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Bounded cohomology of amenable covers
via classifying spaces

Clara Lon and Roman SAUER

Abstract. Gromov and Ivanov established an analogue of Leray’s theorem on cohomology of
contractible covers for bounded cohomology of amenable covers. We present an alternative

proof of this fact, using classifying spaces of families of subgroups.
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1. Introduction

The idea that the cohomology of a space can be computed as cohomology
of the nerve of an open cover consisting of contractible subsets first appeared in
a paper by Weil [Wei], which was preceded by a paper of Leray [Ler]| with a
similar idea.

Gromov and Ivanov established partial analogues for bounded cohomology in
terms of covers that consist of amenable subsets; we will consider the following
version of this phenomenon:

Theorem 1.1. Let X be a path-connected CW-complex, let U be an amenable
open cover of X, let N be the nerve of U, and let |[N| be the geometric
realisation of N. Let cx: H;(X:R) — H*(X;R) be the comparison map from
bounded to ordinary cohomology. Then the following hold.



152 C. LoH and R. SAUER

(1) If U is convex, then cx factors through the nerve map v: X — |[N|: More
precisely, there is an R-linear map ¢: Hy (X:R) — H*(|N|;R) with

H*(v:R)o g = cyx.
C
H}(X;R) —— H*(X;R)

e TH*(IJ;R)
[ \\,L
H*(IN|;R)

oy

(2) If the multiplicity of U is at most m, then the comparison map cx vanishes
in all degrees x > m.

Here, an amenable cover of X is an open cover U of X by path-connected
sets with the following property: For each V' in U and each x € V', the image
of the homomorphism 7y (V,x) — m1(X,x) induced by the inclusion V — X is
an amenable subgroup of m;(X,x) (Definition 4.10). Such an amenable cover U
is convex if all finite intersections of members of U are path-connected or empty
(Definition 4.3).

The first statement of Theorem 1.1 was proved by Ivanov [Ival, Section 6]
using sheaf cohomology and a spectral sequence computation. The assumption
on convexity is missing in Ivanov’s paper but needed (see Example 1.4). The
second statement of Theorem 1.1 is Gromov’s vanishing theorem [Gro, Section 3]
whose proof is based on the theory of multicomplexes. Recently, Frigerio and
Moraschini reworked Gromov’s theory of multicomplexes and gave a proof of
Theorem 1.1 [FM, Section 6].

In this note, we present an alternative proof of Theorem 1.1 that only
uses standard facts about bounded cohomology (via strong relatively injective
resolutions) and the classifying space for the family of amenable subgroups. More
precisely, we separate the proof into a statement about admissibility of the family
of amenable subgroups (Section 5.1) and generic properties of classifying spaces
of families (Section 5.2). The abstract version of Theorem 1.1 is Theorem 5.3.

Furthermore, our approach also leads to a straightforward proof for the
corresponding statement in £!-homology (and of the corresponding abstract
version: Theorem 6.3):

Theorem 1.2. Let X be a path-connected CW-complex, let U be an amenable
open cover of X, let N be the nerve of U, and let |N| be the geometric
realisation of N. Let Cil c Ho (X R) > Hfl (X:R) be the comparison map from
ordinary to {'-homology. Then the following hold.
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(1) If U is convex, then e factors through the nerve map v: X — |N|:
X 1
More precisely, there is an R-linear map ¢: Hy(|[N|;R) = HE (X:R) with

o He(v;R) = C)E(l.

el

CX El
Ho(X:R) —> HE' (X:R)
>

H*(v;ml i -
HL(N|:R

(2) If the multiplicity of U is at most m, then the comparison map c)é vanishes
in all degrees x > m.

In particular, as a special case, we obtain the corresponding vanishing theorem
for ¢! -homology and ¢! -invisibility results for amenable convex open covers on
CW-complexes (Corollary 1.5), established recently by Frigerio [Fri2]. Using
Lemma 4.1. in loc. cit., Frigerio reduces the statement for topological spaces to
the one for CW-complexes and thus can drop the assumption on the space being
a CW-complex. Using the same lemma we may also drop the assumption on X
being a CW-complex in Theorems 1.1(2) and Theorem 1.2 (2).

1.1. Two non-examples. We give two simple examples complementing the
hypotheses and the conclusion in Theorem 1.1.

Both examples are based on the oriented closed connected surface X of
genus 2. Because ¥ admits a hyperbolic structure, the comparison map

HZ(Z;R) > H*(Z;R) =R
is surjective (and thus non-trivial) [Gro, p. 9/17].

Example 1.3. In general, in Theorem 1.1, there is no such factorisation ¢ that
is bounded: We consider the open cover U of X depicted in Figure 1. All
members of U are contractible or homotopy equivalent to S!. Therefore, U is
an amenable cover; moreover, one easily checks that the cover is convex (in the
sense of Definition 4.3).

Then the nerve N of U satisfies |[N| >~ S'v §2 v S (the §% stems from
the octahedron spanned by the sets Dy, Dy, Uy, ..., Uy).

We will now show that all non-trivial classes in H?(|N|;R) are unbounded:
To this end, we consider the inclusion i: §? — S? v §2 v §! ~ |N|. Then the
induced map H2(i:R): H*(|N|:R) — H?(S%;R) is an isomorphism. However,
all non-trivial classes in H?(S?;R) are known to be unbounded [Gro, p. 8/17].
Therefore, also all non-trivial classes in H?(|N|:R) are unbounded.
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The open cover of ¥ in Example 1.3

In particular, the surjection H7(Z;R) — H?(X;R) = R does nor admit a
factorisation HbZ(Z;R) — H?(|N|;R) over the nerve map by a bounded linear
map.

Example 1.4. In general, Theorem 1.1 does not hold without the convexity
condition: We consider the following open cover U of % depicted in Figure 2.

Then the nerve N of U satisfies |[N| = A3 ~ . In particular, H?(|N|;R) = 0.
Therefore, the comparison map HbZ(Z;R) — H?(X;R) (which is non-trivial)
cannot factor over H2(|N|;R).

a
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b2 b1

az a) an aj

by J
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FIGURE 2
The open cover of ¥ in Example 1.4
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1.2. Applications. The standard application of results of the type of Theorem 1.1
and Theorem 1.2 are vanishing theorems for the ¢!-semi-norm on singular
homology (and whence to simplicial volume):

Corollary 1.5 (a vanishing theorem). Let X be a path-connected CW-complex,
let U be an amenable convex open cover of X, and let N be the nerve of U.
Furthermore, let k € N with Hp(N;R) == 0.

(1) Then the comparison maps cx: Hé‘(X;R) — HX(X;R) in bounded co-
homology and c)"“}]: Hy(X:R) — H,fl(X;R) in £'-homology are the zero
maps.

(2) In particular, for all a € Hy(X;R), we have

leeff = 0.

Proof. Ad I We have Hy(|N|;R) = Hi(N:;R) = 0 by assumption. Moreover,
by the universal coefficient theorem, we also have H*(|N|;R) = 0. Therefore,
Theorem 1.1 and Theorem 1.2 show that the comparison maps in bounded
cohomology and ¢!'-homology factor over 0 and so are the zero maps.

Ad 2. The comparison map c)‘}' is isometric with respect to the £!-semi-

norm [Loh2, Proposition 2.5]. Applying the first part proves the claim. ]

The hypothesis is satisfied if the multiplicity of the cover is at most k (and
thus the nerve has dimension at most k& — 1). Further examples are contained in
Gromov’s original article [Gro, Section 3.1].

1.3. Notation. In the rest of this paper, homology, cohomology as well as
bounded cohomology of spaces, groups, or simplicial complexes is always taken
with R-coefficients (and we will mostly omit this from the notation).

Organisation of this article. We first recall basics on bounded cohomology
(Section 2), classifying spaces of families of subgroups (Section 3), and nerves
of covers (Section 4). It should be noted that all of this material is standard; we
collected it here in one place for convenience and to introduce the notation used
in the main proof.

The proof of Theorem LI is given in Section 5; the proof of Theorem 1.2 is
given in Section 6.
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2. Preliminaries: Bounded cohomology

We first collect basic notation and basic facts on bounded cohomology and
¢! -homology, as needed in the sequel; in fact, no other input from bounded
cohomology will be needed for the proofs of Theorem 1.1 and Theorem 1.2. For
details and further results, we refer the reader to the literature [Gro, Ival, Iva2,
Mon, Fril, Bou, Lohl].

2.1. Bounded cohomology. Bounded cohomology of spaces and groups is
defined as the cohomology of the topological dual of the standard chain complexes.
Let B(-,R) be the contravariant endofunctor on the category of normed R -vector
spaces and continuous linear maps that is given by taking the topological dual. A
normed chain complex is a chain complex consisting of normed R -vector spaces
and continuous boundary maps. Then B( - ,R) induces a contravariant functor
from the category of normed chain complexes (and degree-wise continuous chain
maps) to the category of Banach cochain complexes (and degree-wise continuous
cochain maps).

If X is a topological space, then the singular chain complex C.(X;R) is
a normed chain complex with respect to the {£!'-norm |- |; associated with
the R-bases given by the sets of all singular simplices of X. If f: X — VY
is a continuous map, then the chain map C.(/f:R): C.(X:R) — Ci(Y:R) is
degree-wise of norm at most 1.

Definition 2.1 (bounded cohomology of spaces).

e The hounded cochain complex functor C; (- ;R) is the contravariant functor
from the category of topological spaces to Banach cochain complexes given
by the composition B(Ci(-:R),R).

o 'The bounded cohomology functor H; ( - ;R) is the contravariant functor

from the category of topological spaces to (semi-normed) graded R -vector
spaces, given by the composition H*(Cp (- ;R)).

e  'The natural transformation H,(-:R) — H*(-;R) induced by the natural
inclusion C,f(-;R) — C*(-;R) is the comparison map.

One of the key properties of bounded cohomology is Gromov’s mapping
theorem [Gro, p. 40], [Ival, Theorem 4.3], [Iva2], [Fril, Corollary 5.11]:

Theorem 2.2 (Gromov’s mapping theorem). Let f: X — Y be a continuous
map of path-connected spaces such that w,(f): m1(X) — 7 (Y) is surjective and
has amenable kernel. Then H,(f;R): Hy(Y;R) — H;(X;R) is an (isometric)
isomorphism.
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Furthermore, bounded cohomology admits a description in terms of injective
resolutions [Ival], [Fril, Chapter 4]. We will need the following facts:

Proposition 2.3 ([Fril, Lemma 4.22]). Let I" be a group and let S be a I -set
all of whose isotropy groups are amenable. Then B(S,R) is a relatively injective
[ -module.

Theorem 2.4. Let I" be a group, let R — C* be a strong relatively injec-
tive resolution of R by Banach 1 -modules, and let X be a path-connected
topological space with fundamental group U'. Then every degree-wise bounded
I"-cochain map C* — C };" (ET":R) that extends idg: R — R induces an isomor-
phism H*((C*)T) - H*(CJ(ED)T:R).

Proof. 'The cochain complex C;(ET;R), together with the canonical augmenta-
tion R — CI?(E [";R), is a strong relatively injective resolution [Ival, Section 4],
[Fril, Proposition 4.8]. Therefore, applying the fundamental theorem for this type of
homological algebra [Ival, Section 3], [Fril, Theorem 4.5] completes the proof. []

2.2. ¢!-Homology. Instead of taking the topological dual functor, one can also
take the completion functor. Applying the completion functor to the singular chain
complex Cy(-;R) (with the £!-norm) leads to the ¢!-chain complex Cfl( - R)
and, after taking homology, to ¢'-homology Hfl (-;R).

While the duality between ¢!-homology and bounded cohomology is not as
straightforward as in the case of singular (co)homology, we still have the following
tools:

Theorem 2.5 (Translation principle [Lohl, Theorem 1.1]). If fi«: Cx — Dy is
a morphism of Banach chain complexes, then H*(B(f«.R)): H*(B(D4.R)) —
H*(B(C«.R)) is an isomorphism if and only if H.(fy): Ho(Cy) — Hi(Dy) is
an isomorphism.

Corollary 2.6 (Mapping theorem for ¢!-homology [Lohl, Corollary 5.2][Bou,
Corollaire 5]). Let f: X — Y be a continuous map between path-connected
spaces such that w(f): m(X) — m1(Y) is surjective and has amenable kernel.
Then Hfl(f;R): Hf' (X:R) —> Hfl(Y;R) is an (isometric) isomorphism.

3. Preliminaries: Classifying spaces of families of subgroups

3.1. Classifying spaces. We briefly recall basic terminology concerning classi-
fying spaces of families of subgroups; further information can, e.g., be found in
Lick’s survey [Liic2].
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Definition 3.1 (Subgroup family). Let T" be a group. A subgroup family of T is
a set F of subgroups of I' with the following properties:

e The set F is closed under conjugation.

e The set F is closed under taking subgroups.

Definition 3.2 (Classifying space of a subgroup family). Let I" be a group and
let F' be a subgroup family of I".

e A I'-CW-complex has F -restricted isotropy if all isotropy groups lie in F.

e A model for EF I' is a I'-CW-complex X with F -restricted isotropy and
the following universal property: For every I'-CW-complex Y with F-
restricted isotropy, there exists up to I'-homotopy exactly one continuous
['-map Y — X.

We will also abuse the symbol Er I' to denote a choice of a model
for EF I' (this is well-defined up to canonical I'-homotopy equivalence)
and fyrr:Y — Ep " for a choice of a (“the”) continuous I'-map.

If F is the family that only contains the trivial subgroup of I', then Ef ' = E T,
and we abbreviate fyr = fyr.r.

Theorem 3.3 (Alternative characterisation of classifying spaces [Liic2, Theorem
1.9]). Let T be a group and let F be a subgroup family of T .

(1) Then there exists a model for Ep .

(2) A T'-CW-complex Y is a model for Egp ' if and only if the following
conditions are satisfied:

° The T'-CW-complex Y has F -restricted isotropy.

® For every subgroup H € F, the H -fixed point set X" is weakly
contractible.

3.2. The family of amenable subgroups. Classically, key examples are given
by the family that consists solely of the trivial subgroup (leading to the ordinary
classifying space) and the subgroup family of all finite subgroups (leading for
discrete groups to the classifying space of proper actions). In the setting of
bounded cohomology, it is natural to work with the extension of finite groups to
amenable groups:

Example 3.4. Let ' be a group and let Am be the set of all amenable subgroups
of I'. Then Am is a subgroup family of I'" in the sense of Definition 3.1I.
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3.3. An example. We explain an explicit model of Eay, I' for the free group
[' = F, of rank 2. In this case, Am is the family of cyclic subgroups of F,.
The following lemma holds, suitably modified, in the greater generality of word-
hyperbolic groups [JPL, Remark 7].

Lemma 3.5. Every cyclic subgroup of F, is contained in a maximal cyclic
subgroup. The normaliser of a maximal cyclic subgroup C of F> is C itself.

If K,H < T are subgroups of a group I and X is an H -space, then the

K -fixed points of the induced I'-space I' xy X are
K 1 1k

(1) (Cxg X)" ={ly.x]ly"'Ky c H, xe Xx¥ %V}
Example 3.6 (A model of En,, F>). Let MCyc be a complete set of representatives
of conjugacy classes of maximal cyclic subgroups in F,. Every subgroup
C € MCyc is isomorphic to 7Z. Hence we can take R as a model of EC
for every C € MCyc on which C = Z acts by translations. We pick the 4-regular
tree T as a model of E F>. A 2-dimensional model Y of the classifying space
Eam > is given by the pushout of F;-spaces:

L[CGMCyc F; x¢g R———T

| J

]—[CEMCyc 5 xc cone(R) —— Y

Here cone(IR) is the cone over the free C-space R. The C -action on R naturally
extends to the cone in such a way that the cone tip is a fixed point. The map ¢ is
the classifying map for 7 as a model of E F,. The left vertical map is induced
by the inclusion of the bottom into the cone.

According to Theorem 3.3 we have to show that Y€ is contractible for every
cyclic subgroup C < F, and is empty for every non-cyclic subgroup C < F;.
Let K < F» be a non-trivial subgroup. We obviously have TX = @ and by (1)

also
( 11 szCR)K: [ (F2xcR)" = .

CeMCyc C eMCyc

Since taking K -fixed points respects the pushout property [tDie, (1.17) exercise 5
on p. 103] we obtain that

K
Y& ~ ( ]_[ F> X¢ cone(R)) = ]_[ (F2 x¢ COHG(R))K.

C eMCyc CeMCyc
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If K is not cyclic, then it follows from (1) that Y X is empty. Let K be cyclic.
Let Cy € MCyc be the unique element such that a conjugate yoCoyO“l , Yo € F>,
is the unique maximal cyclic subgroup containing K (Lemma 3.5). Further, y, is
uniquely determined up to multiplication with elements in the normaliser of Cp,
which equals Cy. Then (1) implies that

YK = (F2 x¢, cone(R))K = {[yo, cone tip] }

consists of a single point. It remains to show that Y% =Y is contractible for
K = {1}. We only sketch the argument: The three spaces defining Y in the above
pushout have contractible path components. Hence Y is acyclic. Using the van
Kampen theorem one verifies that Y is simply connected. Whitehead’s theorem
then implies that Y is contractible.

The above example can be generalized to word-hyperbolic groups [JPL].

4. Preliminaries: Nerves of covers

In the following, we discuss nerves of open covers as well as their lifts to
universal coverings. In order to keep the notation simple, we will view open
covers as sets of open subsets of the given ambient space, not as families of
subsets.

Setup 4.1. Let X be a path-connected CW-complex with universal cover-
ing 7: X — X, let xo € X, and let I' := m(X,xo) be the fundamental
group of X . Moreover, let U be an open cover of X by path-connected sets
and let

U:= {v c X ‘ there exists a W € U such that

V is a path-connected component of =~' (W)}

be the associated cover of X .

Remark 4.2. In the situation of Setup 4.1, let V € U . Then V is open (as X
is locally path-connected and standard lifting properties in coverings apply).
Moreover, n(V) € U: By construction, there is a W € U such that V is
a path-connected component of 7~ !'(W). In particular, (V) C W. In fact, we
have #(V) = W. Indeed, let x € W. Because V is non-empty and W is
path-connected, there is a continuous path w: [0,1] — W with w(0) € =(V)
and w(1) = x. Then the lifting properties of the covering x|, -1y 7~ (W) —
W show that there is a continuous m-lift w : [0,1] — 7~} (W) with w (0) € V.
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Because w ([0, 1]) is path-connected and V is a path-connected component
of 77 1(W), we obtain w (1) € V. In particular,

x=w(l)=mo0 w(l) e nx(V).

Definition 4.3 (Convex cover). An open cover U of a topological space X is
called convex if for every finite set U’ C U, the intersection (U’ is path-
connected (or empty).

4.1. Nerves and equivariance.

Definition 4.4 (Nerve). In the situation of Setup 4.1, the nerve of U is the
(abstract) simplicial complex N given by the following data: For each n € N,
the set of n -simplices of N is

n
{{Vo,---aVn} ‘ B 00 5. By €, ﬂ Vi # 3, Vjikefo,.n)jzk Vi F Vk}-
j=0

Lemma 4.5 (Actlons on nerves). In the situation of Setup 4.1, let N be the nerve
of U and let ‘N be the nerve of U . Then:

(1) The deck transformation action of T on X turns the nerve N of the
induced cover U into a T -simplicial complex.

(2) The universal covering map 1 X — X induces a well-defined simplicial

S~

map p: N — N.

(3) If the open cover U is convex and n € N, then p induces a bijection
between I' \ (N ), and N,. Here, (N ), carries the diagonal T -action.

Proof. Ad I. By construction, the set U is closed under the deck transformation
action of I'. Moreover, this ["-action is compatible with the simplicial structure
(because homeomorphisms preserve intersections).

Ad 2. For every V € U , we have (V) e U (Remark 4.2).

Let n € N and let {Vp,...,V,} be an n-simplex of ‘N . Then, the
projections m(Vy),...,m(V,) are pairwise different (because Vo N---NV, # @
and elements of U that lie over the same set in U have empty intersection).

Moreover,
n n

M= ox(\%) 2

Jj=0 J=0
Hence, n-simplices are mapped to n-simplices.

Ad 3 Let n € N and let {W,,...,W,} be an n-simplex of N.
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e  'Then there exists an n-simplex {V;,...,V,} of ‘N with

p(Vos . Va)) = (Wo, ..., Wa}.

This can be seen as follows: Let x € ()j_oW; and let ¥ € =~ '({x}).
Then, for each j € N, we choose the element V; € U with X € V; and
n(V;) = W;. By construction, the intersection (17_,V; contains X and

o~

thus is non-empty. Therefore, {Vy,..., V,} is an n-simplex of N .

e If {V,,...,V,} is another n-simplex of ‘N with p{Vgos:=: Vil =
{Wo,..., Wy}, then there exists a y € [' with

Vje{o ,,,,, n} Vi=vy- Vs

because: Let x € ﬂ;‘zo Vi and y € ﬂ?:o Vj’. As U is a convex open cover,
the intersection (7_, W, is path-connected. Let w: [0,1] — M=o W; be a
path from m(x) to m(y) and let w: [0,1] - X be a n-lift of w. Then
w ([0,1]) € V; for each j €{0,...,n} and there exists a y € I' with

y-y= w(l).
By construction, w (1) € ;o ¥ -V/. Therefore, for all j € {0,...,n}, we
have Vjﬁyij’;éQ and so V; =y -V []

Proposition 4.6. In the situation of Setup 4.1, let U be convex, let N be the
nerve of U, and let N be the nerve of U . Then the map p: N — N induced
by w (Lemma 4.5) induces a chain homotopy equivalence

Co(|pDr: Co(I N D1 — Cu(IN)).

Proof. By the previous lemma (Lemma 4.5), the simplicial map p induces a
chain isomorphism C*(W)p — C«(N) between the simplicial chain complexes.

Moreover, the canonical inclusion i: C«(N) — C«(|N]) is a chain homotopy
equivalence and the canonical inclusion i C*(f]V) — C*(|W|) is a I"-chain
homotopy equivalence [Liicl, Proposition 13.10 b) on p. 264]. It should be noted
that this is the step in the proof of Theorem 1.1, where we lose control over the
norms.

Therefore, the commutative diagram

~ . C«(pD
Co(IN ) =25 CL(IN])

ir/[\: :Ti

~

C N i —— ()
Ce(p)r

proves the claim. []
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4.2. The nerve map.

Remark 4.7 (Nerve map [Dol, p. 355]). In the situation of Setup 4.1, the space X
admits a partition of unity subordinate to the open cover U (because CW-
complexes are Hausdorff and paracompact). Every partition of unity (¢v)veu
of X that is subordinate to U gives rise to a continuous map

Vi X > |N]|

into the geometric realisation |N| of the nerve N of U: For x € X, we just set
(in barycentric coordinates)

V)= ) gr(x)- V.

VeU

Different choices of partitions of unity lead to homotopic maps. We therefore
speak of the nerve map X — |N|.

Lemma 4.8 (Lifting the nerve map). In the situation of Setup 4.1, let N be the
nerve of U, let N be the nerve of U, let |p|: | N | — |N| be the map induced
by & (Lemma 4.5), and let v: X — |N| be a nerve map. Then there exists a
continuous T-map 7: X — |7\7| with

|ploV =voum.

—~

X —L 4N
”J llpl

Proof. Let (pw)wey be a partition of unity of X that is subordinate to U
(which induces the nerve map v). We construct v as nerve map of the lift of
this partition of unity to U : For V € U , we define

oy = XV Pr(yyc . X — [0, 1],
where yy: X — {0, 1} denotes the characteristic function of the subset V C X .
We will now establish the following properties of these functions:
(1) The function ¢ y: X — [0,1] is continuous.

(Because X is locally path-connected, the standard lifting properties show
that 7(dV) = d(m(V)). Now continuity of @y easily follows from the
continuity of @ (y).)
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(2) For each y e T, we have @y(y-x) = ¢ ,-1.p(x).
(This equivariance property follows directly from the construction.)

(3) 'The family (¢ y), .77 is a partition of unity on X , subordinate to U .
(This is a straightforward computation.)

If W e U, then we abbreviate U lw :={V € U | (V) = W}. Then

7 X = |N|
X = Z Z oy(x)-V
WeU yeu |y

is the nerve map associated with this partition of unity (¢ y), .7 - The second
property shows that

Ty-x)= Y. Y Gvly-x)-V

weU VE’&"W

=2, D GV

welU V65|W

=Y Y G-

welU VE’[7|W
=y-v(x)

holds for all x € X and all y € T'. Hence, 7 is a continuous I'-map.
Moreover, by construction, we have that |p|oc vV =vox. 0

In summary, we can pass from the nerve N to the I"-equivariant setting (and
whence to the right context for classifying spaces) as follows:

Proposition 4.9. In the situation of Setup 4.1, let U be convex, let N be the
nerve of U, let N be the nerve of U, let p: ‘N — N be the map induced
by w (Lemma 4.5), let v: X — |N| be a nerve map, and let V: X — | N | be
as in Lemma 4.8. Then there exists a chain map t,: Cx(|N|) — C+(|N )r such
that

Tp 0 C(1) 0 Cx ()1 = Co(V)r: Co( X )1 — Cx(| N r-.

Proof. By Lemma 4.8, we have |p|o VvV = vom, whence
Cu(lpDr o Cx(V)r = Cx(v) 0 Ci(m)r.

In view of Proposition 4.6, we can now take a chain homotopy inverse
of C«(lpDr: C«(| N )r — C«(|N|) for 1,. ]
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4.3. Families and covers.

Definition 4.10 (Amenable cover). In the situation of Setup 4.1 (which includes
that all sets in U are path-connected), let F be a subgroup family of I". We
call U an F-cover of X if for each V € U and each x € V', the subgroup

im(sr; (V. x) = 71(X, x)) C 71 (X, x)

induced by the inclusion V <= X lies in F under an isomorphism (X, x) =
m1(X, x0) = I' induced by conjugation with a path between x and x, (because
F is closed under conjugation in [", this property does not depend on the chosen
paths).

We call U an amenable cover if U is an Am-cover.

Lemma 4.11 (Nerves of amenable covers). In the situation of Setup 4.1, let F
be a subgroup family of U and let U be an F -cover. Then the isotropy groups
of the corresponding 1 -space |W| all lie in F.

In particular, if F = Am, then these isotropy groups are amenable.

Proof. Because the T'-action on | N | (Lemma 4.5) is obtained from the simplicial
[-action on N by affine extension, it suffices to show that the isotropy groups of
the vertices in the barycentric subdivision S of N with the induced simplicial
["-action all lie in F.

By definition of the barycentric subdivision, the vertex set of § is the set of
simplices of N. Let v be a vertex of S; i.e., there exist n € N, V,,....V, € U
with Von---NV, # @ and v = {Vy, ..., V,}. Then the stabiliser ', of v consists
precisely of those y € I' with

{y - Vooorots V- Vu} ={Vo,.... Vau}.

We distinguish the following cases:

® If n = 0, then the stabiliser of v is
{yel |y -Vo=W}

which is (conjugate to) a subgroup of im(m(7(Vy) — X)). Because
7(Vy) € U (Remark 4.2) and U is an F -cover, the stabiliser of v lies
in F.

e letm > 0. 1If y € I' is in the stabiliser of v and j € {0,..., n}
with y - V; = Vi, then j = k, which can be seen as follows: Because
of y-V, = Vi, we have n(V;) = m(V). Therefore, V; and Vj are
path-connected components of the m-preimage of the same element of U
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(Remark 4.2). On the other hand, V; N Vi # @. Therefore, V; = Vi, and
g0 f=k.

In particular, the stabiliser I', is a subgroup of I'y, N ---N I'y,. The first
case shows that I'y, € F. As F is a subgroup family, also the subgroup I,
lies in F. 0

5. Proof of Theorem 1.1

For the proof of Theorem 1.1, we will first recall that the family of amenable
subgroups can be used to compute bounded cohomology; more generally, we
introduce the notion of H, -admissible subgroup families (and then show that
Am is such a family).

As second step, we will combine H -admissibility with the universal property
of classifying spaces of families to obtain the factorisation over the cohomological
nerve map.

5.1. Admissible families of subgroups.

Definition 5.1. Let I" be a group, let F be a subgroup family of I". We consider
the induced map

H*(CF(ferrnr)'): H*(CpEr D)) - HF (CHEDT) = HF(T).

The notation fgrr r is introduced in Definition 3.2. The family F is
e  H;-admissible if H*(Cl’f(fg F’[‘,F)F) is surjective.

o strongly H}-admissible if H*(C}(fgr,r,r)") is bijective.

Clearly, every subfamily of an H; -admissible family is also H, -admissible.
Moreover, if T" is a group with H,(I') = H; (1), then every subgroup family
of I" is H, -admissible (for trivial reasons); examples of such groups are all
mitotic groups [Loh3].

Proposition 5.2. Let I' be a group. Then the family Am of amenable subgroups
of T' is strongly H; -admissible.

Proof. 'The isotropy groups of the set of singular n-simplices of Ean ' are
amenable since the isotropy group of o: A" — Eayn 1" is the intersection of
isotropy groups of points in the image of o. Hence C;'(Eam ') is a relatively
injective Banach I'-module for every n > 0 (Proposition 2.3). Since Eam [’
is also contractible (Theorem 3.3), C,;"(EAm I"), together with the canonical
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augmentation R — C;?(EAm [') by constant functions, is a strong relatively
injective resolution of R by Banach I'-modules.

Therefore, the fundamental theorem for this type of homological algebra
(Theorem 2.4) shows that the bounded I'-cochain map

Cr(ferrp): CrEam DT = CFEDT

induces an isomorphism in bounded cohomology. In fact, this isomorphism is
even isometric [Fril, Theorem 4.23]. L]

This proposition is the “group-theoretic essence” of Theorem 1.1.

5.2. Bounded cohomology of admissible covers. Using the notion of H,-
admissibility, we have the following version of Theorem 1.1, leading to a more
conceptual understanding of this phenomenon:

Theorem 5.3. Let I' be a group and let F be an Hjy -admissible family of
subgroups of 1. Let X be a path-connected CW-complex with wi(X) = ', and
let U be an open F -cover of X. Then the following hold:

(1) If U is convex, there exists a factorisation
HY(X;R) —X— H*(X;R)

o TH*(VQR)
Sy
H*(|N|:R)

~

of the comparison map cx through the nerve map v: X — |[N| of U.

(2) If the multiplicity of U is at most m, then cx vanishes in all degrees * > m.

Proof. We pick a basepoint x¢g € X and consider the group I' := (X, xg).
Now we can invoke the classifying spaces in the following way:

e As the universal covering X of X is a ['-CW-complex with free T -
action (via the deck transformation action), there is a continuous I -
map f% - X - ET.

e Because U is an open F-cover , the geometric realisation |7V| of
the associated open cover of X is a ['-CW-complex with F -restricted
isotropy (Lemma 4.11). Therefore, we obtain a corresponding continuous
F-map /% rpi|NI—=EprT.

e  Moreover, we have the continuous I'-map ferr.r: EI' = Er I'.



168 C. Lon and R. SAUER

Ad 1. To this end, we consider the diagram in Figure 3 and explain why it
commutes up to cochain homotopy. The squares on the left-hand side clearly
commute.

The universal property of Ep [' implies that the rectangle in the middle
commutes up to cochain homotopy: Both ferr ro f xor and flﬁl,l“, g OV are
I"-equivariant continuous maps X — Eg I', which thus have to be I"-homotopic.
The right polygon is commutative by (the algebraic dual of) Proposition 4.9.

Taking cohomology leads to the solid part of the following commutative
diagram:

\HE (D) ——— H":(F) H* ()
AN N AR

«
‘., HYC*EpD)) — H*(IN])

- >4
go T~ <
= -

The left vertical arrow exists and is an isomorphism by Gromov’s mapping theorem
(Theorem 2.2) (because f Tr induces an isomorphism on bounded cohomology).
Moreover, because F is H, -admissible, we can easily fill in the dashed diagonal
arrow to obtain a commutative triangle. Hence, taking the dotted composition
gives us the claimed factorisation ¢.

Ad 2. Without the convexity assumption we still have a similar commutative
diagram as above with the right vertical map H*(v) replaced by

H*(x) Lo H*(V): H*(C*(IN D") — H*(X).

Under the assumption on multiplicity, the dimension of the simplicial complex N
satisfies

dim N <dim N < m.

Furthermore, the simplicial chain complex C*(ﬁ) and the singular chain complex
C.(| N |) are equivariantly chain homotopic [Liicl, Proposition 13.10 b) on p. 264].
Hence H*(C*(| N |)') vanishes in degrees * > m and statement (2) follows. []

The proof shows that we need even less than H,"-admissibility: It suffices that
the composition H,(I'; F) — H;(I') — H*(I') of the canonical map with the
comparison map hits all bounded classes in H™*(I").
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CF(X)— C*(X) C*(X)

T = =

Crx)y'e— s c*(X) =———c*X)T

ﬁ;,r f?,r v

CHEMI——cCc*ED" v

fEr,r,F

C*(Er D) —— C*(IN) —— C*(N|)

NILEF Hompg (7,,R)

FIGURE 3
Proof of Theorem 5.3; for improved readability, cochain maps induced
by continuous maps only carry the underlying continuous map as label.

5.3. Proof of Theorem 1.1. As a special case, we obtain Theorem I.1: By
Proposition 5.2, the family Am of amenable subgroups is H, -admissible.
Therefore, Theorem 5.3 is applicable.

6. The case of ¢!-homology

We now explain how to derive the ¢'-analogues of Proposition 5.2 and
Theorem 5.3, and whence prove Theorem 1.2.

6.1. ¢!-admissiblity.

Definition 6.1. Let I" be a group, let F be a subgroup family of I', and let
Jerrr: ET'— Ep I' be the canonical map; we consider the induced map

Ho(CE (ferrp)r): HE(D) == Ho(CE (ED)r) — Ho(CL (EF Dr).
The family F is
o  HY -admissible if Ho(C! (fzrr.r)r) is injective.
o strongly HE' -admissible if H.(CE (fq rr.F)r) is bijective.

Proposition 6.2.

(1) Let T' be a group and let F be a subgroup family. If F is strongly H, -
admissible, then F is strongly Hfl -admissible.



170 C. Lon and R. SAuEr

(2) In particular, the family Am is Hfl -admissible.

Proof. The first part follows from the fact that the topological dual of the
topological coinvariants are the invariants of the topological dual and the
translation principle (Theorem 2.5). The second part is then a consequence of the
first part and Proposition 5.2. (]

6.2. ¢1-Homology of admissible covers.

Theorem 6.3. Let I' be a group and let F be an H,f] -admissible subgroup
family of T'. Let X be a path-connected CW-complex with mw1(X) = I', and let
U be an open F -cover of X. Then the following hold:

(1) If U is convex, then there exists a factorisation

1

Cf( ¢l
H«(X;R)—— H; (X;R)

>
H*(v;R)J, z ©
_ Pad

H.(N|;R

of the comparison map cffl through the nerve map v: X — |N| of U.

(2) If the multiplicity of U is at most m, then cg vanishes in all degrees x > m.

Proof. We can argue exactly as in the proof of Theorem 5.3, by working on
the chain level instead of the cochain level; instead of the mapping theorem in
bounded cohomology, we use the corresponding mapping theorem in £! -homology
(Corollary 2.6). Ll

6.3. Proof of Theorem 1.2. As in the case of bounded cohomology, Theorem 1.2
now follows from Theorem 6.3 and Proposition 6.2.

Acknowledgements. This work was supported by the CRC 1085 Higher Invariants
(Universitidt Regensburg, funded by the DFG) and by the RTG 2229 Asymptotic
Invariants and Limits of Groups and Spaces (KIT, funded by the DFG).



Bounded cohomology of amenable covers 171

References

[Bou]| A. BouarichH, Théoremes de Zilber—Eilemberg et de Brown en homologie el
Proyecciones 23 (2004), 151-186. MR 2142264

[Dol] A. Dovb, Lectures on Algebraic Topology. Springer, 1980. Zbl0434.55001
MR 0606196

[FM | R. Frigerio and M. MorascHini, Gromov’s theory of multicomplexes with
applications to bounded cohomology and simplicial volume. To appear in
Mem. Amer. Math. Soc.. arXiv:1808.07307 [math.GT] (2018).

[Fril | R. FriGerio, Bounded Cohomology of Discrete Groups. Mathematical Surveys
and Monographs, 227, AMS, 2017. Zbl1398.57003 MR 3726870

[Fri2] R. FriGerio. Amenable covers and ¢!-invisibility. J. Topol. Anal. (in print)
(2020).

[|Gro] M. Gromov, Volume and bounded cohomology. Publ. Math. IHES 56 (1992),
5-99. Zbl 0516.53046 MR 0686042

[Ival] N. V. Ivanov, Foundations of the theory of bounded cohomology. J. Sovier Math.
37 (1987), 1090-1114. Zbl 0612.55006 MR 0806562

[Iva2] Notes on the bounded cohomology theory. arXiv:1708.05150 [math.AT]
(2017).

[JPL] D. Juan-Pinepa and I. Leary, On classifying spaces for the family of virtu-

ally cyclic subgroups. Recent Developments in Algebraic Topology, Con-
temp. Math. 407 (2006), 135-145. Zbl1107.19001 MR 2248975

[Ler] J. Leray, Sur la forme des espaces topologiques et sur les points fixes des
représentations. J. Math. Pures Appl. 24 (1945), 95-167. Zbl 0060.40703
MR 0015786

[Loh1]  C. Léu, Isomorphisms in £'-homology. Miinster J. Math. 1 (2008), 237-266.
Zb11158.55007 MR 2502500

|[Loh2] {! -Homology and Simplicial Volume. PhD thesis, WWU Miinster, 2007.
7Zbl 1152.57304
|Loh3] A note on bounded-cohomological dimension of discrete groups. J. Math.

Soc. Japan 69 (2017), 715-734. Zbl1376.55005 MR 3638282

[Licl] W. Lick, Transformation Groups and Algebraic K -Theory. Volume 1408 of
Lecture Notes in Mathematics, Springer, 1989. Zbl 0679.57022 MR 1027600

[Liic2] Survey on classifying spaces for families of subgroups. Infinite Groups:
Geometric, Combinatorial and Dynamical Aspects, 269-322, Progress in
Mathematics, 248, Birkhduser, 2005. Zbl 1117.55013 MR 2195456

[Mon] N. Monob, Confinuous Bounded Cohomology of Locally Compact Groups. Vol-
ume 1758 of Lecture Notes in Mathematics, Springer, 2001. Zbl 0967.22006
MR 1840942

[tDie] T. tom Dieck, Transformation Groups. De Gruyter Studies in Mathematics, 8.
Walter de Gruyter & Co., 1987. Zbl 0611.57002 MR 0889050



172 C. Lo and R. SAUER

[ Wei] A. WEIL, Sur les théorémes de de Rham. Comment. Math. Helv. 26 (1952),
119-145. Zbl 0047.16702 MR 0050280

(Recu le 31 octobre 2019)

Clara Lon, Fakultit fiir Mathematik,
Universitdt Regensburg, 93040 Regensburg, Germany

e-mail: clara.loeh@mathematik.uni-r.de

Roman Sauer, Karlsruhe Institute of Technology,
Institut fiir Algebra und Geometrie, Englerstral3e 2, 76131 Karlsruhe, Germany

e-mail: roman.sauer@XKit.edu

© Fondation ”ENSEIGNEMENT MATHEMATIQUE



	Bounded cohomology of amenable covers via classifying spaces

