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Quantitative equidistribution of horocycle push-forwards
of transverse arcs

Davide RavorTi

Abstract. Let M = '\ SL(2,R) be a compact quotient of SL(2,R) equipped with the
normalized Haar measure vol, and let {h;},cr denote the horocycle flow on M . Given
peM and W e sl(R)\ {0} not parallel to the generator of the horocycle flow, let y,',’V
denote the probability measure uniformly distributed along the arc s + pexp(sW) for
0 < s < 1. We establish quantitative estimates for the rate of convergence of [(h;)« y[EV](f )
to vol( f) for sufficiently smooth functions f. Our result is based on the work of Bufetov
and Forni |[BF], together with a crucial geometric observation. As a corollary, we provide

an alternative proof of Ratner’s theorem on quantitative mixing for the horocycle flow.

Mathematics Subject Classification (2010). Primary: 37Al17, 37A25.

Keywords. Horocycle flow, shearing properties, mixing via shearing, quantitative mixing.

1. Introduction

The horocycle flow {h;};er on compact quotients of SL(2,R) is one of the
fundamental examples of parabolic unipotent flows. Its dynamical and ergodic
properties are well-understood: it has zero entropy [Gur], it is minimal [Hed],
uniquely ergodic [Fur|, mixing and mixing of all orders [Ma2], and has countable
Lebesgue spectrum [Par, GF].

Quantitative versions of these results have also been investigated. Ratner [Rat]
established optimal polynomial mixing rates for Holder observables. Moreover,
it follows from a general result by Bjorklund, Einsiedler, and Gorodnik [BEG]
that, for all kK > 2, mixing of order k is also polynomial. Regarding quantitative
equidistribution, Flaminio and Forni [FF] proved precise results on the asymptotics
of ergodic averages of smooth functions. The results in [FF] have been refined by
Bufetov and Forni in [BF], where the authors construct a family of finitely-additive
Holder measures and associated Holder functionals which control the asymptotics
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of ergodic integrals. The main result of this paper, Theorem 2 below, is based on
the properties of these Bufetov—Forni functionals, which we recall in §2.3.

The construction of Holder functionals asymptotic to ergodic integrals and
results analogous to [BF] were first obtained by Bufetov [Buf] for another
class of parabolic flows, namely for translation flows on higher genus surfaces.
Bufetov’s Holder cocyles, introduced in [Buf], are also related to limit shapes
for Interval Exchange Transformations, which were studied by Marmi, Moussa
and Yoccoz [MMY]. More recently, these ideas were extended by Forni and
Kanigowski [FK] to the case of Heisenberg nilflows which, similarly to horocycle
flows and translation flows, are renormalizable parabolic flows.

1.1. Shearing properties of the horocycle flow. One of the key geometric
properties of the horocycle flow is a form of shearing of transverse arcs. For
example, let y(s) = pexp(sX), 0 <s <1, be the geodesic segment starting at
p € M of length 1. From the usual commutation relation between the geodesic and
horocycle flow, it is easy to see that the curve h,oy is sheared along the direction
of the horocycle flow and, for ¢ large enough, it approximates a long segment of
an orbit of the horocycle flow. In particular, it becomes equidistributed; namely,
given any continuous function f, the integral of f oh, along y(s) converges to
the space average of f, when t — oco. This mechanism has been exploited in the
proofs of several results; for example, by Marcus in [Mal] to prove mixing for
horocycle flows in variable negative curvature, and by Forni and Ulcigrai in [FU]
to establish Lebesgue spectrum of smooth time-changes of the standard horocycle
flow.

Moreover, it follows from the work of Bufetov and Forni [BF] that such
sheared geodesic arcs equidistribute at the same rate as horocycle orbits. It is
also plain that the same phenomenon happens if one replace the initial geodesic
arc with any homogeneous segment which lies in a single {X, U}-leaf; that is, a
single weak-stable leaf for the geodesic flow.

What happens if the arc y(s) = pexp(sW) is not contained in a single
{X.,U}-leaf (i.e., if the generator W € sl,(R) has a non-zero component in the
direction of the unstable horocycle flow) is less clear, since the curve h; oy does
not approximate a single orbit of the horocycle flow. By approximating it with
several orbit segments, it is possible to show that also in this case the curve
h, oy equidistributes. However, the quantitative estimates one can prove with this
approach are far from optimal. In this paper, following a different strategy which
heavily relies on the properties of the Bufetov—Forni functionals (in particular,
on the unstable horocycle invariance, see Lemma 9), we prove sharper estimates
for the equidistribution of arbitrary sheared arcs, see Theorem 2. As a corollary,
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we provide an alternative proof of Ratner’s quantitative mixing estimates, see
Corollary 3.

1.2. Definitions and notation. Before stating our main result, we recall some
definitions and we fix the notation.

Let ' < SL(2,R) be a co-compact lattice, let M = I'\ SL(2,R), and let
us denote by vol the smooth probability measure on M given locally by the
Haar measure. The manifold M can be identified with the unit tangent bundle
T1S of the compact hyperbolic surface S = I'\H. The spectrum of the Laplace—
Beltrami operator As on S is pure point and discrete. In particular, if we denote
by (n)n=0 the positive eigenvalues, there is a spectral gap, since the bottom o
of the non-zero spectrum is strictly positive. Let us further define

{~/'1—4,u0 if po < 1/4, {0 if 1o # 1/4,
0

Vo 1= i Eg 1=
if po > 1/4, 1 if uo = 1/4.

0 ify,()<1/4,

and 50 =
1 if o = 1/4.

Let us denote by L*(M,vol) the space of square-integrable functions and by
LZ(M, vol) the subspace of functions with zero integral. For any r > 0, let W’ (M)
be the Sobolev space of functions 7 € L2(M,vol) such that A™/2 f € L?(M, vol),
where A is a Laplacian on M (see §2.2 for definitions). Let us remark that, for
r > 3/2, by Sobolev Embedding Theorem, we have that W"(M) C €%(M), for
a<r—3/2.

We denote the Lie algebra of SL(2,R) by sl(R); it consists of 2 x 2
real matrices with zero trace. Each element W ¢ sl(R) \ {0} generates the
homogeneous flow {¢/},cg on M given by

¢f (Tg) = Tgexp(tW).
We fix the basis B8 ={V, X, U} of sl(R), where

{0 0 {12 0 [0 1
V_(l 0)’ X_(o —1/2)’ U(o 0)'

Then, B is a frame of the tangent bundle of M . The homogeneous flows generated
by V., X,U are the unstable horocycle flow {iY%};cr, the geodesic flow {g;}:cr.,
and the stable horocycle flow {h,};er respectively. Finally, let us denote by

—_—

B ={V.,X,U) the frame of the cotangent bundle of M dual to B.

1.3. Statement of the main result. Let [ € L%(M, vol) be a sufficiently smooth
function with zero average. We are interested in the asymptotics of the following
integrals
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a
[ foheop¥ () ds|,
0

for fixed o > 0 and W € sl(R) \ {0}.
The case W = X follows easily from the work of Bufetov and Forni; a more

general statement for smooth time-changes of the horocycle flow can be found in
[FU, Lemma 17].

Theorem 1. Let r > 11/2. For any o > 0, there exists a constant C = C(r,0) > 0
such that for any f € W (M)NLZ(M,vol), forall 0 < S <o, t>1and pe M
we have

1—v
<C|fll,t= = (logr)®.

N
/ S ohiogs(p)ds
0

It is easy to see that the same estimates (up to constant) hold if the
geodesic segment {gs(p) : s € [0,S]} is replaced with any segment of the
form {p¥ (p) :5 €[0, 8]}, where W = xX +uU, with x # 0.

In this paper, we generalize the previous result to arbitrary W € sl,(R)\ {0},
namely to arbitrary arcs {p? (p) : s € [0,S]} not tangent to the integrable
distribution {X, U}. Our main result is the following.

Theorem 2. Let r > 11/2 and let
W =vV 4+xX +ulU €sl(R), with v#0.
For any o > 0, there exists a constant C = C(r,o, W) such that for any

feWwWr(MyYnL2(M,vol), forall 0 < S <o, t>1 and pe M, we have
0

S
f Fohioo¥ (pyds| <C | f], 10 (log ).
0

In particular, the result above shows that arcs with a non-zero component in
the direction V' equidistribute faster than geodesic arcs.

The proof of Theorem 2 follows two different strategies for functions supported
on the principal and complementary series, and for functions supported on
the discrete series, see Propositions 8 and 10. In the former case, treated in
Proposition 8, we exploit the properties of the Holder functionals constructed by
Bufetov and Forni, together with a key geometrical observation, see Lemma 9. In
the case of negative Casimir parameters, however, the Bufetov—Forni functionals
are not defined. For functions supported on the discrete series, we then proceed
by a standard approximation argument, analogous to the case of the push-forward
of geodesic arcs. For this reason, the bounds achieved in this case, contained
in Proposition 10, are not optimal. However, the resulting estimates for generic
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functions obtained in Theorem 2 by combining Propositions 8 and 10 differ from
the optimal ones only by a logarithmic factor, and only when o > 1/4.

By a standard mixing via shearing argument, from equidistribution estimates
for the push-forward of transverse arcs, it is possible to deduce quantitative
mixing estimates. Optimal mixing rates for the geodesic and horocycle flows
were obtained by Ratner in [Rat]; here, we provide an alternative geometric proof
of her result' for smooth observables.

Corollary 3 (Ratner’s quantitative mixing [Rat]). Let r > 11/2. There exists a
constant C > 0 such that for all f € W' (M), for all g € L>(M,vol) such that
Vg € L2(M,vol), and for all t > 1 we have

‘[ (foht)gdvol—/ fdvol[ gdvol
M M M
<C /1, (gl + Vel og ).

2. Preliminaries

2.1. Shearing of transverse arcs. Let us recall that, if we denote by
Ly: SL(2,R) — SL(2,R) the left-multiplication by g and by (Lg)« its push-
forward, any element W € sl;(R) induces the vector field, which we still denote
by W, defined by W/, = (Lg)«(W).

We will need the following basic facts about the tangent vectors of curves
in M.

Lemma 4. Ler W = vV +xX +uU € shL(R)\ {0} and let

exp(sW) = (a(s) b(s)) )

c(s) d(s)

Then
a'(s) b'(s)\ _ fa(s) h(s)\[x/2 u
c(s) d'(s)]  \c(s) d(s) v —x/2)

' As explained before, our estimates ditfer from Ratner’s by a factor logz when po > 1/4.
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Proof. The claim follows by the chain rule: let g = exp(sW); then we have

a'(s) b'(s)\ _ d I d
(c’(s) d’(s)) o ds expsW) = (Lg)s (dx

exp(s-W)) = (Lg)« (W)
5=0

_fa(s) b(s)\ [x/2 u
S \e(s) d(s) v —x/2]

For any g € SL(2,R), the Adjoint Adg: sl,(R) — slx(R) is the linear map
defined by Adg (W) = ¢~ 'Wg. The Adjoint describes the action of a homogeneous
flow on tangent vectors, namely we have the following result.

O

Lemma 5. Let W,Y € slb(R)\{0}. Forall t,s € R and for all p € M, we have

d
a‘ﬂty 0@y (p) = AdeXP(tY)(W)lw,”ow}’V(p)

Proof. We have

d d
3% 09 (P) = - (pexp(sW)exp(tY))

d
(L

(

d
pexp(sW) exp(tY)),,= (a GXP(—I Y) 6Xp(.\‘W) exp(t Y))

2 ls=0

A
Lol ool ), Adepiery V).
L]

2.2. Spectral theory of the horocycle flow. We now recall some results about
the spectral theory of the horocycle flow. Let

= [ 0 12
O_(—l/z 0)

be a generator of the maximal compact subgroup K = SO(2) C SL(2,R). We
define the Casimir operator [ by

O=-X2—(V +0)+ 62,

which is a generator of the centre of the universal enveloping algebra of sl;(R). By
the classical theory of unitary representations of SL(2,R), we have the following
orthogonal decomposition into irreducible components (listed with multiplicity)

(1) L>*(M)= (P Hy.

jpeSpec(Cd)
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and on each H,,, the Casimir operator [J acts as the constant u € R.oU{—n?*+n :
n € Z=o}. The component Hy corresponds to the trivial representation and appears
with multiplicity one. The positive Casimir parameters p > 0 coincide with the
positive eigenvalues of the Laplace—Beltrami operator Ag on the hyperbolic
surface § = ["'\H.

The irreducible components H, are divided into three series: the principal
series for Casimir parameters u > 1/4, the complementary series for Casimir
parameters 0 < u < 1/4, and the discrete series for negative Casimir parameters
n<0.

Let A be the Laplacian defined by A = —(X? + U?/2 + V?/2). For any
Hilbert space H on which SL(2,IR) acts unitarily, we define the Sobolev space
WT"(H) of order r > 0 to be the maximal domain of the operator (1 + A)"/2,
equipped with the inner product

(fghr =({(1+A) fg)n.

We denote by |||, the norm in W” (/) defined by the inner product above. When
H = L*(M,vol), we will simply write W’ (M) instead of W’ (L?(M,vol)). The
space W’ (M) coincides with the completion of € (M) of infinitely differentiable
functions on M with respect to the norm |-|,. The direct sum (1) induce a
corresponding decomposition of the Sobolev spaces for any fixed r > 0; namely
we have

(2) wrM)y= @ W (Hp).

peSpec(d)

2.3. Bufetov-Forni functionals. The proof of our main result is a consequence
of the properties of the Bufetov—Forni functionals introduced in [BF]. We briefly
recall the results we will use, and we refer the reader to [BF]| and to the work
of Flaminio and Forni [FF] for more details. The reader can also compare the
results by Bufetov and Forni stated below to the previous work of Bufetov for
translation flows [Buf], and to the work of Forni and Kanigowski for Heisenberg
nilflows [FK].

For every positive Casimir parameter p > 0, let v = /T —4u € C. We
remark that v is purely imaginary if p belongs to the principal series, and
0 <v <1 if u belongs to the complementary series.

Theorem 6 (|BF, Theorem 1.1]). For any positive Casimir parameter (1 > 0, there
exist two independent normalized finitely additive measures ﬁff such that for
any rectifiable arc y C M the following properties hold:

(1) for any decomposition y =y + y» into subarcs,

BEw = BEw) + B
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(2) forall t eR and p # 1/4,

BE(g fy)—exp(l )ﬁ @),

while, for © =1/4,

(ﬁm(g m) exp (5) (1 *g) ([51/4()/))
)61/4((g IJ/) 2 0 1 161/4(7/)
(3) forall t e R, R R

Bi(hyy) = B (),

(4) there exists a constant C > 0 such that for all p # 1/4,

1+Rev

Bro|<c(i+ 1+ [io[1m)([191)

ol i [ ) ([ o )
Frun| e (e [ fion [in) ([ion)

For any p > 0, let us denote by D , D, the two normalized invariant
distributions introduced by Flaminio and Form in [FF]. Let r > 11/2; for any
function f € W7 (M) supported on irreducible components of the principal and
complementary series and for any rectifiable arc y C M, let us define

Brinn= Y. DINHBE@ +DL(N)B L.

neSpec(DNR ¢

Exf 4(y)\<c(1+ X1+

Theorem 7 ([BF, Theorem 1.3]). For any r > 11/2 there exists a constant C, > 0
such that for every rectifiable arc y C M and for all f € W' (M) supported on
irreducible components of the principal and complementary series we have

SCerIIr(lnL[y!?H[yIV!)-

3. Proof of Theorem 2

[yff/ e

Let W = vV + xX +ulU € slh(R) with v # 0 be fixed. Let 0 > 0 and
0 < § <o, and define the curve
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W
Vpu(8) =hyo goSW(p), for s € [0, §].

Up to replacing ¢ and S by co and ¢S, for some ¢ > 0, we can assume that
max{[vl. [x]. u]} < T.

Let r > 11/2 and let f € W"(M) N Li(M,vol). Using the orthogonal
decomposition (2), we can write

f - Z fu,
eSpec(d)
where f, € W' (H,), and, for ;. = 0, the component f, = 0. Let us denote by
fa= Y, S and fFf= > f,
1eSpec(C)NR < meSpec(CNNR -

so that

S S S
/ fo V;K/z E)ds = / fa o y;f; (s)ds + [0 de o vaf/z (s)ds.
0 0

We will estimate the two integrals separately. The proof of Theorem 2 follows
from Propositions 8 and 10 below applied to f dJ- and f; respectively.

3.1. Positive Casimir parameters. This section is devoted to the proof of the
following result.

Proposition 8. Let r > 11/2 and let f € W (M) N L{(M,vol) be supported on
irreducible components of the principal and complementary series. Then, there
exists a constant C = C(r,o0, W) > 0 such that for all 0 < S <o, t > 2 and
p e M, we have

S
f fohop (pyds| < C|fl, 07" ogr)®.
0

By Lemma 5, we can compute the tangent vector of y% (s) by

d W
3) 45 ra®) = AdepryW)l .

— (UV + (x—=2tv)X + (u + xt — vtz)U)]

Yo (s)
so that
S _—
/ fo yp”;(s) ds = (u + xt —vr2)? f fu.
0 ’ yw

p.t
For all ¢t > 2 we have |u + xt —vt?| > |v|t2(1 —t7' —172) > |v|t?/4. Therefore,
by Theorem 7 and formula (3),
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S
[ rontiwal <[ 0
0 ’ yw

p.t

4
Ells

(4)

(B + C L F 1, SCL+ o] + [l + 21010))

|v]e?

l = [RAl
< Crweo (t_iﬁf()/pu,;) + P =~

where we can take C,w,, = max{4|v|™!,20C,o|v|7!}.
Recall that we have

Brivi) = Y. DEOBLI) +Du) B,

neSpec(C)NR ~ o

From properties (2) and (3) in Theorem 6, for any u # 1/4, we deduce that for
all T e R,

Bt = 1'% B (g2u0g 0 7)) = (' B (WY 0 g2100: 0 ph)-
while, for u© = 1/4, we have
EI(}’%) = IEI(gﬂogt oyyy) +1 lOg[E;_L(gﬂogt ° Vo)
= IBZ(]’UT © 82logs © Vppflt) +1 logtﬁ‘:(h‘;. © &210gs © )’th)
and
Bl =18 (21080 0¥h) =1 B (h% 0 221080 0 V).

The following is our key geometrical observation: choosing T = —t in the
formulas above, the components of the tangent vectors of the curve hY 0g5 00, OVpu,/t
with respect to the frame B are uniformly bounded in t.

Lemma 9. We have

d

2u
a(hu_: O 82logr © y;V,r)(s) = —uV — (-x + T) A4 (1_2 i = _U) U,

in particular for all t > 1 we have

[ Y |<3§<30, forany Y € B ={V.,X,U).
"™ 0g5 10007 Y,
t 2logt Pl
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Proof. By Lemma 5, from an easy computation it follows

d
a(hu_t ©&2logt © J/pﬂ,/;)(s)

= Adexp(—rV) o Adexp(zlog tX)© Adexp(tU)(W)
hu—r °82logt OV};‘_/" (s)

= Adcxp(—tV)

o Adcxp(zl(,g,X)(vV 3 (=S X -+ (—p® 22+ u)U)

hu—[ 059 Iogroy‘(%‘ (s)

= Adexp(1v) (VEZV + (x — 200X + (—v + xt™! +ur7?)U)

hY  og> logtoy};',/; (s)

= (—uV — (x + 2ut™HX + (—v + xt " +ur)U)

W
hgpogzl()gt Vp.t (s)

In particular, for all # > 1, we have max{|u|, |x|+2u|t™", |v|+|x|t 71 +|ult?} <3,
which concludes the proof. U

By property (4) in Theorem 6 and by Lemma 9, there exists a constant C; > 0
such that for all pu # 1/4 we have

| Bivpa)| < Cot TR

and, for u =1/4,
’ IB :lt/4(ypl/f;)| < Cot(l + logt).

Up to enlarging C,, for all + > 1 we then deduce

‘Ef(yﬂ)

which, together with (4), concludes the proof of Proposition &.

< G llf Il e (log )™,

3.2. The discrete series. In this section we prove the following result.

Proposition 10. Let r > 11/2 and let [ € W' (M) N L(Z)(M. vol) be supported
on irreducible components of the discrete series. Then, there exists a constant
C =C(r,o,W) >0 such that for all 0 < S <o, t >2 and p € M, we have

S
[0 fohiog (p)ds| < CIfl,r (ogo).

Using the same notation as in Lemma 4, let

a(s) b(s))

SRpIE IS = (c(s) d(s)
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Since the entries above are smooth functions, we can define

= ((0) = 4 max{la' ()], |p' ()],

:5 €[0,0]}.

For negative Casimir parameters, the Bufetov—Forni functionals are not defined.
Hence, we proceed in the following way: we partition the curve yplf/t into O(¢)
curves which are at distance O(t~') from a leaf tangent to the integrable
distribution {X,U}, and we approximate them by their projection onto the
{X,U}-leaf. The estimate for each projection can be then deduced from [BF],
see, e.g., [FU, Lemma 17].

We decompose the integral as follows:

S S
L fohsog? (s)ds| = lL £ o v (s)ds
| S€r|—1 71
© < M e |\ rontunas
Lset J 1
:nﬂu / For¥ s,
where

k
Pk = P €Xp (EW)
For any s € [0, (£2)"!], we have
14 g 1 1 1
d(s $)t d(s)| — [El—wg—=ff=l———=F =
[d(s) + ¢()t] 2 1d()] = le@lr 2 1= 75 = 2 et
Therefore, the function
c(s)
Jo(s) = ——F"——
o) = —75) + et
is well-defined for s € [0, (£1)71].
For any 0 <k < |S€t] — 1, let us define the curve

Vi(s) = hy 0 Var 4(5),  for s €[0,(£0)7"].

Explicitly, we have

o a1t 1 0\ _  (zeeee b6 +als)
Vi(s) = pic exp(sW) (0 ]) (_]O(s) 1) — & ( B d(s) + c(s)t

1 b(s)+a(s)t 1 0
= P d(s)+c(s)t d(s)+c(s)t
0 1 0 d(s) + c(s)t

= g e} hh s)tals
= g—2log(d(s)+c(s)t) (()T%%(pk)
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Notice that the curve yi is contained in the {X, U }-leaf passing through pp. We
also remark that there exists a constant C > 0 such that for any s € [0, (££)7}],

2C
dist (Vi (). vpr.(5)) = C [Jo(s)] = 2Ce(s)] = 2Cts < =

so that
(6)
[S€z]—1 1 |S€t|—1 1 |S4t]—1
7 7 o 2C || ]
> [T reteals 3 |[T remmal+ 3 [F
=g | k=0 [0 k=0
|S€r|—1 1
Z _ 2C || fll, o
< s)ds| + =2
< 1;) /0 f oVe(s)ds| + :

Lemma 11. We have

~ (d
U (ay_k(é)) = —Ufz + %f + u,

and moreover

_~ d I
‘X (—yk(s))‘ < 20t.
ds

Proof. Let us denote

bh(s) + a(s)t

Ji(s) = —2log(d(s) +c(s)t), and Ja(s) = d(s) + c(s)t
We compute

d

a Yk (5)

d
= (£7,(s) © M1a(s)(Pr))

d d
= Dgji(s) (m o th(s)(pk)) e (agj‘(‘*)) o h ) (Pk)
d d
= Dgy s ((afz(é‘))U o th(s)(Pk)) + ((a«h (S))X o ng(s)) o hpy ) (Pr)
I T G — d . . —p
= (5929)e OV o) + (/1)) X 0 Ta(s)

:(@TQ+a%ﬁﬂﬂﬂ+¢@ﬁ}—@@}+d@ﬂ@%ﬂ+d®ﬁ0Uoﬁﬁ)

B 20’(.&‘)1 +d’(s)

oV F ) X o VEW):
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By Lemma 4, for any s € [0, (£1)"!], we have

max{c’(s),d'(s)} <2max{c(s).d(s)} <2 (1 + gs) <3,

so that

26’(.3')t +d'(s)
c(s)t +d(s)

Using the formulas in Lemma 4 and the fact that a(s)d(s) — b(s)c(s) =1,

obtain that

(b'(s) +a'()t)(d(s) + c(s)r) — (b(s) + a(s)t)(d'(s) + ¢ (s)1) = —v* + %t + u,

which concludes the proof. ]

<43t 4 3) < 20r.

With our assumptions, for t > 2,

& v|t?
‘—vtz +or+ u‘ > 21— =17 > %

Thus, it follows that (see, e.g., the proof of [FU, Lemma 17])

o Y (s)ds| = ‘(—Uzz i %z 4 u)_l fyfﬁ‘
4 =
) < czlenn (14 [ ®)iog (14 [ 01)
Yk Yk
6 20
< oG A1 (14 %) Gog) < Coa 171, 5

|v|t
From (5), (6) and (7), we conclude

= CrWoIIfIIr

S
[0 £ o b 0ol (p) ds

4. Proof of Corollary 3

The proof is a straightforward consequence of a standard “mixing via
shearing” argument, see, e.g., [FU]. Without loss of generality, let us assume that
f e WI(M)n L3(M,vol) and let g € L?(M,vol) such that Vg € L*(M,vol).
By invariance of the Haar measure and integrating by parts, for all o > 0 and
t > 1 we have

g

(fohig)= lf (f ohyohy, gohy)ds
g

0

( [ foh oht dsg)——/ <[ f ohyohUds, Vgoh”>



so that

[(f oh:. g)l
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> Vo
< ”3“2 [ f ht db‘ o ST SUE ” 55”2 [ ]( Ol’lt OhudS
& 2 o SE[()U )
r + ||Ve
gl Vel supf £ oy o h¥(p) ds
o Sel0,0] peM

The result follows from the estimates in Theorem 2.
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