coprime integers.

In Example 1, we have fi(1) = —3 and f>(0) = 2, so no prime number
divides fi(n), f»(n) for every n € Z. Corollary 1.2 asserts that fj(n) and f>(n)
are coprime integers for infinitely many n € 7.

Assuming Theorem 1.1, here is how Corollary 1.2 is deduced.

Proof. The integer d*, defined as the gcd of all the d,, is also the ged of all

values fi(n),..., fs(n) with n € Z. The assumption of Corollary 1.2 exactly says
that 4* = 1. By Theorem 1.1, we have 1 € D*, that is: there exists n € Z such
that f1(n), ..., fs(n) are coprime. Due to the periodicity of (dj),ez, the set of

such n is infinite. []
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2. The Schinzel Hypothesis

The Schinzel Hypothesis is the following statement; it was denoted by (H)
in [SS].

Schinzel Hypothesis. Assume that s = 1 and fi(x),..., fs(x) are irreducible in
Z[x]. Assume further that no prime number divides the product [];_, _; fi(n) for
every n € 7.. Then there exist infinitely many integers n such that fi(n), ..., fs(n)
are all prime numbers.

This statement would imply many other conjectures in number theory. For
instance with fi(x) = x and f2(x) = x+2, it yields the Twin Primes conjecture:
there exist infinitely many primes p such that p + 2 is also a prime number.
It also provides infinitely many prime numbers of the form n? + 1 with n € Z;
see [SS] and [Rib, Ch. 3 and Ch. 6] for other problems.

The Schinzel Hypothesis is however wide open. It is only known true when
s = 1 and deg(f1) = 1, and this case is already quite deep. It is indeed the
Dirichlet theorem: if a, b are coprime nonzero integers, then there are infinitely
many £ € Z such that a + £b is a prime number.

Corollary 1.2 at least provides a “coprime” version of the Schinzel Hypothesis.
This coprime version can then be conjoined with the Dirichlet theorem. This yields
the following.

Corollary 2.1. Assume that f1(x) and f>(x) are coprime polynomials and that
no prime number divides f1(n) and f,(n) for every n € Z. Then, for infinitely
many n € 7., there exist infinitely many £ € 7. such that f1(n) + Lfa(n) is a
prime number.

Proof. As no prime number divides fi(n) and f>(n) for every n € Z, we
can apply Corollary 1.2 to get infinitely many integers n € Z such that fj(n)
and f,(n) are coprime. By the Dirichlet theorem for primes in an arithmetic
progression, for each of these n except roots of the product f f2, there exist
infinitely many ¢ € Z such that f;(n) + £f2(n) is a prime number. ]

Corollary 2.1 extends to the case s = 2. Under the generalized assumption that
no prime divides all fi(n),..., fs(n) for every n € 7Z, the conclusion becomes:
for infinitely many n € 7., there exists a “large”' set L C 757! of tuples
(a,....Ls) such that fi(n) + £r fo(n) + --- + L5 fs(n) is a prime number. We
leave the reader work out the generalization.

1“Large” should be understood as Zariski dense in Z*~!; this is the generalization of “infinite” for

a subset £ C Z*!: if a polynomial P(x3,..., Xxs) vanishes at every point of £, it has to be the zero
polynomial.
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We also obtain this “modulo m” version of the Schinzel Hypothesis.

Corollary 2.2. For s = 1, assume that no prime integer divides [[;—, _ fi(n)
for every n € Z. Then, given any integer m > 0, there exist n € Z such that
each of the values fi1(n),..., fs(n) is congruent to a prime number modulo m.
In fact, there are infinitely many integers n such that for each i =1,...,s, there
are infinitely many prime numbers p; such that fi(n) = p; (mod m).

Proof. Fix an integer m > 0. Consider the two polynomials Fj(x) =
Hj:l _____ ¢ Ji(x) and Fy(x) = m. Clearly, Fi(x) and F>(x) satisfy the assumptions
of Corollary 1.2. It follows that there exists n € Z such that Fy(n) = fi(n)--- fs(n)
is coprime with m . In particular, each of the integers fi(n),..., fs(n) is coprime
with m. Hence, by the Dirichlet theorem, there exists a prime number p; such
that p; = fj(n) +a;m (for some a; € Z). In fact the Dirichlet theorem asserts
that there are infinitely many such primes p;. For j = 1,....s the congruences,

fi(n +4tm) = fj(n) (mod m)

provide the infiniteness of the integers n. These congruences are easily deduced
from the basic ones for which f;(x) is a monomial xk; they will again be used
later. 0

Corollary 2.2 has this nice special case, which can also be found in Schinzel’s
paper [Sch2] following works of Sierpiniski.

Example 2 (Goldbach Theorem modulo m). Let m,{ be two positive integers.
Then there exist infinitely many prime numbers p and ¢ such that p +¢q = 2¢
(mod m).

Proof. Take fi(x) = x and fr(x) = 2¢ —x. As f1(1)f2(1) = 2 — 1 and
fi(=1) f2(—=1) = —(2¢ + 1), no prime number divides fi(n)/f2(n) for every
n € Z. By Corollary 2.2, there exist n € Z and prime numbers p and ¢ such
that fi(n) = n is congruent to p (mod m) and f>(n) = 2¢ —n is congruent to
g (mod m), whence p+ g = 2£ (mod m). ]

Another example with fj(x) = x and f>(x) = x + 2 gives the Twin Primes
Theorem modulo m: For every m > 0, there are infinitely many primes p, ¢
such that ¢ = p + 2 (mod m).
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3. Proof of Theorem 1.1

After a brief reminder in Section 3.1, Theorem 1.1 is proved in Sections 3.2
and 3.3. Recall that fi(x),..., fy(x) are nonzero polynomials with integer
coeflicients.

3.1. Reminder on coprimality of polynomials. Denote the gcd of
fi(x), ..., fs(x) in Q[x] by d(x); it is a polynomial in Q[x], well-defined up to
a nonzero multiplicative constant in Q. Polynomials f;(x),..., fs(x) are said to
be coprime if d(x) is the constant polynomial equal to 1. These characterizations
are well-known:

Proposition 3.1. For s = 2, the following assertions are equivalent:
1) fix),..., fy(x) are coprime polynomials (i.e., d(x) = 1),

(ii) the ged of fi1(x),..., fs(x) in Z[x] is a constant polynomial,
(iii) fi(x),..., fs(x) have no common complex roots,

(iv) there exist uy(x),..., ug(x) € Qx| such that a Bézout identity is satisfied,
Le.:

u(x) fi(x) +--- +us(x) fs(x) = 1.

A brief reminder: (iv) = (iii) is obvious; so is (iii) = (ii) (using that C
is algebraically closed); (ii) = (i) is an exercise based on “removing the
denominators” and Gauss’s Lemma [Lan, IV, §2]; and (i) = (iv) follows
from Q[x] being a Principal Ideal Domain.

In the case of two polynomials, we have this additional equivalence: fj(x)
and f>(x) are coprime if and only if their resultant Res( f1, f2) € Z is non-
zero. Section 5 offers an alternate method to check coprimality of two or more
polynomials.

For the rest of this section, assume that s = 2 and fi(x),..., fs(x)
are coprime. Denote by § the smallest positive integer such that there exist
ur(x),..., us(x) € Z[x] with uy(x) f1(x)+---+us(x) fs(x) = 8. Such an integer
exists from the Bézout identity of Proposition 3.1, rewritten after multiplication
by the denominators.

3.2. Finiteness of D* and periodicity of (d,),ez -

Proposition 3.2. We have the following:
e  Every integer d, divides § (n € Z). In particular, the set D* is finite.

e The sequence (dy)nez is periodic of period §.
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Note that the integer § need not be the smallest period. Proposition 3.2 is
an improved version of results by Frenkel and Pelikian [FP]: for two coprime
polynomials  fi(x), f2(x), they show that every d, divides the resultant
Res( f1, f2) of f1(x) and f>(x). In fact our § divides Res( f1, f2). Next example
shows that Res( f1, f2) and § may be huge and the sequence (dj),ez may have
a complex behavior despite being periodic.

Example 3. Let f(x) = x® + x% —3x* —3x3 + x2 + 2x — 5 and
g(x) = 3x% 4+ 5x* —4x2 — 9x + 21. These two polynomials were studied by
Knuth [Knu, Division of polynomials, p. 427]. We have Res( f, g) = 25095933394
and § = 583626358 = 2x7?x43x138497. Here are the terms d, for 0 <n < 39:

1212721212114121212721812114121212721212198

Higher values occur: for instance digo9 = 4214, dy33139 = 276994. For this
example, the set D* is exactly the set of all divisors of § and the smallest period
is 4.

Proof of Proposition 3.2. The identity uy(n) fi(n) +---+us(n) fs(n) = § implies
that d, = ged(f1(n),..., fs(n)) divides § (n € Z). To prove that the sequence
(dn)nez is periodic, we use again that f;(n + £5) = f;(n) (mod §) for every
t€Z and every n € Z.

Fix n.€ € Z. As d, divides f;(n) and &, then by this congruence, d, divides
fi(n +€5). This is true for j =1,...,s, whence d, divides d, 5. In the same
way we prove that d,,¢5 divides d, (n,£ € Z). Thus d,1¢s = d, and (dp)nez
is periodic of period §. L]

3.3. Stability by ged and lem.

Proposition 3.3. The set D* is stable under gcd and lcm.

Denote by ¢* the ged of all elements of D* and by m* the lcm of those of
D*. Using that ged(a, b, c) = ged(a, ged(b, c)) we obtain:

Corollary 3.4. The integers d* and m* are elements of D*. Furthermore
d* = min(D*) is the greatest integer dividing fi(n),..., fs(n) for every n € Z.
Similarly m* = max(D").

Proof of Proposition 3.3 for the gcd. We only prove the gcd-stability part and
leave the Icm part (which we will not use) to the reader.

Let d,, and d,, be two elements of D*. Let d(ny,nz) be their ged. The
goal is to prove that d(n;,n,) is an element of D*. The integer d(n;,n,) can
be written:
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d(ny.nz) =[] pf
iel
where, for each i € I, p; is a prime divisor of § (see Proposition 3.2) and

o; € N (maybe o; = 0 for some i € I). Fix i € [. As p*™!

; does not divide
d(ny,ny), pf‘fH does not divide d,, or does not divide d,,; we name it d,,,
with m; equals ny or n;.

The Chinese remainder theorem provides an integer n, such that

n=m; (mod p®™h

i for each [ € [.

By definition, p;* divides d(ny,n2), so pit divides all fi(n1),..., fs(n1),
fi(n2), ..., fs(ny). In particular p?i divides fi1(m;),..., fs(m;), hence also
fi(n), ..., fs(n). Whence p{® divides d, for each i € I.

Now p*! does not divide f;,(m;), for some jo € {1,....5}. As fj,(n) =
fio(mi) (mod p¥ 1), then p¥™*' does not divide fj,(n). Hence p¥*' does
not divide d,.

We have proved that p?" is the greatest power of p; dividing d,, for all
i € 1. As d, divides §, each prime factor of d, is one of the p;. Conclude
that d(ny,n») = d,. L]

4. More on the set D*

Further questions on the set D* are of interest. The stability under gcd and
lcm gives it a remarkable ordered structure. Can more be said about elements
of D*? The smallest element d* particularly stands out: it is also the ged of all
values fi(n),..., fs(n) with n € Z. Can one determine or at least estimate d* ?

Proposition 4.1. Assume that fi(x),..., [s(x) are monic. Then d* divides each
of the integers (deg f1)!,...,(deg fo)!.

The proof relies on the following result.

Lemma 4.2. Let f(x) = agx? +--- +ayx + aop be a polynomial in 7[x] of
degree d. Fix an integer T > 0 and fix m € 7. If an integer k divides each of
f(m), fm +T), f(m+2T),... then k divides azT%d".

For T = 1, this lemma was obtained by Schinzel in [Schl]. If f(x) is assumed
to be a primitive polynomial (i.e., the gcd of its coeflicients is 1) and & divides
f(m + £T) (for all £ € Z) then Bhargava’s paper [Bha] implies that £ divides
T9d! (see theorem 9 and example 17 there). Moreover using a theorem of Pélya
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(see [Bha, Theorem 2]), in Proposition 4.1, we could replace the hypothesis “ f;(x)
is monic” by “ f;(x) is primitive” with the same conclusion on d*.

We give an elementary proof below of Lemma 4.2 which was suggested to
us by Bruno Deschamps. It uses the following operator:

A Qp] — Qlx]

P(.X) | P(x-I—T;}—P(x)

If P(x) = agx? + --- 4+ ao is a polynomial of degree d, then A(P)(x) is
a polynomial of degree d — 1 of the form A(P)(x) = dagx?' +--- By
induction, if we iterate this operator ¢ times, we obtain that A (P)(x) = dlag
is a constant polynomial. The polynomial A(P)(x) is a discrete analog of the
derivative P’(x). In particular A?(P)(x) = d!ay should be related to the higher
derivative P (x) = dlay.

Proof of Lemma 4.2. The key observation is that if k& divides f(m) and f(m +
T), then k divides TA(f)(m). We prove the statement by induction on the
degree d .

e For d =0, “k divides f(m)” is exactly saying “k divides aqo”.

e Fix d > 0 and suppose that the statement is true for polynomials of degree
less than d. Let f(x) = agx?® + --- 4+ ao be a polynomial of degree d
satisfying the hypothesis. As k divides f(m + £T) for all £ € N, then k
divides

TA(fYm+LT)= f(m+ L+ 1)T)— f(m+LT).
By induction applied to TA(f)(x) = Tdagx®~'+---, the integer k divides
the integer (Tdag)T4 '(d —1)! = ayT%d). O

Proof of Proposition 4.1. For each j = 1,...,s, the integer d* divides f;(n)
for every n € Z. Thus d* divides (deg f;)! by Lemma 4.2 (applied with 7" = 1
and ag = 1). ]

We can also derive a result for m* = max(D*) = lcm(D*).

Proposition 4.3. Let T be the smallest period of the sequence (dp)nez and
fi(x) = agx® + --- be a polynomial of degree d. Then:

T|m* and m*|lagT4d!

Proof. The proof that m* is a period is the same as the one for § (see
Proposition 3.2). It follows that T divides m™*. On the other hand, if (d,)nez is
periodic of period T, then every term d, divides fi(n +£T) for all £ € Z. By
Lemma 4.2, d, divides ayT?d!. This is true for each n, so m* = lem{d,}nez
also divides a;T4d). ]
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5. A coprimality criterion for polynomials

A constant assumption of the paper has been that our polynomials fi(x),...,
fs(x) are coprime. To test this condition, we offer here a criterion only using
the values fi(n),..., fs(n) that may be more practical than the characterizations
from Proposition 3.1.

Define the normalized height of a degree d polynomial f(x) = agx®+---+ay
by

H(f)= max |=
i=0,...d—1|dqg
Proposition 5.1. Let H be the minimum of the normalized heights

H(f1),...,H(fs). The polynomials f(x),..., fs(x) are coprime if and only
if there exists n = 2H + 3 such that ged(fi(n),..., fs(n)) < /n.

In particular if fi(n),..., fs(n) are coprime (as integers) for some sufficiently
large n then fi(x),..., fy(x) are coprime (as polynomials).
Example 4.

o Take fi(x) = x*—7x3 43, fo(x) = x3—=3x +3. We have H(f}) =7,
H(f,) =3,s0 H=3. For n =9(=2H + 3), we have fi(n) = 1461,
fo(n) = 705. Thus ged( fi(n), f2(n)) = 3 < /n. From Proposition 5.1, the
polynomials fj(x) and f>(x) are coprime.

e Here is an example for which the polynomials are not coprime. Take
i) = 2 -1 =@+ Dx—-1, filx) = x> +2x + 1 = (x + 1>
Then ged(fi(x), f2(x)) = x + 1 and ged(fi(n), f2(n)) = n + 1.

Remark. Proposition 5.1 is a coprime analog of the classical idea consisting
in using prime values of polynomials to prove their irreducibility. For instance
there is this irreducibility criterion by Ram Murty [RM], which can be seen as
a converse to the Bunyakovsky conjecture: Let f(x) € Z[x] be a polynomial
of normalized height H. If f(n) is prime for some n = H + 2, then f(x) is
irreducible in 7,[x].

We first need a classical estimate for the localization of the roots of a
polynomial, as in [RM].

Lemma 5.2 (Cauchy bound). Let f(x) = agx? + -« + a1x +ap € Z[x] be a
polynomial of degree d and of normalized height H. Let o« € C be a root of f.
Then |a| < H + 1.
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Proof of Lemma 5.2. We may assume |«| > 1, since for |¢| <1, Lemma 5.2 is
obviously true. As f(a) =0, « satisfies:

d—1 _
+---+a1a+ao‘ < Z‘al—a‘|.
=0

|adad| = |ad_lo¢{d_1

By dividing by a,;, we get:

i1 d d
d i) gylel® =1 B Ial—lﬂ(_l)
‘a]SiZO:H|a‘_H|a|_1 then |o|-1<H o] =H |1 )

So that |¢| — 1 < H and the proof is over. 0

Proof of Proposition 5.1.

e — Since fi(x),..., fy(x) are coprime polynomials, we have a Bézout
identity: uq(x) fi(x) + -+ + us(x) fs(x) = 1 for some u,(x),...,us(x) in
Q[x]. By multiplying by an integer k € Z\ {0}, we obtain u(x) fi(x)+---+
ug(x) fs(x) =k, with u,(x),...,us(x) being this time in Z[x]. This gives
uy(n) fr(n)+---+isg(n) fs(n) = k for all n € Z, so that ged( fi(n),..., fs(n))
divides k. Thus the ged of fi(n),..., fs(n) is bounded, hence it is < /n
for all sufficiently large n.

e < Let d(x) € Z[x] be a common divisor of fi(x),..., fs(x) in
Z|x]. By contradiction, assume that d(x) is not a constant polynomial.
Consider an integer n = 2H + 3 such that ged(fi(n),..., fs(n)) < V/n.
On the one hand d(n) divides each of the fi(n),..., fs(n), so |d(n)| <

gcd(fi(n). ... fs(n)) < /n.
On the other hand
d(m) = c[ [ —a)

iel
for some roots «; € C, i € 1, of f1 (and of the other f;), and ¢ € Z\ {0}.
By Lemma 5.2, we obtain:

ld(n)] = le|[ [In—ail > le|[ [1n— (H + D] = |n—(H + 1)].

We obtain |n — (H + 1)| € /n, which is impossible for n = 2H + 3.

We conclude that the common divisors of fi(x),..., fs(x) in Z[x] are
constant. Therefore by Proposition 3.1, the polynomials fi(x),..., fs(x) are
coprime. -
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6. Polynomials in several variables

The Schinzel Hypothesis and its coprime variant can be considered with the
ring 7 replaced by a more general integral domain Z. Papers [BDNI] and
[BDN2] are devoted to this. The special case that Z is a polynomial ring Z[u]
stands out; here u can be a single variable or a tuple (uy,...,u,) of several
variables. “Prime in Z[u]” then means “irreducible in Z[u]”.

In [BDNI1], we prove the Schinzel Hypothesis for Z[u] instead of 7Z :

Theorem 6.1. With s > 1, let fi(u,x),..., fs(u, x) be s polynomials, irreducible
in Zu,x], of degree = 1 in x. Then there are infinitely many polynomials
n(u) € Z[u] (with partial degrees as large as desired) such that

fi(u.n(u))

is an irreducible polynomial in Z[u] for each i =1,....5s.

We also prove the Goldbach conjecture for polynomials: any nonconstant
polynomial in Z[u] is the sum of two irreducible polynomials of lower or equal
degree. Furthermore, Theorem 6.1 is shown to also hold with the coefficient ring
Z replaced by more general rings R, e.g. R = F,[t]. However not all integral
domains are allowed. For example, with u a single variable, the result is obviously
false with R = C, is known to be false for R =, by a result of Swan [Swa]
and is unclear for R = Z,.

In contrast, we prove in [BDN2] that the coprime analog of Theorem 6.1 holds
in a much bigger generality.

Theorem 6.2. Let R be a Urique Factorization Domain and assume that R[u] is
not the polynomial ring Wy[u,] in a single variable over a finite field. With s = 2,
let fi(u,x),..., fs(u,x) be s nonzero polynomials, with no common divisor
in Rlu, x| other than units of R. Then there are infinitely many polynomials
n(u) € Rlu] such that

filwn@), ... fs(u.nw)

have no common divisor in R[u] other than units of R.

Theorem 6.2 fails if R[u] = F4[u1]. Take indeed fi(uy, x) = x? — x + u;
and f>(uy,x) = (x? — x)? + uy. For every n(uy) € F,[u;], the constant term of
n(uqy)? —n(uy) is zero, so fi(uy.n(uy)) and fa(uy,n(uy)) are divisible by u;.
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