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Quantitative equidistribution of horocycle push-forwards
of transverse arcs

Davide Ravotti

Abstract. Let M r\SL(2, R) be a compact quotient of SL(2,R) equipped with the

normalized Haar measure vol, and let {ht}teu denote the horocycle flow on M. Given

p M and W s G (M) \ {0} not parallel to the generator of the horocycle flow, let vy
denote the probability measure uniformly distributed along the arc .v h* /jexpfvlf) for

0 < ä < 1. We establish quantitative estimates for the rate of convergence of [(ht)*yp ](/)
to vol(/) for sufficiently smooth functions /. Our result is based on the work of Bufetov

and Forni |BF|, together with a crucial geometric observation. As a corollary, we provide

an alternative proof of Ratner's theorem on quantitative mixing for the horocycle flow.

Mathematics Subject Classification (2010). Primary: 37A17, 37A25.

Keywords. Horocycle flow, shearing properties, mixing via shearing, quantitative mixing.

1. Introduction

The horocycle flow {ht}tm on compact quotients of SL(2,M) is one of the

fundamental examples of parabolic unipotent flows. Its dynamical and ergodic

properties are well-understood: it has zero entropy [Gur], it is minimal [Hed],

uniquely ergodic [Fur], mixing and mixing of all orders [Ma2], and has countable

Lebesgue spectrum [Par, GF],

Quantitative versions of these results have also been investigated. Ratner [Rat]
established optimal polynomial mixing rates for Holder observables. Moreover,

it follows from a general result by Björklund, Einsiedler, and Gorodnik [BEG]
that, for all k > 2, mixing of order k is also polynomial. Regarding quantitative

equidistribution, Flaminio and Forni [FF] proved precise results on the asymptotics
of ergodic averages of smooth functions. The results in [FF] have been refined by

Bufetov and Forni in [BF], where the authors construct a family of finitely-additive
Holder measures and associated Holder functional s which control the asymptotics
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of ergodic integrals. The main result of this paper, Theorem 2 below, is based on
the properties of these Bufetov-Forni functionals, which we recall in §2.3.

The construction of Holder functionals asymptotic to ergodic integrals and

results analogous to |BF] were first obtained by Bufetov [Buf| for another

class of parabolic flows, namely for translation flows on higher genus surfaces.

Bufetov's Holder cocyles, introduced in [But], are also related to limit shapes

for Interval Exchange Transformations, which were studied by Marmi, Moussa

and Yoccoz [MMY]. More recently, these ideas were extended by Forni and

Kanigowski [FK] to the case of Heisenberg nilflows which, similarly to horocycle
(lows and translation flows, are renormalizahle parabolic flows.

1.1. Shearing properties of the horocycle flow. One of the key geometric

properties of the horocycle flow is a form of shearing of transverse arcs. For

example, let y(s) pexp(sX), 0 < s < 1, be the geodesic segment starting at

p e M of length 1. From the usual commutation relation between the geodesic and

horocycle flow, it is easy to see that the curve htoy is sheared along the direction

of the horocycle flow and, for t large enough, it approximates a long segment of
an orbit of the horocycle flow. In particular, it becomes equidistrihuted\ namely,

given any continuous function /, the integral of / o ht along y(.v) converges to

the space average of /, when t -> oo. This mechanism has been exploited in the

proofs of several results; for example, by Marcus in [Mai] to prove mixing for
horocycle flows in variable negative curvature, and by Forni and Ulcigrai in [FU]
to establish Lebesgue spectrum of smooth time-changes of the standard horocycle
flow.

Moreover, it follows from the work of Bufetov and Forni [BF] that such

sheared geodesic arcs equidistribute at the same rate as horocycle orbits. It is

also plain that the same phenomenon happens if one replace the initial geodesic

arc with any homogeneous segment which lies in a single [Y, I/}-leaf; that is, a

single weak-stable leaf tor the geodesic flow.

What happens if the arc y(s) pexp(sW) is not contained in a single

{Y, I/}-leaf (i.e., if the generator W e sfeCM) has a non-zero component in the

direction of the unstable horocycle flow) is less clear, since the curve ht o y does

not approximate a single orbit of the horocycle flow. By approximating it with
several orbit segments, it is possible to show that also in this case the curve
ht o y equidistributes. However, the quantitative estimates one can prove with this

approach are far from optimal. In this paper, following a different strategy which

heavily relies on the properties of the Bufetov-Forni functionals (in particular,
on the unstable horocycle invariance, see Lemma 9), we prove sharper estimates

for the equidistribution of arbitrary sheared arcs, see Theorem 2. As a corollary,
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we provide an alternative proof of Ratner's quantitative mixing estimates, see

Corollary 3.

1.2. Definitions and notation. Before stating our main result, we recall some

definitions and we fix the notation.

Let T < SL(2,M) be a co-compact lattice, let M F\SL(2,R), and let

us denote by vol the smooth probability measure on M given locally by the

Haar measure. The manifold M can be identified with the unit tangent bundle
T1S of the compact hyperbolic surface S r\H. The spectrum of the Laplace-
Beltrami operator As on S is pure point and discrete. In particular, if we denote

by (p<n)n>o the positive eigenvalues, there is a spectral gap, since the bottom /x0

of the non-zero spectrum is strictly positive. Let us further define

Let us denote by L2(M, vol) the space of square-integrable functions and by

Lq(M, vol) the subspace of functions with zero integral. For any r > 0, let Wr(M)
be the Sobolev space of functions / e L2(M, vol) such that Ar/2f e L2(M, vol),
where A is a Laplacian on M (see §2.2 for definitions). Let us remark that, for

r > 3/2, by Sobolev Embedding Theorem, we have that Wr(M) c 'C"(M), for

a < r — 3/2.
We denote the Lie algebra of SL(2,M) by s LCR); it consists of 2 x 2

real matrices with zero trace. Each element W e sl2(R) \ {0} generates the

homogeneous flow {(pf }reR on M given by

Then, IB is a frame of the tangent bundle of M. The homogeneous flows generated

by V,X,U are the unstable horocycle flow {/?y}feR, the geodesic flow {g?}ieR,
and the stable horocycle flow {ht}ter respectively. Finally, let us denote by

S { V X U } the frame of the cotangent bundle of M dual to £.

v0 :

and So :

0 if po < 1/4,
1 if po > 1/4.

<pY s) rgexpftW).

We fix the basis £ — {V, X, U) of sbCR), where

1.3. Statement of the main result. Let / e vol) be a sufficiently smooth

function with zero average. We are interested in the asymptotics of the following
integrals



138 D. Ravotti

/ f ohfOcpf (p)ds
Jo

for fixed a > 0 and W e \ {0}.
The case W X follows easily from the work of Bufetov and Forni; a more

general statement for smooth time-changes of the horocycle flow can be found in

[FU, Lemma 17].

Theorem 1. Let r > 11 /2. For any a > 0, there exists a constant C C(r. a > 0

such that for any f W {M) HLq(M, vol), for all 0 < S <a, t > 1 and p e M

It is easy to see that the same estimates (up to constant) hold if the

geodesic segment {^(/j) : s e [0,5]} is replaced with any segment of the

form {(pY(p) : s e [0, 5]}, where W xX + uU, with x f 0.
In this paper, we generalize the previous result to arbitrary W e sl2(M)\{0},

namely to arbitrary arcs {<pY{p) ' s e [0,5]} not tangent to the integrable
distribution {X, U). Our main result is the following.

Theorem 2. Let r > 11/2 and let

For any a > 0, there exists a constant C C(r,o,W) such that for any

f e Wr(M) n Lq(M, vol), far all 0 < 5 < cr, t > 1 and p e M, we have

In particular, the result above shows that arcs with a non-zero component in

the direction V equidistribute faster than geodesic arcs.

The proof of Theorem 2 follows two different strategies for functions supported

on the principal and complementary series, and for functions supported on

the discrete series, see Propositions 8 and 10. In the former case, treated in

Proposition 8, we exploit the properties of the Holder functional constructed by

Bufetov and Forni, together with a key geometrical observation, see Lemma 9. In
the case of negative Casimir parameters, however, the Bufetov-Forni functional
are not defined. For functions supported on the discrete series, we then proceed

by a standard approximation argument, analogous to the case of the push-forward
of geodesic arcs. For this reason, the bounds achieved in this case, contained

in Proposition 10, are not optimal. However, the resulting estimates for generic

we have

W vV + xX + uU e sLfR), with r / 0.
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functions obtained in Theorem 2 by combining Propositions 8 and 10 differ from
the optimal ones only by a logarithmic factor, and only when fi0 > 1/4.

By a standard mixing via shearing argument, from equidistribution estimates

for the push-forward of transverse arcs, it is possible to deduce quantitative
mixing estimates. Optimal mixing rates for the geodesic and horocycle flows

were obtained by Ratner in [Rat]; here, we provide an alternative geometric proof
of her result1 for smooth observables.

Corollary 3 (Ratner's quantitative mixing [Rat]). Let r > 11/2. There exists a

constant C > 0 such that for all f 6 Wr(M), for all g e L2{M, vol) such that

Vg e L2(M, vol), and for all t > 1 we have

L (/ ° ht) g d vol — f f d vol f g d vol
M JM JM

<C\\f\\r(\\g\\2+\\Vg\\2)t—(1—l>o) (logt)So

2. Preliminaries

2.1. Shearing of transverse arcs. Let us recall that, if we denote by

Lg : SL(2,M) -» SL(2,R) the left-multiplication by g and by (Lg)* its push-

forward, any element W e sLflK) induces the vector field, which we still denote

by W, defined by W\g {Lg)*{W).
We will need the following basic facts about the tangent vectors of curves

in M.

Lemma 4. Let W vV + xX + uU e sl2(®) \ {0} and let

exp(.vlL)

Then

a(s) b(sy
yc(s) d(s)

<a'(s) b'(s)\ a(s) b(s)

[c'(s) d'(s) \ c(s) d(s)

As explained before, our estimates differ from Ratner's by a factor logf when ßn > 1/4.
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Proof. The claim follows by the chain rule: let g expf.v If) ; then we have

"-S ^))) sexp(s"/) (i«)*(s »)expf.vW) (Lg)*(W)
s=0

'a(s) b(s) I fx/2 u \

icf.v) d(s) J I v —X/2
'

For any g e SL(2,R), the Adjoint Ad^ : skfM) —> s^fR) is the linear map
defined by Ads W) g"1 Wg. The Adjoint describes the action of a homogeneous
flow on tangent vectors, namely we have the following result.

Lemma 5. Let W, Y e s[2(M)\{0}. For all f,sel and for all p e M, we have

^<PÏ °<P7(P) oVw(P)

Proof. We have

^<PÏ ° <pY(P) ^ (P expf.v W) exp(tY))

— (Ppexp(sW)exp(tY))j, exp(-r Y) exp(A' W) exp(£ Y)
s=0 >

(V^ooX^pfliTf^)-

2.2. Spectral theory of the horocycle flow. We now recall some results about

the spectral theory of the horocycle flow. Let

©
' 0 1/21

L —1/2 0 ;

be a generator of the maximal compact subgroup K — SO(2) c SL(2,R). We

define the Casimir operator by

—X2 - (V + 0)2 + ©2,

which is a generator of the centre of the universal enveloping algebra of sl2(M). By
the classical theory of unitary representations of SL(2,M), we have the following
orthogonal decomposition into irreducible components (listed with multiplicity)

(1) L2{M)= 0 Hß,
/ieSpec(D)
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and on each Hß, the Casimir operator acts as the constant p e R>0U{-«2+» :

n e Z>o}. The component H0 corresponds to the trivial representation and appears
with multiplicity one. The positive Casimir parameters p > 0 coincide with the

positive eigenvalues of the Laplace-Beltrami operator As on the hyperbolic
surface S r\H.

The irreducible components Hß are divided into three series: the principal
series for Casimir parameters p> 1/4, the complementary series for Casimir

parameters 0 < ß < 1/4, and the discrete series for negative Casimir parameters

ß < 0.
Let A be the Laplacian defined by A ~~(X2 + U2/2 + V2/2). For any

Hilbert space H on which SL(2,M) acts unitarily, we define the Sobolev space

Wr(H) of order r > 0 to be the maximal domain of the operator (1 + A)r^2,
equipped with the inner product

(fg}r (V+A)rfg)H.
We denote by ||-||r the norm in Wr(H) defined by the inner product above. When

H L2(M, vol), we will simply write Wr(M) instead of Wr(L2(M, vol)). The

space Wr(M) coincides with the completion of of infinitely differentiate
functions on M with respect to the norm ||-||r. The direct sum (1) induce a

corresponding decomposition of the Sobolev spaces for any fixed r > 0; namely
we have

(2) Wr(M)= 0 Wr(Hß).
/reSpec(D)

2.3. Bufetov-Forni functionals. The proof of our main result is a consequence
of the properties of the Bufetov-Forni functionals introduced in [BF]. We briefly
recall the results we will use, and we refer the reader to [BF] and to the work

of Flaminio and Forni [FF] for more details. The reader can also compare the

results by Bufetov and Forni stated below to the previous work of Bufetov for
translation flows [Buf], and to the work of Forni and Kanigowski for Heisenberg
nilflows [FKJ.

For every positive Casimir parameter ß > 0, let v — Aß e C. We

remark that v is purely imaginary if ß belongs to the principal series, and

0 < v < 1 if ji belongs to the complementary series.

Theorem 6 ([BF, Theorem 1.1]). For any positive Casimir parameter ß > 0, there

exist two independent normalized finitely additive measures ß ß
such that for

any rectifiable arc y C M the following properties hold:

1 for any decomposition y yi + K2 into subarcs,

ßi(y)=ßt(yi)+ß%(y2Y,
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(2) for all te M and ß ^ 1/4,

ßi(g-,Y) etq>[^-t)ß±(y),

while, far ß 1/4,

rA A\/I
yßf/^g-tY)) V2 0 1

'ßt,M
fa4(y)j

(3) far all t e

ßtWv)= ß%{y)>

(4) there exists a constant C > 0 such that far all /i / 1/4,

ßt(y) <c Ii
and, far ß 1/4,

//J|+/'5|i|p|)(/'ei)
l=FRev

2

ßU<y)

ßu*(y)

< c

< c

,+ffa+ffaf/l){ll0lY l + log / \U\L

For any ß > 0, let us denote by D + ,D~ the two normalized invariant
distributions introduced by Flaminio and Forni in [FF], Let r > 11/2; for any
function / e Wr(M) supported on irreducible components of the principal and

complementary series and for any rectifiable arc y c M, let us define

ßAr) E D+{f)ß+(y) + D-(J)ß-(y).
Spec(D)nR>o

Theorem 7 ([BF, Theorem 1.3]). For any r > 11/2 there exists a constant Cr > 0

such that far every rectifiable arc y C M and for all f e Wr (M) supported on

irreducible components of the principal and complementary series we have

L f U - ß f(y) < Cr Hiîi+//P|)
3. Proof of Theorem 2

Let W vV + xX + uU e sfeW with u / 0 be fixed. Let a > 0 and

0 < S < 0, and define the curve
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yZ(.v) ht o (pY(p), for .v e [0, S].

Up to replacing a and S by ca and cS, for some c > 0, we can assume that

max{|w[, |x|, |uI} < 1.

Let r > 11/2 and let / e W(M) n L^(M, vol). Using the orthogonal
decomposition (2), we can write

/= E /»•
/reSpec(D)

where /;x e VUr(//M), and, for p 0, the component /0 0. Let us denote by

fd f*> and fd J2
/ieSpec(D)nR<o /ieSpec(D)nR>o

so that

/ / ° dv / fd° yZAs) d'v + f fd ° 0) dv-
Jo Jo Jo

We will estimate the two integrals separately. The proof of Theorem 2 follows

fZfrom Propositions 8 and 10 below applied to ff and fd respectively.

3.1. Positive Casimir parameters. This section is devoted to the proof of the

following result.

Proposition 8. Let r > 11/2 and let f e Wr(M) n Lg(M, vol) he supported on
irreducible components of the principal and complementary series. Then, there

exists a constant C — C(r,o, W) > 0 such that for all 0 < S < a, t >2 and

p e M, we have

s

f O h, O (pf (p) d.vI «Jo
<c n/iir t-(i-"0)(iOgtr°.

By Lemma 5, we can compute the tangent vector of yZt(s) by

d .w,
(3)

dsYp'lis) M^tU){W)\Yw(s)

(yV + (x — 2t v)X + (w + xt — vt2)U)\yw^

so that

f f 0 yZ(s1 dv (" + xt -v{2) 1 f f û
Jo Jvf,'Vp.t

For all t > 2 we have \u + xt - vt2\ > |i>|?2( 1 — t~l —1~2) > |w|t2/4. Therefore,

by Theorem 7 and formula (3),
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£f°^T-w\kfü
<4> £ ~ (ßfüZ) + Cr \\f\\r 5(1 + |v| + \x\t + 2\v\/))

— W,W,<7 I t2ßf\Yp,t) + J '

where we can take Cr,w,a max{4|u|~1,20Cra|n|~1}.

Recall that we have

ßf(rZ) E *>t(f)ßt(YZ) + D»U)ß~M)-
ßsSpec(n)nR>o

From properties (2) and (3) in Theorem 6, for any 1/4, we deduce that for
all T K,

ß t{yZt) ?£(S21og» ° E<) flT" ßi (hT ° $2 log? o y^),

while, for /i 1/4, we have

ßtrivZ) tßtfalogt °yZ) +tl°Stß~H(Z2\ogt ° YZ)

'ft (^r ° £2 logr o yZ) + t log tß-(hT ° ft log » ° yj,)>

and

ß lirZt) r ^ (ft logt ° yZ) tßß{hT° &2 log t ° yZ)-

The following is our key geometrical observation: choosing T — t in the

formulas above, the components of the tangent vectors of the curve h"_toY2\ogt0YZt

with respect to the frame S are uniformly bounded in t.

Lemma 9. We have

^(h-t ° <?2log; ° YZMs) ~uV ~ (* + y x + (ji + J ~ v) u'

in particular far all t > 1 we have

f I Y I < 3S < 3a, far any Y e £ { V X U }.
J hu_,ogn,.„,oy]Y,'h-t°g2\og l°yP.l
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Proof. By Lemma 5, from an easy computation it follows

^(h-t °£2iogr °YZ)(S)

h-t°g2\ogt°Y}ft(s')
— AdeXp(_tv) ° Adexp(2 log (A" 0 AdeXppj/) (ff)

— AdeXp(_f^)

O AdeXp(2iogtZ)(wV + (x- 2vt)X + {-vt2 + xt + u)U)

Adexp(_ri/)(t;t2L + (x — 2vt)X + (—v + xt'1 + i/t~2)U)

(—uV — (x + 2ut~1)X + (— v + xt'1 + ut'2)U

ha-t°g2\ogt°Y,{s)

h-,°g2\ogt°yZt^

h-t°g2\ogt°YpJ(.s)

In particular, for all t > 1, we have max{|w|, \x\ + 2\u\t~l, |u| + \x\t~1 + |w|t2} 5 3,
which concludes the proof.

By property (4) in Theorem 6 and by Lemma 9, there exists a constant Ca > 0

such that for all p, 1/4 we have

ßtivZ) \<cct lTRev

and, for ji — 1/4,

ßU^M + 1°sr)-

Up to enlarging Ca, for all t > 1 we then deduce

ßf(rZ)\ - C° ll/llr?1+V0(lOg0£0,

which, together with (4), concludes the proof of Proposition 8.

3.2. The discrete series. In this section we prove the following result.

Proposition 10. Let r > 11/2 and let f e Wr(M) n Lq(A/, vol) be supported
on irreducible components of the discrete series. Then, there exists a constant
C C(r, ri, W) > 0 such that for all 0 < S < o, t > 2 and p e M, we have

fJo f oh, O <pf (p) d.v

Using the same notation as in Lemma 4, let

exp(.vli')

< C t '(logt).

a{s) b(s)\
c(s) d(s) I
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Since the entries above are smooth functions, we can define

I 1(a) 4max{|a'(,v)|, \h'(s)\, |c'(0|, |J'(.v)| : s g [0,a]}.

For negative Casimir parameters, the Bufetov-Forni functionals are not defined.

Hence, we proceed in the following way: we partition the curve Yp 't into 0(t)
curves which are at distance ()(t~l from a leaf tangent to the integrable
distribution {X, U), and we approximate them by their projection onto the

{X, £/}-leaf. The estimate for each projection can be then deduced from [BF],
see, e.g., [FU, Lemma 17].

We decompose the integral as follows:

[ f °V <pZ CO d.v f f o yZ CO dv
Jo Jo

(5) <
It

It

ystt\-i
E
k=0

ysit\-\
E
k=0

k+1
It

.foyZ(s)ds

f°vZMds

where

Pk—P exp — W

For any s e [0, (It) ], we have

Id(s) + c(s)t I > |d(0| - k(OIt > 1 - - ^st > 1 - i
Therefore, the function

A) CO — —
c(s)

d(s) + c(s)t

is well-defined for s e [0, (£f)_1].
For any 0 < k < [SIt J — 1, let us define the curve

Yk(s) h~jo(s) ° vZk,t (0. for s e [0, (CO"1]

Explicitly, we have

Yk CO Pk exp(s W)
1 I 1 01

0 1/ \Jo(s) 1,
Pk d(s)+c(s)t b(s) + a(s)t>

I 0 d(s) + c(s)t.

b(s)+a(s)t \
— Pk[l rf6)+c(s)r I / d(s)+c(s)t

0

d(s) + c(s)t

g-2\og(d(s)+c(s)t) ° h bW+aUV (Pk)
rf(.v)+c(.v)l
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Notice that the curve yk is contained in the {X, U}-leaf passing through pk We

also remark that there exists a constant C > 0 such that for any s e [0, (ft)-1],

dist(y^fv), y^>;Cv)) < C \J0(s)\ < 2C|c(*)| < 2Cls
2C

so that

(6)
\stt\-\
E
k=0 i f°YZ,tW ds

Lsrrj-i

- E
fe=o

- E
k=0

/:

/;

/ ° y>k (-V) d.v

/ O yk(s)ds

ysit\-i
+ E

k=0

2C

ft2

2C ||/||ra

Lemma 11. We have

and moreover

Proof. Let us denote

u ^Lfc(.v)) -vt2 + + u.

< 201.X

/i(j) -2\og(d(s) + c(s)t), and J2(s)
h{s) + a(.v)t
<7 (v) + c(i")t

We compute

^ (g/i(5) ° hj2(s)(pk))

%,(.) (£ °hj2{s)(pkyj + °hj2(s)(Pk)

DgJi(s) ° hJi(p(Pk)j + °^i(!)j °hj2(s){Pk)

((^>/2(e>)<?~'/i('s)£/ ° Yk(s) +- (/i(.v))x oy£(s)

((b'(s) + a'(s)t)(d(s) + c(s)t) - (h(s) + a(s)t){d'(s) + c'(s)t)^U o yf(s)

c\s)t + d'{s)- 2
c(s)t + d(s)

X O y^fv).
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By Lemma 4, for any .v e [0, (it) 1], we have

c{c'(.v), d'(.v)} < 2max{c(s), J(.v)} < 2^1 + < 3,

c'(s)t + d'(s)

maxt

so that

< 4(3? + 3) < 201.
c(s)t + d(s)

Using the formulas in Lemma 4 and the fact that a(s)d(s) — b(s)c(s) — 1, we

obtain that

(,b'(s) + a'(s)t)(d(s) + c(s)t) - (b(s) + a(s)t)(d'(s) + c'(s)t) -vt2 + ^-t 4- IP

which concludes the proof.

With our assumptions, for t >2,

—vt H—t + u
2

> |u|/2(l — t
1

— t 2) >
t)C

Thus, it follows that (see, e.g., the proof of [FU, Lemma 17|)

j: f °yk(s) d.v —vt H—t + u
2 y'Lfu

(7)
\v\t2

16
<

Cr||/||r(l+ J \X\j \Og(l+f \Û\

' lui t2

20
Cr\\f\\r[\+-r\(\0gt)<Cr,W,0 11/

log?
Ir ,2

From (5), (6) and (7), we conclude

-SfJo f oh, ocpY (p) d.v <Cr,W,a 11/11,
log?

4. Proof of Corollary 3

The proof is a straightforward consequence of a standard "mixing via

shearing" argument, see, e.g., [FU]. Without loss of generality, let us assume that

/ G Wr(M) IT Lq(M, vol) and let g e L2(M, vol) such that Vg e L2(M, vol).
By invariance of the Haar measure and integrating by parts, tor all a > 0 and

; > 1 we have

(/ ° ht,g) - f (/ o h, ohus,g o hus)ds
v Jo

{~jo f oht ohUsds>gj- ^ Jo ijo f °htohusds,Vgohus\,
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so that

\(foh„g)\ < Ik I

L

Ikl

/ o ht o h" d.v

vs\\ 2

Wg\
sup fJo

sup sup
.Se[0,a] p&M

2 a 56[0,<T]

S

/ o ht o hus(p) d.v

/ o/î, o h" d.v

fJo

The result follows from the estimates in Theorem 2.
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