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A linking invariant for algebraic curves

Benoit GuervILLE-BALLE and Jean-Baptiste MEILHAN

Abstract. We construct a topological invariant of algebraic plane curves, which is in some
sense an adaptation of the linking number of knot theory. This invariant is shown to
be a generalization of the Z-invariant of line arrangements developed by the first author
with Artal and Florens. We give two practical tools for computing this invariant, using a
modification of the usual braid monodromy or using the connected numbers introduced by
Shirane. As an application, we show that this invariant distinguishes several Zariski pairs,
i.e., pairs of curves having same combinatorics, yet different topologies. The former is the
well known Zariski pair found by Artal, composed of a smooth cubic with 3 tangent lines
at its inflexion points. The latter is formed by a smooth quartic and 3 bitangents.

Mathematics Subject Classification (2010). Primary: 14H50; Secondary: 32Q55, 54F65,
57M20.
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Introduction

The topological study of algebraic plane curves was initiated at the beginning of
the 20th century by Klein and Poincaré. One of the main questions is to understand
the relationship between the combinatorics and the topology of a curve. It is
known, since the seminal work of Zariski [Zarl, Zar2, Zar3], that the topological
type of the embedding of an algebraic curve in the complex projective plane
is not determined by the combinatorics. Indeed, Zariski constructed two sextics
with 6 cusps having same combinatorics, and proved that the fundamental group
of their complements are not isomorphic. Geometrically, these two curves are
distinguished by the fact that the cusps in the first curve lie on a conic, while they
do not in the second curve. Since this historical example, using various methods,
numerous examples of pairs of algebraic curves having same combinatorics but
different topologies have been found, see for example Artal, Cogolludo and



64 B. GUERVILLE-BALLE and J. B. MEILHAN

Tokunaga [ACT], Cassou-Nogues, Eyral and Oka [CNEO], Degtyarev [Deg],
Oka [Okal, Shimada [Shiml], or the first author [GB]. Artal suggests in [Art] to
call such examples Zariski pairs.

The topology of curves in CP? is intimately connected to the topology of
knots and links in S3. Several tools are indeed shared by these two domains, such
as the homology or the fundamental group of the complement, the Alexander
polynomial or module, although they usually have rather different behaviours.

Recently, Artal, Florens and the first author defined a topological invariant of
line arrangements (i.e. algebraic plane curves with only irreducible components
of degree 1) which is in some sense modelled on the linking number of knot
theory [AFGB]. This invariant was then successfully used in [GB] to distinguish a
new Zariski pair of line arrangements. In the present paper, we construct another
invariant adapting the linking number to the more general case of algebraic plane
curves. In the case of a line arrangement, this invariant is shown to be equivalent
to the invariant of [AFGB], thus providing a generalization of this earlier work
through a different adaptation of the linking number.

The construction of our linking invariant can be roughly outlined as follows.
Consider a reducible algebraic curve decomposed in two nonempty subcurves C
and D, and pick a topological cycle y in the subcurve C. The basic idea is
to consider the image of a certain coset of y in the first homology group of
CP? \ D. More precisely, this set is regarded in the quotient of H;(CP? \ D)
by an appropriate indeterminacy subgroup Jc, which controls the topological
differences among the various cycles in the considered coset of y. This define
the linking invariant of C with D along y, which is an invariant of the pair
(CP2,CcUD).

Our construction thus builds on a rather elementary idea, and is not technically
involved. Remarkable is rather the fact that it reveals quite efficient in practice,
despite its apparent simplicity. We mention below several applications of the
linking invariant on concrete examples of Zariski pairs of various natures.

This linking invariant has a nice behaviour for some particular choices of curve
or cycle. In the case of line arrangements, for example, the linking invariant is
indeed a single homology class rather than a coset. This allows us to prove the
equivalence with the Z-invariant of [AFGB] in this case.

From a practical viewpoint, we provide two methods of computation of this
linking invariant. The first one is based on a topological construction using an
adaptation of the braid monodromy. This makes a concrete connection between
our invariant and the usual linking number of knot theory. The second method is
algebraic and comes from the relation, observed in [GBS], between our linking

invariant, the connected numbers and the splitting numbers introduced by Shirane
in [Shirl, Shir2].
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To illustrate the efficiency of this adaptation of the linking number to algebraic
curves, we use it to distinguish two examples of Zariski pairs. The first example
is formed by the well known 3-Artal curves introduced by Artal in [Art]. They
are composed of a smooth cubic and three inflexional tangent; in the first curve
the considered inflexion points are collinear, while they are not in the second one.
The computation of the linking invariant of the three lines with the cubic is made
using the above mentioned algebraic method. The second example of Zariski pair
is formed by a smooth quartic and three bitangents. These curves have been very
recently studied in [BTY]. For that example, we use the topological method based
on the linking number of knot theory.

After an earlier version of this paper was circulated, our linking invariant
(then called linking set) has been further studied, and being used to distinguish
other examples of Zariski pairs.

In [Shirl] Shirane introduces the splitting numbers and detects the -
equivalent Zariski k -plets suggested by Shimada [Shim2]. By proving that the
splitting numbers and the linking invariant are equivalent (in some particular
cases), the first author and Shirane obtain in [GBS] that the linking invariant
distinguishes the Shirane-Shimada s, -equivalent Zariski k -plets. This implies
that the linking invariant is not determined by the fundamental group of the
complement.

The linking invariant is also used in [BGBS] to classify the topology of the
k -Artal curves (i.e., a smooth cubic and k inflectional tangent lines). Furthermore,
Shirane constructed recently in [Shir2] an adaptation of the splitting number, called
the connected numbers, which allows to classify the topology of the Artal curves
of degree b (i.e., smooth curves of degree b and with three total inflectional
tangent lines). Here again, the proofs of [GBS]| imply that the linking invariant
can distinguish the Artal curves of degree b.

In the particular case of line arrangements, the linking invariant (in the form
of the Z-invariant) has been successfully used in [GB] to detect a Zariski pair of
12 lines. Recently, the first author and Viu-Sos gave an effective diagrammatic
reformulation of this invariant in the particular case of real line arrangements,
see |GBVS]. Using this reformulation, they provide 10 examples of complexified
real Zariski pairs.

Convention. All homology groups are to be understood with integral coeflicients,
and this will be omitted in the notation.
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1. The linking invariant

1.1. Preliminaries. Let C be an algebraic plane curves, possibly non-reduced.
Following [ACT], we define the combinatorics of C as the data:

(Irr(C). deg, Sing(C), Xop. Otop- {C(P)}PESing(C)‘ {ﬁP}PeSing(C)) ,

where:

e Irr(C) is the set of all irreducible components of C,
e deg assigns to each irreducible component its degree,
e Sing(C) is the set of all singular points of C,

) Ziop s the set of topological types of singular points of C, and Oop assigns
to each singular point its topological type,

° for each singular point P of C, C(P) is the set of local branches of C at P,
and Bp assigns to each local branch at P the global irreducible component
containing it.

Two curves have the same combinatorics if there exist bijections between their sets
Irr and Sing of irreducible components and singular points, which are compatible
with the sets C(P) and X, of local branches and topological types, and with
the assignments deg, oy,p and {fp} in the natural way; see [ACT, Rem. 3] for
details.

We also associate to the curve C the intersection graph I'c of its irreducible
components. This is a bipartite graph whose first set of vertices, called component-
vertices, corresponds to the irreducible components of C, while the second set of
vertices, called point-vertices, corresponds to the singular points of C contained
in at least two distinct irreducible components. An edge of [¢ joins a point-
vertex and a component-vertex if and only if the corresponding singular point is
contained in the corresponding irreducible component. Note that the information
encoded in I'c are contained (but not equivalent) to the combinatorics of C. For
example, the information given by oy, is not contained in I'c.

A cycle of T'¢ is a (non necessarily connected) closed oriented walk without
repeated edges which contain at least one component-vertex. Note that this includes
the case of a single vertex. A (combinatorial) cycle of [z can be lifted to a
(topological) cycle on the curve C, i.e., an oriented closed loop in C, although
it is not uniquely determined in general. Such a topological lift has a natural
induced orientation only if the combinatorial cycle is not simply connected. If the
combinatorial cycle is simply connected (i.e., it consists of a single component-
vertex) then a topological lift is any (possibly non-contractible) closed loop in
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the corresponding irreduccible component of C, with an arbitrary choice of
orientation.

In what follows, we will be mainly interested in reducible algebraic curves
CUD, which decompose into two subcurves C and D (without common irreducible
component). In this context, a cycle of I'c is simply a cycle lying in the
subgraph I'c of I'cup. On one hand, such a cycle is called maximal if it contains
all component-vertices of TI'¢c; in other words, a maximal cycle in ¢ lifts to
a topological cycle in C UD that intersects the smooth part of all irreducible
components of C. On the other hand, a cycle of I'cyp is said to avoid D if it
lies in I'e (and is thus disjoint from all component-vertices of D) and avoids
all point-vertices of C N D.

In this paper, by a homeomorphism ¢ between two such reducible algebraic
curves C; UD; and C, UD,, we will always mean an ambient homeomorphism
of CIP? which sends C; to C, and D; to D,. Furthermore, we will denote
by ¢r : I'c,up, = I'c,up, the induced map at the combinatorial level. Note that,
if ¢ is orientation preserving, then ¢r preserves the cycle orientation.

1.2. The linking invariant. Let CUD be a reducible algebraic curve, decomposed
into two nonempty subcurves C and D.

Consider the inclusion maps i :C\D < C and j : C\ D < CP?\ D, and
denote respectively by i, and j. the induced map on the first homology groups.
Note that ker(ix) identifies with H1(d Uceprey €\ D) = Deeprrey Hi (3(C \ D))
in Hy(C\ D).

Definition 1.1. The indeterminacy subgroup with respect to C, denoted by 7, is
the subgroup of H;(CP?\ D) defined as the image of @ccjey Hi (3(C \ D))
by Jj«.

Now, let y be a maximal cycle in I'c avoiding D. Pick a topological lift Y
of y on the curve C C CUD. By assumption, Y lies in C\ D, and intersects
the smooth part of all irreducible components of C.

For brevity, we simply denote by [y] the image of ¥ in H,(CP?\ D)/Jc.
We also denote by Z¢ the image of @D cjyre) HiI(C \ D) by jx, composed with
the projection map H;(CP?\ D) — H;(CP?\ D)/ Jc.

Definition 1.2. The oriented linking of C with D along y, denoted by Ik, (C, D),
is the coset of Zg in H(CP?\ D)/Je with respect to [y]. In other words,
Ik, (C.D) = [y]Ze C Hi(CP*\D)/Je.

Theorem 1.3. The above formula is well-defined, i.e., 1k, (C, D) does not depend
on the choice of topological lift of y.
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Proof. Let ¥ and 7y, be two topological lifts of y, and let [y]; and [y],
denote their homology classes in H; (CP? \ D). There are essentially two ways
in which [y]; and [y], may differ. If ', and %y, have same homology class in
H,(C), then they difter by elements of Uceir)d(C \ D), so that [y]; and [y]»
differ by an element of the indeterminacy subgroup Jc. Now, if y; and y,
have different homology classes in H;(C), then the difference is mapped in Z¢
by j.«,sothat ¥, and ¥, yield the same coset of Zp in H (CP2\D)/Jc. [

Remark 1.4. We stress that the neither of the two assumptions made here, that
y is maximal and that it avoids D, is necessary to define our invariant — this
is discussed in Remark 1.7 and in Section 1.3.2 below. But, on one hand, these
assumptions turn out to greatly simplify the exposition and, on the other hand,
all the relevant topological information on CUD are already essentially detected
by this simple version of our invariant. As a matter of fact, all the examples of
this paper will involve the above assumptions.

We have the following description of Je.

Proposition 1.5. The indeterminacy subgroup Jc is spanned by the elements of
the form:

> Ip(b.d)mp,y. forall P €CND and all beC(P),
deD(P)

where Ip(b,d) denotes the intersection multiplicity of the local branches b and
d at P, and mg,q) is given by a meridian of the irreducible component Bp(d)
of D containing d.

Proof. 'The indeterminacy subgroup is the image of D¢ ey Hi (A(C \ D)) in
H;(CP2\ D). It is thus generated by the class of the cycles in C € Irr(C) around
the points P € CND. Pick such a singular point P, and consider a small sphere
S around P . Each local branch b of C at P intersects S along a knot Kp,
and it is well-known that, for each local branch d of D at P, the intersection
of hUd with § is an oriented two-component link whose linking number is
precisely I(b,d) (see [BKS, pp. 439]). Hence the homology class of the knot Kj
in H;(CP?\ D) is given by };cp(py I(b,d).mpp(q), and the result follows. [

As a consequence of Proposition 1.5, the group H;(CP?\D)/Jc is determined
by the combinatorics of the curve C U D. So we can use the linking invariant to
compare the topology of curves with the same combinatorics. Indeed, we have
the following theorem, which implies that the linking invariant is an invariant of
the oriented topology of (CIP?,C U D).
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Theorem 1.6. Let ¢ be an orientation-preserving homeomorphism between two
algebraic curves C; U Dy and Co U D,. Then ¢ induces an isomorphism ¢y
between H{(CP? \ D) and H,(CP?\ D,) mapping Je, to Jc,, and for any
cycle yy € T'¢, avoiding Dy, we have

P Iy, (C1.D1)) = Kgr 1) (C2. D2).

where ¢y is map induced by ¢, on the quotients by the indeterminacy subgroups.

Proof. By definition, the homeomorphism ¢ : CPP? — CIP? maps D; to D;,
so it induces an isomorphism ¢, between H;(CP?\ D;) and H,(CP?\ D).
Furthermore, for each C, € Irr(C;) with image C, = ¢(C;) € Irr(Cy), we have
that ¢ maps C; ND; to C; N Dy, and maps d(C; \ Dy) to d(Cy \ Dy); this
implies that ¢, maps J¢, to Je,. Now, ¢ maps any (oriented) lift of y; to
a cycle on C, which is a lift of ¢r(y;), respecting the orientation. Since the
linking invariant does not depend on the choice of lift, the result follows. ]

Remark 1.7. As mentioned in Remark 1.4, the cycle y in Definition 1.2 does
not need be maximal. Indeed, if I does not contain all component-vertices of
I'c, then the coset [y]Zq still yields an invariant of the oriented topology of
(CPP?2,C U D). But in this case a finer invariant is given by regarding the curve
CUD as decomposed into the union of C, and (CU D)\C,, where C, denotes
the union of all irreducible components of C intersecting y.

Remark 1.8. The linking invariant of Definition 1.2 is an invariant of the oriented
topology of (CIP2,CUD). If y is simply connected, however, the linking 1k, (C, D)
of ¢ with D along y is a topological invariant of (CIP?,CUD), since any choice
of orientation of a topological lift yields the same coset. In general, we can easily
remove the condition of orientation, simply by considering

~ylZc U [ylZe € Hi(CP*\ D)/ T,

which is clearly an invariant that doesn’t depend on the orientation of y, but only
on its combinatorics. As a corollary to Theorem 1.6, this non-oriented linking is
a topological invariant of the pair (CP2,CU D).

1.3. Two variants. We now discuss two variants of our linking invariant. The
first one is a ‘global’ version which doesn’t rely upon the choice of a cycle; the
second one is a generalization, where we allow arbitrary cycles.

As in the previous section, CUD will denote here a reducible algebraic curve
decomposed into two subcurves C and D.



70 B. GuERrVILLE-BALLE and J. B. MEILHAN

1.3.1. Global linking. We can define the following coarser invariant, which is
a ‘global’ version of the linking invariant, in the sense that it doesn’t involve
the choice of a cycle. Recall that j, is the map induced in homology by the
inclusion of C\ D in CP2\D.

Definition 1.9. The global linking of C with D, denoted by L(C,D), is the class
of Im j, in H (CP?2\ D)/ J.

Remark that the global linking of C with D can also be defined as the union,
over all cycles y in I'c avoiding D, of the linking invariants of C with D
along y.

The invariance of the global linking is a direct consequence of the proof of
Theorem 1.6:

Theorem 1.10. Let ¢ be a homeomorphism between two curves Cy U Dy and
Co UD,. We have

¢+ (L(C1.D1)) = L(C2.Dy),

where ¢y is the map induced by ¢, on the quotients by the indeterminacy
subgroups.

Hence the global linking of C with D is a topological invariant of the pair
(CIP=, G L1 T,

Remark 1.11. Notice that if C is an irreducible curve, then lk.(C,D) = L(C, D),
where * denotes the unique component-vertex of [c.

1.3.2. Linking along an arbitrary cycle. In the above definition of the linking
invariant, we assumed throughout that the cycle y avoids all point-vertices of I'¢
corresponding to singularities in C N D. Although this will not be used in the
main examples of this paper, we outline here how the construction can be easily
generalized to arbitrary cycles.

Let y be any cycle in I'c. Denote by S, the set of singularities in CN D
whose corresponding point-vertices are contained in y. We define the subgroup
J, of Hi(CP?\ D) as

Jy = {mg,(ay, for all P €S, and all d € D(P)).

(here we make use of the same notation as in Proposition 1.5.)

Definition 1.12. The y-indeterminacy subgroup is the subgroup J¢,) of
H;(CP? \ D) generated by Jo U J, .
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Now, we need a slightly generalized notion of topological lift for the cycle y.
Specifically, for each singular point P in &, , pick a small closed 4-ball Bp
centered at P. A D-avoiding lift of y is a cycle in CP?\ D which coincides
with a topological lift outside Upes,Bp (and in particular lies in C), and whose
intersection with each 4-ball Bp is an arc lying in the boundary of Bp. So,
roughly speaking, such a cycle differs from a topological lift of y by locally
pushing it away from the curve C U D, so that it avoids the singularities in S, .

Now, using this refined indeterminacy subgroup and generalized notion of
lift, the exact same construction yields an invariant: the (oriented) linking of C
with D along an arbitrary cycle y is the coset

Ik, (C; P) = [y]Ze C H, (CP? \ D)/ Jc.y)

where [y] denotes the image of a D-avoiding lift of y in H;(CP*\D)/Jc,y). and
where Zc is the image of @¢cpey HI(C\D) by j«, seen in Hi (CP*\D)/T(c ) -
The proof that this is well-defined, i.e., does not depend on the choice of
the D-avoiding lift of y, is completely similar to the proof of Theorem 1.3, and
readily follows from the definition of J ). The only difference here is that, if
y passes through a point-vertex P in C N D, then two D-avoiding lifts of y
may only differ by a copy of a meridian mg, ), for any local branch d in
D(P). Considering these cycles in H;(CPP? \ D), we have by definition that the
difference lies precisely in 7, , hence in the y-indeterminacy subgroup J ).

Remark 1.13. In the case where y avoids all point-vertices in C N D, then
the y-indeterminacy subgroup Jc,,) coincides with the original indeterminacy
subgroup Jc, and we recover the invariant of Definition 1.2.

1.4. Line arrangements and the Z-invariant. In this section, we restrict
ourselves to the case where C U D is a line arrangement, i.e., when all the
irreducible components of C and D are of degree 1. In this particular case, another
linking invariant, called the Z-invariant, has been defined by Artal, Florens and
the first author in [AFGB]. We will prove here that the present linking invariant
generalizes the 7 -invariant.

First, let us recall some terminologies introduced in [AFGB] to define the
T-invariant. Let A be a line arrangement. Recall that H;(CP? \ A) is free of
rank |Irr(A)|—1 and is generated by the set of all meridiens my for L € Irr(A).

Definition 1.14. Let A be a line arrangement, & : H;(CP? \ A) — C* be a
non-trivial character and y be a cycle of the intersection graph I'4. The triple
(A, £, y) is called an inner-cyclic arrangement if

(1) For each singular point P of A with associated point-vertex in y,

E(mg) = 1, for any line { of A containing P,
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(2) For each line L of A with associated component-vertex in y,

(i) &§0mp) =1,
(i) [] é(m¢) = 1, for any singular point S in L, where the product runs
£38

over all the lines ¢ in A containing S.
In [AFGB], the T-invariant is then defined as

Z(A.§.y) = § o(¥),

where ¢, is the map induced by the inclusion ¢ of the boundary B4 of a tubular
neighbourhood Tub(A) of A in CP?\ A, and where y is a suitably chosen
lift of the cycle y in By4. More precisely, this lift is a ‘nearby cycle’ in the
terminology of [AFGB], which roughly means that this cycle is contained in
Be \ Tub(D) C CP2\ D, where A =CUD with Irr(C) = {L € Irr(A)|L Ny # &}
and Irr(D) = {L € Irr(A)|L Ny = @} — see |AFGB, Def. 2.11] for a precise
definition.

Now, if A =CUD is a line arrangement, the set Z; is always trivial. The
linking of C and D along a cycle y is thus the class [y] of a lift of y in
H,;(CP? \ D)/Jc. The relationship to the Z-invariant is as follows:

Theorem 1.15. Let A =CUD be a line arrangement, and let v be a maximal
cycle in T'c. Let £ be a character on H(CP?\ A) such that (A,§,y) is an inner-
cyclic arrangement. Then there is a nontrivial character &, on Hi(CP*\D)/Jc ;)
induced by & such that

I(A £, y) = &(Iky (C, D)).

Proof. Since (A, £, y) is an inner-cyclic arrangement, we have that £(my) = 1 for
each line L of A with corresponding component-vertex in y — these correspond
to the lines of C since y is maximal. This shows that & factors through the
projection map H;(CIP? \ A) — H;(CP? \ D). Furthermore, conditions (1) and
(2-ii) of Definition 1.14 ensures that § further factors to H,;(CP?\D)/Jc.y), thus
providing the desired nontrivial character &..! So we have

(A&, y) = £ oul(i) = &([7]),

where y is any lift of y which is a nearby cycle, and [y] denotes its image in
H;(CP?\ D)/Jc.y)- On the other hand, we have by definition that

Ik, (C. D) = [7] € Hi(CP? \ D)/ Tic.y).

1'This shows, in particular, that the quotient Hy(CIP? \ D)/Jc.y) i$ nontrivial,
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where ¥ is a D-avoiding lift of y. The result then follows from the fact that
the homology classes of the cycles ¥ and ¥ in H;(CP? \ D) can only differ
by elements of [J,). as follows from the definition of a nearby cycle given
in [AFGB]. ]

2. Computations

In this section, we describe two concrete methods for computing our invariant.
The first one is topological and is based on a modification of the braid monodromy,
and uses the usual linking number of links in the 3-sphere. The second one is an
algebraic method using the connected numbers introduced by Shirane in [Shir2],
and its relations with the linking invariant, observed in [GBS].

2.1. Topological method. For simplicity, we consider an algebraic curve CUD,
such that all the irreductible components of C have topological genus zero (see
however Remark 2.3), together with a cycle y in the intersection graph of C.
For this class of curves, we have that the set Zo is trivial, so that the linking
invariant 1k, (C, D) is the class of a lift of y in H;(CP?\ D)/Jc, rather than a
coset (this was already observed in the case of line arrangements in Section 1.4).

Definition 2.1. A path y in C is y-admissible if it is a lift of y and if there is a
generic projection 7 : CP2\ {*} — CP! such that 7(%) has no self-intersection,
and (7' o 7(¥)) N Sing(D) = .

Note that the latter condition can always be fulfilled, up to a small modification
of m.

Let ¥ bea y-admissible path in C. For any point p of #(y), we consider the
fiber F, over p. By the definition of y-admissibility, the number of intersection
points of D with F, equals the degree of D for all points p € n(y). We denote
by Lp the oriented link

(1 Lp=(7"'on(¥))NDcC CP.

Noting that % and Lp do not intersect, we define % U Lp. This link naturally
sits in a copy of S3, as follows. Let D be the disc bounded by (%) in CP!.
Pick a polydisc P of CIP? such that z(P) = D and z~'(D)N(CUD) C P. By
construction, the link y U Lp lies in the boundary of P, which is homeomorphic
to S3. This construction yields the following.
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Theorem 2.2. Under the above assumptions, the homology class of the path y
in Hy(CIP?2\ D) is given by:

o( X e 37)m)

CEL'D

where ¢ is the usual linking number in S and p is the map induced by the
inclusion of S*\ Lp in CP?\D, which maps the meridian m, of each component
¢ of Lp to the meridian of the irreducible component of D containing c.

Remark 2.3. If the irreducible components of the curve C are allowed to have
nonzero topological genus, we can also use the present method to compute the
value of the generators of Z¢ in H;(CIP2\D), and thus to compute the coset [y]Zc .

This provides a computational formula for the linking invariant of C with D
along y in terms of the usual linking number. See Section 3.2 for an application
on a concrete example.

2.2. Algebraic method. The second method of computation comes from the
connected numbers introduced by Shirane in [Shir2]. This method applies when
C is a nodal curve with Sing(C) N'D = @ (this implies that C \ D is connected),
and if Hi(CP?\ D)/Jc ~ Z/m7Z.

Let ¥ : X — CP? be a cyclic cover of degree m branched over D. The
connected number of C for  is the number of connected components of
Y~ YC\ D)) in X. Based on a previous version of the present paper, it has
been proved in [GBS] that if C and D are smooth curves then the connected
number and the global linking of C and D are essentially equivalent. For the
purpose of this paper, however, we will rather give the following statement.

Theorem 2.4. Suppose that C is a nodal curve such that Sing(C) N D = &,
and that H{(CP?2 \ D)/Je ~ Z/mZ. Then the global linking of C and D is
the unique subgroup of Hi(CP?\ D)/Je of index deg(D)/u, where 1 is the
minimal degree of a plane curve E such that CN'D =CNE and for each point
P eCnD, we have (deg(D)/) x Ip(C, E) = Ip(C, D).

Sketch of proof. By the proof of [GBS, Theorem 2.5], we know that the index
of £(C,D) in H;(CP?\ D)/Jc is equal to the connected number of C for .
Since H;(CP?\ D)/Jc is cyclic then each of its subgroup is determined by its
index. The result is thus a consequence of [Shir2, Corollary 2.5]. ]
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3. Applications

In this section, we use our linking invariants (both the oriented and global
versions) to distinguish two types of Zariski pairs.

3.1. 3-Artal curves. As an application of the algebraic method of computation
of the linking invariant, we propose to distinguish the Zariski pair found by Artal
in [Art]. These curves are formed by a smooth cubic C and three inflexional
tangent lines. The geometry of the 9 inflexion points of a cubic is well known;
the collinearity relations are the same as in I'2, the plane over the finite field
of 3 elements. We consider Pq,..., P4 four inflexion points of C such that
Py, Py, P3 are collinear and Py, P>, P4 are not. Set A, = L, UL, U L3 and
A, = L1 U L,U Ly, where L; denotes the inflexional tangent line at P;.

Theorem 3.1. The global linking of the line arrangement A; with the cubic C
Is:
LZ(AI-,C):{ {0} HFi=1,
0.1,2y  ifi=2.
Proof. Since the cubic C is smooth, we have H;(CP?\C) ~ Z/3Z. Furthermore,
Proposition 1.5 implies that 74, = (3m), where m is a meridian of the cubic.
So the quotient H;(CP? \ C)/J4, is also isomorphic to Z/37Z.
We first compute the global linking £(A,;,C). By construction, there is a line
E (i.e., an algebraic curve of degree 1) passing through P;, P, and P;. By
Bezout theorem, we have Ip, (A, E) =1 for j € {1,2,3}, and the following
equality holds for j € {1,2,3}

deg(C)
deg(E)

X IP_,-(ALE) — [R].(Al,C)‘

Thus by Theorem 2.4 the index of £(A;,C) in Hi(CP2\C)/Ja, is 3.

Let us now turn to £(A3,C), and look for the minimal degree curve E passing
through the points Py, P, and P, and satisfying geeg((g)) xIp, (A2, E) = Ip,(A2,C)
for j € {1,2,4}. By construction, no line E satisfies these conditions. Similar

considerations as above show that no conic can verify these conditions either.?

But taking £ to be the cubic C obviously works, and it follows by Theorem 2.4
that the index of L£(A,,C) in Hi(CP?\C)/ T4, is L |
Corollary 3.2. The curves CU A, and CU A, form a Zariski pair.

2'This also follows from Theorem 2.4, since the existence of such a conic would imply that £(A3,C)
is an index 2 subgroup of Z/37Z.
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3.2. The quartic and its bitangents. As an application of the topological method,
we will distinguish a Zariski pair formed by a quartic and 3 bitangents. Let Q be
the Klein quartic defined by x3y +y3z+z3x = 0. The full list of its 28 bitangents
is given in [Shi]. We will consider here only four of them. Let { be a primitive
7th root of unity, and define the real numbers & = ¢ + {7, for i € {1,2,3}.
We consider the following bitangents:

Li: x+y+2z=0, Ly: x+&5%y +e7z=0,
Ly: x+83%%y+8e32=0, Lg: x+8%5%y+ 332 =0.

Let A; = Ly ULy U Lay;, for i € {1,2}. We will compute the linking of
A; with Q along y;, where y; is a cycle generating H;(A4;) >~ Z. Since
Hi(L;) =0 for all j, we have Z4, = 0 for i = 1,2. Furthermore, Q is smooth
so H;(CP?\ Q) ~ Z/4Z. By Proposition 1.5, we have that J4, = (2m), where
m is a meridian of Q. So we have

Hy(CP*\ Q)/ T4, =~ Z/2Z.

In order to simplify the computations, we apply on Q U .4; and Q U A, the
linear change of variables given respectively by the following matrices:

405 + 404 -2+ 0+ 6 —5° =50+ 283+ 607+ 5
Py =|—-60°—60%—-202-5-2 505 4+484-303-202+7t +3
205+ 204 + 382 + 40+ 3 4+ A+ B 42 -7 -1

—3 4203582 -0 +3
£S5 +20* + 383 +402-20 -1
207 =3 - + 2430 -2

—3E5 —2f* —4p3 _2F2 3547 8L — 204 — 93 + 0249
P = —65 30— A2 4 ¢ —120% — 118* — 4¢3 — 502 —-7¢ -3
9> — ¢+ + 503+ 602+ 20+ 7 405 +138* + 1383 + 482 + 70+ 8

5 A 13 430+ 12
18¢° + 8¢% + 563 4+ 9¢%2 + 6 + 3
—136°% — 1L+~ 1887 = 1002 —~9F — 15

The change of variables P; sends L, L, and L,4+; to x+y =0, x+z =0 and
y+z = 0 respectively (we denote by A; the arrangement (x + y)(x +2z)(y +z) =
0). The images of Q by the changes of variables P; are denoted by Q', and
their equations are given in Appendix A. Since P; is a linear change of variables,
we have

Iy, (A, Q) = Tky, (4;. Q).
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By Theorem 2.2, the linking invariant Ik, (Xi,@l) is given by the linking numbers
of the cycle y; with each component of the link LQ,- defined in (1). We can take
as topological cycle y; (resp. y,) the triangle formed by the lines x +y = 0,
x+4z=0and y+z =0 in the chart z = 1 (resp. y = 1) of RIP?. These charts
together with the cycles y; are represented in Figure I.

The link Léi lives in the intersection of © with the boundary of the polydisk
P =T x D?, where T is the disk of the real plane bounded by y; and where
D? is a 2—disk intersecting all the components of [2) (see Section 2.1). The
desired linking number can be computed as the algebraic intersection number of
L@!‘ with this disk 7. Since we are working here with (Z/27)-coefficients, this
amounts to counting the parity of the number of intersection points.

In order to compute these numbers of intersection points between the interior
of the triangle 7 and the quartics ', we proceed as follows. First of all, we
choose an embedding of ¢ in the field of complex number. In the following,
we take ¢ = exp (24%) ~ 0.62349 + 0.78183i. Then, we decompose Q' into two
quartics @lRe and @;m, obtained from Q' by taking only the real part (resp.
the imaginary part) of its coefficients. Using the previous approximation of ¢,
we have the following approximations

O =~ — 838.65x* + 1903.1x3y + 2540.3x2y2 + 2686.2xy> — 4017.2y*+
1074.6x3z — 2073.7x%yz — 10166.xy%z + 28829.y3z + 7382.2x22°—
13500.xyz* — 14908.y2z% 4 5379.5xz> — 3835.5yz> — 456.29z*,

Q) ~—2525.0x%y + 5338.2x2p2 — 9450.5x> + 12939.y* — 2525.0x32+
5804.0x2 yz — 4948.5xy%z —5119.59° 2 4 485.83x% 22 -+ 8936.1xyz"—
17722.y22% + 4434.2x23 + 2330.9y2z3 4+ 1999.1z%,

Qr, 2327.4x* 4 28631.xy +105760.x%y% + 115460.xy> + 28853.y*—
22196.x3z — 114530.x%yz — 79537.xy%z + 22480.y3z + 9417.8x22%—
107220.xyz% — 116350.y%z% 4 64365.x2% + 62192.y2% + 348.69z%,

Qpn ~518.62x* — 5686.3x7y — 56227.x%y* — 101110.xy° — 35790.y* +
10085.x3z + 133160.x2yz + 275020.xy%z + 106780.y3z — 71462.x%2%2—
187780.xyz2 — 76906.y%2% 4 9523.7xz> — 961.76yz> + 838.07z%.

Thus, the real points of O correspond to those points on which both Qf, and
@llm vanish; in other words, they correspond to the intersection points of these
two quartics considered in the real plane. Therefore, we count how many of
these real points lie in the disk 7, since by definition, they are the intersection
points of Lag with 7. Using the previous equations, for each i, we depicts (see
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e I 5 i 3 % % i ;
For i =1, in the chart z =1 For i = 2, in the chart y =1

) FiGUre 1 _
Real part of Q' UA; (A; solid line, —Q—IRQ dashed line, and éllm dotted line)

Figure 1) in the real plan the arrangement A4; (solid line) and the quartics —Q_ke

(dashed line) and @l,m (dotted line). In this way, we get that the value of y; in
Hi(CP?\ @)/ Ty, is

. 0 il =1,

p(y‘)_{ 1ifi=2.

From these computations and using Remark 1.8, we have the following theorem
and its corollary.

Theorem 3.3. The linking of the line arrangement A; with the quartic Q along
Yi s
{0y Hi=1,

lkyimi,@:{ i pi—2

Corollary 3.4. The curves QU Ay and QU Ay form a Zariski pair.

Remark 3.5. Since y; generates H;(A;), we can also compute the global linking
of A; with Q. It is given by:

{0} ifi=1,

LA, Q) = { 0,1 ifi=2.

Remark 3.6. This result is in adequation with the computation of the connected
numbers of these curves made in [BTY].
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©

A. Explicit equations of the quartics Ql

The equations of the quartics Q' introduced in Section 3.2 are given by:

(3432° + 34382 — 686)x* +

(—2058° + 4802¢* 4 205883 — 480282 + 1715¢ + 5488)x3 y+
(—10297° — 26754¢% — 1440683 4 720382 — 102908 — 26754)x2 y> +
(—1029¢° + 37044¢* + 1749383 — 1715082 + 18865¢ + 36015)xy3 +
(—24018° — 19551¢* — 480203 + 1063302 — 7889¢ — 19208) y* +
(—20588° + 75468 + 480287 — 4802L% + 1715¢ 4 9604)x3z+
(—20588° — 20580¢* — 617483 + 823282 — 133777 — 16464)x% yz +
(277838° + 14406¢* — 30870 + 1646452 + 17493t — 1029)xy2z+
(—18865¢° — 13720 — 34383 — 198942 — 58318 + 22295)y3z+
(—=11319¢° 4 2058¢* + 411623 — 926122 — 3087¢ + 10290)x2 22+
(30878% — 10290¢* — 30878 + 123482 — 41167 — 19551)xyz2+
(144062° + 144067* — 102973 — 102922 + 5145¢ — 3087)y?z% +
(—6517¢°% — 4116¢* + 1029¢3 — 205882 — 2744¢ + 2401)xz3+
(17152° + 4116¢* + 377383 4 205802 + 2744¢ + 2401)yz3 +
(—1715¢* — 34323 + 171582 — 3437 — 1715)z* = 0.

: (137208° — 6174¢* + 1612183 + 102982 4 4116 + 12005)x* +

(343008° — 19208¢* + 1372083 — 246962 + 48020¢ — 4116)x3y+
(—884947° — 69972¢* — 5145083 — 12965482 — 30870 — 32928)x2 y2+
(—94668L° — 111132¢* — 10701683 — 12759662 — 905527 — 74088)xy> +
(686¢° — 497350* — 5659583 — 1509282 — 22295¢ — 56252) y*+

(—94668¢° + 10976L% — 260688 — 4253262 — 315568 — 46648) x>z +
(—49392¢° + 493920% — 7820483 + 17698802 — 41160¢ — 86436)x% yz+
(139944¢5 + 2099164 + 10290083 + 28812082 + 226380¢ + 156408)xy2z+
(58996L° + 214032L* + 1275963 + 5625282 + 187964¢ + 238728) y >z +
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(1049587° + 98784¢* + 6997203 + 32928(2 + 144060 + 183162)x%2% +
(—82328° — 176988* + 10701683 — 15229287 — 2181487 — 69972)xyz>+
(—80262¢° — 183162¢* + 1234883 — 6791452 — 222264 — 164640)y> 2z +
(2332485 + 370442% — 3292803 — 5899602 + 153664 — 35672)xz>+
(—78204L°% — 117992¢* — 9329683 — 1646452 — 919248 — 91924) yz3 +
(117992¢% 4+ 114219¢* — 411623 + 7991972 4 114219¢ + 72373)z* = 0.
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