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A linking invariant for algebraic curves

Benoît Guerville-Ballé and Jean-Baptiste Meilhan

Abstract. We construct a topological invariant of algebraic plane curves, which is in some

sense an adaptation of the linking number of knot theory. This invariant is shown to

be a generalization of the I-invariant of line arrangements developed by the first author

with Artal and Florens. We give two practical tools for computing this invariant, using a

modification of the usual braid monodromy or using the connected numbers introduced by

Shirane. As an application, we show that this invariant distinguishes several Zariski pairs,

i.e., pairs of curves having same combinatorics, yet different topologies. The former is the

well known Zariski pair found by Artal, composed of a smooth cubic with 3 tangent lines

at its inflexion points. The latter is formed by a smooth quartic and 3 bitangents.

Mathematics Subject Classification (2010). Primary: 14H50; Secondary: 32Q55, 54F65,

57M20.
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Introduction

The topological study of algebraic plane curves was initiated at the beginning of
the 20th century by Klein and Poincaré. One of the main questions is to understand

the relationship between the combinatorics and the topology of a curve. It is

known, since the seminal work of Zariski [Zarl, Zar2, Zar3], that the topological
type of the embedding of an algebraic curve in the complex projective plane
is not determined by the combinatorics. Indeed, Zariski constructed two sextics

with 6 cusps having same combinatorics, and proved that the fundamental group
of their complements are not isomorphic. Geometrically, these two curves are

distinguished by the fact that the cusps in the first curve lie on a conic, while they
do not in the second curve. Since this historical example, using various methods,

numerous examples of pairs of algebraic curves having same combinatorics but
different topologies have been found, see for example Artal, Cogolludo and



64 B. Guerville-Ballé and J. B. Meilhan

Tokunaga [ACTJ, Cassou-Noguès, Eyral and Oka [CNEO], Degtyarev [Deg],
Oka [Oka], Shimada [Shiml[, or the first author [GB|. Artal suggests in [Art] to

call such examples Zariski pairs.
The topology of curves in CP2 is intimately connected to the topology of

knots and links in S 3. Several tools are indeed shared by these two domains, such

as the homology or the fundamental group of the complement, the Alexander

polynomial or module, although they usually have rather different behaviours.

Recently, Artal, Florens and the first author defined a topological invariant of
line arrangements (i.e. algebraic plane curves with only irreducible components
of degree 1) which is in some sense modelled on the linking number of knot

theory [AFGB], This invariant was then successfully used in [GB] to distinguish a

new Zariski pair of line arrangements. In the present paper, we construct another

invariant adapting the linking number to the more general case of algebraic plane

curves. In the case of a line arrangement, this invariant is shown to be equivalent
to the invariant of [AFGB], thus providing a generalization of this earlier work

through a different adaptation of the linking number.

The construction of our linking invariant can be roughly outlined as follows.
Consider a reducible algebraic curve decomposed in two nonempty subcurves C

and V, and pick a topological cycle y in the subcurve C. The basic idea is

to consider the image of a certain coset of y in the first homology group of
CP2 \ V. More precisely, this set is regarded in the quotient of Hi (CP2 \V)
by an appropriate indeterminacy subgroup Jc, which controls the topological
differences among the various cycles in the considered coset of y. This define

the linking invariant of C with V along y, which is an invariant of the pair
(CP2, CUP).

Our construction thus builds on a rather elementary idea, and is not technically
involved. Remarkable is rather the fact that it reveals quite efficient in practice,

despite its apparent simplicity. We mention below several applications of the

linking invariant on concrete examples of Zariski pairs of various natures.

This linking invariant has a nice behaviour for some particular choices of curve

or cycle. In the case of line arrangements, for example, the linking invariant is

indeed a single homology class rather than a coset. This allows us to prove the

equivalence with the I-invariant of [AFGB] in this case.

From a practical viewpoint, we provide two methods of computation of this

linking invariant. The first one is based on a topological construction using an

adaptation of the braid monodromy. This makes a concrete connection between

our invariant and the usual linking number of knot theory. The second method is

algebraic and comes from the relation, observed in [GBS], between our linking
invariant, the connected numbers and the splitting numbers introduced by Shirane

in [Shirl, Shir2].
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To illustrate the efficiency of this adaptation of the linking number to algebraic

curves, we use it to distinguish two examples of Zariski pairs. The first example
is formed by the well known 3-Artal curves introduced by Artal in [Art]. They

are composed of a smooth cubic and three inflexional tangent; in the first curve
the considered inflexion points are collinear, while they are not in the second one.

The computation of the linking invariant of the three lines with the cubic is made

using the above mentioned algebraic method. The second example of Zariski pair
is formed by a smooth quartic and three bitangents. These curves have been very
recently studied in [BTY], For that example, we use the topological method based

on the linking number of knot theory.

After an earlier version of this paper was circulated, our linking invariant
(then called linking set) has been further studied, and being used to distinguish
other examples of Zariski pairs.

In [Shirl] Shirane introduces the splitting numbers and detects the tx\-
equivalent Zariski A:-plets suggested by Shimada [Shim2]. By proving that the

splitting numbers and the linking invariant are equivalent (in some particular
cases), the first author and Shirane obtain in [GBS] that the linking invariant

distinguishes the Shirane-Shimada jt\ -equivalent Zariski Ac-plets. This implies
that the linking invariant is not determined by the fundamental group of the

complement.
The linking invariant is also used in [BGBS] to classify the topology of the

A:-Artal curves (i.e., a smooth cubic and k inflectional tangent lines). Furthermore,
Shirane constructed recently in [Shir2] an adaptation of the splitting number, called

the connected numbers, which allows to classify the topology of the Artal curves

of degree b (i.e., smooth curves of degree b and with three total inflectional

tangent lines). Here again, the proofs of [GBS] imply that the linking invariant

can distinguish the Artal curves of degree b.
In the particular case of line arrangements, the linking invariant (in the form

of the I-invariant) has been successfully used in [GB| to detect a Zariski pair of
12 lines. Recently, the first author and Viu-Sos gave an effective diagrammatic
reformulation of this invariant in the particular case of real line arrangements,
see [GBVS], Using this reformulation, they provide 10 examples of complexified
real Zariski pairs.

Convention. All homology groups are to be understood with integral coefficients,
and this will be omitted in the notation.
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1. The linking invariant

1.1. Preliminaries. Let C be an algebraic plane curves, possibly non-reduced.

Following [ACT], we define the combinatorics of C as the data:

(irr(C), deg, Sing(C), Stop,atop, {c(^)}PeSing(c)' (^WpsSingCo) -

where:

• Irr(C) is the set of all irreducible components of C,

• deg assigns to each irreducible component its degree,

• Sing(C) is the set of all singular points of C,

• £|0p is the set of topological types of singular points of C, and <7toP assigns

to each singular point its topological type,

• for each singular point P of C, C(P) is the set of local branches of C at P,
and ßp assigns to each local branch at P the global irreducible component
containing it.

Two curves have the same combinatorics if there exist bijections between their sets

Irr and Sing of irreducible components and singular points, which are compatible
with the sets C(P) and Etop of local branches and topological types, and with
the assignments deg, rrtop and {ßp} in the natural way; see [ACT, Rem. 3] for
details.

We also associate to the curve C the intersection graph Ifo of its irreducible

components. This is a bipartite graph whose first set of vertices, called component-
vertices, corresponds to the irreducible components of C, while the second set of
vertices, called point-vertices, corresponds to the singular points of C contained
in at least two distinct irreducible components. An edge of Tc joins a point-
vertex and a component-vertex if and only if the corresponding singular point is

contained in the corresponding irreducible component. Note that the information
encoded in Tc are contained (but not equivalent) to the combinatorics of C. For

example, the information given by atop is not contained in Tc.
A cycle of Tq is a (non necessarily connected) closed oriented walk without

repeated edges which contain at least one component-vertex. Note that this includes
the case of a single vertex. A (combinatorial) cycle of Tc can be lifted to a

(topological) cycle on the curve C, i.e., an oriented closed loop in C, although
it is not uniquely determined in general. Such a topological lift has a natural

induced orientation only if the combinatorial cycle is not simply connected. If the

combinatorial cycle is simply connected (i.e., it consists of a single component-
vertex) then a topological lift is any (possibly non-contractible) closed loop in
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the corresponding irreduccible component of C, with an arbitrary choice of
orientation.

In what follows, we will be mainly interested in reducible algebraic curves

CUV, which decompose into two subcurves C and V (without common irreducible

component). In this context, a cycle of Te is simply a cycle lying in the

subgraph Vc of Tcux>- On one hand, such a cycle is called maximal if it contains

all component-vertices of Tc; in other words, a maximal cycle in Yc lifts to

a topological cycle in C UP that intersects the smooth part of all irreducible

components of C. On the other hand, a cycle of Tcud is said to avoid V if it
lies in Yc (and is thus disjoint from all component-vertices of V) and avoids

all point-vertices of C OP.
In this paper, by a homeomorphism <p between two such reducible algebraic

curves C\ UPi and C2UV2, we will always mean an ambient homeomorphism
of CP2 which sends C\ to C2 and V\ to V2. Furthermore, we will denote

by <pr : TciLm, Tc2uv2 the induced map at the combinatorial level. Note that,

if 4> is orientation preserving, then fr preserves the cycle orientation.

1.2. The linking invariant. Let CUV be a reducible algebraic curve, decomposed
into two nonempty subcurves C and V.

Consider the inclusion maps i : C \V ^ C and j : C \ V CP2 \ V, and

denote respectively by /* and /* the induced map on the first homology groups.
Note that kerfi'*) identifies with Hi(9(JCeIrr(-c) C \V) ~ ©ceirr(C) (<KC \ £*))

in Hi(C\V).

Definition 1.1. The indeterminacy subgroup with respect to C, denoted by Jc, is

the subgroup of Hi (CP2 \V) defined as the image of ®ceirr(c)Hi (3(C \V))
by ./*.

Now, let y be a maximal cycle in Tc avoiding V. Pick a topological lift "y

of y on the curve C C CUV. By assumption, "y lies in C\V, and intersects

the smooth part of all irreducible components of C.

For brevity, we simply denote by [y] the image of fi in Hi (CP2 \ V)/Jc.
We also denote by lc the image of ®ceirr(c) ^i(C \V) by /*, composed with
the projection map Hi (CP2 \V) —> Hi (CP2 \ V)/Jc.

Definition 1.2. The oriented linking of C with V along y, denoted by lkY(C,V),
is the coset of Xc in Hi (CP2 \V)/Jc with respect to [y]. In other words,

lkY(C,V) [y]lc C Hi(CP2\P)/Jc.

Theorem 1.3. The above formula is well-defined, i.e., lky(C,V) does not depend

on the choice of topological lift of y.
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Proof. Let "y \ and y 2 be two topological lifts of y, and let [y]i and [y]2

denote their homology classes in Hi (CP2 \ V). There are essentially two ways
in which [y]i and [y]2 may differ. If y 1 and y2 have same homology class in

Hi(C), then they differ by elements of UCeirr(C)3(C \ T>), so that [y]i and [y]2
differ by an element of the indeterminacy subgroup Jc Now, if y 1 and y 2

have different homology classes in Hi(C), then the difference is mapped in Tc

by /'*, so that yi and y2 yield the same coset of Tc in Hi (CP2\V)/Jc-

Remark 1.4. We stress that the neither of the two assumptions made here, that

y is maximal and that it avoids V, is necessary to define our invariant - this

is discussed in Remark 1.7 and in Section 1.3.2 below. But, on one hand, these

assumptions turn out to greatly simplify the exposition and, on the other hand,

all the relevant topological information on CUT are already essentially detected

by this simple version of our invariant. As a matter of fact, all the examples of
this paper will involve the above assumptions.

We have the following description of Jc.

Proposition 1.5. The indeterminacy subgroup Jc is spanned by the elements of
the form:

Y, Ip(b,d).mßp^y for all PeCUV and all beC(P),
deV(P)

where Ip(b,d) denotes the intersection multiplicity of the local branches b and

d at P, and nißp is given by a meridian of the irreducible component ßp(d)
of V containing d.

Proof The indeterminacy subgroup is the image of ®ceirr(c) Hi (3(C \ V)) in

Hi (CP2 XT'). It is thus generated by the class of the cycles in C e Irr(C) around

the points P 6 C fi V. Pick such a singular point P, and consider a small sphere

S around P. Each local branch b of C at P intersects S along a knot Kh,
and it is well-known that, for each local branch d of V at P. the intersection

of höd with S is an oriented two-component link whose linking number is

precisely I(b, d) (see [BKS, pp. 439]). Hence the homology class of the knot Kb

in Hi (CP2 \ V) is given by J2dV(P) l{h,d).mßp(d), and the result follows.

As a consequence of Proposition 1.5, the group Hi(CP2\D)/Jc is determined

by the combinatorics of the curve CUV. So we can use the linking invariant to

compare the topology of curves with the same combinatorics. Indeed, we have

the following theorem, which implies that the linking invariant is an invariant of
the oriented topology of (CP2, C U V).
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Theorem 1.6. Let 0 be an orientation-preserving homeomorphism between two

algebraic curves C\ U V\ and C2 U V2. Then 0 induces an isomorphism 0*
between Hi(CP2\Xfi) and Hi(CP2\T>2) mapping Jcx to Jc2, and for any
cycle yi 6 Te, avoiding V\, we have

0^(ikK1 •W(yi)(C2. ^2),

where 0* is map induced by 0* on the quotients by the indeterminacy subgroups.

Proof. By definition, the homeomorphism 0 : CP2 -» CP2 maps Tfi to V2,
so it induces an isomorphism 0* between H!(CP2\î?i) and Hi(CP2\T>2)-
Furthermore, for each C\ e Irr(Ci) with image C2 0(C1) e Irr(C2), we have

that 0 maps C\ n T>i to C2nP2, and maps 3(Ci \2?i) to 9(C2\X>2); this

implies that 0* maps JCx to Jc2 Now, 0 maps any (oriented) lift of y\ to

a cycle on C2 which is a lift of 0r(yi), respecting the orientation. Since the

linking invariant does not depend on the choice of lift, the result follows.

Remark 1.7. As mentioned in Remark 1.4, the cycle y in Definition 1.2 does

not need be maximal. Indeed, if T does not contain all component-vertices of

rc, then the coset [y]lc still yields an invariant of the oriented topology of
(CP2,CUT?). But in this case a finer invariant is given by regarding the curve
C UP as decomposed into the union of Cy and (C U D)\CY, where CY denotes

the union of all irreducible components of C intersecting y.

Remark 1.8. The linking invariant of Definition 1.2 is an invariant of the oriented

topology of (CP2, CUV). If y is simply connected, however, the linking IkY(C,V)
of C with V along y is a topological invariant of (CP2,CUT?), since any choice

of orientation of a topological lift yields the same coset. In general, we can easily

remove the condition of orientation, simply by considering

~[y]ic U [y\Tc C Hi (CP2 \ V)/Jc.

which is clearly an invariant that doesn't depend on the orientation of y, but only
on its combinatorics. As a corollary to Theorem 1.6, this non-oriented linking is

a topological invariant of the pair (CP2,CUX>).

1.3. Two variants. We now discuss two variants of our linking invariant. The

first one is a 'global' version which doesn't rely upon the choice of a cycle; the

second one is a generalization, where we allow arbitrary cycles.

As in the previous section, CUV will denote here a reducible algebraic curve
decomposed into two subcurves C and V.
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1.3.1. Global linking. We can define the following coarser invariant, which is

a 'global' version of the linking invariant, in the sense that it doesn't involve

the choice of a cycle. Recall that /* is the map induced in homology by the

inclusion of C \ V in CP2 \ V.

Definition 1.9. The global linking of C with V, denoted by £(C,D), is the class

of Im7* in IG (CP2\V)/JC.

Remark that the global linking of C with V can also be defined as the union,

over all cycles y in Tc avoiding V, of the linking invariants of C with V
along y.

The invariance of the global linking is a direct consequence of the proof of
Theorem 1.6:

Theorem 1.10. Let cp be a homeomorphism between two curves C\ U V\ and
C2 U V2- We have

^(acuvo) ac2,v2),

where 0* is the map induced by cp* on the quotients by the indeterminacy
subgroups.

Hence the global linking of C with V is a topological invariant of the pair
(CP2, CUP).

Remark 1.11. Notice that if C is an irreducible curve, then lk*(C,P) C(C,T>),
where * denotes the unique component-vertex of Fe-

1.3.2. Linking along an arbitrary cycle. In the above definition of the linking
invariant, we assumed throughout that the cycle y avoids all point-vertices of Tc

corresponding to singularities in CD P. Although this will not be used in the

main examples of this paper, we outline here how the construction can be easily

generalized to arbitrary cycles.

Let y be any cycle in Tc. Denote by Sy the set of singularities in C fi V
whose corresponding point-vertices are contained in y. We define the subgroup

Jy of Hi (CP2 \ V) as

JY — {nißy^p for all P e SY and all d e V(P)).

(here we make use of the same notation as in Proposition 1.5.)

Definition 1.12. The y-indeterminacy subgroup is the subgroup J(c,y) of
Hi (CP2 \ V) generated by JcLt JY.
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Now, we need a slightly generalized notion of topological lift for the cycle y.
Specifically, for each singular point P in <Sy, pick a small closed 4-ball Bp
centered at P. A V-avoiding lift of y is a cycle in CP2 \© which coincides

with a topological lift outside U/>e<5yB/> (and in particular lies in C), and whose

intersection with each 4-ball Bp is an arc lying in the boundary of Bp. So,

roughly speaking, such a cycle differs from a topological lift of y by locally
pushing it away from the curve CUV, so that it avoids the singularities in Sy.

Now, using this refined indeterminacy subgroup and generalized notion of
lift, the exact same construction yields an invariant: the (oriented) linking of C

with V along an arbitrary cycle y is the coset

lkY(C,V)=[y]Tc C Hi (CP2 \ V)/
where [y] denotes the image of a ©-avoiding lift of y in Hi(CP2\©)/J{c,y), and

where Ic is the image of ®cGirrte) Hi(C\P) by ./*, seen in HX(CP2\V)/J(c,r).
The proof that this is well-defined, i.e., does not depend on the choice of

the ©-avoiding lift of y, is completely similar to the proof of Theorem 1.3, and

readily follows from the definition of J(c,y) The only difference here is that, if
y passes through a point-vertex P in CUV, then two ©-avoiding lifts of y

may only differ by a copy of a meridian nißp(d), for any local branch d in

V(P). Considering these cycles in Hi(CP2 \©), we have by definition that the

difference lies precisely in Jy, hence in the y-indeterminacy subgroup J(c,y)-

Remark 1.13. In the case where y avoids all point-vertices in CUV, then

the y-indeterminacy subgroup J(c,y) coincides with the original indeterminacy
subgroup Jc, and we recover the invariant of Definition 1.2.

1.4. Line arrangements and the X-invariant. In this section, we restrict
ourselves to the case where CUT is a line arrangement, i.e., when all the

irreducible components of C and V are of degree 1. In this particular case, another

linking invariant, called the X-invariant, has been defined by Artal, Florens and

the first author in [AFGBj. We will prove here that the present linking invariant

generalizes the X-invariant.
First, let us recall some terminologies introduced in [AFGBJ to define the

X-invariant. Let A be a line arrangement. Recall that Hi(CP2\A) is free of
rank | Irr(_4.) [ — 1 and is generated by the set of all méridiens m l for L c Irr(A).

Definition 1.14. Let A be a line arrangement, £ : FL (CP2 \ A) —> C* be a

non-trivial character and y be a cycle of the intersection graph r_4. The triple
{A, y) is called an inner-cyclic arrangement if
(1) For each singular point P of A with associated point-vertex in y,

£ (mi) 1, for any line i of A containing P,
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(2) For each line L of A with associated component-vertex in y,

(i) %(mL) 1,

(ü) "] Ç(mi) — 1, for any singular point S in L, where the product runs
l3S
over all the lines I in A containing S.

In [AFGB], the I-invariant is then defined as

l(A,Ç,y) f °i*(y),

where t* is the map induced by the inclusion i of the boundary BA of a tubular

neighbourhood Tub(«4) of A in CP2\.4, and where y is a suitably chosen

lift of the cycle y in BA. More precisely, this lift is a 'nearby cycle' in the

terminology of [AFGB|, which roughly means that this cycle is contained in

Z?c\TubÇE>) C CP2\P, where A C UP with Irr(C) {L e Irr(^I)|Lny ^ 0}
and Irr(D) {L e \vr(A)\L n y 0} - see [AFGB, Def. 2.11] for a precise
definition.

Now, if A C LI V is a line arrangement, the set Ic is always trivial. The

linking of C and V along a cycle y is thus the class [y] of a lift of y in

Hi (CP2 \ V)/Jc The relationship to the I-invariant is as follows:

Theorem 1.15. Let A C WD be a line arrangement, and let y be a maximal

cycle in Tc Let Ç be a character on Hi(CP2\A) such that (A£, y) is an inner-

cyclic arrangement. Then there is a nontrivial character on II i (CP2\'I)/2/(e,y)
induced by £ such that

l(A,S,y)=mkY(C,V)).

Proof. Since (A,Ç,y) is an inner-cyclic arrangement, we have that Ç(w/J — 1 for
each line L of A with corresponding component-vertex in y - these correspond
to the lines of C since y is maximal. This shows that Ç factors through the

projection map Hi(CP2\_4) -» Hi(CP2\I). Furthermore, conditions (1) and

(2-ii) of Definition 1.14 ensures that £ further factors to Hi (CP2\D)/ thus

providing the desired nontrivial character £*.' So we have

I(A.Ç.y) £ o (*(y) t*([y]).

where y is any lift of y which is a nearby cycle, and [y\ denotes its image in

Hi (CP2 \ V)/J(c,Y). On the other hand, we have by definition that

lkY(C,V) [y] Hi (CP2 \V)/J(c,y),
1 This shows, in particular, that the quotient Hi(CP2\T>)/J(C.y) is nontrivial.
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where y is a T> -avoiding lift of y. The result then follows from the fact that

the homology classes of the cycles y and y> in Hi(CP2\X>) can only differ
by elements of J(ç,y) > as follows from the definition of a nearby cycle given
in [AFGB].

2. Computations

In this section, we describe two concrete methods for computing our invariant.
The first one is topological and is based on a modification of the braid monodromy,
and uses the usual linking number of links in the 3-sphere. The second one is an

algebraic method using the connected numbers introduced by Shirane in [Shir2],
and its relations with the linking invariant, observed in [GBS],

2.1. Topological method. For simplicity, we consider an algebraic curve C UP,
such that all the irréductible components of C have topological genus zero (see

however Remark 2.3), together with a cycle y in the intersection graph of C.

For this class of curves, we have that the set 1q is trivial, so that the linking
invariant lky(C,T>) is the class of a lift of y in Hi(CP2 \ V)/Jc, rather than a

coset (this was already observed in the case of line arrangements in Section 1.4).

Definition 2.1. A path y" in C is y -admissible if it is a lift of y and if there is a

generic projection it : CP2\{*} CP1 such that n("y) has no self-intersection,
and (7T_1 o 7t(y)) D Sing(D) 0.

Note that the latter condition can always be fulfilled, up to a small modification
Of 71.

Let y be a y-admissible path in C. For any point p of jt("y we consider the

fiber Fp over p. By the definition of /-admissibility, the number of intersection

points of D with Fp equals the degree of V for all points p e n{'y We denote

by Lx> the oriented link

(1) Lv (yn~l o n{y n D c CP2.

Noting that y and Lv do not intersect, we define "y U Lv. This link naturally
sits in a copy of S3, as follows. Let D be the disc bounded by 7t(y in CP1.
Pick a polydisc V of CP2 such that 7t(P) D and n~1{D) FI (C U V) C V. By
construction, the link "y U Lz> lies in the boundary of V, which is homeomorphic
to S3. This construction yields the following.
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Theorem 2.2. Under the above assumptions, the homology class of the path y
in Hi(CP2\î>) is given by:

where I is the usual linking number in S3 and p is the map induced by the

inclusion of S3\Lp in CP2\T>, which maps the meridian mc of each component
c of L-p to the meridian of the irreducible component of V containing c.

Remark 2.3. If the irreducible components of the curve C are allowed to have

nonzero topological genus, we can also use the present method to compute the

value of the generators of lc in Hi (P2\'D), and thus to compute the coset [y}Tc.

This provides a computational formula for the linking invariant of C with V
along y in terms of the usual linking number. See Section 3.2 for an application
on a concrete example.

2.2. Algebraic method. The second method of computation comes from the

connected numbers introduced by Shirane in [Shir2], This method applies when
C is a nodal curve with Sing(C) IT V 0 (this implies that C\D is connected),
and if HX(CP2\V)/JC ~ Z/mZ.

Let x/r : X -> CP2 be a cyclic cover of degree m branched over V. The

connected number of C for f is the number of connected components of
f~1(C\T>)) in X. Based on a previous version of the present paper, it has

been proved in [GBS] that if C and V are smooth curves then the connected

number and the global linking of C and V are essentially equivalent. For the

purpose of this paper, however, we will rather give the following statement.

Theorem 2.4. Suppose that C is a nodal curve such that Sing(C) T V 0,
and that HX(CP2 \V)/Jc — Z/mZ. Then the global linking of C and V is

the unique subgroup of Hi (CP2 \ V~)/Jc of index deg(T>)//z, where gt is the

minimal degree of a plane curve E such that C HV C T E and for each point
PeCDV, we have (deg(D)//x) x 1P(C, E) IP(C,V).

Sketch of proof By the proof of [GBS, Theorem 2.5], we know that the index

of C{C,V) in Hi (CP2 \V)/Jc is equal to the connected number of C for f.
Since Hi (CP2 \ V)/Je is cyclic then each of its subgroup is determined by its

index. The result is thus a consequence of [Shir2, Corollary 2.5].
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3. Applications

In this section, we use our linking invariants (both the oriented and global
versions) to distinguish two types of Zariski pairs.

3.1. 3-Artal curves. As an application of the algebraic method of computation
of the linking invariant, we propose to distinguish the Zariski pair found by Artal
in [Art]. These curves are formed by a smooth cubic C and three inflexional

tangent lines. The geometry of the 9 inflexion points of a cubic is well known;
the collinearity relations are the same as in F2, the plane over the finite field

of 3 elements. We consider P\,..., P4 four inflexion points of C such that

Pi, P2, P3 are collinear and P\. P2, Pa are not. Set A\ L\ U L2 U L3 and

A2 L\ Ö L2U La, where L, denotes the inflexional tangent line at Pi.

Theorem 3.1. The global linking of the line arrangement Ai with the cubic C

is:
{0} if i 1.

C(Ai,C)
{0,1,2} if i =2.

Proof Since the cubic C is smooth, we have Hi(CP2\C) ~ Z/3Z. Furthermore,

Proposition 1.5 implies that J= (3m), where m is a meridian of the cubic.

So the quotient H^CP2 \ is also isomorphic to Z/3Z.
We first compute the global linking C(A\,C). By construction, there is a line

E (i.e., an algebraic curve of degree 1) passing through P\,P2 and P3. By
Bezout theorem, we have /p/ (Ai, E) 1 for j e {1,2,3}, and the following
equality holds for j e {1,2,3}

pt^LxlPj(Ai,E) IPj(Ai,C).
deg(£)

Thus by Theorem 2.4 the index of C(A\,C) in Hi(CP2 \C)/Xq is 3.

Let us now turn to L(A2,C), and look for the minimal degree curve E passing

through the points Pi, P2 and P4 and satisfying x/p, (ZI2. E) Ipj(A2,C)
for j e {1,2,4}. By construction, no line E satisfies these conditions. Similar
considerations as above show that no conic can verify these conditions either.2

But taking E to be the cubic C obviously works, and it follows by Theorem 2.4

that the index of C(A2,C) in H^CP2 \ C)/Ja2 is 1.

Corollary 3.2. The curves C U Ai and CU A2 form a Zariski pair.

2 This also follows from Theorem 2.4, since the existence of such a conic would imply that C(A2,C)
is an index 2 subgroup of Z/3Z.
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3.2. The quartic and its bitangents. As an application of the topological method,

we will distinguish a Zariski pair formed by a quartic and 3 bitangents. Let Q be

the Klein quartic defined by x3y + y3z-t-z3x 0. The full list of its 28 bitangents
is given in |Shi]. We will consider here only four of them. Let Ç be a primitive
7th root of unity, and define the real numbers £,• f + t,~l, for i e {1,2,3}.
We consider the following bitangents:

L\ : x + y + z 0, L2 : x + £3
2
y + e\z 0,

L3 : x T i,3s^2y + t£iz 0- L4 : x + t2£22y + Ç3e2z — 0.

Let Ai Li U L2 U L2+;, for i e {1,2}. We will compute the linking of
Ai with Q along y,, where y,- is a cycle generating Hi (Ai) ~ Z. Since

H1 Lj 0 for all j, we have 1Aj 0 for / 1,2. Furthermore, Q is smooth

so Hi(CP2 \ Q) — Z/4Z. By Proposition 1.5, we have that JAj (2m), where

m is a meridian of Q. So we have

Hi (CP2 \ Q)/JAi ~ Z/2Z.

In order to simplify the computations, we apply on QUTi and Q U A2 the

linear change of variables given respectively by the following matrices:

{ 4t5 + 4t4-^2 + ^ + 6 -£5 - 5£4 + 2£3 + 6£2 + 5

Pl -6t5 - 6Ç4 - 2t,2 - 5f - 2 5Ç5 + 4^4 - 3Ç3 -2^+7^ + 3

v2^s + 2£4 + 3£2 + At, + 3 -4£5 + t4 + t3 - 4?2 - 7f - 1

-3£5 + i,4 - It,3 - 5t,z - f + 3^

t5 + 2Ç4 + 3Ç3 + 4£2 - 2£ - 1

2^5 _ 3^4 _ £3 + ^2 + 3^ __ 2
^

3£5 - 2t,4 - 4t3 - 2£2 - 3f + 7 8<{5 - 2£4 - 9(;3 + t,2 + 9

P2 _6^5 + 3^4 _ £3 - 4£2 + £ -\2t,5-Wt,4-At,3-5t2-It;-3
9^5 __ ^4 + 5^3 + 6ç2 + 2^ + 7 4t5 + 13C4 + 13Ç3 + At,2 + 7£ + 8

-5t,5 + At,4 + 13£3 + t2 + 3£ + 12 ^
18^5 + 8£4 + 5t;3 + %2 + 61; + 3

-13£5 — 12t4- 18^3 — 10t2-9^- 15/

The change of variables P; sends L\, L2 and L2+, to x + y 0, x + z 0 and

y+z 0 respectively (we denote by A, the arrangement (x + y)(x + z)(y+z)
0). The images of Q by the changes of variables P, are denoted by Q', and

their equations are given in Appendix A. Since P, is a linear change of variables,

we have

lkri(Ai,Q)=\kyi(Ai,Qi).
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By Theorem 2.2, the linking invariant lkn (Ai, Ql) is given by the linking numbers

of the cycle y, with each component of the link L—, defined in (1). We can take

as topological cycle yi (resp. y2) the triangle formed by the lines x + y 0,

x + z 0 and y + z — 0 in the chart z 1 (resp. y 1 of HP2. These charts

together with the cycles y,- are represented in Figure 1.

The link lives in the intersection of Q with the boundary of the polydisk

V 1' x D2, where T is the disk of the real plane bounded by y,- and where

D2 is a 2-disk intersecting all the components of Q (see Section 2.1). The

desired linking number can be computed as the algebraic intersection number of

Lgi with this disk T. Since we are working here with (Z/2Z)-coefficients, this

amounts to counting the parity of the number of intersection points.
In order to compute these numbers of intersection points between the interior

of the triangle T and the quartics Q', we proceed as follows. First of all, we
choose an embedding of £ in the field of complex number. In the following,

we take £ exp (-j-) ~ 0.62349+ 0.78183/. Then, we decompose Q' into two

quartics QlRe and Qlfm, obtained from Q1 by taking only the real part (resp.

the imaginary part) of its coefficients. Using the previous approximation of f,
we have the following approximations

QlRe ~ - 838.65x4 + 1903.lx3y + 2540.3x2y2 + 2686.2xy3 - 4017.2/ +
1074.6x3z - 2073.7x2yz - 10166jcv2z + 28829.y3z + 7382.2x2z2-

13500.xyz2 - 14908.y2z2 + 5379.5xz3 - 3835.5yz3 - 456.29z4,

Q)m ~ - 2525.0x3y + 5338.2x2y2 - 9450.5xy3 + 12939..y4 - 2525.0x3z +
5824.0x2yz - 4948.5xy2z - 5115.5y3z + 485.83x2z2 + 8936. lxyz2-
17722.y2z2 + 4434.2xz3 + 2330.9yz3 + 1999.1z4,

Q2Re ~2327.4x4 + 28631.x3 y + 105760.x2y2 + 115460.xy3 + 28853.y4-

221 96.x3z - 114530.x2yz - 79537,xy2z + 22480.y3z + 9417.8x2z2-

107220.xyz2 - 116350+V + 64365.XZ3 + 62192..yz3 + 348.69z4,

Q2Im -518.62X4 - 5686.3x3y - 56227,x2y2 - 1011 lO.xy3 - 35790.y4 +
10085.x3z + 133160.x2yz + 275020,xy2z + 106780.y3z - 71462.x2z2-

187780.xyz2 - 76906.y2z2 + 9523.7xz3 - 961,76yz3 + 838.07z4.

Thus, the real points of correspond to those points on which both QlRe and

Qlfm vanish; in other words, they correspond to the intersection points of these

two quartics considered in the real plane. Therefore, we count how many of
these real points lie in the disk T, since by definition, they are the intersection

points of L—i with T Using the previous equations, for each /, we depicts (see
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For i 1, in the Chart z 1 For i =2, in the chart y 1

Figure 1

Real part of Q.' U Ai {At solid line, QlRe dashed line, and Q,'/m dotted line)

Figure 1) in the real plan the arrangement Ai (solid line) and the quartics QRe

(dashed line) and Ql/m (dotted line). In this way, we get that the value of y, in

Hi (CP2\Qi)/J-^i is
'

0 if i 1,
P(?i)

1 if i 2.

From these computations and using Remark 1.8, we have the following theorem

and its corollary.

Theorem 3.3. The linking of the line arrangement Ai with the quartic Q along

Yi is

,kU. o)-/{0} ifi h
j - I {1| if i — 2.

Corollary 3.4. The curves QU A\ and QU A2 form a Zariski pair.

Remark 3.5. Since y, generates Hi (A), we can also compute the global linking
of Ai with Q. It is given by:

C(Ai.Q)
{0} if i 1,

{0,1} if i =2.

Remark 3.6. This result is in adequation with the computation of the connected

numbers of these curves made in [BTY],
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—i
A. Explicit equations of the quartics Q

The equations of the quartics Q1 introduced in Section 3.2 are given by:

Ql : (343/ + 343/ - 686)./ +
(—2058/ + 4802/ + 2058/ - 4802/ + 1715£ + 5488)x3y +
(-1029/ - 26754/ - 14406/ + 7203/ - 10290t - 26754)x2/ +
(-1029/ + 37044t4 + 17493t3 ~ 17150t2 + 18865t + 36015)x/ +
(-2401t5 - 19551t4 -4802t3 + 10633t2 - 7889t - I9208)y4 +
(-2058t5 + 7546t4 + 4802t3 - 4802t2 + 1715t + 9604)x3z +
(-2058t5 ~ 20580t4 ~ 6174t3 + 8232t2 - 13377t - 16464)x2yz +
(27783t5 + 14406t4 - 3087t3 + 16464/ + 17493t - 1029)x/z +
(-18865/ - 1372/ - 343/ - 19894/ - 583/ + 22295)/z+
(-11319/ + 2058/ + 4116t3 - 9261/ - 3087t + 10290)x2z2 +
(3087t5 - 10290/ - 3087t3 + 12348/ - 4116t - 19551)xyz2 +
(14406/ + 14406/ - 1029/ - 1029/ + 5145t - 3087)/z2 +
(-6517/ - 4116/ + 1029/ - 2058/ - 2744t + 2401)xz3 +
(1715/ + 4116/ + 3773/ + 2058/ + 2744t + 2401 )yz3 +
(-1715/ - 343t3 + 1715/ - 343t - 1715)z4 0.

Q2 : (13720/- 6174/ + 16121/ + 1029/ + 4116t + 12005)x4 +
(34300t5 - 19208t4 + 13720t3 - 24696/ + 48020t - 4116)x3y +
(_88494t5 - 69972t4 - 51450t3 - 129654t2 - 30870t - 32928).// +
(-94668/ - 111132/ - 107016/ - 127596/ - 90552t - 74088)x/ +
(686t5 - 49735t4 " 56595t3 - 15092t2 - 22295t - 56252)/ +
(-94668t5 + 10976t4 ~ 26068t3 - 42532t2 - 31556t - 46648)x3z +
(-49392t5 + 49392t4 - 78204t3 + 176988t2 - 41160t - 86436)x2yz+

(139944/ + 209916/ + 102900/ + 288120/ + 226380t + 156408)x/z +
(58996t5 + 214032t4 + 127596t3 + 56252t2 + 187964t + 238728)/z +
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(104958t5 + 98784t4 + 69972t3 + 32928t2 + 14406t + 183162)x2z2 +
(-8232t5 - 176988t4 + 107016t3 - 152292£2 - 218148£ - 69972)x>>z2 +
(-80262t5 - 183162t4 + 12348t3 - 67914t2 - 222264t - 164640)y2z2+

(23324t5 + 37044t4 - 32928t3 - 58996t2 + 153664t - 35672)jcz3 +
(-78204t5 - 117992t4 - 93296t3 - 16464t2 - 91924t ~ 91924)jz3 +
(117992t5 + 114219t4 -4116t3 + 79919t2 + 114219t + 72373)z4 0.
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