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Bounded cohomology of amenable covers
via classifying spaces

Clara Löh and Roman Sauer

Abstract. Gromov and Ivanov established an analogue of Leray's theorem on cohomology of
contractible covers for bounded cohomology of amenable covers. We present an alternative

proof of this fact, using classifying spaces of families of subgroups.

Mathematics Subject Classification (2010). Primary: 55N10, 55N35.

Keywords. Bounded cohomology, amenable covers, classifying spaces of families of

subgroups.

1. Introduction

The idea that the cohomology of a space can be computed as cohomology
of the nerve of an open cover consisting of contractible subsets first appeared in

a paper by Weil [Wei], which was preceded by a paper of Leray |Ler] with a

similar idea.

Gromov and Ivanov established partial analogues for bounded cohomology in

terms of covers that consist of amenable subsets; we will consider the following
version of this phenomenon:

Theorem 1.1. Let X he a path-connected CW-complex, let U he an amenable

open cover of X, let N he the nerve of U, and let |W| he the geometric
realisation of N. Let cx (X ; IR) —» H * (X ; R) he the comparison map from
bounded to ordinary cohomology. Then the following hold.
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(1) If U is convex, then c% factors through the nerve map v. X —> \ N\: More

precisely, there is an R -linear map <p : Hf(X\ K) — //*(|iV|;R) with

HT{X

H*(y\W)o(p cx

cx
» H*(X; R)

(2) If the multiplicity of U is at most m, then the comparison map cx vanishes

in all degrees * > m.

Here, an amenable cover of X is an open cover U of A' by path-connected
sets with the following property: For each V in U and each x e V, the image

of the homomorphism ni(V,x) -> rci(X,x) induced by the inclusion V X is

an amenable subgroup of Tt\(X, x) (Definition 4.10). Such an amenable cover U

is convex if all finite intersections of members of U are path-connected or empty
(Definition 4.3).

The first statement of Theorem 1.1 was proved by Ivanov [Ival, Section 6]

using sheaf cohomology and a spectral sequence computation. The assumption

on convexity is missing in Ivanov's paper but needed (see Example 1.4). The

second statement of Theorem 1.1 is Gromov's vanishing theorem [Gro, Section 3]

whose proof is based on the theory of multicomplexes. Recently, Frigerio and

Moraschini reworked Gromov's theory of multicomplexes and gave a proof of
Theorem 1.1 [FM, Section 6],

In this note, we present an alternative proof of Theorem 1.1 that only
uses standard facts about bounded cohomology (via strong relatively injective
resolutions) and the classifying space for the family of amenable subgroups. More

precisely, we separate the proof into a statement about admissibility of the family
of amenable subgroups (Section 5.1) and generic properties of classifying spaces

of families (Section 5.2). The abstract version of Theorem 1.1 is Theorem 5.3.

Furthermore, our approach also leads to a straightforward proof for the

corresponding statement in f1 -homology (and of the corresponding abstract

version: Theorem 6.3):

Theorem 1.2. Let X be a path-connected CW-complex, let U be an amenable

open cover of X, let N be the nerve of U, and let |/V| be the geometric
realisation of N. Let ci : II*(X; R) ^ //(: (T ; M) be the comparison map from
ordinary to il -homology. Then the following hold.
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(1) If U is convex, then cÇ factors through the nerve map v : X —> |/V|:
More precisely, there is an R-linear map (p: //*(|7V|;M) —^ (X\ R) with

Ip o //*(v;R) c%

H*(X ; R)

//*(v;R)

//*(|/V|;R)

(2) If the multiplicity of U is at most m, then the comparison map c% vanishes

in all degrees * > m.

In particular, as a special case, we obtain the corresponding vanishing theorem

for ix -homology and ^-invisibility results for amenable convex open covers on

CW-complexes (Corollary 1.5), established recently by Frigerio [Fri2], Using
Lemma 4.1. in loc. cit., Frigerio reduces the statement for topological spaces to

the one for CW-complexes and thus can drop the assumption on the space being

a CW-complex. Using the same lemma we may also drop the assumption on X

being a CW-complex in Theorems 1.1(2) and Theorem 1.2(2).

1.1. Two non-examples. We give two simple examples complementing the

hypotheses and the conclusion in Theorem 1.1.

Both examples are based on the oriented closed connected surface £ of
genus 2. Because £ admits a hyperbolic structure, the comparison map

is surjective (and thus non-trivial) [Gro, p. 9/17],

Example 1.3. In general, in Theorem 1.1, there is no such factorisation tp that

is bounded: We consider the open cover U of £ depicted in Figure 1. All
members of U are contractible or homotopy equivalent to S1. Therefore, U is

an amenable cover; moreover, one easily checks that the cover is convex (in the

sense of Definition 4.3).
Then the nerve N of U satisfies |/V| ~ S1 v S2 v S1 (the S2 stems from

the octahedron spanned by the sets D\, D2, Ui, t/4).
We will now show that all non-trivial classes in //2(|/V[;M) are unbounded:

To this end, we consider the inclusion i : S2 52vS2vS] ~ |fV[. Then the

induced map H2(i; M): //2(|/V|;R) H2(S2;R) is an isomorphism. However,

all non-trivial classes in H2(S2\M.) are known to be unbounded [Gro, p. 8/17].

Therefore, also all non-trivial classes in /72(|/V|;M) are unbounded.

/42(£;R) -> //2(£;E) ^ M
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Figure 1

The open cover of S in Example 1.3

In particular, the surjection H£(E;R) -> //2(I];R) R does not admit a

factorisation H^ÇE; R) —> //2(| TV |; R) over the nerve map by a bounded linear

map.

Example 1.4. In general, Theorem 1.1 does not hold without the convexity
condition: We consider the following open cover U of S depicted in Figure 2.

Then the nerve N of U satisfies |TV| s A3 ~ •. In particular, H2(\TV|; R) 0.

Therefore, the comparison map //^(S;R) —> //2(£; R) (which is non-trivial)
cannot factor over //2(|TV|; M.).

a2 a2 a 2 a 2

ao JH ax a2 mai a2 Ii ax a?B 1

VS-J V-J
a I ai ai ai

02^ \^Ö1

>/ft!

Figure 2

The open cover of E in Example 1.4
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1.2. Applications. The standard application of results of the type of Theorem 1.1

and Theorem 1.2 are vanishing theorems for the I1 -semi-norm on singular

homology (and whence to simplicial volume):

Corollary 1.5 (a vanishing theorem). Let X be a path-connected CW-complex,
let U be an amenable convex open cover of X, and let N be the nerve of U.
Furthermore, let k e N with Hk(N\ M) 0.

(1) Then the comparison maps cx '- //^(Tf;]R) -> Hk(X\ R) in bounded co¬

homology and cj-' : H^iX; R) -» H^'(X;Mf in ll-homology are the zero

maps.

(2) In particular, for all a e //^(A;M), we have

Nil 0.

Proof. Ad 1. We have Hiç(\N\;R) ^ ^ 0 by assumption. Moreover,

by the universal coefficient theorem, we also have Hk(\N\;R) 0. Therefore,
Theorem 1.1 and Theorem 1.2 show that the comparison maps in bounded

cohomology and ll -homology factor over 0 and so are the zero maps.

Ad 2. The comparison map is isometric with respect to the f1-semi-

norm [Löh2, Proposition 2.5], Applying the first part proves the claim.

The hypothesis is satisfied if the multiplicity of the cover is at most k (and
thus the nerve has dimension at most k — 1 Further examples are contained in
Gromov's original article [Gro, Section 3.1].

1.3. Notation. In the rest of this paper, homology, cohomology as well as

bounded cohomology of spaces, groups, or simplicial complexes is always taken

with M -coefficients (and we will mostly omit this from the notation).

Organisation of this article. We first recall basics on bounded cohomology
(Section 2), classifying spaces of families of subgroups (Section 3), and nerves

of covers (Section 4). It should be noted that all of this material is standard; we
collected it here in one place for convenience and to introduce the notation used

in the main proof.
The proof of Theorem 1.1 is given in Section 5; the proof of Theorem 1.2 is

given in Section 6.
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2. Preliminaries: Bounded cohomology

We first collect basic notation and basic facts on bounded cohomology and

il -homology, as needed in the sequel; in fact, no other input from bounded

cohomology will be needed for the proofs of Theorem 1.1 and Theorem 1.2. For

details and further results, we refer the reader to the literature [Gro, Ival, Iva2,

Mon, Fril, Bou, Löh 1 ].

2.1. Bounded cohomology. Bounded cohomology of spaces and groups is

defined as the cohomology of the topological dual of the standard chain complexes.

Let B( R) be the contravariant endofunctor on the category of normed R-vector

spaces and continuous linear maps that is given by taking the topological dual. A
normed chain complex is a chain complex consisting of normed R -vector spaces

and continuous boundary maps. Then ß( • ,R) induces a contravariant functor
from the category of normed chain complexes (and degree-wise continuous chain

maps) to the category of Banach cochain complexes (and degree-wise continuous

cochain maps).

If X is a topological space, then the singular chain complex C*(2f;R) is

a normed chain complex with respect to the (^-riOTm | • associated with
the R-bases given by the sets of all singular simplices of X. If f: X -> Y

is a continuous map, then the chain map C*(/;R): C*(X; M) -» C*(T;R) is

degree-wise of norm at most 1.

Definition 2.1 (bounded cohomology of spaces).

• The hounded cochain complex functor Cf* • ;R) is the contravariant functor
from the category of topological spaces to Banach cochain complexes given

by the composition ß(C*( • ;R),M).

• The hounded cohomology functor Iff • ; R) is the contravariant functor
from the category of topological spaces to (semi-normed) graded M-vector

spaces, given by the composition H*(Cj* • ;R)).

• The natural transformation H£{ ;M) —>• H*( ;R) induced by the natural

inclusion C£{ • ;R) —> C*( - ;R) is the comparison map.

One of the key properties of bounded cohomology is Gromov's mapping
theorem [Gro, p. 40), [Ival, Theorem 4.3], [Iva2], [Fril, Corollary 5.11]:

Theorem 2.2 (Gromov's mapping theorem). Let f : X > Y he a continuous

map ofpath-connected spaces such that jii(f): n\(X) —n\(Y) is surjective and
has amenable kernel. Then Hj*(/; R) : H^{Y\R) — H£(X; R) is an (isometric)
isomorphism.
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Furthermore, bounded cohomology admits a description in terms of injective
resolutions [Ival], [Fril, Chapter 4]. We will need the following facts:

Proposition 2.3 ([Fril, Lemma 4.22]). Let Y be a group and let S be a F -set

all of whose isotropy groups are amenable. Then B(S, R) is a relatively injective
Y -module.

Theorem 2.4. Let Y be a group, let M —» C * be a strong relatively injective

resolution of M by Banach Y -modules, and let X be a path-connected
topological space with fundamental group Y. Then every degree-wise bounded
T -cochain map C* —> Cf (E Y ; R) that extends id« : R —> R induces an isomorphism

H*(Cf(E F)r;R).

Proof. The cochain complex Cj(Er:l), together with the canonical augmentation

R —» C®(E r;R), is a strong relatively injective resolution [Ival, Section 4|,

[Fril, Proposition 4.8]. Therefore, applying the fundamental theorem for this type of
homological algebra [Ival, Section 3], [Fril, Theorem 4.5] completes the proof.

2.2. 11 -Homology. Instead of taking the topological dual functor, one can also

take the completion functor. Applying the completion functor to the singular chain

complex C*(- ;M) (with the f^-norm) leads to the I1 -chain complex C* • ;R)
and, after taking homology, to il-homology HI • ;R).

While the duality between f1 -homology and bounded cohomology is not as

straightforward as in the case of singular (co)homology, we still have the following
tools:

Theorem 2.5 (Translation principle [Löhl, Theorem 1.1]). If /*: C* —» D* is

a morphism of Banach chain complexes, then H*(B( f*, R)): H*(B(D*, R)) —>

Z/*(Z?(C*, M)) is an isomorphism if and only if //*(/*): //*(C*) —>• //*(/)*) is

an isomorphism.

Corollary 2.6 (Mapping theorem for f1 -homology [Löhl, Corollary 5.2][Bou,
Corollaire 5]). Let f : X -> Y be a continuous map between path-connected

spaces such that 7t\(f): n\(X) —»• ni(Y) is surjective and has amenable kernel.
Then H^(f;R): (AT R) —> //^'(L;R) is an (isometric) isomorphism.

3. Preliminaries: Classifying spaces of families of subgroups

3.1. Classifying spaces. We briefly recall basic terminology concerning classifying

spaces of families of subgroups; further information can, e.g., be found in

Lück's survey [Liic2],
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Definition 3.1 (Subgroup family). Let T be a group. A subgroup family of F is

a set F of subgroups of Y with the following properties:

• The set F is closed under conjugation.

• The set F is closed under taking subgroups.

Definition 3.2 (Classifying space of a subgroup family). Let T be a group and

let F be a subgroup family of F.

• AT -CW-complex has F-restricted isotropy if all isotropy groups lie in F.

• A model for EfT is a F-CW-complex X with F-restricted isotropy and

the following universal property: For every Y -CW-complex Y with F-
restricted isotropy, there exists up to T-homotopy exactly one continuous

F-map Y -> X

We will also abuse the symbol E^- F to denote a choice of a model

for Ef F (this is well-defined up to canonical F-homotopy equivalence)
and fy,r,F Y -> E^ T for a choice of a ("the") continuous Y-map.

If F is the family that only contains the trivial subgroup of T, then Ef T ET,
and we abbreviate fytr := Jy.v.f

Theorem 3.3 (Alternative characterisation of classifying spaces [Lüc2, Theorem

1.9]). Let Y be a group and let F be a subgroup family of Y.

(1) Then there exists a model for Ef T.

(2) A Y -CW-complex Y is a model for Ep F if and only if the following
conditions are satisfied:

• The F-CW-complex Y has F -restricted isotropy.

• For every subgroup H F, the H-fixed point set X" is weakly
contractible.

3.2. The family of amenable subgroups. Classically, key examples are given
by the family that consists solely of the trivial subgroup (leading to the ordinary
classifying space) and the subgroup family of all finite subgroups (leading for
discrete groups to the classifying space of proper actions). In the setting of
bounded cohomology, it is natural to work with the extension of finite groups to
amenable groups:

Example 3.4. Let Y be a group and let Am be the set of all amenable subgroups
of F. Then Am is a subgroup family of Y in the sense of Definition 3.1.
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3.3. An example. We explain an explicit model of EArn T for the free group
T F2 of rank 2. In this case, Am is the family of cyclic subgroups of F2.
The following lemma holds, suitably modified, in the greater generality of word-

hyperbolic groups [JPL, Remark 7].

Lemma 3.5. Every cyclic subgroup of F2 is contained in a maximal cyclic
subgroup. The normaliser of a maximal cyclic subgroup C of F2 is C itself.

If K.II < T are subgroups of a group F and X is an H -space, then the

AT-fixed points of the induced V -space V xH X are

(1) (r xH X)K {[y,x]\y-lKy C H, x e Xr~lKy}.

Example 3.6 (A model of EAm F2). Let MCyc be a complete set of representatives
of conjugacy classes of maximal cyclic subgroups in F2. Every subgroup
C 6 MCyc is isomorphic to Z. Hence we can take 1 as a model of E C

for every C e MCyc on which C Z acts by translations. We pick the 4-regular
tree T as a model of EF2. A 2-dimensional model Y of the classifying space
EAm I'i is given by the pushout of F2 -spaces:

LieeMCyc F2 ><C ® > T

UceMCyc F2 ><c cone(R) > Y

Here cone(M) is the cone over the free C -space R. The C -action on R naturally
extends to the cone in such a way that the cone tip is a fixed point. The map c is

the classifying map for T as a model of EF2. The left vertical map is induced

by the inclusion of the bottom into the cone.

According to Theorem 3.3 we have to show that Yc is contractible for every
cyclic subgroup C < F2 and is empty for every non-cyclic subgroup C < F2.
Let K < F2 be a non-trivial subgroup. We obviously have TK 0 and by (1)
also

/ \ K
I U f2XCI U (^2XCR)* 0.

C eMCyc
' Ce MCyc

Since taking K -fixed points respects the pushout property [tDie, (1.17) exercise 5

on p. 103] we obtain that

Yk ]J F2 xc cone(R)j ]J (F2 xc cone(R))^.
C eMCyc

' Ce MCyc
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If K is not cyclic, then it follows from (1) that YK is empty. Let K be cyclic.
Let C0 6 MCyc be the unique element such that a conjugate yoQy^1, yo e F2,

is the unique maximal cyclic subgroup containing K (Lemma 3.5). Further, y0 is

uniquely determined up to multiplication with elements in the normaliser of C0,

which equals C0. Then (1) implies that

Yk (F2 xCo cone(M))^ {[y0,cone tip]}

consists of a single point. It remains to show that YK Y is contractible for
K — {1}. We only sketch the argument: The three spaces defining Y in the above

pushout have contractible path components. Hence Y is acyclic. Using the van

Kampen theorem one verifies that Y is simply connected. Whitehead's theorem

then implies that Y is contractible.

The above example can be generalized to word-hyperbolic groups |JPL],

4. Preliminaries: Nerves of covers

In the following, we discuss nerves of open covers as well as their lifts to
universal coverings. In order to keep the notation simple, we will view open
covers as sets of open subsets of the given ambient space, not as families of
subsets.

Setup 4.1. Let X be a path-connected CW-complex with universal covering

it: X -> X, let x0 e X, and let T := ni(X, x0) be the fundamental

group of X. Moreover, let U be an open cover of X by path-connected sets

and let

U := {V c X I there exists a W e U such that

V is a path-connected component of

be the associated cover of X

Remark 4.2. In the situation of Setup 4.1, let V e U Then V is open (as X
is locally path-connected and standard lifting properties in coverings apply).

Moreover, n(V) e U : By construction, there is a W e U such that V is

a path-connected component of n~l(W). In particular, it(V) c IT. In fact, we

have tt(V) — W. Indeed, let x e W. Because V is non-empty and W is

path-connected, there is a continuous path w : [0, 1] —> W with iu(0) e n{V)
and u;(l) x. Then the lifting properties of the covering n
W show that there is a continuous zr-lift w : [0,1] -> n~x(W) with w (0) e V.
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Because w ([0, 1]) is path-connected and F is a path-connected component
of we obtain tu(l) e K. In particular,

Definition 4.3 (Convex cover). An open cover U of a topological space X is

called convex if for every finite set U' C U, the intersection fj U' is path-
connected (or empty).

4.1. Nerves and equivariance.

Definition 4.4 (Nerve). In the situation of Setup 4.1, the nerve of U is the

(abstract) simplicial complex N given by the following data: For each ne N,
the set of n -simplices of N is

Lemma 4.5 (Actions on nerves). In the situation of Setup 4.1, let N he the nerve

of U and let N he the nerve of U Then:

(1) The deck transformation action of T on X turns the nerve N of the

induced cover U into a F -simplicial complex.

(2) The universal covering map n : X —> X induces a well-defined simplicial
map p: N -» N.

(3) If the open cover U is convex and n e N, then p induces a bijection
between r \ N )„ and Nn. Here, N )n carries the diagonal V -action.

Proof. Ad 1. By construction, the set U is closed under the deck transformation
action of T. Moreover, this F -action is compatible with the simplicial structure
(because homeomorphisms preserve intersections).

Ad 2. For every V e U we have jt(V) e U (Remark 4.2).
Let ne N and let {V0,... ,Vn} be an n -simplex of N Then, the

projections it(V0) n(Vn) are pairwise different (because F0 Fl ••• (T Vn 0
and elements of U that lie over the same set in U have empty intersection).
Moreover,

x iu(l) jt o w (1) e tt(V).

{Ko, Vn) Ko,..., Vn U, f| Vj f 0, Vj, Vj Vk

Hence, «-simplices are mapped to «-simplices.

Ad 3. Let « e N and let {Wo Wn} be an « -simplex of N.
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• Then there exists an «-simplex {V0 IV) of N with

This can be seen as follows: Let x e f)j=0Wj and let 3c e 7r_1({x}).
Then, for each j e N, we choose the element Vj e U with 3c e Vj and

jt(Vj) Wj. By construction, the intersection P|y=o Vj contains 3c and

thus is non-empty. Therefore, {VQ,...,Vn} is an n -simplex of /V

• If {L0', V) is another «-simplex of N with p({Vq, VB'})

{Wo, Wn), then there exists a ft F with

because: Let x e (~)"=0 V, and y c (~)"=0 VJ. As U is a convex open cover,
the intersection H;=o ^7 's path-connected. Let w: [0, 1] —^ (~)'J=0 Wj be a

path from 7r(x) to n(y) and let w : [0,1] X be a jr-lift of w. Then

w ([0, 1]) C Vj for each j e {0 «} and there exists a y e T with

y y w( 1).

By construction, w (1) e Dy=o Y 'Vj Therefore, for all j e {0 ,«}, we
have Vj n y Vj / 0 and so Vj y Vj.

Proposition 4.6. In the situation of Setup 4.1, let U he convex, let N be the

nerve of U, and let N he the nerve of U Then the map p : N —>• N induced

by 7t (Lemma 4.5) induces a chain homotopy equivalence

Proof. By the previous lemma (Lemma 4.5), the simplicial map p induces a

chain isomorphism C*( N )r ^ <V(A') between the simplicial chain complexes.

Moreover, the canonical inclusion i : C*(N) —> C*(|AF|) is a chain homotopy

equivalence and the canonical inclusion i : C*(7V) —> C*(| N |) is a T-chain

homotopy equivalence [Lücl, Proposition 13.10 b) on p. 264). It should be noted

that this is the step in the proof of Theorem 1.1, where we lose control over the

norms.
Therefore, the commutative diagram

V;e{0,...,„} Vj y Vj,

C*(|p|)r:C*(|AM)r^C*(|W|).

C*(\N\)rC-^fC.(N\)

C*(N)r
C* (p)r

>C*(N)

proves the claim.
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4.2. The nerve map.

Remark 4.7 (Nerve map [Dol, p. 355]). In the situation of Setup 4.1, the space X
admits a partition of unity subordinate to the open cover U (because CW-

complexes are Hausdorff and paracompact). Every partition of unity (<'fv)veu
of X that is subordinate to U gives rise to a continuous map

v: X -* \N\

into the geometric realisation \N\ of the nerve /V of U : For x e X, we just set

(in barycentric coordinates)

v(x) := (fivix) V.

VeU

Different choices of partitions of unity lead to homotopic maps. We therefore

speak of the nerve map X -* \N\.

Lemma 4.8 (Lifting the nerve map). In the situation of Setup 4.1, let N he the

nerve of U, let N he the nerve of U let \p\ \ \ N | —> |(V| he the map induced

by 7i {Lemma 4.5), and let v: X —>• |(V| he a nerve map. Then there exists a

continuous F -map : X —> | Af | with

\p\ off — V O TT.

X- - \N\

71 \p\

X~^\N\
Proof. Let {(pw)weu be a partition of unity of X that is subordinate to U

(which induces the nerve map v). We construct 17 as nerve map of the lift of
this partition of unity to U : For VeU, we define

?V := Xv <Pk(V) ° it'- X —> [0, 1],

where xv' X -> {0,1} denotes the characteristic function of the subset V c X
We will now establish the following properties of these functions:

(1) The function Ipv- X —^ [0,1 ] is continuous.

(Because X is locally path-connected, the standard lifting properties show

that 7r(3K) 3(jr(K)). Now continuity of 7p y easily follows from the

continuity of ipn(v) •)
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(2) For each y e r, we have 7py{y-x) 7p Y-\.v(x).

(This equivariance property follows directly from the construction.)

(3) The family (y> v)Veiis a partition of unity on X subordinate to U

(This is a straightforward computation.)

If W U, then we abbreviate U \w := {V e U \ tt(V) W}. Then

v\X^ |ÂfI

x I—> E E <Pv(x) • F

is the nerve map associated with this partition of unity (Jpv)v&jj • The second

property shows that

H Vv{y-x)-V
WcV yfu\w

Y, Vy-^vM-V
w&u VeU\w

J2 Vv(x) • (y V)
w^u VeU\w

y 7(x)

holds for all x e X and all y e F. Hence, 7 is a continuous F -map.
Moreover, by construction, we have that \p\o~v v o n.

In summary, we can pass from the nerve N to the F -equivariant setting (and
whence to the right context for classifying spaces) as follows:

Proposition 4.9. In the situation of Setup 4.1, let U be convex, let N be the

nerve of U, let N be the nerve of U let p: N -> N be the map induced,

by n (jLemma 4.5), let v: X —> \N\ be a nerve map, and let TT : X —> | TV | be

as in Lemma 4.8. Then there exists a chain map xp \ C*(|/V|) —> C*(| N |)r such

that

tp o C*(v) o C*(7r)r — C*(TT)r : C*( X )r -> C*(| |)r.

Proof. By Lemma 4.8, we have \p\ o IT v o n, whence

C*(|p|)p o C*(TT )r C*(v) o C*(7r)r-

In view of Proposition 4.6, we can now take a chain homotopy inverse

of C*(|p|)r: C*(|ÂT|)r-^C*(|jV|) for xp.
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4.3. Families and covers.

Definition 4.10 (Amenable cover). In the situation of Setup 4.1 (which includes
that all sets in U are path-connected), let F be a subgroup family of T. We

call U an F -cover of X if for each V e U and each x e V, the subgroup

\m(ji\(V,x) -> m(X,x)) C jri(X,x)

induced by the inclusion V X lies in F under an isomorphism x)
jt\(X, xo) r induced by conjugation with a path between x and xq (because

F is closed under conjugation in V, this property does not depend on the chosen

paths).
We call U an amenable cover if U is an Am-cover.

Lemma 4.11 (Nerves of amenable covers). In the situation of Setup 4.1, let F
be a subgroup family of T and let U be an F -cover. Then the isotropy groups
of the corresponding V -space \ N | all lie in F.

In particular, if F Am, then these isotropy groups are amenable.

Proof. Because the F -action on | N j (Lemma 4.5) is obtained from the simplicial
T -action on N by affine extension, it suffices to show that the isotropy groups of
the vertices in the barycentric subdivision S of N with the induced simplicial
F -action all lie in F.

By definition of the barycentric subdivision, the vertex set of S is the set of
simplices of N. Let r be a vertex of S ; i.e., there exist n e N, V0 Vn e U
with K0n---nF„ ^40 and v — {V0,.... V„j. Then the stabiliser of v consists

precisely of those y e F with

ly Vo y-vn} {v0 vn}.

We distinguish the following cases:

• If n 0, then the stabiliser of v is

{y e T I y V„ K0},

which is (conjugate to) a subgroup of im(7ri(jr(Ko) ^ j50)- Because

jt(Fo) e U (Remark 4.2) and U is an F-cover, the stabiliser of v lies

in F.

• Let n > 0. If y e F is in the stabiliser of v and j e {0, n}
with y Vj Vk, then j k, which can be seen as follows: Because

of y Vj Vfr, we have jr(Vj) 7r(l4-) Therefore, Vj and If are

path-connected components of the 7r-preimage of the same element of U
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(Remark 4.2). On the other hand, Fj fl ft / 0. Therefore, Vj 14, and

so j k.

In particular, the stabiliser F„ is a subgroup of TV,, fl • • • D Yvn The first
case shows that Tv0 e F. As F is a subgroup family, also the subgroup r„
lies in F.

5. Proof of Theorem 1.1

For the proof of Theorem 1.1, we will first recall that the family of amenable

subgroups can be used to compute bounded cohomology; more generally, we

introduce the notion of //^-admissible subgroup families (and then show that

Am is such a family).
As second step, we will combine -admissibility with the universal property

of classifying spaces of families to obtain the factorisation over the cohomological
nerve map.

5.1. Admissible families of subgroups.

Definition 5.1. Let F be a group, let f be a subgroup family of T. We consider

the induced map

//*(q*(./Er,r,F)r): //*(C£(EF T)r) -+ H*(C*(EF)r) =: //*(T).

The notation /er,r,F is introduced in Definition 3.2. The family F is

• Hj* -admissible if H*(C^( /\r r,r./.-)' is surjective.

• strongly H£ -admissible if II* (Cf(f r.r.F )r) is bijective.

Clearly, every subfamily of an H£ -admissible family is also -admissible.

Moreover, if F is a group with II? T) H?{ 1), then every subgroup family
of T is II£ -admissible (for trivial reasons); examples of such groups are all

mitotic groups [Löh3],

Proposition 5.2. Let Y be a group. Then the family Am of amenable subgroups

of F is strongly H£ -admissible.

Proof. The isotropy groups of the set of singular n -simplices of EAm T are

amenable since the isotropy group of a : A" EAm F is the intersection of
isotropy groups of points in the image of a. Hence 6)"(Fam F) is a relatively
injective Banach F -module for every n > 0 (Proposition 2.3). Since EAm F

is also contractible (Theorem 3.3), Cè*(EAmr), together with the canonical
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augmentation M -»• C°(EAm H by constant functions, is a strong relatively
injective resolution of K by Banach F -modules.

Therefore, the fundamental theorem for this type of homological algebra

(Theorem 2.4) shows that the bounded T -cochain map

C;(/Er,r,F)r: C*(EAm F)r -> c;(EDr

induces an isomorphism in bounded cohomology. In fact, this isomorphism is

even isometric [Fril. Theorem 4.23].

This proposition is the "group-theoretic essence" of Theorem 1.1.

5.2. Bounded cohomology of admissible covers. Using the notion of Hf-
admissibility, we have the following version of Theorem 1.1, leading to a more

conceptual understanding of this phenomenon:

Theorem 5.3. Let F be a group and let F be an //,* -admissible family of
subgroups of T. Let X be a path-connected CW-complex with Jti(X) F, and
let U be an open F -cover of X. Then the following hold:

(1) If U is convex, there exists a factorisation

H*(X; R)
C* H*(X\R)

^ ^ ^ H*(v;R)

H*QN\;W)

of the comparison map cx through the nerve map v : X ^ \N \ of U.

(2) If the multiplicity of U is at most m, then cx vanishes in all degrees * > m.

Proof. We pick a basepoint x0 e X and consider the group F := ni(X,xo).
Now we can invoke the classifying spaces in the following way:

• As the universal covering X of A is a F -CW-complex with free F -

action (via the deck transformation action), there is a continuous F-
map /jr: X -» E T.

• Because U is an open F -cover the geometric realisation | N | of
the associated open cover of X is a T -CW-complex with F -restricted

isotropy (Lemma 4.11). Therefore, we obtain a corresponding continuous
F -map ,/|)v |,r,F: \ N\ -+EFr.

• Moreover, we have the continuous T -map /E r.r.F : ET -^Ef f.
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Ad 1. To this end, we consider the diagram in Figure 3 and explain why it
commutes up to cochain homotopy. The squares on the left-hand side clearly
commute.

The universal property of Ef T implies that the rectangle in the middle

commutes up to cochain homotopy: Both /et.lr ° ./V r ar|d ,/j'I n |,r,F o v are

T-equivariant continuous maps X —> Ef F, which thus have to be F-homotopic.
The right polygon is commutative by (the algebraic dual of) Proposition 4.9.

Taking cohomology leads to the solid part of the following commutative

diagram:
CA

h;{x)

CT

-> H*(X) :

-> H*(D

H*(X)

H*\C*(EF T)r)

H*(v)

N I)

The left vertical arrow exists and is an isomorphism by Gromov's mapping theorem

(Theorem 2.2) (because /V r induces an isomorphism on bounded cohomology).
Moreover, because F is H£ -admissible, we can easily fill in the dashed diagonal

arrow to obtain a commutative triangle. Hence, taking the dotted composition
gives us the claimed factorisation q>.

Ad 2. Without the convexity assumption we still have a similar commutative

diagram as above with the right vertical map H*(v) replaced by

H*(jr)~1 o H*(v): |)r) -> H*(X).

Under the assumption on multiplicity, the dimension of the simplicial complex N
satisfies

dim N < dim N < m.

Furthermore, the simplicial chain complex C*( N and the singular chain complex

C*(| N I) are equivariantly chain homotopic [Liicl, Proposition 13.10 b) on p. 264],
Hence H*(C*(| N |)r) vanishes in degrees * > m and statement (2) follows.

The proof shows that we need even less than H£ -admissibility: It suffices that

the composition H£(Y\F) —H£(V) -» H*(r) of the canonical map with the

comparison map hits all bounded classes in H*(T).
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C*(X)t >C*{X)

f—J XX

C*{X)

C?(X)T(- > C*(A")r C*{X)T

f—J XX

C*(E T)rc >C*(ET)r

/ei

c*(ef r)1 -—^c^i/vi)1 -^^c*(
|7V|,r,F HomR(r/>,R)

N I)

Figure 3

Proof of Theorem 5.3; for improved readability, cochain maps induced

by continuous maps only carry the underlying continuous map as label.

5.3. Proof of Theorem l.f. As a special case, we obtain Theorem 1.1: By
Proposition 5.2, the family Am of amenable subgroups is H£ -admissible.

Therefore, Theorem 5.3 is applicable.

6. The case of 11 -homology

We now explain how to derive the ix -analogues of Proposition 5.2 and

Theorem 5.3, and whence prove Theorem 1.2.

6.1. i1 -admissiblity.

Definition 6.1. Let F be a group, let F be a subgroup family of T, and let

/etj/: ET^EfF be the canonical map; we consider the induced map

H.(C?(Jkr,r,F)r): H? (O := H*(C* (E T)r) -* H*(C? (EF r)r).

The family F is

• HI -admissible if //*(Cf
'
(/Er,r,f)r) is injective.

• strongly H^ -admissible if //*(Cf'(/Er,r,F)r) is bijective.

Proposition 6.2.

(1) Let r be a group and let F be a subgroup family. If F is strongly Hin¬

admissible, then F is strongly //*' -admissible.



170 C. Löh and R. Sauer

(2) In particular, the family Am is H^ -admissible.

Proof. The first part follows from the fact that the topological dual of the

topological coinvariants are the invariants of the topological dual and the

translation principle (Theorem 2.5). The second part is then a consequence of the

first part and Proposition 5.2.

6.2. 11 -Homology of admissible covers.

Theorem 6.3. Let F he a group and let F he an -admissible subgroup

family of F. Let X he a path-connected CW-complex with n\{X) F, and let

U he an open F -cover of X. Then the following hold:

(1) If U is convex, then there exists a factorisation

H*(X\W) —-—> HI (ATM)

of the comparison map c% through the nerve map v : X -* | N \ of U.

(2) If the multiplicity of U is at most m, then c% vanishes in all degrees * > m.

Proof We can argue exactly as in the proof of Theorem 5.3, by working on
the chain level instead of the cochain level; instead of the mapping theorem in
bounded cohomology, we use the corresponding mapping theorem in 11 -homology
(Corollary 2.6).

6.3. Proof of Theorem 1.2. As in the case of bounded cohomology, Theorem 1.2

now follows from Theorem 6.3 and Proposition 6.2.
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