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Surface groups in the group of germs of
analytic diffeomorphisms in one variable
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Abstract. We construct embeddings of surface groups into the group of germs of analytic
diffeomorphisms in one variable.
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1. Introduction

1.1. The main result. Let C be the field of complex numbers and Diff(C, 0)
the group of germs of analytic diffeomorphisms at the origin 0 € C. Choosing
a local coordinate z near the origin, every element f e Diff(C,0) is determined
by a unique power series
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f@=aiz+az? +asz® +...+a,z2" +...

with f'(0) = a; # 0 and with a positive radius of convergence

~1
(1.1) rad( f) = (limsup Ian|1/”) .

n——+oo
We denote by Diff(R,0) C Diff(C,0) the subgroup of real germs in this chart,
i.e., with a; € R for all i € N (this inclusion depends on the choice of the
coordinate z). The main goal of this note is the following result, that answers a
question raised by E. Ghys (see [Cer], §3.3, or also [Brul], Problem 4.15).

Theorem A. Let I' be the fundamental group of a closed orientable surface, or
of a closed non-orientable surface of genus > 4. Then I embeds in the group
DIff(R,0) and in particular in Diff(C,0).

We shall present three proofs of Theorem A. For simplicity, in this introduction,
we restrict to the case where I' is is the fundamental group of an orientable
surface of genus 2, and we consider the presentation

(12) rg = (al,bl,ag,b2| [al,bl] = [ag,bzl).

Our proofs of theorem A are inspired by [BGSS], where it is proved that a
compact topological group or a connected Lie group which contains a dense free
group of rank 2 contains a dense subgroup isomorphic to I'5.

The surface groups considered in Theorem A are examples of limit groups.
Recently, and independently, A. Brudnyi proved a related embedding theorem: limit
groups embed into the group of (non converging) formal germs of diffeomorphisms
(see [Bru2])

1.2. Compact groups. Let us describe the argument used in [BGSS] to prove
the following result.

Theorem 1.1 ([BGSS]). If a compact group G contains a free group F of rank
2, then there is an embedding p: I's — G such that F C p(I"2).

Proof. Denote by F,, the free group on m generators. The first ingredient is
a result by Baumslag [Bau] saying that Iy is fully residually free; this means
that there exists a sequence of morphisms py : I'>—F, which is asymptotically
injective: for every g € [2\ {1}, pn(g)# 1 if N is large enough.

To be more explicit, we use the presentation (1.2) of I, and we note that
the subgroup (a;,h;) of Iy is a free group Fy = (a1, b1). Let p: Ih— (a1, b1)
be the morphism fixing «; and b; and sending a, and b, to a; and by
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respectively. Let 7 : I',b—I, be the Dehn twist around the curve ¢ = [a;, by],

I

i.e. the automorphism that fixes a; and h; and sends a, and b, to cac™ " and

chyc™! respectively.
Proposition 1.2 (see [BGSS, Corollary 2.2]). Given any g € I';\ {1}, there exists
a positive integer nog such that pot"™(g) # 1 for all N > nyg.

Now, fix an embedding ¢: (a;,h1) — G such that «((a;,bh1)) = F. Composing
pot™ with ¢, we get a sequence of points py :=topotr? in Hom(I;, G). Now,
consider the element & = «(p(c)) of G, and let T be the closure of the cyclic
group (k) in the compact group G . For t € T', define a morphism p;: I'> - G

by
(1.3) pelar) = ‘(P(dl))s praz) =to (t(p(al))) ot~ !
(14) (b)) = (p(b), pelb2) = 10 (1(p(b1))) 0™

these representations are well defined and satisfy p, =to pot™ when t = AV .
Moreover, on the subgroup (a;, b}, p; coincides with top, so F C p;(I'2). Thus,
(pt)rer is a compact subset R(T) C Hom(I',, G) that contains the sequence of
points py . For every g in I';\ {1}, the subset R(T), = {p: | p:(g) # 1} is open,
and Proposition 1.2 shows that it is dense because {h" | n > ng} is dense in T
for every integer no. By the Baire theorem, the subset of injective representations
o; is a dense Gg in R(T), and this proves Theorem 1.1. (]

The group Diff(R, 0) contains non-abelian free groups (this is well known, see
Section 3.3), and one may want to copy the above argument for G = Diff(R, 0)
instead of a compact group. The Koenigs linearization theorem says that if
[ € Diff(R,0) satisfies f’(0) > 1, then f is conjugate to the homothety
z + f’(0)z; in particular, there is a flow of diffeomorphisms (¢?);cg for which
@' = f. In our argument, the compact group 7 introduced to prove Theorem 1.1
will be replaced by such a flow, hence by a group isomorphic to (R, +). Also, in
that proof, 2 = ¢«(p(c)) was a commutator, and the derivative of any commutator
in Diff(R,0) is equal to 1 at the origin, so that Koenigs theorem can not be
applied to a commutator. Thus, we need to change pp into a different sequence
of morphisms: the Dehn twist r will be replaced by another automorphism of
[';, twisting along three non-separating curves.

This argument will be described in details in Sections 2 and 3; the reader who
wants the simplest proof of Theorem A in the case of orientable surfaces only
needs to read these sections. Non orientable surfaces are dealt with in Section 4.



96 S. Cantat, D. Cerveau, V. GUIRARDEL and J. SouTto

1.3. Lie groups. Now, let us look at representations in a linear algebraic subgroup
G of GL,(R). Assuming that there is a faithful representation ¢: ¥, — G with
dense image, we shall construct a faithful representation I', — G.

The representation variety Hom(I'2, G) is an algebraic subset of G*. Let R be
the irreducible component containing the trivial representation. Let py: ' — F;
be an asymptotically injective sequence of morphisms, as given by Baumslag’s
proposition. When the image of p is dense, one can prove that to py is in
R for arbitrarily large values of N. For g € I'; \ {1}, the subset R, C R of
homomorphisms killing g is algebraic, and it is a proper subset because it does
not contain ¢ o py for some large N . Then, a Baire category argument in R
implies that a generic choice of p € R is faithful.

To apply this argument to G = Diff(R,0), one needs a good topology on
Diff(R,0), and a good “irreducible variety” R C Hom(I'>,G) containing to py,
in which a Baire category argument can be used. This approach may seem difficult
because Hom(I'2,G) is a priori far from being an irreducible analytic variety
but, again, the Koenigs linearization theorem will provide the key ingredient.

First, we shall adapt an idea introduced by Leslie in [Les] to define a useful
group topology on Diff(R,0) (see Section 5). With this topology, Diff(R,0) is an
increasing union of Baire spaces, which will be enough for our purpose. Denote by
Cont(R, 0) C Diff(R,0) the set of elements f € Diff(R,0) with | f/(0)] < 1; Cont
stands for “contractions”. Consider the set R of representations p: I', — Diff(R, 0)
with p(a;) tangent to the identity, and p(b;) € Cont(R, 0). Then, the key fact is
that the map

v R—Cont(R, 0) x Diff(R, 0) x Diff(R, 0)
p = (p(b1). plaz). p(b2))

is a continuous bijection. Indeed, the defining relation of I' is equivalent to
arbray' = [az, ba]by. Given (g1, f2, g2) € Cont(R, 0) x Diff(R, 0) x Diff(R,0), the
germs g, and [f>,g2]g1 have the same derivative at the origin and, from the
Koenigs linearization theorem, there is a unique f; € Diff(R,0) tangent to the
identity solving the equation fig1/;"! = [/f2,g2]g1: by construction there is a
unique morphism p: I'; — Diff(R,0) that maps the «; to the f;, and the h; to
the g;, and this representation satisfies W(p) = (g1, f2, g2). With this bijection
W and the topology of Leslie, we can identify R with a union of Baire spaces,
in which the Baire category argument applies.

1.4. Other fields. Let k be a finite field with p elements. The group Diff!(k, 0),
also known as the Nottingham group, is the group of power series tangent to
the identity and with coefficients in the finite field k. It is a compact group
containing a free group (see [Sze]). Thus, by [BGSS], it contains a surface group.
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Now, let p be a prime number, and let Q, be the field of p-adic numbers.

Consider the subgroup Diff' (Z,, 0) C Diff(Q,. 0) of formal power series tangent
to the identity and with coefficients in Z,. First, note that all elements f of
Diffl(Zp,()) satisfy rad(f) > 1, so that Diffl(Zp,O) acts faithfully as a group
of (p-adic analytic) homeomorphisms on {z € Z, : |z| < 1}. So, in that
respect, Diffl(Z,,. 0) is much better than the group of germs of diffeomorphisms
Diff(C, 0). Moreover, with the topology given by the product topology on the
coeflicients a, € Z, of the power series, the group Dif'fl(Zp.()) becomes a
compact group. And this compact group contains a free group. By the result
of [BGSS] described in Section 1.2, it contains a copy of the surface group
[;. So, we get a surface group acting faithfully as a group of p-adic analytic
homeomorphisms on {z € Z, ; |z| < 1}. In Section 7 we give a third proof of
Theorem A that starts with the case of p-adic coefficients.

L.5. Organisation. The article is split in four parts.

[.  Sections 2 to 4 give a first proof of Theorem A; Section 4 is the only
place where we deal with non-orientable surfaces. We refer to Theorem B
in Section 4.3 for a stronger result, in which the field R is replaced by any
non-discrete, complete valued field k.

II. Section 5 and 6 present our second proof, based on the construction of a
group topology on Diff(C, 0).

II. Then, our p-adic proof is presented in Section 7.

IV. Section 8§ draws some consequences and list a few open problems, while the
appendix shows how to construct free groups in Diff(C, 0), or Diff(k,0) for
any non-discrete and complete valued field.

Part 1
2. Germs of diffeomorphisms and the Koenigs Linearization Theorem

2.1. Formal diffeomorphisms. Let k be a field (of arbitrary characteristic).
Denote by k[z]] the ring of formal power series in one variable with coefficients
in k. For every integer n > 0, let A,: Kk[z] — k denote the n-th coefficient
function:

(2.1) Ap: f =) anz" > Ay(f)=a,.

A formal diffeomorphism is a formal power series f € K[z] such that A¢(f) =0
and A{(f) #0. The composition f o g determines a group law on the set
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(2.2) Diff (k. 0) = {f € K[z] | Ao(f) =0 and A;(f) # 0}

of all formal diffeomorphisms.

For each n > 1, there is a polynomial P, € Z[A,, By,...,A,, B,] such that
if f=D>anz" and g =) b,z" then fog =3, Pular,br,...,an, by)z".
Similarly, there are polynomials Q, € Z[A,..., A,][A7'] such that f~' =
Yoot Oular,....an)z" if f =) a,z"; the polynomial function Q, is given
by the following inversion formula:

= X (—1)’<l+kz+.~.<n+1)---(n—1+k1+k2+...).(“—2)kl (“—3)"2_..

a kilks! --- a a
1k koo, b ! d

where a; = A;(f) and the sum is over all sequences of integers k; such that
ki+2ky +3kzs+---=n—1.

We refer to [Jen| where this is proved for f and g tangent to the identity; the
general case easily follows.

To encapsulate this kind of properties, we introduce the following definition.
Let m be a positive integer. By definition, a function Q: ﬁf(k, 0™ — K is
a polynomial function with integer coefficients, if there is an integer n, and a
polynomial ¢ € Z[A11, A2,1, ..., Am—1,n, Amal[AT ], ..., A,'] such that

(2.3) QUfrs--s fm) = q(AL(f1)s ... An(fm))

for all m-tuples (fi..... fm) € Diff (k,0)™; we denote by Z[Diff (k,0)™] this
ring of polynomial functions.
Let ¥y = (B1y.oes em) be the free group of rank m. To every word

w = e''...e’* in F,, with exponents n; € Z, we associate the word map

l] .. lA

w : Diff (k, 0)™ — Diff (k,0),
def ny 1y
(2.4) 5 PR gm) = w(g1,. .., gm) = 8ij ©-:+98y, -
Since composition and inversion are polynomial functions on Diff (k,0), we get:

Lemma 2.1. Let w : Ei?f(k,O)'” > Ei?f(k, 0) be the word map given by some
element of the free group ¥,,. For each n > 1, there is a polynomial function
Quw.n € Z[Diff (k,0)™] such that

Aﬂ(w(gla"~’gm)) - Qw,n(gla---,gm)

for all g1....,¢m € Diff (k,0).
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2.2. Diffeomorphisms and Koenigs linearization Theorem. Suppose now

that k is endowed with an absolute value |-|: k — R;. Then k becomes
a metric space with the distance induced by |-|. We shall almost always assume
that

e Kk is not discrete, equivalently there is an element x € k with |x| # 0, 1;

e Kk is complete.

Let k{z} be the subring of Kk[z] consisting of power series f(z) = > a,z" whose
radius of convergence rad( /) is positive (see Equation (1.1)). When k is complete,
the series > a,z" converges uniformly in the closed disk D, = {z e k| |z| <r}
for every r < rad(f). The group of germs of analytic diffeomorphisms is the
intersection Diff(k,0) := Eiﬁ(k,O) N k{z}; it is a subgroup of Diff (k,0).

A germ [ € Diff(k,0) is hyperbolic if |A1(f)| # 1. The following result is
proved in [Mil, Chapter 8] and |[HY, Theorem 1, p. 423] (see also [Sie, Theorem 1]
or [Koe]).

Theorem 2.2 (Koenigs linearization theorem). Let (K, |-|) be a complete, non-
discrete valued field. Let f € Diff(k,0) be a hyperbolic germ of diffeomorphism.
There is a unique germ of diffeomorphism h € Diff(kK,0) such that h(f(z)) =
Ai(f)-h(z) and A (h) = 1.

3. Embedding orientable surface groups

3.1. Abstract setting. Our strategy to construct embeddings of surface groups
relies on the following simple remark. Let I' be a countable group, and
G be any group. Consider a non-empty topological space R, with a map
O:5eR— by € Hom(I',G). Given g e I', set Rg = {s € R | Py(g) = 1}.

Lemma 3.1. Assume that R has the following three properties:

(1) Baire: R is a Baire space;

(2) Separation: for every g # 1 in I', ®4(g) # 1 for some s € R;

(3) Irreducibility: for every g € I', either Rg = R or Ry is closed with empty
interior.

Then the set of s € R such that ®g is an injective homomorphism is a dense Gg
in ‘R; in particular, it is non-empty.

Proof. For any g € I"\ {1}, one has Ry # R by (2), so R, is closed with
empty interior by (3). By the Baire property, R\ (Uger\{1;Rg) is a dense Gg.
But R\ (Uger\{13Rg) is precisely the set of s € R such that ®; is injective. []
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3.2. Baumslag Lemma. As explained in the introduction, it is proved in [Bau]
that the fundamental group of an orientable surface is fully-residually free. We
need a precise version of this result; to obtain it, the main technical input is the
Baumslag’s Lemma (see [Ols, Lemma 2.4]):

Lemma 3.2 (Baumslag’s Lemma). Let n > 1 be a positive integer. Let gg, ...,
gn be elements of ¥y, and let ¢y, ..., ¢, be elements of ¥ \ {1}. Assume that
forall 1 <i<n-—1, gi_lc,-gi does not commute with cj+y. Then for N large
enough,

N N N N
£oCq1 81Cy .- Cy_18n-16C,, En # 1.

Sketch of proof (I). The group PSL,(R) acts on the hyperbolic plane H by
isometries, and contains a subgroup I' such that (0) I' is isomorphic to Fg, (1)
every element ¢ # Id in I' is a loxodromic isometry of I, and (2) two elements
¢ and h in T \ {Id} commute if and only if they have the same axis, which
happens if and only if they share a common fixed point on dH. One can find
such a group in any lattice of PSL,(R). To prove the lemma, we prove it in I".

Fix a base point x € H, denote by «; and w; the repulsive and attracting
fixed points of ¢; in JdH, and consider the word

N N
gocCy 816, 2.

For m large enough, ¢J'¢, maps x to a point which is near w,. If g1(w>) were
equal to «q, then ¢y and gics gl“l would share the common fixed point oy, and
they would commute. Thus, gi(@2) # a; and then gocT'glcg’gg maps x to a
point which is near go(wp) if m’ is large enough. Thus, gocfvglcévgz(x) £ X
for large N . The proof is similar if »n is larger than 2. O

Sketch of proof (II). We rephrase this proof, using the action of F; on its
boundary, because this boundary will also be used in the proof of Proposition 3.3.

Fix a basis ay,...,a; of Fy, and denote by dF; the boundary of Fj. The
elements of 0F; are represented by infinite reduced words in the generators
a; and their inverses. If g is an element of F; and « is an element of JF
the concatenation g -« is an element of 0Fy: this defines an action of Fj by
homeomorphisms on the Cantor set dFy. If g is a non-trivial, its action on JFy
has exactly two fixed points, given by the infinite words w(g) = g---g--- and
a(g) = g 1---g7!... (there are no simplifications if g is given by a reduced
and cyclically reduced word). Then we get: (1) every element ¢ # Id in Fi has
a north-south dynamics on 0Fy, every orbit g” - B converging to w(g), except
when B = «(g), and (2) two elements g and 4 in Fy \ {Id} commute if and
only if they have the same fixed points, which happens if and only if they share



Surfaces groups in germs of diffeomorphisms 101

ag = ap =
0] = "7101771_1
ap = o
ag = 7]2&27]2_1
as = oy '
t=mun; !

ty = Nofy |

FiGure 1
The fundamental group I'>. — The «; are three loops, while the n; and 7; are four paths.
The figure is symmetric with respect to the plane cutting the surface along the loops «; .

a common fixed point on dFy . One can then repeat the previous proof with the
action of Fy on its boundary. 0]

Write the surface of genus 2 as the union of two pairs of pants as in Figure 1,
with respective fundamental groups

(31) (ao.al.az | dod1dy = 1) and (do.al,ag | dopd1dr = l)

This gives the presentation

dg,dy,dy, dodi1dy = ],
(3.2) I, = <ao,al,52, dod dr = 1,
- - 1 g
1,12 dog = dg, d) =1y "aily, dz =1, "dxl»

which can be rewritten as
(3.3) I's = (ao,al,az,fl,tz | agdaids = 1, aol‘fla]tltz_lazl‘z =1 %

Denote by p : I'y—(ag,a1,a2) =~ F, the morphism defined by p(«¢;) = aq;,

pla;) = a;j, and p(t;) = p(tz) = 1. Let © : I';—I, be the (left) Dehn twist

along the three curves «y, a;, and a,, i.e. the automorphism fixing a; and

sending #; to a;tiay' for i = 1,2. Note the following facts:

® T sends a; to aoﬁiaal; in particular, if ¢ is a word in the a;, then
™ (g) = af gag";

e potV fixes g; for every i =0, 1, 2, and

(3.4) pot™(t) =alay"

for j =1, 2.
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Proposition 3.3. For every g € T2\ {1}, there exists a positive integer ng such
that potN(g)# 1 for all N > ny.

Proof. To uniformize notations, we define ¢y = 1 so that for all i € {0,1,2} the
relation #;a;t;' = a; holds, and t maps t; to a;tiay". Let A = (ap.ay.a,) and
A= (ag,ay,ar). Write g as a shortest possible word of the following form:

(3.5) g = goti, §117," Loty - - En11;, ' gn

where n is even, iy € {0,1,2} for all kK <n, g € A for k even, g, € A
for k odd, and the exponent of #;, is (—1)**1 (we allow gy = 1). One easily
checks that g can be written in this form because all generators can (for instance
n=1-t-1-15"1).

If k is such that iy = ix4,, then gy ¢ (a;.) if k is even (resp gy ¢ (a;, ) if k
is odd) as otherwise, one could shorten the word using the relation #;, a;

-1 _ —.
ktik = iy -

First claim. If k € {2,...,n—2} is even, g;laik gr does not commute to g

If iy # ixy1, this is because g € A >~ F, and no pair of A-conjugates of
aj, and a; ,, commute. If iy = ix41, then gx ¢ (q;, ) as we have just seen,
since a;, is not a proper power in A, this shows that gk.(a;;m) == a:;“’ in the
boundary at infinity of the free group A4, so g,:la,-k gx does not commute with
a;, , and the claim follows.

Similarly, using the fact that g € A for odd indices, we obtain:

Second claim. If k <n —1 is odd, g,:lii,-k gk does not commute o d;, 58

We have tV(gx) = g if k is even, and t(gx) = al grag™ if k is odd.
After simplifications, one has

-1,-N

N N —-1_—N N
(3.6) T7(g) = goa;, ti &1t 4" 8205 tis - .. §n—1t; 4; " &n-

For k odd, denote by g, € F, the image of gi under p. Applying p, we thus
get

7 —_

(3.7) pot™(g) = goal ghar N gaall gl ... gn 1a;" gn.

in

with g7 := p(g;). Let us check that the hypotheses of the Baumslag Lemma 3.2
apply. For k even, the first claim shows that g;laik gk does not commute to
iy, » as required. For k odd, we use that p is injective on A and that A contains
g; 'di gr and @, , and we apply the second claim to deduce that g; 'a;, g}
does not commute to a;, ., . Applying Baumslag’s Lemma, we conclude that
potN(g)# 1 for N large enough. ]
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3.3. Embeddings of free groups. The group Diff(R,0) contains non-abelian free
groups. This has been proved by arithmetic means [Whi, Gla], by looking at the
monodromy of generic polynomial planar vector fields [IP], and by a dynamical
argument [MRR]. We shall need the following precise version of that result.

Theorem 3.4. Let (K, |-|) be a complete non-discrete valued field. For every pair
(A1,A2) in K*, there exists a pair f1, f[> € Diff(k,0) that generates a free group
and satisfies f/(0) = Ay and f;(0) = As.

This result is proved in [BCLN, Proposition 4.3] for generic pairs of derivatives
(A1,A2). We provide a proof of Theorem 3.4 in the Appendix, extending the
argument of [MRR]. We refer to Section 7.1 below for other approaches.

3.4. Embedding orientable surface groups. We can now prove Theorem A for
orientable surfaces:

Theorem 3.5. Let T'y be the fundamental group of a closed, orientable surface
of genus g. Then, there exists an injective morphism I'¢—Diff(R,0).

The group Iy is trivial. The group I'y is isomorphic to Z?, hence it embeds
in the group of homotheties z Az, A ¢ R . If g > 2, then 'y embeds in I';.
To see this, fix a surjective morphism [, — Z, and take the preimage A C I';
of the subgroup (g — 1)Z C Z. Then, A is a normal subgroup of index g — 1
in I'z, and it is the fundamental group of a closed surface X, given by a Galois
cover of degree g — 1 of the surface of genus 2. Since the Euler characteristic is
multiplicative, the genus of X satisfies —2(g —1) =2 —2g(¥). Thus, g(£) =g
and A is isomorphic to I'y. Thus, we now restrict to the case g = 2.

By Theorem 3.4, we can fix an injective morphism

(38) Lo ZFZ = (do,al,az | dodidy; = 1)—>lef(R, 0)

such that the images f1 = po(a1), fo = po(az), and fo = polao) = f537' fi
satisfy

(3:9) O =d1= 1. L0i=daz1l HO=di<]

for some real numbers A; and A, > 1 and Ao = (A;A5)" L. In particular, fy, f1,
and f, are hyperbolic. For A € R*, denote by m,(z) = Az the corresponding
homothety. For i € {0, 1,2}, the Koenigs linearization theorem shows that f; is
conjugate to the homothety my, : there is a germ of diffeomorphism £; € Diff(R, 0)
such that f; = h; omy, o hi_l. Thus f; extends to the multiplicative flow
@i - RE —Diff(R,0) defined by ¢} = h;j om; o h;t for s € R% ; by contruction,
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(,ol.}L " = fi and ¢} commutes with f; for all s > 0. We note that s — ¢7 is

polynomial in the sense that for all Kk € N, s +— Ay (¢]) is a polynomial function
with real coefficients in the variables s and s~!.
Set R = (R%)*. As in Section 3.2, consider the presentation

(3.10) [ = (ao,al,a2,11,1‘2 | dod1dr = 1, a()[l—lalllfz—lazlz = ])
Given s = (59, 51.52) € (Ri)3, we define a morphism &y : I'; — Diff(R,0) by

(3.11) dg(a;) = f; for i €{0,1,2)
(3.12) Oy(ti) = ¢ gy’ for i €{1,2)

This provides a well defined homomorphism because ¢; commutes with f;. As
we shall see below, this morphism ®; is constructed to coincide with pgo pot?¥
for s = (AY, AN, 1Y) (see Equation (3.4)).

Remark 3.6. For every s € R, the image of ®; contains f; and f>, hence the
free group po(F2). This will be used in Section 4.3.

To conclude, we check that the three assumptions of Lemma 3.1 hold for this
family of morphisms (®g)ser .

Clearly, R is a Baire space.

To check the irreducibility property, consider g € I'; and assume that R, # R:
this means that there exists a parameter s € R and an index k > 1 such that
A (Ps(g)) # Ar(Id). The map s = (s0.51.52) > Ap(Ps(g)) — Ax(Id) is a
polynomial function in the variables sF!, sf', and sF! that does not vanish
identically on R, so its zero set is a closed subset with empty interior.

We now check that R has the separation property. As in Section 3.2, denote
by p: I—F, = (adg,a1,d2 | apaiaz = 1) the morphism obtained by killing ¢,
and f;. For the parameter s = (1,1,1), ®; is equal to pypo p. More generally,
setting sy = (AN, AN, AY) for N € N, the morphism &, : I'; — Diff(R, 0)
satisfies

(3.13) @y (a;) = f; fori €{0,1,2)

N N
(3.14) Dy () =@ @ = VN forie{1,2).

This means that &g, = pgopo N where, as in Section 3.2, 7: [—T is the
Dehn twist along the three curves a;. By Proposition 3.3, for all g € I, \ {1}
there exists N € N such that p otV (g) # 1. Since p, is injective, this implies
that @y, (g) # 1 which shows that ‘R has the separation property.
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4. Non-orientable surface groups

Theorem 4.1. Let N, be the fundamental group of a closed non-orientable surface
of genus g > 4. There exists an injective morphism N,—Diff(R,0).

Remark 4.2. The fundamental group N3 of the non-orientable surface of genus 3
is not fully residually free, and our methods do not apply to this group. (See [Lyn,
Proposition 9].)

4.1. Even genus. We first treat the case of an even genus g > 4. In this case,
the group Ng embeds in N4. Indeed, the non-orientable surface of genus 4 is
the connected sum of a torus R?/Z? with two projective planes P?(R). Taking
a cyclic cover of the torus of degree k, we get a surface homeomorphic to
the connected sum of R?/Z? with 2k copies of P?(R), hence a non-orientable
surface of genus 2(k + 1). Thus, it suffices to prove that N4 embeds in Diff(R,0).

The non-orientable surface of genus 4 is homeomorphic to the connected sum
of 4 copies of P?(R), and this gives the presentation (see Figure 2)

(4.1) Na = {av,az, b1, by | aia3b3bi = 1)

Let p: Ns—{(ay,un) be the morphism fixing a;,a, and sending by and b, to
a;' and a;' respectively. Let t: Ny— N4 be the Dehn twist around the curve
y = (a?a?)7!, i.e., the automorphism that fixes ¢; and ¢, and sends »; and b,
to yhyy~! and yh,y~! respectively.

Lemma 4.3. Given any g € N4\ {1}, there exists ny € N such that for all
N =ng, potN(g) # 1.

i = (afa3)™

FIGURE 2
The fundamental group N4. — The base point is represented by e, the 4 generators
are day, d, by, by, and the curve y is used to construct the Dehn twist 7.
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For the proof. The proof of this statement is completely analogous to the proof
of [BGSS, Corollary 2.2], using Baumslag Lemma, we leave it as an exercise to
the reader. See also [CG, Proposition 4.13]. L]

Using Theorem 3.4, we fix two germs of diffeomorphisms f; and f; €
Diff(R,0) generating a free group and satisfying f/(0) > 1 and f;(0) > 1. We
denote by

(42) Lo - F2 = (al.az)—>Dif‘f(R, 0)
the injective morphism sending «; to f; for i € {1,2}. In particular,

(4.3) po(y) = (f12 © fzz)_l

is a hyperbolic germ: its derivative A = ((fZ o f2)(0)~' is < 1. The
Koenigs linearization theorem gives an element / € Diff(R,0) such that po(y) =
homj oh™'. Consider the multiplicative flow ¢ : R% —Diff(R,0) defined by
¢ = gomyog~l. As above, ¢* = py(y), ¢° commutes with po(y) for all
s > 0, and s + ¢* is a polynomial map: for all k € N, s = Ag(¢®) is a
polynomial in the variables s and s—!,

Set R = R%. Given s € R%, consider the morphism p; : Ny — Diff(R,0)
defined by

A

ap — fi az = f2

by > @ [ g™ by > @* f5 o5

This gives a well defined homomorphism because ¢° commutes with 2 f2.
We now check the three assumptions of Lemma 3.1. Clearly, R is a Baire
space. The irreducibility is a consequence of the fact that for any ¢ € N4, and
any k € N the map s — Ag(ps(g)) is a polynomial function in the variables
s¥1. The separation property follows from Lemma 4.3 together with the fact that
psn = poo pot? and that py is injective.
4.2. Odd genus. We now treat the case of a non-orientable surface of odd genus
g=2k+1, k>2. One can write Ny;.; as (see Figure 3 below)

4.4) Nogyr = {ay,....ag,c,by, ... by | a%...aiczbf...b% = I},
This group splits as a double amalgam of free groups

4.5) Nog 41 = (a1, ... ag) * (v, c) * (h1,....bg).

2 ] o )
aj..ap= c ;yabk...b1

We shall use the following notation to refer to this amalgam structure:
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FiGure 3
The fundamental group Nog 4

o Ay ={ay....ar) and e;5 = (ai...a;)"";
o Ay=/{(yc) and es; =y and er3 = c 2y =§;
L A3:(h1,...,bk) and 63’2:}7]%...]7%.

So, each of the A; is a free group and the amalgamation is given by e; > = ¢5 1
and €3 =6€32.

Define a morphism p: Npygi1—(aq,...,ax) >~ Fr by
a; +—a; fori <k C > a,?z
bi —a; ' fori<k-—1 by — ay

(the structure of almagam shows that p is well defined).

Lemma 4.4. The morphism p: Nag+1—Fy is injective in restriction to each of
the three subgroups of the amalgam (4.5).

Proof. By construction, it is injective in restriction to (ay,...,dx) and in restric-
: . ) 5 2B % U sl

tion to (by,...,bg). Then, note that p({y,c)) = (ai...aj,a, ") is isomorphic to
F, because it is a non-abelian subgroup of a free group. Since F, is Hopfian,
p is necessarily injective in retriction to {y,c). (]

Consider § = b7 ---b7 = ¢?y and note that p(§) = aga;?,---ay?. Let t be
the Dehn twist corresponding to the decomposition above, i.e. the automorphism
fixing «;, sending ¢ to ycy~! and sending b; to (y8)h;(y8)~!. Since 7 is the
composition of the twists given by y and & and these two twists commute we
get
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Ny = (YVsMb (VSN Vb € 4.

In this situation, one can prove the following lemma in a similar way to
Proposition 3.3.

Lemma 4.5. Given any g € Nagi1 \ {1}, there exists ny € N such that for all
N zno, potV(g) #1.

Proof. Write g as a word in the graph of groups, i.e., g = 5o ...5, With s € 4,,
(we allow sx = 1) for some ry € {1,2,3}, with rpyy =rgt1,and ro=r, = 1.
We take this word of minimal possible length among words satisfying these
contraints. If k is such that rg_y = rg41, then si & (err,.,) since otherwise,
one could shorten the word using the structure of amalgam (in particular sz # 1
in this case). Now one easily checks that

(4.6) tV(g) = sodS"V 51 d5 NV 5y - dBV 5,

where dy =e,, . € {18}, and &g =1 — 11 € {£1}.

We claim that .s,;ldksk does not commute with dgy;. If dy # dgyq, this
follows from the fact that y commutes with no conjugate of § in A, = {c,§). If
dr = diqr, then rg_y = riq1, 50 Sk & {erery,) = (di). I [sp dese, di] = 1,
then s preserves the axis of dy in the Cayley graph of the free group A4,, , so
s, is a power of dj, because di € {y,d} is not a proper power; this contradicts
that s ¢ (di).

Denote by 5, dy € F, the images of s, dx under p. Since p is injective on
each 4, , E;ljkﬁk does not commute with 5§41, so the hypotheses of Baumslag
Lemma apply to the word

—eoN_ —e1N —en— 1 N_ —en
“.7) pot¥(g) =a " 5@ Vs, Vs
so pot(g) # 1 for N large enough. 0l
Now consider k elements fi, ..., fi of Diff(R,0) generating a free group

of rank k with f/(0) > 1 for all i € {l,...,k}, and f/(0) < f{(0). Such a
set can be obtained from two generators g, and g, of a free group of rank
2 with g/(0) > 1, as in Theorem 3.4, by taking f; = gl oglogy’ for i <k
and f; = g¥ogrogr®. Let po: Fr = (ay,...,ar)—Diff(R,0) be the injective
morphism sending a; to f; for i < k. In particular, po(y) = (ffo---0 sz)—l
and po(p(8)) = fZo fi % o---0 fi7* are hyperbolic. Using Koenigs linearization
theorem as above, there exists two multiplicative flows ¢ and ¥ : R} —Diff(R, 0)
and a pair of positive real numbers A and g such that (I) ¢* = po(y) and
Y = po(p(d)), and (2) s > ¢° and s+ * are polynomial mappings.
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Set R = (Rj_)2 and, for every (s,s’) € R, define a morphism p ¢ :
Ny +1—Diff(R,0) by

a; — f; fori <k C wsifk_z(p_s
bi > @y [T @)Y fori <k =1 b @y filgtyt) !

(this is well defined because ¢* and ¥* commute with po(y) = (fZo- -0 f2)7!
and po(p(8)) = fZo f % oo f{ > respectively).

The assumptions of Lemma 3.1 hold: R is a Baire space, and the irreducibility
follows from the fact that the maps s — ¢ and s’ — @y are polynomials in the
variables s*!, /!, The separation property follows from Lemma 4.5 together
with the fact that pyn~ ,~ = pgopot?, and that py is injective.

4.3. Embeddings in Diff(k,0). The proofs just given provide the following
statement.

Theorem B. Let (k,|-|) be a non-discrete and complete valued field.

(1) Let T be the fundamental group of a closed orientable surface, or a closed
non-orientable surface of genus > 4. Then, there is an embedding of ' into
Diff(k, 0).

(2) Let F C Diff(k,0) be a free group of rank 2, generated by two germs f
and g with |f'(0)] > 1 and |g’(0)] > 1. Then, there is an embedding of
[">, the fundamental group of a closed, orientable surface of genus 2, into
Diff(k, 0) whose image contains F.

Proof. For the first assertion, we just have to replace R by k in the proofs of
Theorem 3.5 and 4.1. The parameter space is R = (k*)? or k* or (k*)2, and it
is a Baire space because (k,|-|) is complete.

For the second assertion, we start with a representation py in Equation (3.8)
whose image is equal to F. Remark 3.6 shows that all the injective morphisms
®, that we get satisfy also ®d4(I) D F. O

Part 11
5. The final topology on germs of diffeomorphisms

Let (k,|-|) be a complete field. This section introduces a new topology on
k{z} and Diff(k, 0), which will be used in our second proof of Theorem A. The
reader may very well skip this section on a first reading.
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5.1. The final topology over the complex numbers. Until Section 5.4, we focus
on the case k = C. Let r be a positive real number. Consider the subalgebra A,
of C{z} consisting of those power series f(z) = ), a,z" which converge on
the open unit disk D, (i.e., rad(f) = r) and extend continuously to the closed
unit disk D,. When endowed with the norm

(5.1 17 1l.a, = max | f(z)],

zeD,

A, is a Banach algebra. If s < r, the restriction of functions f € A, to the
smaller disk Dy determines a 1-Lipschitz embedding A, — Aj.

The space C{z} is the union of the algebras A, and can be thus endowed
with the final topology associated to the colimit

(5.2) C{z} = lim A,.

This means that a subset & C C{z} is open if its intersection with A, is open
for every r > 0. Equivalently, a map ¢: C{z} — X to a topological space is
continuous if and only if its composition with the embedding A, — C{z} is
continuous for all r. Unless we say it explicitly, open sets, neighborhoods, and
continuous maps refer, from now on, to this topology. A word of warning: for
r > s, the inclusion A, — A is not a homeomorphism to its image, and neither
is the inclusion A, — C{z}.

The goal of this section is to obtain several basic properties of this topology.
For instance, we are going to prove that there is a filtration of C{z} by compact
subsets C.{z} so that the continuity can be checked in restriction to each C.{z}.

Remark 5.1. If s < r, the homomorphism A, — Ay is compact: by Montel
theorem, the ball of radius 1 in A, is mapped into a compact subset K; of Aj.

Let K C A, be a bounded subset. Then, the closure c/y(K) of (the image
of) K in A, is compact. If ¢t < s, the image of c/;(K) in A; is compact, hence
closed; this implies that ¢lg(K) = cl;(K) in C{z}. Thus, the closure K of K
in C{z} coincides with the closure c/;(K) of K in A for any s <r. As a
consequence, K is compact.

We denote by B4, (¢) the open ball centred at O and of radius € in
A, which we also view as a subset of C{z}. If s < r and & < &', then
B4, (g) C Ba,(¢') C C{z}. Given any finite set of such balls BA,j (¢j), the sum
Z'-’zl BA,_j (¢;) is the subset of C{z} whose elements are sums f| + --- + f,

j
with f; € BA,j_ (€;) for all j.
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Lemma 5.2. A subset U of C{z} is a neighborhood of 0 if and only if there
are decreasing sequences (rp) and (€,) tending to 0 such that U contains the

B = U Z BArj (Gj).

n jz1

set

Lemma 5.2 shows that the topology defined in this section is the same as the
topology introduced by Leslie in [Les], except that we consider germs of analytic
functions at the origin in C instead of real analytic functions on a compact
analytic manifold.

Proof. First we argue that any set 5 as in the statement of Lemma 5.2 is a
neighborhood of 0 in C{z}. To do so we need to check that BN A, contains a
neighborhood of O for all r. The sum Zle BArj (¢;) is a subset of C{z} which
is contained in 4, . It is open in A, because one of the summands, namely
B 4,, (€4), is itself open. Now, the continuity of the inclusion A, — A,, for r, <r
implies that }°7_, B4, (€;)N A, is also open in A, . Since > e B, (/)N A
is contained in BN A, , the latter is a neighborhood of 0, as we needed to prove.

Suppose now that ¢/ is a neighborhood of the origin in C{z}, and fix a
decreasing sequence (r,) tending to 0. For each n > 1, set U, =UNA,, .

We first claim that there is a ball By in A, such that B, C . Since
Uy is open in A,,, consider & > 0 such that By, (¢) C Us. Now let
By = By, (¢/2). Then for all n>0, By C By + B, (n) so taking n =¢/2, we
get B1 C By, (e/2) + Ba,,(¢/2) C B,,(e) CU, which proves our claim.

We now construct by induction open balls B, C A,, such that for all
n, By +---4+ B, C U. Given such a set of balls By, ..., B,, the set
K = Bi+---+ B, provides a compact subset of A, ., contained in Uy,2. Let €
be the distance from K to the complement of U,1, in A, ,; by compactness,
>0, and K+ BArn+2(8/2) C U. We then define B,.; = BAr”Jrl (¢/4). Then
K+ B,y CK+ Ba,,  ,(¢/2) C U. This concludes the induction step and the
proof. ]

5.2, Coeflicient functions. Recall that the coefficients of f € A, can be
computed via the Cauchy integral formula:

5.3) An(f) = —— AR

20 Jyej=ry 27T

This implies that the linear form A, is continuous on each algebra .4, with
operator norm || A, || gx < 5=~ ie [A,(f)] < 2r @D £, for all
f € A,. Since the maps A, separate points in C{z}, we obtain:
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Lemma 5.3. For each n > 0, the map A, : C{z} — C is continuous. The
topological space C{z} is Hausdorff.

More generally, we have:

Lemma 5.4. If ), 0,z" is a power series with infinite convergence radius, then
the quantity

(5.4) O(f) =D 0ulAn(f)]

h
is well defined for every f € C{z} and the function ®: C{z} — Ry is continuous.
Proof. The estimate || Ayl 4+ < 5—r 1 implies that the map

(5.5) A= C, [ 0p]An(f)]

is continuous for any power series »_, 6,z" with convergence radius greater
than % By definition of the topology on C{z} we get that this map is continuous
on the whole space if the power series in question has infinite convergence
radius. ]

5.3. Another filtration. We now introduce another filtration of C{z}. If ¢ is
any positive real number, we define

(5.6) Ce{z} = {f € C{z} with |4,(f)| < ™t for all n}.

Then C.{z} C C.{z} for ¢ <¢’, and C{z} is the increasing union of all C.{z}.

Lemma 5.5. C.{z} is compact, and contained in A, for all r < c™'. Every
compact subset A C C{z} is contained in some C,{z}.

By compactness, the topology on C.{z} induced by A, and by C{z} agree.

Proof. From Lemma 5.3, we deduce that C.{z} is closed in C{z}. If f € C.{z}
and r < ¢!, then

(5.7) 1flla, < "t <

1—cr

This means that C.{z} is a bounded subset in .4, . Since the inclusion A, — A;
is compact for r > s, C.{z} has compact closure in Ay, hence in C{z}. Since
C.{z} is closed, it is compact.

To prove the second assertion, assume by contradiction that there is a compact
subset A C C{z} such that for every integer m > 0 there exists f, € A\ Cp{z}.
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By definition, there is an index n,, > 0 with |4, (fn)| > m" 1. By Lemma
5.4, each individual coeflicient is continuous and thus bounded on the compact
A . Tt follows that n,, goes to +oo as m does. We can thus assume, passing to
a subsequence if necessary, that the n,,’s are pairwise distinct.

Set 0, = (-)", and 6, = 0 if n is not one of the indices n,y.
Then 9,}/ " converges towards 0 as n goes to +oo, meaning that the power
series ) 6,z" has infinite convergence radius. By Lemma 5.4, the map
f = 0(f) =>,0,|A,(f)] is continuous on C{z} and thus bounded on our
compact set A. On the other hand we have

B( fm) = On, | An,,, ()| = m.

This yields the desired contradiction. U

Remark 5.6. Given r > 0, introduce

(5.8) B, =1/ eCiz} [rad(f) > r, sup|f] < }}
D,

This is the closure in C{z} of a ball in A, and is therefore compact (Remark 5.1).
There are functions ¢y, ¢, r1, and 7y :R_"‘|r — Ri such that

Ccl(,-){Z} C By € CCZ(,-){Z} and Brl(c) C CC{Z} C Brz(c)-

It follows that one could equivalently state the results of this section in terms of
the filtration (B, ),~¢ instead of (C.{z})¢>0-

The following corollary allows us to view the final topology on C{z} as the
weak topology associated to the filtration by the compact sets C.{z}.

Corollary 5.7. A subset F C C{z} is closed if and only if for all ¢ > 0,
FNC.{z} is closed. A map F :C{z} — X to a topological space is continuous
if and only if its restriction to C.{z} is continuous for all ¢ > 0.

Proof. Clearly, it suffices to prove the first assertion. If F is closed, so is
F N C.{z}. Assume conversely that F N C.{z} is closed for all ¢ > 0,
and let us prove that F is closed. By definition of the final topology, we
need to prove that given r > 0, its preimage j~'(F) under the inclusion
jr A = C{z} is closed. It suffices to prove that for any R > 0, its intersection
with the ball B4, (R) is closed in A,. Since B4, (R) has compact closure,
there exists ¢ > 0 such that B4, (R) C C.{z}. Since F N C.{z} is closed,
Ba, (R)N jTUF) = B4, (R)N j7YFNC.{z}) is a closed subset of A, which
concludes the proof. 0
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Although one can show that the topology on C{z} is not metrizable, each
space C.{z} is a metric space. Being compact, the topology on C.{z} can be
described in many equivalent ways:

Proposition 5.8. Let ¢ be a positive real number. Let (f,) be a sequence in
Cc{z} and let foo be an element of C.{z}. The following are equivalent:

(1) (fm) converges to fo, in C.{z};
(2) for some (any) r < c~', (fm) converges uniformly toward fo on D, ;
(3) (fm) converges toward fs uniformly on every compact subset of D,—1;

(4) for every index n, A,(fm) converges toward An(foo).

Proof. As seen before, C.{z} is contained in A, for all » < ¢! and the topology

induced by |-]|.4, agrees with the topology induced by C.{z}. This proves the
equivalence of the first three assertions.

To prove the equivalence with the last assertion, consider the map @ : C.{z} —
[0, 1N defined by ®(f) = (22%)),en, where [0, 1]V is endowed with the product
topology. This map being continuous and injective, it is a homeomorphism to its
image, and the result follows. 1

5.4. The final topology on a field with an absolute value. In this section, we
explain that the final topology induced by the filtration C.{z} makes sense for

every field k with an absolute value |-|; but the results based on Montel theorem
(Remark 5.1) may fail for fields k # C.
Let k be a complete field k for some absolute value |-| : k — R,.

By Ostrowski’s Theorem, k is either R or C, or the absolute value is non-
archimedean: |x + y| < max(|x|,|y|) for all x,y € k. The algebra k{z} of
convergent power series is filtrated by the family of subsets

(5.9) ke{z} = {f € k{z} with [4,(/)] <"t forall n}

for ¢ > 0. We endow Kk {z} with the product topology, via the embedding
f ekefz) = (A,(f))n € KN: asequence (fi)ren of elements of k.{z} converges
t0 foo € Ke{z} if and only if A,(fi) — An(foo) for all n. For ¢ <¢’, ke{z} is
closed in k.{z} and the inclusion is a homeomorphism to its image. We then
endow k{z} with the topology associated to this filtration: a subset F C k{z}
is closed if and only if F Nk:{z} is closed in Kk.{z}. Equivalently, a map
¢ : k{z} — X to a topological space is continuous if and only if its restriction
to k¢{z} is continuous for every ¢ > 0. By construction, the maps f +— A,(f)
are continuous on k{z}. Proposition 5.8 shows that, when k = C, this topology
agrees with the final topology defined in Section 5.1.
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If k is locally compact, each k.{z} is compact. In general, since Kk.{z} is a
countable product of complete metric spaces, we get:

Proposition 5.9. If k is a complete field, then K.{z} is a metrizable complete
space. In particular, it is a Baire space.

On the other hand, k{z} is not a Baire space since it is a countable union of
k.{z}, each of which is closed and has an empty interior.

5.5. The topological group of germs of diffeomorphisms. Any f e Diff(k, 0)
can be written as f = A(z + z2f) for some f € k{z} or equivalently as

(5.10) f=Mz+d2%2+---+az+...)
for some A e k* and d, € k. Thus, we define the maps A, : Diff(k,0) — k by

(5.11) An(f) = An(£)/AL(f) = an.

Given two real numbers ¢ > 0 and Ay > 1, we define the two subsets

(5.12) Diffe (k,0) = { f € Diff(k,0) ; [A.(f)| < "' for all n}
and
(5.13) Diff . (K, 0) = {.f € Diff.(k,0) ; % < |A1(f)| £ )Lo}

0

Observe that if we denote by mgy: z + «z the multiplication by some scalar
a € k* then we have

(5.14) mgDiff.(k, 0)m, ' = Diff.q (K, 0)
and
(5.15) Mg Diffs, (K, 0)m, ' = Diffy, o (K, 0)

Lemma 5.10. A map ¢ : Diff(k,0) — X to a topological space is continuous
if and only if it is continuous in restriction to Diff.(K,0) (or equivalently to
Diff;, . (k,0)) for every ¢ >0 and Ay > 1.

Proof. It suffices to check the continuity of ¢ on the open set Uy, = {f : %0 <
[A1(f)| < Ao} for all A9 > 1. By definition of the final topology, it suffices
to check its continuity on U, Nk {z} for every ¢ > 1. But U, Nk {z} is a
subset of Diff;, . (k,0) as soon as ¢’ > max(dg,c?); since we know that ¢ is
continuous on Diffy, . (k,0), this proves the lemma. [
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Proposition 5.11. If K is a complete field, then Diffy, .(k,0) and Diff.(k,0) are
complete metric spaces. In particular, they are Baire spaces.

Proof. By definition, Diff, » (k,0) is homeomorphic to a countable product of
closed subsets of k; so, k being complete, its topology is induced by a complete
metric. Since k* is homeomorphic to the closed subset {(x,y)|xy — 1} C k2, the
same argument applies to Diff.(k,0). []

Theorem 5.12. Let (K, |-|) be a field with a complete absolute value. With the
final topology, Diff(k,0) is a topological group.

Lemma 5.13. For every real number ¢ > 1, there exists a real number ¢’ > 1
such that the following holds: if f and g are in Diff. .(k,0), then f og and
f~1 lie in Diff. . (K, 0).

Proof. Let [ =AMz + Y 2rdnz"), § = (2 + Y as bnz") with |dnl, |ba] < ¢!
and |A], |¢|, [A7Y, |7t < c. Let F=c(z + anzc”*lz”) = 2 € R{z}
so that the absolute value of the coefficients of f and g are bounded by
the coefficients of F. Then the absolute value of the coefficients of f o g =
Y on=1@n (Y sy bmz™)" are bounded by the coefficients of Fo F = Tc_z—g_:%
Since F o F has positive convergence radius, there exists ¢’ > ¢ such that
An(F o F)y <™ 1 for all n > 2. The first assertion follows.

We now prove the second assertion. Let f = A(z + anz apz"), and let

Fl= )1z 5 anz byz™). The inversion formula from Section 2.1 gives

" |A] 1) =1 Fdy F g oY o s
bnl = : ! B
|bn| < |)L|nkkz Tl el o laz|*!|as]
1.2,
: M+ D-—ltkithka+..) 4
< "1 (©)*1(c)?k2...
kl% k]_!kzl"'
=2 3O (n+ D —T+ki+k+..)
ki k. kitka! - '

Thus, we have to bound the quantity

L (n+l)---(n—1—|-k1+k2—|-...)
Kni= 2 kilka! - '

ki.kz2,...

But the numbers K, are the coefficients of the power series expansion of the
reciprocal diffeomorphism g¢=! of

1 —2z2
g(Z):z—zz—z3—z4-~:z(2— ):Z -
11—z 1 -z
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In close form, we obtain

1 1
o= iTe T

4 4

Since g~! has positive convergence radius, there exists ¢q such that for all n > 2,
Ky, <cl7! hence |b,| < (coc?)™™! and the result follows. ]

Proof of Theorem 5.12. By definition of the topology, given ¢ > 0, one only
needs to check the continuity of the group laws in restriction to Diff, (K, 0).
Since A,(f og) and A,(f~') are given by polynomials in the coefficients
Ai(f). Ai(), AL)F', AL(g)*'. the maps (f.g) > Au(f og) and f >
An(f~1) are continuous on Diff. .(k,0). By Lemma 5.13 there exists ¢’ such that
for all f,g € Diff. .(k,0), fog and f~1 lie in Diff. . (k,0). Since the topology
on Diff.s »(k,0) is the product topology, the continuity of the coeflicients implies
the continuity of the group laws. O

5.6. Other topologies. First, we would like to point out that there are other
reasonable and useful topologies on C{z}, but for which the group laws are not
continuous. This the case for the so-called Takens topology [MRR, BT]; this is
the topology induced by the distance

(5.16) dist(f, g) = sup |Ax(f) — An()["/".

Note that in particular the convergence radius of [ — g is large if f and g
are close to each other in the Takens topology, and this implies that the right
translation Ry: g + go f is not continuous if the radius of convergence of f is
finite. Indeed, a small perturbation g(z)+e€z is mapped to Ry(g+ez) = gof+ef,
and the difference ¢/ is not small in the Takens topology because its radius of
convergence does not depend on €.

We comment now on another important topology on Diff(C, 0), but for which
the Baire property fails. Let Jetsy(C, 0) be the group of £-jets of diffeomorphisms
ayz + -+ agzt mod (z¢*1), with a; # 0; it can be considered as a solvable
algebraic group and thus as a solvable complex Lie group. Let

(5.17) je . Diff(C,0) — Jetsy(C, 0)

denote the homomorphism that maps a power series [ = ;ianz” to Zﬁ:l apZ™ .
We can then define a topology on Diff(C,0) (resp. on Diff (C,0)): the weakest
topology for which all projections j¢ are continuous. With this topology, Diff(C, 0)
is a topological group, because the projections j; are homomorphisms. Moreover,
a sequence (f,) converges toward a germ of diffeomorphism g if and only if
the coeflicients A,( f,,) converge to A,(g) for all n. In other words, this is the
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topology of simple convergence on the coefficients. In particular, Diff(C,0) is not
a closed subset of Diff (C,0) for this topology. With this topology, Efﬁ(C,O) is
a Baire space, but Diff(C,0) is not (Proposition 5.11 fails if Diff(C,0) is endowed
with this topology).

5.7. Continuity in the Koenigs linearization Theorem. A contraction [ €
Diff(k,0) is an element with |A;(f)| < 1. In this case, Koenigs theorem says
that the unique formal diffeomorphism /4y tangent to the identity that conjugates
f to the homothety z — A{(f)z has positive convergence radius. The following
result shows that f + hy is continuous for the final topology on the set of
contractions

(5.18) Cont(k, 0) = { f € Diff(k,0) | [A,(f)] < 1}.

Theorem 5.14. Let K be a field with a complete non-trivial absolute value. For
every germ [ € Cont(k,0), the unique formal diffeomorphism hy such that

hy(f(z)) = A1(f)-hy(z) and  Ay(hy) =1
has positive convergence radius, and the map
h: f € Cont(k,0) — hy € Diff(k,0)

is continuous for the final topology. The coefficients of hy are polynomial functions
with integer coefficients in the variables A;(f) and (A (f) —1)7Y, for i, j > 1.

When k = C, it is shown in [Mil, Chapter 8] that sy is convergent and its
coefficients depend holomorphically on f. Theorem 5.14 is just a variation on
this classical result.

Proof. We refer to [Sie| for the real and complex cases, and to [HY] for the
non-archimedian ones.

The coefficients of hy can be computed inductively and turn out to be
polynomials with integer coefficients in the variables A;(f) and (4,(f) —1)7!,
for i,j > 1 (see for instance [Sie, Eq. 4]). If |A1(f)| <« for some « in the
interval [0, 1[, then

(5.19) (A (N -1 21—«

for all » > 0. By [Sie, Theorem 1] and [HY, Theorem 1] in the archimedean and
non-archimedean cases respectively, Ay is convergent and for all ¢, A > 1, there
exists ¢’ such that hy € Diffo(k,0) if f € Diffy (K, 0).

The topology on Diff./(C, 0) is the product topology on the coefficients. Since
the coefficients of &y are continuous functions of f, it follows that the restriction
of f+ hy to Diffy .(f) is continuous. By definition of the final topology, this
proves the continuity of #. [
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6. A large irreducible component of the representation variety

This section describes our second proof strategy for Theorem A. For simplicity,
we consider only the fundamental group of a closed orientable surface of genus 2,
but we work over any field k with a complete absolute value |- |.

6.1. An irreducible set of representations. Using the presentation
(6.1) I, = {a.b,a,b| [a,b] = [a.b]),
we get an idenfication

(62)  Hom(I'y;Diff(k,0)) = {(f, g, .)€ Diff (k,0)* | [/,¢] = [f.Z]}-

Let X C Hom(I,, Diff(k,0)) be the set of representations p : I, — Diff(k, 0))
such that p(a) is tangent to Id and p(b) is a contraction. As in Equation (5.18),

we denote by Cont(k,0) the set of contractions. For ¢ > 0, we let X, =
X N Diff.(C,0). Set

(6.3) R = Cont(k,0) x Diff(k, 0) x Diff(k, 0).
(6.4) R(c) = Cont.(k, 0) x Diff.(k, 0) x Diff.(k, 0).

and denote by 7: X — R the projection

(6.5) n(p) = (p(b). p(@). p(h)

Proposition 6.1. The map n is a homeomorphism for the final topology, and its
inverse

7l (e f.8) > (f8 f.8)
is a polynomial map, in the following sense: for each n € N*, the map
(2. [.8) > A,(f) is polynomial in (finitely many of) the variables Ay (g),
Ac(f), Ac®@), A7 AN 4@ and (A1(@F -1 (k= 1),

Proof. The projection m is continuous because both X and R come with the
topology induced by the same topology on Diff(k,0).

Consider a triple (g, f,g) € Cont(k, 0) x Diff(k,0) x Diff(k.0). Since [f.Zz]
is tangent to the identity, the germs g and [/,g]o g have the same derivative
A= Ai(g) at 0. Since |A| < 1, we can apply Koenigs Theorem 5.14: we get two

germs h; and hy € Diff(k,0) tangent to the identity such that
(6.6) h10gohl_1:m,1 and hzO([T,E]Og)Oh;l:ml

where m;(z) = Az is the multiplication by A. Then, the map [ := h;l o hy

conjugates g to [f,g]og so
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fogofT'=[fZleg and [fg]=I[.7]

This means that one can define the preimage 7 ~'(g, f, %) € Hom(I';, Diff(k, 0))
by the 4-tuple (f,g, f,2): the fact that 7' or = Idg follows from uniqueness
in Koenigs Theorem.

The continuity of 7!

is a consequence of the continuity of the conjugacy in
Koenigs Theorem 5.14 and of the continuity of the map (g, f.2) > [f.gl o g.
The fact that A,(f) is polynomial in the given variables is a direct consequence
of the corresponding fact in Koenigs Theorem, and the fact that group operations
are polynomial mappings. L]

We denote the inverse map 7~! by &:
(6.7) VseR, &, =n"1(s).

Thus, if s = (g, f.%), then ®, is the morphism I»—Diff(k,0) such that
dy(h) = g, dg(@) = f, ®s(h) = g, and Pg(a) is the unique germ of
diffeomorphism f which is tangent to the identity and satisfies the relation
[f.¢] = [f.2]. To conclude the proof, our goal now is to prove that for every
¢ > 0, the family of morphisms &, for s € R(c), satisfies the assumptions of
Lemma 3.1. Proposition 5.11 shows that R(c) is a Baire space. The following

corollary proves the irreducibility of R(c).

Corollary 6.2. For any w € 15, denote by R(c)w C R(c) the set of
homomorphisms in R(c) that kill w. Then either R(c)y = R(c) or R(c)w
is a closed subset of R(c) with empty interior.

Proof. Since the functions s € R > Ap(Ps(g)) — Ar(Id) are continuous,
R(c)y is closed. Now, assume that R(c)y # R(c): there exists k > 1 and
a point § = (go,TO,EO) in R(c) such that Ap(Ps(w)) # Ar(ld). According to
Proposition 6.1 the map s +— Ag(ps(w)) — Ag(Id) is a polynomial function in
finitely many of

e the coeflicients A,(go), A,,(TO) and A,(g,y) (n=1),
o the inverses Aj(go)”". A1(fo) ™', A1(gy)7" and (Ai(go)* - 17! (k= 1)

(note that A;(go), Al(_?o), A1(g,) and (A1(g0)* — 1) do not vanish on R).
Our assumption says that this function does not vanish identically on R(c).
Assume that R(c), contains a non-empty open subset ¢, and choose a point
s =(g1. f,.g,) in U.If k=R or C, we denote by By the interval [0, 1] C R;
in the non-archimedean case we set Bk = {t € k, |[t| < 1}. Then, we consider the
convex combination
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6.8) 5= (8 = th + (1 =0fo. To =171+ (=D F0.F = (T + (1 = )T)

with ¢ in Bg. According to Lemma 6.3 below, g;, f, and g, are in R(c’)
for some ¢’ > ¢, and ¢ — s; is continuous; thus {z ; s; € U} is an open
neighborhood of 1.

The function ¢ +— A, (¢s, (w)) — A,(I1d) does not vanish for ¢+ = 0, it is the
restriction of a rational function of the variable ¢ to the interval [0, 1], and it
vanishes identically on the open set {z : s, € U}. This is a contradiction, which
shows that the interior of R(c), is empty. L]

Let By be the interval [0, 1] C R if k=R or C, or the ball { ek, |t| <1}
in the non-archimedean case.

Lemma 6.3. Let fy < Diff.,(k.0) and fi € Diff,, (k,0), and for t € K, let
fi=0—=0)fo+1tf1. Let p ek be the value of t (if any) such that f,(0) =0,
If co < 1 and co| f1(0)] < 1| f1(0)]. then for all t € B\{p}, f, € Diff,, (k,0).

Proof. Denote Ag = |f;(0)] and Ay = |f{(0)|. By assumption, for all n > 2,
|An(fo)| = A()C(y)l_l and |A,(f1)| < 110?71 .

Consider first the case k = R or C. Since Agcog < Aicy, we get for all
t €[0,1],

(6.9) |An (/)] < (1 —DAocg ™" + tArc]™!
(6.10) £ (1 —Dhieiel ™ + fhael ™ = Lyl

This shows that f; € Diff;, (k) as soon as f;(0) # 0.
In the non-archimedean case, one has |t — 1] <1 for ¢ € Bg. Similarly, we
get

(6.11) |An ()| < max{|1 —t|Aoc? ™1, |t]A1c? ]
0 1

(612) < maX{Alclc”_2, /11(,’”_1 < )LlCn_l.
0 1 1

This shows that f; € Diff. (k) as soon as f/(0) # 0. Then, the continuity follows
from the continuity of the coefficients # — A, (f;). ]

6.2. Separation. To conclude the proof, we fix ¢ > 0 and prove that R(c)
satisfies the separation condition of Lemma 3.1. We thus fix g € Iy \ {I}
and show that R(c) contains a representation that does not kill g. Write the
orientable surface group of genus 2 as I', = (a,b,@.b | [a,b] = [@,b]), and let
p : Ta—{a, b) be the morphism fixing @ and b and sending @ and b to a and
b respectively. Let t : I';—I; be the Dehn twist around the curve ¢ = [a,b],
i.e., the automorphism that fixes «.b and sends @ and b to cac™! and chh™!
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respectively. According to Proposition 1.2, there exists a positive integer ny such
that pot™(g) # 1 for all N > ny.

Apply Theorem 3.4 to get a pair f,, f, of germs of diffeomorphisms
generating a free group (fi1, f2) of rank 2 and satisfying f{(0) > 1 and f;(0) > 1.
Define a morphism p : {a,b)—Diff(k,0) by p(a) = [f1, f2] and p(b) = f;'.
Then p is injective, p(a) is tangent to the identity, and p(b) is a contraction.
Set py :=popotr™.For N >ny py(g) # 1. Thus, w(py) lies in R\ R, ; but
it might not lie in R(c).

Let ¢y > 0 be such that n(py) € R(cy). Given o € k*, let ad,
be the inner automorphism of Diff(k,0) given by [ + mgo [ omyl. As
noticed in Equation (5.12), we have ad,(Diff., (k,0)) = Diffy., (k,0). Thus, the
representation py = ady o py satisfies 7w(ply) € R(c) if « is sufficiently small.
Since ply(g) # 1 this concludes that R(c) satisfies the separation condition of
Lemma 3.1.

6.3. Conclusion. The family of representations ®;, with s € R(c) satisfies
the Baire property, the irreducibility property, and the separation property of
Lemma 3.1. This lemma implies that a generic element of s € R(c) gives an
embedding ®,: I'» — Diff(k, 0), proving Theorem A for the group I;.

Part 111
7. A p-adic proof

7.1. Free groups with integer coefficients. A theorem of White [Whi] shows
that the homeomorphisms of R defined by f :z+> z+1 and g:z > z> generate
a free group. Conjugating the maps f and gfg™' by z > % as in [Gla]', one
gets two formal diffeomorphisms

@) = =z = 23
n=1

(7.1)

z = __1 n n
gWhu+&mW:Z(;)ff“

n=0

that generate a non-abelian free group (fo,go) C ﬁ?f(Q, 0) C Si?f(k, 0). It is
remarkable that f, and g, are tangent to the identity at the origin and have
integer coeflicients:

'This conjugacy is called the “Wilson trick” in [Glal.
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Theorem 7.1. The group Sﬁ(Q, 0) contains a non-abelian free group, all of
whose elements are tangent to the identity and have integer coefficients.

Thus, one can produce an explicit free group in Diff (k,0) for every field k of
characteristic 0. In characteristic p > 0, Szegedy proved that almost every pair
of elements in the Nottingham group Diff (Z/pZ,0) generates a free group [Sze].

7.2. Subgroups of Diff(Q,,0). In this section, p is a prime number, and Q, is
the field of p-adic numbers, with its absolute value |-| normalized by |p| = 1/p.
Let G, denote the set of elements f =} ., a,z" in Diff(Qp,0) such that

(7.2) an €Z, ¥n and |aj| = 1.

Every element f € G, satisfies rad(f) > 1. The ultrametric inequality and the
Inversion formula show that G, is a subgroup of Diff(Q,,0). With the product
topology on coeflicients (as in Section 5.6), it is a compact topological group,
and the morphism jy: G, — Jetsy(Q,,0) is continuous for every integer ¢ > 1.
The kernel of j; will be denoted G, ;.

From Theorem 7.1, we know that G, contains a free group of rank two
generated by two germs fy and go whose coeflicients are in Z.

Corollary 7.2. Let p be a prime number and { be a positive integer. The group
G, contains a non-abelian free group. The group G, contains a free group
(f,g) of rank 2 such that A,(f) is a transcendental number while g is tangent
to the identity up to order £.

Proof. Start with a non-abelian free group F in Gp. Since the group of jets
Jetsy(Q,,0) is solvable, the restriction of jy to F is not injective. Its kernel is a
free group (as any subgroup of F'), and if £ is large it is not cyclic. Thus, the
kernel is a non-abelian free group. This proves the first statement.

Set R={t e€Z,: |t| = 1}. Now, take a pair of generators fy and g, of a
free group of rank 2 in G, ¢, and for r € R consider the family of representations
pi: ¥y = (a,b) — G, defined by p,(a) = m;o fo and p;(h) = go (here, as
usual, m;(z) =tz). If w is an element of F,, and n is a positive integer, then
An(p;(w)) is a polynomial function in ¢ and 1/¢ (see Section 2.1). If w # 1,
there is an integer n > 1 such that A, (p;(w)) # A,(Id). Thus, the set Ry, C R
of parameters s such that ps(w) = Id is finite, the union U, £ Ry is at most
countable, and there are transcendental numbers in its complement. For such a
parameter ¢, p, is injective and A;(p,(a)) =t is transcendental. []

Now, we apply the result of [BGSS] described in Section 1.2 to get:
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Theorem 7.3. Let p be a prime number. Let T, = (a,b,a.b| [a.h] = [a.b]) be
the fundamental group of a closed orientable surface of genus 2. Then

(1) For every integer £ > 1, the group I'> embeds in the compact group Gp .

(2) There is an embedding p: Ty — G, such that p(a)'(0) = p(@)'(0) is a
transcendental number while p(b) and p(b) are tangent to the identity up
to order £.

7.3. Back to complex coefficients. The field Q,, and thus the ring Z,,
embeds (although not continuously) into C; such an embedding induces an
embedding, coefficient by coeflicient, of Z,[[z]] into C[[z]]. Thus, the surface
groups constructed in Theorem 7.3 provide surface groups in ﬁl?f(C,()). This
construction does not preserve the convergence of power series, but it preserves
the order of tangency to Id. Since there are transcendental complex numbers with
modulus < 1, we obtain:

Corollary 7.4. Let ¢ be a positive integer. There is an embedding p: 'z —
Diff (C,0) such that |p(a)’(0)| = |p(@) (0)] < 1 while p(b) and p(b) are tangent
to the identity up to order (.

We can now prove the following version of Theorem A. This will be our third
and last proof of it.

Theorem 7.5. There is an embedding of ' in Diff(C,0) such that |p(a) (0)] =
lp(@)'(0)| < 1 while p(b) and p(h) are tangent to the identity up to order £.

Proof. The first step is to choose a sequence C = (ay,d2,ds,...) of complex
numbers such that

(a) the set {ay,az,...} is algebraically free: if m > 1 and P € Z[xq,...,Xn],
and if P(ay,...,am) =0, then P =0;

(b) |an| <27 for all n>1.

Such a sequence exists because C is uncountable. Concrete examples can
be obtained from the Lindemann-Weierstrass theorem (see also [Wal] for the
constructions of von Neumann, Perron, Kneser, and Durand of uncountably many,
algebraically free complex numbers). We shall consider the a; as indeterminates
for the field of rational functions Q(aq,az,...). Armed with such a set we
consider the following three formal diffeomorphisms

(73]

o0 o0 o
Pl _ j+1 _— 1
g=u1z + E asi+1z ", f[f=z+ Zasi+22 , &=2Z+ E asi+3z' 7.
i=f

i=l i={
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From the decay relation (b), these three power series have a positive radius of
convergence. Since |a;| < 1/2, the Koenigs linearization theorem gives a unique
element f € Diff(C,0) with f/(0) = 1 such that

(7.4) fef ' =1f.28ls.

The four elements ( f, g, f_',;:r) determine a representation ¢ of ', into Diff(C.0).
Let us prove that this representation is faithfull. Fix a non-trivial element w
of I'y, and write it as a word in a, b, a, b and their inverses. For every integer
n, the coefficient A,(¢(w)) is a polynomial function Q. , in the variables a,
(for n > 1), a7', and the (¥ —1)7! (for k > 1) with integer coefficients.
Now, take a faithful representation p: Iy — BTFE(C,O) that satisfies the
conclusion of Corollary 7.4. There is an integer n > 1 such that A,(p(w)) #
Apn(1d). This implies that Q,, , # A,(Id) when we specialize the indeterminates «;
to the coefficients of the generators p(@), p(b), and p(h). Since Qun # An(1d),
p(w) # Id and ¢ is the identity. ]

Part IV
8. Complements and open questions

8.1. Takens’ theorem and smooth diffeomorphisms. To conclude this chapter,
we mention the following result which allows to realize any faithful representation
of a surface group in the group of formal germs as a group of C*° germs. Note
that the p-adic method provides many embeddings of surface groups in Diff (R, 0)
(see Corollary 7.4).

Recall that I'; denotes the fundamental group of the closed orientable surface
of genus g¢.

Theorem C. Let p: I'y — BTFF(R, 0) be a faithful representation of the surface
group T, in the group of formal diffeomorphisms in one real variable. Then,
there exists a faithful representation p: I'y — Diff°(R,0) into the group of germs
of C*® -diffeomorphisms such that the Taylor expansion of p(w) coincides with
p(w) for every w € I'y.

The proof will be a consequence of the following result (this theorem is easily
derived from the Sternberg linearization theorem and Theorem 2 of [Tak]):
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Theorem 8.1 (Sternberg [Ste], Takens, [Tak]). Let f, g: (R,0) — (R,0) be two
germs of C*™ -diffeomorphisms, and let ]? and g denote their Taylor expansions.
Suppose that [ is not flat to the identity, that is f # Id. Then, if fA and
g are conjugate by a formal diffeomorphism ﬁ, there exists a germ of C™-
diffeomorphism h: (R,0) — (R,0) such that

e the Taylor expansion of h coincides with h;
e h conjugates f to g.

Proof of Theorem C. Denote by a;, b;, 1 <i < g the images of the standard
generators of I, by the representation p; they satisfy the relation

g
8.1) ayobyoart = ([ [laj.h;]) o br.
2

j:

By the theorem of Borel and Peano, one can find germs of diffeomorphisms 5,
and a;, b;j, j = 2, whose respective Taylor expansions coincide with by, @i
and ];j respectively. Then, Theorem 8.1 provides a germ of diffeomorphism a,
such that @y o by oay! = (]_[j’.’zz[aj,aj]) o by. Thus, one gets a representation
p of T into Diff*°(R,0) with Taylor expansion equal to p. Since the initial
representation p is injective, so is p. []

8.2. Conjugacy classes. Two subgroups I" and T’ of Diff(C, 0) are topologically
conjugate if there is a germ of homeomorphism ¢: (C,0) — (C,0) such that
poTlop™! =T, and are formally conjugate if there is a formal diffeomorphism
' = I7. A germ of homeomorphism ¢ is anti-holomorphic
if its complex conjugate z > ¢(z) is holomorphic.

¢ such that ol o@™

Theorem 8.2 (Nakai, Cerveau-Moussu). Let T' and T'' be two subgroups of
Diff(C, 0) which are not solvable.

(1) If ¢ is a local homeomorphism that conjugates I' to I, then ¢ Iis
holomorphic, or anti-holomorphic.

(2) If ¢ is a formal conjugacy between T and T, then ¢ converges and is
therefore a holomorphic conjugacy.

Thus, (the images of) two embeddings of I'y in Diff(C,0) are topologically
or formally conjugate if and only if they are analytically conjugate.

8.3. Two questions.



Surfaces groups in germs of diffeomorphisms 127

8.3.1. It would be interesting to exhibit an embedding « of the group I'y, g > 2,
into the group of analytic diffeomorphisms of the circle R/Z fixing the origin
o € R/Z. If such an embedding exists, the suspension of this representation o
gives a compact manifold M, of dimension 3 that fibers over X, , together with a
foliation F, of co-dimension 1 which is transverse to the fibration 7: My, — X,
and whose monodromy is given by 7. The fixed point gives a compact leaf of
Fo with holonomy given by the same representation t.

Question. Does there exist an embedding of [; into the group of analytic
diffeomorphisms of the circle fixing the origin ?

This question was the original motivation of Cerveau and Ghys when they
asked for a proof of Theorem A (see [Cer]).

Remark 8.3. According to Theorem 7.3, there is an embedding p of I in
Diff(Q,.0) such that p(a)’(0) and p(a@)’(0) have modulus 1 while p(b) and p(b)
are tangent to the identity. Conjugate p by the homothety a — p¥z for some
positive integer N. If N is large enough, the coefficients a,, n > 2, of all
elements of p(I'2) have norm < 1, and the ultrametric inequality shows that
p(I2) preserves the open disks {z € C, ; |z| < 1 —¢€} for every € > 0. Thus, it
preserves arbitrary thin annuli {z € C, ; 1—¢|z| < 1}. (Here C, is the completion
of the algebraic closure of Q,.)

A related, but a priori simpler question is: does there exist an embedding of
', into the group of increasing, real analytic diffeomorphisms of [0, 1] fixing
0 and 1 ? Here, we demand that the diffeomorphisms extend to germs of
real analytic diffeomorphisms on neighbourhoods of 0 and 1. If we replace real
analytic diffeomorphisms by C*° diffeomorphisms, interesting examples have been
constructed in [MS]. We refer to the introduction of [MS] for a description of
the difficulties in trying to apply the strategy of [BGSS]: this is related to the
question of deciding when a diffeomorphism f of [0, I] is contained in the flow
of a smooth vector field, hence to Mather’s invariant (see [EBN, Yoc]).

8.3.2. 'The derived subgroup of Diff(C,0) is the kernel of the morphism
juz f e f1(0):

Theorem 8.4. Let k be a complete, non-discrete valued field. An element f of
Diff(k, 0) is a commutator if and only if f'(0) = 1. All higher terms of the lower
central series coincide with the kernel of j;: Diff(k,0) — Jets; (k. 0).

Proof. If f is a commutator [g,h] then f/(0) = 1. If f’(0) = 1, compose
f with the homothety m,(z) = Az for some A € k* of norm |A| # 1, and
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apply Koenigs linearization theorem to find an element h € Diff(k, 0) such that
myo f =homyh™" and K (0) = 1. Then f = [h,m,]. This proves that the
derived subgroup of Diff(k,0) is the kernel of j;; since h is in the kernel of
j1, all subsequent terms of the lower central series coincide with the derived
subgroup. ]

Now, consider the upper central series. The first terms are Diff(C,0) and its
derived subgroup Diff(k,0)(". Then comes

(8.2) Diff(k, 0)® := [Diff(k. 0), Diff(k, 0)(V].

The group of jets of order 3 which are tangent to identity, i.e., jets of the form
j(2) =z + a»2% + asz® 4, is an abelian group; at the level of formal
germs, it is known that the kernel of j3 in Diff (k, 0)" coincides with the derived
subgroup Diff (k,0)® (see [Cam], §3, for the description of the upper central
series of Eiﬁ(k, 0)). We don’t know if a similar statement holds for germs of
diffeomorphisms:

modulo z

Question. Does the kernel of j3 coincide with the second derived subgroup of
Diff(C,0)® 2 More generally, what is the upper central series of Diff(C,0)?

9. Appendix: Free groups

The following theorem, and its proof, are strongly inspired by [MRR]. The
proof given in [MRR] is somewhat difficult because it makes use of a topology
on Diff(C,0) which is not compatible with the group law. We adapt the same
proof, without reference to such a topology.

Theorem 9.1. Let (K, |-|) be a complete, non-discrete valued field. Let f and g
be elements of Diff(k,0) of infinite order. Let w be a non-trivial element of the
free group F,. Then, there is a polynomial germ of diffeomorphism h such that
w(hfh™', g) # 1d.

If w = a™th™=1...qa"2h"  one can choose h of the form z +ez? P(z) with an
arbitrarily small € and a polynomial function P € K[z] such that deg(P) < (2¢)!
and |P(x)| <1 for all x € Dy.

Before proving this result, let us introduce some vocabulary and notation.
Write w as a reduced word in the generators ¢ and b of the free group:

(9]) w = g™ ht—1 ... q"2pM
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where the n; are in Z\ {0}, except maybe if n; or ny is zero, but conjugating w
by a power of «, we only need to consider the case nyn; # 0. Set N = max |n;]|.

Let h be an element of Diff(k,0), and set f, = h o foh. Let r > 0 be
smaller than the convergence radius of #, f, g and their inverses. Choose R > 0
such that all these germs, and all their compositions of length < 3N{ map Dg
inside D,. If z is a point in Dg, then its orbit under the action of f;, and g
stays in I, for all compositions of these germs given by words of length < N¢
in F,; in this situation, we say that the orbit of z is well defined up to length
N{. In particular, if we look at the composition w( f;, g), and pick a point z in
Dg, we get a sequence of points

9.2) Zo=12, &1 = g" (7o), B = [, 7 @1)s v 2p = W([5.8)(20)-

To prove the theorem, we construct a triple (%, R,z) such that the orbit of z
is well defined and the z; are pairwise distinct; in particular, zy # z¢ and

w(fh. &) # 1d.

Proof. We do a recursion on the length ¢, proving the existence of a triple
(h.R.z) such that the z; are pairwise distinct for 0 </ < £. Since f and
¢ have infinite order, the union of all fixed points of f™ and g™ in D, for
—N <m < N is a finite set F. For j =1, we just pick a point zy sufficiently
near the origin with z; := g"1(z9) # zo; the only constraint is to take zy in the
complement of F. The points zy and z; will be kept fixed in the recursion.

Assume that a polynomial germ of diffeomorphism #; has been constructed,
in such a way that (a) the points zg, z1, z2, ..., Z2k, and Zpg4, are pairwise
distinct (we just initialized the recursion for &k = 0), and (b) hx(z) = z + € R (2)
for some small ¢, € k and some element Ry € k[z] of degree < (2k)! which is
divisible by z?. Consider a polynomial germ

2k

(9.3) Pe(z) =z +mz* [ [z - 2)
j=0

with a small ng € k; then

o P fixes z; for all j <2k,

o Pi(zak41) = agng + by for some pair (ay,bg) € k? with a; # 0,

e as 7 goes to 0, the radius of convergence of Py and its inverse P! go
to infinity.

If we compose hjy with Py then H = hy o Py is a new polynomial germ such
that the orbit of zy under fy and g gives the same sequence zy, z;, ..., Uup
to zpx41. The next point is
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9.4) Zok42 = [ T (2ak41)
and we want to exclude the possibility zpx4, € {zo,..., Z2k+1}; since
9.5) Zok+2 = (Pg ' o fy % 0 Pr)(zak+1)

we want to avoid the inclusion

9.6) : hizkH(Pk(szH)) C Pr{zo,...»Z2k+1}

and for that we just need to choose the parameter 7n; in the definition of Py

in such a way that hn:"“(Pk(zzkH)) is not in {zp,...,z} and Pr(zpr41) is

fhnkz"“. These constraints are satisfied for all small non-

zero values of n; because fhn:"“ is not the identity and the coefficient a; in
Pr(zak+1) = agnk + br is not zero.

The next point iS zpgy3 = g"2%+3(zx+2) and we want it to be disjoint from

not a fixed point of

{z0, ..., Z2k+1, Z2k+2}- For this, we do a second perturbation of the conjugacy.
Let

2k+1
9.7) Ok(@) =z+ pez” [] (z—2))

j=0

with a small B; € k; then
® Qk fixes z; for all j <2k +1,
° Qk(z2k+2) = cx Pk + dy for some pair (cg,dy) € k? with B 5= 0,

e as fx goes to 0, the radius of convergence of @, and its inverse Q;‘ go
to infinity.

Now, we set hgyq = Ok o H. This does not change the sequence z; for

0 <i < 2k + 1, but the last point zp4, is replaced by cixfx + di. Since

g"2k+3 £ Id and c¢p # 0 any non-zero, small enough value of f; assures that

Zok+3 € 4205 - -+ » Z2k+1> Z2k+2) -

To sum up, if we set hxy = QO o Pr o hy then the sequence zg, ...,
Zok+3 1S now made of pairwise distinct points. Moreover, when the parameters
ng and Pi go to zero, the germ Qp o P and its inverse converge uniformly
to the identity on the disk D,g, so we can assume that the orbit of zy is well
defined for all composition of hxyy, f, g, and their inverses of length <3N£.
The germ Qp o Py is equal to z + Si(z) where Sy is divisible by z? and
deg(Sk) < (2k + 1) x (2k + 2). Thus,

(9.8) hy1(z) =z + Py (2)

where z2 divides Py, and
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(9.9) deg(Pr11) < deg(Py) x (2k + 1) x (2k +2) < (2k +2)!

This proves the recursion and finishes the proof of the theorem. l

Theorem 9.2. Let (K,|-|) be a complete, non-discrete valued field. If f and g
are elements of Diff(K;0) of infinite order, there exists an element h of Diff(k;0)
such that fy = ho foh™ and g generate a free group of rank 2. One can
choose h such that h'(0) = 1.

Note that Theorem 3.4 is a direct corollary of that result; one just need to
start with f = A1z or A;z + z2 if A; is a root of unity, and similarly for g.

Proof. Denote by a, and b, the coefficients of f and g respectively. Let
L C k be the field generated by the a, and b, . Since k is not discrete, it has no
isolated point; being complete with no isolated point, it is uncountable (a simple
consequence of Baire’s theorem [Oxt]), and it follows that its transcendental
degree over L is infinite: it contains an infinite sequence (c¢;) of algebraically
independent numbers (over the prime field of k, see [Lan, Chapter VIII]). We
can moreover assume that all ¢; are in the unit disk. Set ho(z) =), .,

Consider a non-trivial element w of F,. The N -th coefficient function

™,

(9.10) his Ay(w(ho foh™,g)

is a polynomial function on ﬁf\f(k, 0) in the sense of Section 2.I; this means
that it is a polynomial function in the coefficients of & and A;(h)~' (here,
f and g are fixed). If Ay(w(hgo f oho_‘,g)) vanishes (resp. is equal to 1),
then Ay(w(ho foh 1t g)) =0 (resp. 1) for all formal diffeomorphisms #,
because the ¢; are algebraically independent over k. Thus, Theorem 9.1 implies
that w(hg o f o hy',g) # Id, and this shows that f, :== hoo fohy! and g
generate a free group of rank 2.

In this argument, we could start with hg =z 4+ ), _, c,z", because we can
choose the germ £ in Theorem 9.1 with the additional constraint HOy=1. [
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