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Right Angled Artin Groups and partial commutation,
old and new

Laurent BArTHOLDI, Henrika HAReEr and Thomas ScHick

Abstract. We systematically treat algebraic objects with free partially commuting generators
and give short and modern proofs of the various relations between them. These objects
include right angled Artin groups, polynomial rings, Lie algebras, and restricted Lie
algebras in partially commuting free generators. In particular, we compute the p-central
and exponent-p series of all right angled Artin groups, and compute the dimensions of
their subquotients. We also describe their associated Lie algebras, and relate them to the
cohomology ring of the group as well as to polynomial and power series rings in partially
commuting variables. We finally show how the growth series of these various objects are

related to each other.

Mathematics Subject Classification (2010). Primary: 20F36; Secondary: 20F65, 20F12,
20F14, 20F40, 17B50, 16S37.

Keywords. Right-angled Artin group, CAT(0) cubical group, partially commutative group,
graph group, lower central series, dimension series, p-central series, growth, Lie algebras,

Malcev algebra.

1. Introduction

Right angled Artin groups (RAAGS) are a prominent geometric/combinatorial
class of groups. Originally introduced as “partially commuting free groups”, they
interpolate in an interesting way between free groups and free abelian groups. Of
particular interest are several additional algebraic objects which are canonically
coming along and are closely related to the structure of the RAAGsS, in particular
(graded) Lie algebras and polynomial rings, both in free partially commuting
generators. The purpose of this article is to give a complete description of many
relevant properties and relations, offering modern and accessible proofs. Many of
the results quoted below appear already in other sources, though the computation
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of the exponent-p and lower p-central series is new; throughout this text p
denotes a prime number, fixed once and for all.

1.1. The actors. Let I' be an undirected graph, with vertex set V' and edge set
E (consisting of 2-element subsets of V). The right angled Artin group (RAAG)
Ar associated with I' is the group defined in terms of generators and relations
as

Ar = (V | vw = wv whenever {v,w} € E).

The purpose of this note is to describe classical subgroup series in Ar such as
the lower-central and p-lower-central series, and relate them to other algebraic
objects defined in terms of I' as follows.

Let k be a commutative ring. We define unital associative k-algebras

Rr = (V | vw = wv whenever {v, w} € E),
Sr = (V |v2 =0, vw = —wv Vv, w € V, and vw = 0 whenever {v, w} ¢ E).

Note that Rr is the familiar algebra of polynomials in partially commuting
variables, and similarly St can be considered as an exterior algebra in partially
commuting variables.

Observe that Rr and St are graded algebras with deg(v) =1 forall v € V.
Therefore, they admit a natural topology, in which basic eighbourhoods of 0 (say
in Rp) are spans of the set of all monomials of degree >n. We define

Rr = the completion of Rr in this topology.

Just as Rr is a non-commutative polynomial algebra, Rr is an algebra of power
series in partially commuting variables.
We also define a Lie algebra over k,

Lr = (V | [v,w] = O whenever {v,w} € E),
and, if k is an algebra over F,, a restricted Lie algebra (see Section 2 for a
review of restricted Lie algebras)
Lr,, = (V| [v,w] = 0 whenever {v,w} € E}),,.
Let us have a look at the extreme cases.

(1) If T is the complete graph on d vertices then Ar = Z4, Rrp is the
polynomial algebra in d variables k[Xi,...,Xy], Sr is the Grassmann
algebra A*(k9), and L =~ k¢ with trivial bracket.

(2) If T' is the empty graph on d vertices then Ar is the free group Fy,
Rr is the free associative algebra on d generators, St =~ k -1 & k¢ with
trivial multiplication except 1-x = x, and Lr is the free Lie algebra on d
generators; for more details see Section 1.4.
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1.2. Subgroup series. Let G be any discrete group, and let p: G — R* be a
representation of G in an associative augmented k-algebra R with augmentation
ideal = (namely, an algebra equipped with an epimorphism to k with kernel
w ). With this representation is associated a natural sequence of subgroups, called
generalized dimension subgroups,

np = p (1 +w@") =ker(G — (R/w™)™).

In case R =kG and p is the regular representation, we write &, xG for dnp.
In addition, there are classical subgroup series, defined intrinsically within G :

e The lower central series (y,) given by y; =G and y, = [yy—1,G];
e the rational lower central series yno = 1{g € G | g* ey, for some k # 0};

e for a prime p fixed throughout the discussion, the exponent- p central series
Anp given by A1, = G and Ay p = [An—1,p, G]AS or more directly

n—1,p?
I

Anp = llmtizn Ym 5
e again for a prime p fixed throughout the discussion, the Brauer—Jennings—
Lazard-Zassenhaus series [Zas, Jenl, Laz], also called p-dimension or p-
central series, given by Yip = G and yp,, = [yn,l,p,G]yr‘;/pr, or more
directly yn,p = [ppisn yg .
All these series are central, meaning that y,/y,+1 belongs to the center of
G/Vn+1, etc. We moreover have [Vm,¥Yn] € VYm+n, €tc. A classical conse-
quence [MKS, Section 5.3] is that €, ¥n/¥a+1, etc., are graded Lie algebras
over 7. The addition is induced by the_group multiplication and the Lie bracket
is induced by the commutator.

The groups v, .0 enjoys the extra property that y,,0/Va+1,0 is torsion-free (and
it is the fastest descending central series with this property), so €B,~ Vn.0/¥n+1,0
is Z-free. In particular, if y,/y,+1 is torsion free for each n, then Yn0 = ¥n
for each n.

We have A7 , € Apy1p SO @D,oq Anp/Ant1,p is an elementary abelian p-
group. Similarly, v+ , € Yup.p- Furthermore, these series are fastest descending
under these requirements. It is now classical [Zas] that @, ., ¥n,p/Vn+1,p i @
restricted Lie algebra over [F,. The additional, “ p-power” oE)eration as part of
the restricted Lie algebra structure is induced by the p-power operation in the
group.

Classical results identify §, kg with some of the above series in case k
is a field: we have §,x¢ = yu,p Where p > 0 is the characteristic of k
[Hal2, Jenl, Jen2]. However, for general G, the identification of §,zc is a
fundamental open problem of group theory.
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1.3. Results. We consider the series defined above for the group Ar. The main
purpose of this text is to exhibit numerous relations between these algebraic
objects; detailed definitions and proofs will be given in subsequent sections. The
main tool is an extension to Ar of Magnus’s work on the free group [MKS, §5],
embedding it into the units of the free non-commuting power series ring. This
extension seems first considered in [Dro].

Definition 1.1 (Augmentation ideals). Recall that a commutative ring k is fixed.
Denote by w the augmentation ideal of Ry (i.e. the ideal of polynomials
in partially commuting variables with zero constant term), and by w(Ar) the
augmentation ideal of kAr. We also denote by =, the ideal @w + pRr.

Theorem 1.2 (Augmentation powers). For all n we have

ZD'(A[‘)”/'(D’(AF)"+1 ~ w_n/w_nﬂ—l.

We remind the reader that Koszul algebras are a particular kind of associative
algebras (see [Pri] or Section 4) for which a “small” projective resolution may
easily be computed. Moreover, there is the important concept of Koszul duality.
We obtain the following results, which for k = @@ already appear in [PS2]. Recall
that a cligue in a graph is a subset of vertices in which all vertices are connected
to each other.

Theorem 1.3 (Group cohomology). Let S' be the circle with base point x. The
following subspace of the torus (SY) is a classifying space for Ar:

(1.1) xr= [ HE x{x\C.
CCV a cligue
We have H*(Ar;k) = Sr.

The rings Rr and St are Koszul algebras, and Koszul duals to each other:
(Sr)' = Rr.

Theorem 1.4i (Central series and dimension subgroups). In the group Ar we
have

(1.2) Yo =¥no and [ )¥ao=1{)¥np ={1}.
ner nez

In particular, Ar is finitely generated and residually torsion-free nilpotent, so
(by [Grul*Theorem 2.1) Ar is also a residually finite p-group for every p.
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Theorem 1.4ii (Central series and dimension subgroups). For arbitrary k there
is a faithful representation

(1.3) wiAr > Rr; visl4v forveV
The corresponding generalized dimension subgroups satisfy

Yn,0 if k has characteristic 0,
(1.4) B = g .
Yn,p if k has characteristic p.

Together with Theorem 1.2 we obtain an isomorphism of filtered associative
k-algebras (but not Hopf algebras; see Theorem 1.7 below!)

KAr = lim(kAr /@ (Ar)") — lim(Rr/=") = Rr.
In particular, the classical dimension subgroups coincide:

(1.5) 5n,lkAr — 5n,u-

The Lie algebras Lr and Ly, are tightly connected to their associative
counterparts:

Theorem 1.5i (Lic algebras). The algebra Ry is a Hopf algebra. If the ring k
is a Z-free module then we have

(1.6) Ly = Primitives(Rr) and Ry =~ U(Ly),
the universal enveloping algebra of Lr, while if k is an Fp-algebra then
(1.7) Lr,, = Primitives(Rr) and Rr = Uy(Lr,p),

the p-universal enveloping algebra of Lr,,. The Lie algebra cohomology of Lr
is
H*(LF; k) =~ Sr.

All the above isomorphisms are natural, in the sense that they are induced by the
identity map V — V, and therefore compatible with homomorphisms induced by
a map of graphs 'V — V',

The Lie algebra associated with the lower central series was already determined
in [DK2] as Lp. We extend this result as follows:

Theorem 1.5ii (Lie algebras). For any ring k, we have, as Lie algebras,

Lr = @(Vﬂ/)’.‘mkl) ®z k.

n>1
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If k has characteristic p then as restricted Lie algebras
Lrp = @B Gnp/vnirp) ®z k.
n>1

If k has characteristic p > 3 then with k|| the polynomial ring in one degree- 1
variable w

Lr ®k k[”] = ®n31()tn,p/)bn+l,p) ®z k
N IN
Rrexklr] = @,.,(=) /o)) @z k;

under that isomorphism, multiplication by n corresponds to the map induced by
An,p 281> 82 € Ayt1,p.

All the above isomorphisms are natural, in the sense that they are induced by
the identity map V — V, and therefore compatible with homomorphisms induced
by a map of graphs V — V'.

For a graded algebra R = p,., R, over k such that each R, is a finitely
generated free k-module, recall that its Poincaré series is the power series

Drll) = Zrank(Rn)t".
n=0
For a group G = (X), its growth series is (1) = deG t'€l, with |g| denoting
the word length of ¢ € G (word length and growth series depend on the fixed
generating set X ). The first two claims of the following result appear in [DKI]:

Theorem 1.6 (Poincaré and growth series). The Poincaré series of Sr is

Vi

(1) = Y ea(D)t",

n=0

where c¢,(I") denotes the number of cliques of size n (i.e., complete subgraphs
of I' with n vertices).
The Poincaré series of Rr and St are connected by the relation

Prp (1) - Dy (—1) = 1,

and the growth series of Ar is

2t
CDAF )= (DRF (m)

In our next result, originally appearing in [KM, Theorem 16.10], we determine
the Malcev completion of Ar. We refer to [Mal, Qui2] and the more recent [PSI]
for a review of this construction.
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Theorem 1.7 (Malcev completions). Assume k = Q. There is then an isomorphism
Hexp: Rr — QAr of filtered, complete Hopf algebras; via this isomorphism, Lr
is the Malcev Lie algebra of Ar, and the Malcev completion of Ar is given on
generators by

MR vl‘l
Ar — exp(Lr) C Rr via the classical power series v > E = Vv e V.
n

n>0

We also show the following related result on formality in the sense of rational
homotopy theory; see Section 8 for a review of the notion.

Theorem 1.8 (Formality). The classifving space Xr of Ar of (1.1) is formal.

1.4. Examples and illustrations. Let us consider, as sketched in the Introduction,
the two extreme cases of graphs I', the complete and empty graphs.

If T' is the complete graph on V, then Ar is free Abelian with basis V', and
Rr is a usual polynomial algebra in variables V. The standard Koszul complex is
given by the exterior algebra Sr = A*(V), and coincides with the cohomology
ring of Ar = ZV . The classifying space Xr is the usual torus (S')Y. The
exponent- p central series satisfies A, , = p" 'ZV, and the p-dimension series
satisfies yn., = p'ZV whenever p'~! <n < p'. The growth series are readily
computed as

1 Vi 1 V1
Dy (1) = (——i——{) . D) = (:) . D (1) = (1 it f)lV|.

=i

If, on the other hand, I' is the empty graph on V', then Ar is free with basis
V', and Rr is a polynomial algebra in non-commuting variables V. The algebra
St is reduced to k @ kV with V2 = 0, and coincides with the cohomology ring
of Ar. The classifying space Xr is a wedge of |V| circles. The Lie algebras
Ly and the restricted Lie algebra Lr , are free. The growth series are readily
computed as

141

Carl) = T a e

B (1) = s (1) = 1+ V|1

1— V|t
These results can be seen as special cases of the following constructions. If T’
is the disjoint union of two graphs I'y U 'z, then Ar = Ar, * Ap, is a free
product of groups, and similarly Lr and Rr are free products in their respective
categories, and St = Sr, & Sr,/(1 ®0—-0@ 1). The space Xr is the wedge
(one-point union) of Xr, and Xr,, and the growth series of Ar, Rr, Sr may be
easily be deduced from those of Ar,, Ar,, etc.:
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1 1 1
- —=(1-=—)+(1- ).
Dy (DAr] q)AI'z

1 1 1
l_chr :(1‘¢Rr])+(l_cb,gr2)’

| — @5 = (1D ) + (1 = Dayy,).

If T' is the join of two graphs I'; and I';, namely the graph obtained from
I'y U T, by adding all edges between ' and I';, then Ar = Ar, x Ar, is a
direct product, and similarly Lr = Ly, xLr, and Rr = Rr, ® Rr,, while Sr is
St, ® S, qua k-module, with product (@¢®b)(c®d) = (—1)dee®)deglO) (g e @ bd).
The classifying space is Xr = Xr, x Xr,, and the growth series ®4,., g and
®g,. behave multiplicatively:

q)Ar‘ = q)A[‘l . (DAI“2° (DRr = CDRFI . CDRFZ’ CDS[,. = q)Sl", . (DSr‘z‘

Finally, all the objects constructed are functorial, in the sense that graph
morphisms induce maps between the corresponding objects: if I', " are graphs
and f: ' — IV is a map from the vertex set of ' to that of I sending
edges of I' to edges of I, then there is an induced group homomorphism
f«: Ar — Ars, ring homomorphism Rr — Rps and Spr — St (note the
direction!), etc. Furthermore, if f is injective and full (meaning that { f(v), f(w)}
is an edge in I precisely when {v,w} is an edge in I') then the corresponding
group and ring homomorphisms are injective.

1.5. Structure of the article. The article introduces and relies on quite a number
of different concepts (Hopf algebras, the Magnus map, ...). These are introduced
one after the other in the following sections. In particular, Section 2 collects
some basic information about (restricted) Lie algebras and Hopf algebras which
we use as technical tools; we prove the first part of Theorem 1.5i in it.

Section 3 introduces the Magnus map, which embeds the group Ar into the
units of the partially commuting power series ring Rr, proving (1.3). We show
that this map is compatible with the central series filtrations (and dimension series
filtrations). The explicit knowledge of the structure of the power series ring can
be transferred to Ap to give the desired information about the latter. We also
prove Theorem 1.2 in it.

We next introduce cohomological notions in Section 4, and use them to prove
Theorem 1.3.

We study central series in more depth in Section 5, and prove there further
parts of Theorem 1.4ii. The remaining statements about the central series require
more knowledge on the Lie algebras L, which we describe in Section 6; we prove
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Theorems 1.41 and 1.5ii there. We also complete there the proof of Theorem 1.5i
that pertains to Lie algebra cohomology.

Finally Section 7 proves Theorem 1.6 and Section 8 proves Theorem 1.7. We
apologize to the reader if the proofs are not given in strictly linear order; we
found it preferable to prove individual statements of the main results where the
appropriate tools were introduced.

2. Lie and Hopf algebras

We first recall from [Jac] that a restricted Lie algebra over k, in characteristic
p, is a Lie algebra equipped with an extra operation, written x — x[?1, called
the p-mapping and subject to the following axioms, where we use the standard
multi-commutator convention [x,y,z] = [x,[y,z]], etc. For all x,y in the Lie
algebra and « € k,

[y, xP] = [y, x,...,x] (p factors ‘x’); (ax)Pl = P x7l;

p—1
(X + y)[P] — x[[)] + y[P] + Zsi(an)

i=1

for the Lie expressions s;(X,Y) defined by

d 4
T Y X Y] = Y si(X.Y)' with p—1 factors ‘tX + Y.

For example, if p = 2 then s(X,Y) = [X,Y], and if p =3 then s(X,Y) =
[Y,X,Y] and s,(X.,Y) = [X, Y, X].

We adopt the convention that, in characteristic 0, every Lie algebra is restricted
with trivial p-mapping. This way, from now on we can uniformly work with
restricted Lie algebras.

Recall that every restricted Lie algebra L has a restricted universal enveloping
algebra, a unital associative algebra U,(L) equipped with a map of restricted
Lie algebras L — Up,(L), universal with respect to this property. The Lie bracket
in L is identified with the commutator [x,y] = xy — yx, and the p-mapping in
L is identified with the p-power operation in U,(L). The map L — U,(L) is
injective.

Recall next that a Hopf algebra is an associative algebra R equipped with
additional structure, in particular an augmentation ¢: R — k and a coproduct
A: R — R ® R which are algebra homomorphisms, and an antipode S: R — R
which is an algebra antihomomorphism, subject to some axioms that we shall
not need; see [Swe].

We will use the following classical facts, see [Ser, Theorem III.5.4 and
Exercise 2].
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Proposition 2.1. The (restricted) universal enveloping algebra U(L), respectively

U,(L), is a Hopf algebra. The augmentation, coproduct and antipode are given
by

e UL) —» UL)/(L) >k  Ax)=x®1+1®x;  Sx)=—x VxeL.

In a Hopf algebra H, call x € H PRIMITIVE if A(x) =x® 1+ 1® x, the
primitive elements of H form a Lie subalgebra P of H. If the ring k is a
Z -free module, then the primitive elements in U(L) coincide with L, while if L

is restricted and k is p-torsion then the primitive elements in U,(L) coincide
with L;

If a (restricted) Lie algebra over k is given by a (restricted) Lie algebra
presentation, then by the universal property the same presentation, now as a
presentation of algebras over k, defines its (restricted) universal enveloping
algebra. In particular, Rr is the (restricted) enveloping algebra of Lt or Lr,,
respectively.

Proof of Theorem 1.5i. As a universal enveloping algebra, Rr = U(Lr) is by
Proposition 2.1 a Hopf algebra (this also appears in [Sch]), and its Lie subalgebra
of primitive elements P is equal to Lr or Lr ,, when considered as subset of
Rr in the obvious way. l

We note for later use the following standard constructions, see also [Quil].

Proposition 2.2. [f G is a group then the group ring kG is a Hopf algebra
with augmentation, coproduct and antipode given as follows:

e: kG — k induced by the map G — {1}; A(g) = g®g; S(g) =g ' VgegG.

Furthermore, if H is a Hopf algebra and w denotes its augmentation ideal
ker(e), then @, w@"/ w" T s naturally a graded Hopf algebra.

3. The Magnus map

3.1. Filtrations and gradings. We first recall that, since the relations of Rr
and Sr are homogeneous, these rings are naturally graded by setting deg(v) = 1
for all v € V. We view Rr as a ring of polynomials in partially commuting
variables v € V.

Let us consider the augmentation ideal @w = (V) in Rr. It consists of all
polynomials without constant term. Note that ww"” then consists of all polynomials
with no terms of degree < n. We define a topology on Rr by declaring the sets
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" to form a basis of neighbourhoods of 0, and let R be the completion of
Rr in this topology. We thus have

Rpg@w”/w’“”, Rr

n>0

Il

1_[ ZUH/ZZI’H_I.
n=0

We write @ for the closure of @ in Rr. It consists of all power series with
vanishing constant term, and similarly " consists of the power series with no
terms of degree < n.

For comparison, consider the group ring kAr, and let @w(Ar) denote the
augmentation ideal of kAr; it is the ideal

(g—1|geAr)y={(v—1]|veV).

We topologize kAr by declaring the @ (Ar)" to form a basis of neighbourhoods
of the identity, and let kAr denote the corresponding completion. Moreover,
let gr(kAr) == P, @(Ar)"/w(Ar)"™! be the associated graded algebra. We
isolate the main ing_redient of Theorem 1.2:

Lemma 3.1. We have Rr =~ gr(kAr) as graded algebras via the natural map

a: Rr — gr(kAr); v; = [(v; —1)] for v; € V.

Proof. The isomorphism between the degree-n subspace of Rr and w(Ar)"/
w(Ar)"! can be proven by elementary considerations, since @ (Ar)"/w (Ap)"*T!
is generated by expressions (vy—1)--- (v, —1).

However, here is a somewhat more elegant shortcut: As we noted in
Propositions 2.1 and 2.2, kAr, gr(kAr), and Rr are all cocommutative
Hopf algebras, with coproduct induced respectively by A(g) = g ® g, by
A(lg=1D=[g—-1N@1+1®(g—1)] for g€ Ar and by A(v) =v®1+1QV
for veV.

The map «: Rr — gr(kAr) is a well defined map of unital graded algebras
because the defining commutation property for the v, in Rr is satisfied for their
images, and all these elements are of degree 1. Moreover, we see that this map
is a map of Hopf algebras.

Finally, « is an isomorphism when restricted to the degree 1 subspaces, since

w/w? = kV = (Ar/[Ar. Ar]) ® k = w(Ar)/w(Ar)>.

Here, the last isomorphism is the standard isomorphism of the first group
homology H'(Ar:k) = Ar/[Ar.Ar] ® k as @w(Ar)/w(Ar)?>. We conclude
by [MM, Theorems 5.18 and 6.11] that « is an isomorphism: it is a map between
cocommutative Hopf algebras both generated as algebras in degree 1 and the
map is an isomorphism in degree 1. This shortcut already appears in [Quil]. [
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Remark 3.2. An alternative proof of Lemma 3.1 was kindly suggested to us by
Jacques Darné: there are natural maps

Ar DV > Rr and Rr DOV — kAr,

which induce isomorphisms kAr <> Rr by universal properties. Since gr Rp =
Rr, the result (and the last statement of Proposition 3.6) follow.

Proof of Theorem 1.2. Lemma 3.1 gives an isomorphism between the degree-
n part of Rr and w(Ar)"/w(Ar)"t!. Since Rr is graded and not only
filtered, its degree-n part is @w"/w"t!, so we get the desired isomorphism
w" /w"T! = w(Ar)"/w(Ar)"t! for each n € N, ]

3.2. The Magnus map. We turn to the fundamental tool we use in relating the
group Ar with the algebra Rr: it is the “Magnus map”

Ar — 1+ @ C Rp C Rr,
(3.1) e
vi=14+v forvelV

Here, R—[‘X is the group of multiplicative units of Rr. We have to map to the
completion because we have to map v=! to u(v)"! =1—v+v>—v*+.-- which
is an infinite sum. It is immediate that the commutation relations between the
v € V defining Ar also hold between the u(v), therefore u is well defined.

It is easy to describe quite explicitly a basis of the polynomial ring in partially
commuting variables Rr. This comes hand-in-hand with a kind of normal form
for elements of Ar:

Definition 3.3. A word v{'---vy" with v; € V and €' € Z is called I'-reduced
if the number n of factors v{" cannot be reduced by application of any sequence
of moves which are either

0

(Ml) remove v/,

(M2) replace the piece v’ vf:q] by vfﬁe"“ (if v; = v;41), or
(M3) replace vf"vffl' by vffl'vf" Gf {v;,vi1 1) € E).

Note that none of these moves increases the number of factors.

As we shall see in Proposition 3.5, the set of (M3)-equivalence classes of
I"-reduced words is a basis of Rr; more precisely, any set of representatives
of (M3)-equivalence classes of reduced words of length n forms a basis of the
degree-n component of Rr. Indeed Rr is a monoid ring, so a family of words
forms a linearly independent set if the words represent distinct elements of the
monoid, or a fortiori of the group Ar.
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In case k = Z, or more generally if k has characteristic 0, it is known that
the Magnus map pu is injective, see [Wad, Corollary 4.8]. We adapt this argument
to k of non-zero characteristic, arriving at some of the original results of this
note:

Lemma 3.4. Let k be a ring of characteristic p > 0.

Consider g € Ar. There exists a maximal k € N, and minimal s,,...,s, € N,
p p 51 Sk y
such that there is a T -reduced monomial m = w? ---w,f with non-zero

-~ . 5 i . . . e e %
coefficient in 7). This monomial is unigue. Furthermore, if v{'---v," is a
1

reduced representative of ¢ then n =k and vy ---v, = wy---wg and p’ile; and
the coefficient of m in u(g) is (e1p™)--- (e p™").

Proof. Consider a I'-reduced representative v{'---v;" of g. By definition,

pT - vEn) = (14 v1) - (1 4 vy)®

which is a possibly infinite (if one of the e; is negative) [F,-linear combination
of words over V. Write ¢; = p%{; so that p does not divide £;. Because we
are in characteristic p, we have (1 +v;)% = (1 + vf"j yer

We may now apply a variant of Magnus’s original argument [Mag, Satz IJ:
Multiplying out (using the power series for the inverse), we obtain a multiple
of v7"'...v2" precisely once, with coefficient ¢1---£, # 0 € F,. Other terms
either have fewer syllables or larger exponents. The monomial v;---v, and all
other monomials with the same number of syllables and possibly larger exponents
are I"-reduced, because any sequence of moves which would reduce one of them

could be applied in the same way to the original v{'---v;" and would reduce its

number of factors, as well. Therefore the term v?' ---v?" indeed is uniquely
determined as the I'-reduced monomial in w(g) with non-zero coefficient with
maximal number of syllables and minimal exponents.

Since p(g) is independent of the choice of representative of g, every
other T -reduced representative (vi)e/l---(v]’i,)ef’:’ must satisfy n = n’ and

Uy Uy = V)0, 1

From this (and we note it for further use) we may deduce that every element
of Ar has an essentially unique reduced representative:
Proposition 3.5 ([Wad, Theorem 4.14]). If v{'---v¢" and w{' ---w,ﬁ” are two
reduced words representing the same element of Ar, then one can be obtained
Jrom the other by a finite number of applications of (M3). In particular, n = m.

Proof. We note first by Lemma 3.4 that m = n. We then proceed by induction

on m. Consider the equal elements v<2---ve" and vy w/' .- wi". The latter
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is not I'-reduced, again by Lemma 3.4, so there must exist k € N with wg = v;
and {vy,w;} € E for all i < k. If fi # e; then wlf1 ---wkf"’_e' ---wé’" is I'-
reduced, yet again contradicting Lemma 3.4, so f;y = ¢; and we apply induction

i Fis
wk s

to vy*---vp" and wlf' - w;" , where the factor with hat is left out. [

We express the first claim of Theorem 1.4ii as the following

Proposition 3.6. For arbitrary k, the Magnus map j: Ar — Rr is injective.
It maps yn(Ar) into the subgroup 1+@" of 14+w C Rr. We get an induced
map of graded Lie algebras

pr: €D v(Ar)/vani(Ar) — PO + T/ + ") = P w"/w"+! C Rr.

n>1 n>1 n>1

where the Lie algebra structure of Rt is the one induced from the algebra
structure.

The algebra map induced by  on the group algebra k Ar extends continuously
to an isomorphism of filtered associative k-algebras

In particular,

kAr/@"(Ar) =~ kAr/@"(Ar) = Rr/w” = Rr/o" = gr(kAr)/ gt(kAr)sn,

using Lemma 3.1 for the last isomorphism. As k-modules, these are of course
also isomorphic to (Rr)<, = gr(kAr)<,.

Proof. Let k’ be the image of Z in k; itis either Z or Z /N for some integer N .
The case Z is already covered; if k" = Z/N , let p be a prime number dividing N .
We prove the stronger statement that the composition Ar 5 Rr — Rr®zF, is
injective, i.e., we assume without loss of generality that k = I, . Injectivity of
p for k =T, directly follows from Lemma 3.4.

It is an elementary calculation in non-commutative power series that the 1+@"
form a central series of subgroups of 1+ . By the minimality and functoriality
of the lower central series,

vm(l+@)Cl1+aT" and then w(yn(Ar)) € 1+ @".

Elementary calculations in the non-commutative power series ring also show that
we have an isomorphism of associated graded Lie algebras

P +z)/(0+ )" S P /" + w] e [w]

n>1 n>1
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where the right hand side is the graded Lie algebra structure underlying the
associated graded algebra Rr (with only the central summand @w/w@w! of Rr
missing). As Rr is already a graded algebra, it coincides with its associated
graded. For details of these computations, compare, e.g., [Wad, Lemma 4.10].

Finally, the induced algebra map kAr — Rr is compatible with the
augmentation homomorphisms as the same is true for the initial map w: Apr —
1 + @ (all elements on the left and on the right have augmentation 1).
Consequently, it preserves the filtrations by powers of the augmentation ideals
and induces a homomorphism gr(x) on the associated graded algebra. On the
generating set 1/ this homomorphism is evidently the inverse of the map « of
Lemma 3.1.

We learn that our homomorphism of complete filtered algebras 7i: kAr — Rr
induces an isomorphism of the associated graded algebras. By general theory
therefore [t itself is an isomorphism. In more detail, kAr is the inverse limit
of the kAr/@w"(Ar), and correspondingly for Rr. Inductively and using the
5-lemma, &/w": kAr/@w"(Ar) — Rr/w@" is an isomorphism (as z/@" is the
extension of /@ "~! by the isomorphism gr(u), ). Finally, 7t is an isomorphism
as limit of isomorphisms. L

4. Cohomology

A (topological) way to define and compute the cohomology of a discrete
group G is via a classifying space Xg. By definition, this is a connected CW-
cell complex with m(Xg) = G whose universal covering is contractible. We
then have H*(G:;k) = H*(Xg: k).

Proof of Theorem 1.3, first claims. To compute the structure of the cohomology
ring H*(Ar:k), we first show that Xt of (1.1) is a (particularly nice) classifying
space for Ar. The space Xr inherits a CW-cell structure (indeed a cube complex
structure) from the product cell structure of (S)V, where S! has just one 0-cell
{*} consisting of the base point and one 1-cell. Then X has a single vertex
Y and precisely one loop (S!)¥} x {x}V M} for each generator v € V. The
2-cells in Xr give the commutation relations. By the standard computation of
the fundamental group of CW-complexes (based on the van Kampen theorem)

*

we then have (X, *") = Ar.

Furthermore, the link of the single vertex in Xt is a flag complex, since every
subset of a clique is a clique. Therefore, Xr is a cube complex whose link is a
flag complex, so Xr is a locally CAT(0) space [Gro], see [BH, Theorem 5.18],
so its universal cover is contractible.
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The cells given in the expression of X above form a basis of the homology
of Xr: the differentials in the cellular chain complex vanish identically, because
every cell sits in a subcomplex which is the cellular chain complex of a torus
with precisely this property. Note that we get a basis of H.(Xr:k) as free k-
module by the images of the fundamental classes of all subtori 7€ where C
runs through the cliques in I'. As the homology is finitely generated free, the
cohomology is canonically the dual of the homology. We see that H™*(Xr;k)
is precisely the quotient of the exterior algebra H*(7V:k) = A"(kV), the
cohomology of the ambient torus TV, by the submodule generated by all products
Uy ...v, such that vq,...,v, do not span a clique in I'. The comparison map
is induced by the inclusion Xr < TV. That this map is surjective with the
claimed kernel follows by naturality and the know (co)homology of TV, together
with the information about the rank of H*(Xr;k) we obtained from the cellular
complex. Now the quotient algebra is precisely the algebra Sr and we have
proven H*(Ar;k) = H*(Xr;k) = Sr as algebras. [

We note that H*(Xr;k) = Sr has a natural k-basis indexed by cliques C
in I': a degree-k basis element corresponding to a clique C = {vg,...,vg_1} is
given by the product ve = vg_q---v9 — to make this definite, we pick a total
ordering of the vertices and write the factors in decreasing order.

4.1. Koszul algebras. Returning to general theory, consider a graded associative
algebra R presented as 7' (W)/I for a finitely generated free k-module W, its
tensor algebra 7(W) and an ideal / < T(W). In case [ is generated by a subspace
I, of W®2 the algebra is called quadratic; and it then admits a quadratic dual
R' = T(W*)/(I}); here by I} we mean the subset of (W*)®2 =~ (W®2)*
annihilating /5. Clearly R" =~ R. Now, with kV the free k-module with basis
V', setting

Gr:=(v@w—w®v for {v,w}eFE) ckV®?,
Gs:=(v®w for {v,w} ¢ E,v@w+w®v for {v,w} € E) Cc kV®?,

we have as algebras
Rr = T(kV)/{(Ggr) and Sr = A" (kV)/{v Aw for {v,w} ¢ E) = T(kV)/(Gs).

Let us identify kV®2 with (kV®2)* via the basis {v @ w | v,w € V} and its
dual basis. Then Gg is the annihilator of Gg (they clearly annihilate each other,
and the ranks add up to the total dimension |V |?), and therefore Ry and Sr are
quadratic duals of each other.

Recall that a quadratic algebra R is called Koszul if its Koszul complex
is acyclic, see [LV, §3.4.3]. We recall the Koszul complex (in our concrete
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situation) below and we mention that this is only one of a number of different
equivalent characterizations of the Koszul property. It implies that the Yoneda
algebra Extg(k, k) is isomorphic to R, compare [Pri, Theorem 2.5].

Proof of Theorem 1.3, second claim. We now show that Rr and St are Koszul.
We use the fact [LV, Proposition 3.4.5] that a quadratic algebra is Koszul if and
only if its quadratic dual is. Therefore it suffices to prove the Koszul property for
Sr, and for supercommutative (ab = (—1)9€@9ebpy ) algebras there is a simple
sufficient (but not necessary) condition, the existence of a quadratic Grobner
basis [Yuz, Theorem 6.16]. Recall that a Grobner basis for an ideal I < /\*([K V)
is a set G of generators for / such that the leading terms (with respect to a
compatible order of monomials) of elements of G generate the same ideal as the
leading terms of all elements of /. Now G :={vAw |{v,w} ¢ E} is a Grobner
basis, as follows from Buchberger’s criterion: “for all f, f’ € G whose respective
leading terms g, ¢’ have least common multiple £, the syzygy (¢/g)f — /g’ f’
must vanish”.

Alternatively and without using Grobner basis, the work of Froberg [Fro, in
particular Section 3] also implies that Rr (and Sr) are Koszul. His proof runs
essentially as follows and uses directly the Koszul complex of Rr which we
now construct. Consider the right Rr-module P, = Homy(St, Rr). Recall that,
qua k-module, St is finitely generated free with basis indexed by cliques in I'.

Consequently, this basis induces an isomorphism Py i EBC ve Rr, where the
sum is over the cliques in I". It is bigraded by Sr- and Rr-degree. Consider
the map d : P, — P, with

d(f)(p) =Y vf(vp) for f € Pu. peSr.

veV

In our basis, d((Vk—1---vg) 1) = D (=1)/(vg—1---V; ---vp) - vjr. A direct
computation shows that ¢? = 0. Note that d increases the Rr-degree by 1, and
decreases the St -degree by 1, so (P«,d) becomes a chain complex of finitely
generated free Rr-modules, graded by Sr-degree.

To prove acyclicity of the Koszul complex (P.,d) we define a chain
contraction map s: P« — P.y; of k-modules as follows. Recall that we have a
k-basis of P, given by elements vc-w for a clique C of I' and a basis element
w of Rr given as a ['-reduced monomial over V according to Definition 3.3.
To define s(ve - w) we consider two cases. If we can write w = vw’ in reduced
form with v € V' and with w’ a word in letters from V in such a manner that
v < minC (for the total ordering on V picked above) and such that C U {v}
is a cligue of I', then we choose v minimal with this property, and we set
s(ve - vw') = veypy - w'. Otherwise, we set s(ve - w) = 0.
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We now carry out the elementary calculation to see that s is a chain
contraction, meaning sd +ds = 1—e, where €: P, — k is the augmentation map,
projecting onto the summand of bidegree (0,0). For this, consider x = v¢ - w.
The calculation splits into three cases.

(1) If C =@ and w =1, then (sd +ds)(x) =0 = (1 —e)(x).
(2) Assume that C = {vy,..., Vgt # @ and w cannot be written in the form

w = vw’ as above. Then

ds(x) =0 while sd(x)= Z(—l)j.s‘((vk_l ee Vj e vg) - UjU)).

By hypothesis, no letter in w can be swapped with v; and added to C\{v;},
so all summands vanish except the Oth which is x.

(3) Assume that C = {vg,...,vr} and w can be written in the form v_,w’
such that C U {v_,} is a clique in ', with v_; < min C, chosen minimal
among all such possibilities. Then v_; commutes with all v;, so

k—1
sd(x) = Z(*l)jé‘(UC\{vj} ~vjvw’) = Z(—l)JUC\{v_,}u{v,,} -vw’,
j=0
k—1
dS()C) = d(v(;u{v} g w’) = Z (_I)J-HUC\{UJ-}U{U,]} : ijl,
j=—1
and the terms cancel pairwise except the one with j = —1, giving again
(ds + sd)(x) = x.
It follows that P, is a free Rr-resolution of k. (]

We note that the usual definition of Koszul algebras is given over fields of
characteristic 0; however, in our case, we need not impose any restriction on the
commutative ring k (other than interpreting (kV)* as naturally isomorphic to
kV'), since the rings Rr and Sr are k-free.

5. Central series

5.1. Labute’s general theory. Labute gave in [Lab] a condition under which a
presentation (V' | R) of a group G determines a presentation of the associated
Lie algebra L(G) = @,~; ¥n(G)/¥n+1(G). Such a group presentation is now
called “mild”, and Anick _gave in [Ani| a valuable criterion for this to happen:
view all r € R as elements of the free associative algebra 7(ZV'), under the
Magnus embedding Fy — T(ZV). Let n be such that r — | € w" \ w"*!,
and let ' denote the image of r in the quotient w”/w"*!. Then (V | R)
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is mild if and only if {r' | r € R) is “inert”. We need not define here the
meaning of “inert” (a.k.a. “strongly free”, see, e.g., [HL]), but merely note that
there are powerful sufficient conditions guaranteeing that a set is inert in the
free associative algebra, one of them being that it forms a Grobner basis. It
follows then quite generally that the Lie algebra L(G) admits as presentation
(V| r Vr € R), see [Lab, Theorem 1]; and a similar statement holds for the
restricted Lie algebra €,,~ An,p(G)/An+1,p(G), see [Lab, Theorem 3]. Labute’s
conditions are non-trivial to check, so we shall in fact recover his results rather
than use them.

5.2. First easy results for RAAGs. By Proposition 3.6 the rings Rr/@”" and
kAr/w(G)" are isomorphic, so the dimension subgroups 8,, and 8,4, are
equal. This establishes the corresponding part of Theorem 1.4ii, in particular (1.5).
Furthermore, since the Magnus map p has image in the subring of Rr generated
by 1 and V, the groups 8, depend on k only via the image k' of Z in k.

We consider two cases: if k has characteristic O then the dimension subgroups
associated with the rings k and Q agree. If, on the other hand, k has characteristic
p, then the dimension subgroups associated with the rings k and [F, agree. In
all cases, we reduce to the case k € {IF,,Z}.

Proof of Equation (1.4) of Theorem 1.4ii. We apply the classical results of Jen-
nings and Hall. For k = Q we have y, 0 = 8, ka; compare [Jen2, Hal2] which
treat the case of torsion-free nilpotent groups to which the general case easily
reduces. For k = F, we have v, , = 0, ka; compare [Jenl] which treats the
case of finite p-groups to which the general case easily reduces. Since we already
established (1.5), Equation (1.4) follows. ]

Proof of second part of (1.2) in Theorem 1.4i. In Rr, clearly (., @" = {0}.
As p is injective by the already established (1.3), it follows that (1,5 8n,, = {1}
and therefore by (1.4) also ()59 ¥n.0 = {1} = (yzo Ya.p- ]

6. Lie algebras associated with T’

Recall that the cohomology of a Lie algebra L, defined as Exty)(k,k),
may be computed using its Chevalley complex (\*(L°),d), with L° the “small
dual” of L, namely

1Y = {qb € L* | ker ¢ contains a finite-codimensional ideal},

and the differential d : L° — A? L is the dual of the Lie bracket map A° L — L
(extended to all degrees by requiring d to be a graded derivation). Note that
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L° is just so defined that the image of d belongs to /\2 L° C (/\2 L)*. Since
A*(L°) is a graded commutative algebra and d is a derivation, the homology
(A*(L®),d) is naturally a graded commutative algebra.

Proof of Theorem 1.5i, Lie algebra cohomology of Lr. The enveloping algebra
of Lr is Rr, which is Koszul with Koszul dual St, so we have

H*(Lr:K) = H*(/\* (L°),d) — Bxtg, (k. k) = Sr.

Note that A" L7 admits two gradings, one as an exterior algebra and one inherited
from the grading of L. In H*(A"(L°).d), these two gradings coincide — this
is precisely the content of St being a Koszul algebra. []

In the following, we write L for Lt if the characteristic of k is 0, and for Lr
if the characteristic of k is p, and view L as a subset of Rr = U(L). Following
Magnus’ method [MKS, Theorem 5.12], consider x € L,, i.e. homogeneous of
degree n. Then x is a linear combination (with coefficients in k) of a collection
of bracket arrangements ¢; = ¢; (vy,...,v,). The assignment

L,>¢;i > ¢;(v1,...,0y) €y C Ar

is well defined on the subset of bracket arrangements, since [v,w] = 1€ Ar for
each {v,w} € E. It extends k-linearly to a map

v: Ly = Yu/vne1 @z Kk

of k-modules. This map is clearly surjective, since y,/yn+1 is spanned by n-
fold bracket arrangements, for an arbitrary group. Furthermore, the composition
prov: L — Rp with py given in Proposition 3.6 is a Lie algebra map sending v
to v. Therefore this composition is the inclusion of L into Rr and is in particular
injective. This implies that v is an isomorphism with inverse the Magnus map
mL .

Proof of Theorem 1.4i. Consider k = Z. Since Lr is Z-free, it follows in
particular that y,(Ar)/yn+1(Ar) is torsion-free for each n, and therefore
Yno(Ar) = yn(Ar) for all n. o

Proof of Theorem 1.5ii, first two claims. The isomorphism v identifies Lr and
®nzl(yn/yn+l) ®z k. -

Proposition 6.1. Consider k a ring in which p is regular (namely px = 0
= x = 0), and define the ideal @w, = (p,V) of Rr.

The associated graded ring D, arl’}/wg“ is isomorphic to Rr ®z F,[x],
with  of degree 1 mapped to [p] € w,/ wg under the isomorphism.
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Proof. Powers of w, define a new filtration on Rr, in which v € V sitill
has degree 1, but in addition p also has degree 1; thus for instance p2Zv3
belongs to the fifth term of the filtration. The ring Rr is k-free. When
passing to the associated graded ring for the new grading, we get on the
one hand @ w) /w)*'. On the other hand, this graded ring is obtained from
the old associated graded (which is the graded algebra Rr) by replacing each
copy of k by its own associated graded under the filtration (p"), namely by
@D,,-0 P"k/p" Tk = (k/pk)[r]; it is here that we require p to be regular. This
replgcement amounts to tensoring over 7 with F,[x]. ]

In case p > 3, we are now ready to identify the non-restricted Lie algebra
Drs1 Anp/Ant1,p  Wwith Ly ®z Fplx]. Let us temporarily  write
Bn ="' (1 + @,). We make the following claim.

Lemma 6.2. For p > 3 prime, the Magnus map [ induces a composition of
(non-restricted) Lie algebra isomorphisms over T,[r], still written g,

ML GEBAnJﬁqﬂ+1m'_*€£9ﬁn/ﬁn+l'+ Lr ®z Fpln],

n>1 n>1

with the first map induced by inclusion A, , < B, and the second map induced
by BulBasr 3 [1 +al > a € wp [+,
In particular, we have B, = A, p.

Proof. To check that the first map is well-defined, it suffices to show A, , < B,.
We have w) =3, .., p'@™. Consider g € y,,, so by definition u(g) = 1+x
for some x € w™. We then have p(g?') = (1+x)? = 1+ pix+--- € 1+t
so p(y2)c 1+ w . Since Anp = [Lptizn 2" . we have shown Ay < f.

Because the Magnus map u: Ar — 1+@ C Rr is injective by Proposition 3.6,
so is the induced map B,/Bny1 — (1+Tp)/(1+Tpt") = wr /@', which is
our second map.

Since p > 3, the assignment x - [g] .= [g?] for g € A,,, (wWith g7 € Api1,p)
gives @Ay p/Ant1,p the structure of an F,[z]-module. For this we use the
Hall-Petrescu identities [Hall, Theorems 3.1, 3.2]: If ¢,/ belong to an arbitrary
group G, then (gh)? = g?h?[h.g]"a(g.h) with n = (§) and «(-,-) a universal
expression in y3. This implies (gh)? = gPh? mod y,42p, for g.h € y, , if
either n > 2 or n = 1 and p > 3. However, beware that if n =1 and p =2
then this does not hold in general, so the p-power operation is not linear. We see
that p; maps this p-power operation to multiplication by 7= on Lp ®z [F,[x].
It follows that gy is an [F,[r]-Lie algebra homomorphism. Its image contains
V' which generates Lr, so py is surjective. Finally, Lr ®z [F,[n] is the free
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Lie algebra over [F,[7] modulo the relations [v,w] = 0 for {v,w} € E. Those
relations are clearly satisfied in the F,[7]-Lie algebra @, .; An.p/An+1,p. so the
map gy is an isomorphism. -

It then follows that the second map is surjective and therefore an isomorphism,
so the first is also bijective, from which we deduce S, = An,p. L

Proof of Theorem 1.4ii, 6, , = yn,p in characteristic p. Let k be an algebra
over F,. By [Quil], the Lie algebra @nzl(yn,p/ynﬂ,p) ®zk is isomorphic to the
primitive subalgebra of @,., @ (Ar)*/w(Ar)"*' = Rr, namely to Lr,. [

Proof of Theorem 1.5ii, last claim. This is precisely Lemma 6.2 and Proposi-
tion 6.1. ]

7. Growth series

We derive now some relations between the Poincaré series of Sy, Rr, Lr
and Lr,, from general considerations. We recall that, for a graded algebra
R = ,>¢ Rn, its Poincaré series is Qg(t) = >, .o rank(R,)t".

Proof of Theorem 1.6. First, we use Koszul duality between Rr and Sr to deduce
Gp.(t) - Psp(—t) = 1, see [LV, Theorem 3.5.1]. This relationship between the
Poincaré series of Ry and Sr was already noted in [CF, SY].

We have ®g. (1) =) ,.orank H"(Ap, k)" =), o ca(I)t", with ¢,(I") the
number of n-cliques in I', from our explicit basis of S given in Section 4.

The relation between ®p,. and ®; . is given by the Poincaré-Birkhoff-Witt
theorem, namely the fact that Rp and the symmetric algebra over Ly, respectively
the degree- p truncated symmetric algebra over Lr ,, are isomorphic as graded
k -modules. It is expressed by the relation

e T1(7) -7

n=0 n>1 n>1

it ®rp(2) =) psodnt™, PLp(t) = 5 bat", and &L (1) =3,  cat".

Finally, we consider the growth series of the group Ar. It is the function
Gy-(1) = deArt"g"’ with |lg|| the minimal number of terms of V U V™!
required to write g as a product. We cite [AP]:

2t
(DAr(t) — (I)RF‘ m .

Indeed, as we saw in Proposition 3.5, every element g € Ar can be written in
the form g = v{'---vy" for some ¢; € Z\ {0} as a word of minimal length; and
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this expression is unique up to permuting some terms according to rule (M3).
Let I be the set of (M3)-equivalence classes (vi,...,v,) of minimal-length
sequences. For an element [vy,..., vn] of I, the collection of all such terms
i~ vp" contributes (¢ + 2 4+ +---)" = (1/(1 —1))" to the growth series of
Rr because each ¢; can be an arbitrary positive natural number; and it contributes
(2t/(1 —1))" to the growth of Ar, taking into account the signs of the ¢;. Since
we obtain all elements of Ar and all basis elements of Rpr that way, we have

B 2 \" 2/(1+1) \" _ =
Q)Ar(t)_;(:) _Z,:(I—Zz‘/(wt)) _CDR"(IH)'

using 2¢/(1 —t) = (2¢/(1 +¢t))/(1 —2t/(1 +t)). We have finished the proof of
Theorem 1.6. L1

8. Malcev completions

In this section we fix k = Q. Recall from [PSI1] that a Malcev Lie algebra is a
Lie algebra L over QQ, given with a descending filtration (L,),>; of ideals such
that L is complete with respect to the associated topology, and satisfying L, = L
and [Lpy.Ln] € Lymgn and such that €5, Ly/Lpy1 is generated in degree 1.
Every Malcev Lie algebra admits an associated exponential group exp(L), which
is L as a set, with product given by the Baker—Campbell-Hausdorfl' formula
xy=x+y+[x,y]/2+---.

Lazard proved in [Laz]| that every group homomorphism p: G — exp(L) in-
duces a morphism of graded Lie algebras @B,. ¥n/Yn+1®Q — @21 Ln/Ln+1.

A Malcev completion of a group G is a homomorphism p: G — exp(L)
for a Malcev Lie algebra L, universal in the sense that every representation
G/yn — exp(L’) for a (nilpotent) Malcev Lie algebra L’ factors uniquely through
exp(L/Ly); see [PS1, Definition 2.3].

Quillen gave a direct construction of the Malcev completion of a group
in [Quil, Qui2|: let QG = projlimQG/@" be the completion of the group
ring; then QG is a complete Hopf algebra. Let L be its Lie subalgebra of
primitive elements; it is a Malcev Lie algebra for the filtration L, = LN@". Let
exp: L — QG be the usual power series map exp(x) = 14 x +x2/24--- which
makes sense in QG . Then its image G := exp(L) is a subgroup of the group of
multiplicative units. It identifies with the Lie group associated to the Malcev Lie
algebra L, and it consists precisely of the grouplike elements in QG , namely the
g €1 +w satistying A(g) = ¢ ® g. The representation p: G — exp(L); g+ g
is the Malcev completion of G.
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The Magnus map u: Ar — R—rx yields an isomorphism of associative algebras
QAr = Rr. Both algebras are actually complete Hopf algebras, but the Magnus
isomorphism does not preserve the Hopf algebra structure: v € V C QAr is
group-like, meaning A(v) = v ® v while v € V C Rr is primitive, meaning
AW)=v®@1+1®v; so A(u)) =A(l4+v)=101+v®1+1®v while
(k@A) =1 +v)Q(1+0).

The Magnus map p is, in fact, the truncation to order 1 of a Hopt algebra
isomorphism  frexp: QAr — Rr, given on v € V by the classical exponential
series

Un
pi ) = ¥ T =l+v+ O®@?).
n>0
Proof of Theorem 1.7. 'The proof that ptep is an isomorphism of filtered associa-
tive algebras is exactly the same as that of Theorem 1.4ii, and will not be repeated.
On the other hand, the fact that pexp is a coalgebra map follows formally from

the fact that the power series exp maps primitive elements to group-like elements:

Alptep(@) = A( 3" /n1) = 3 A@)"/n!
n>0 n=0
:Z(v®l+l®v)” B Z (v®l)z(]®v)m

n! a £tm!
n>0 £,m=0

— (expv ® (1 @ expv) = (Hexp ® Hexp) (A)).

We have proven the first claim.

It now suffices to use this isomorphism s, to make even more concrete the
construction of Quillen sketched above: in QAr the space of primitive elements
is slightly mysterious, for example, it contains

log(g) =log(1-(1—g) =-> (1—g)"/n Vg € Ar.

n>1

In contrast to this, its exponential is the Malcev completion naturally containing
Ar.In Rr the opposite holds: the space of primitive elements is the Lie subalgebra
Lr while its exponential cannot be better defined than as the exponential of Lr.

In all cases, the Hopf algebra isomorphism pexp directly yields the remaining
claims of Theorem 1.7. L]

We now turn to formality in the sense of Sullivan in rational homotopy theory.
A finite CW-complex X is called formal if its algebraic minimal model is quasi-
isomorphic to (H*(X;Q),0). This implies that the rational homotopy type of X
is determined in a precise way by its rational cohomology ring. For details on
rational homotopy theory compare [Sul] or the more recent [FHT].
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We finally prove that the space Xt constructed in Section 4 is formal. Recall
that we defined X as a (cubical) subspace of the smooth manifold (R/Z)".
It makes perfect sense to restrict smooth differential forms on (R/Z)YV to Xr.
We define A*(Xr) to be the algebra of all such restrictions; it is a commutative
differential graded algebra (cdga). It is an easy exercise that this cdga is quasi-
isomorphic to the standard cdga over R of rational homotopy theory associated
to Xr. There are basic one-forms dx, on (R/Z)" coming from the obvious
coordinate functions, for v € V. Their images in A*(Xr) generate a sub-cdga
with trivial differential, whose homology is H*(Xr;R) by Theorem 1.3. The
inclusion of this sub-cdga in A*(XT) is a quasi-isomorphism, showing that Xt
is formal.

We now explicitly exhibit a minimal model for Xr. Recall from Section 6
the Chevalley complex (/\*(L‘ll),d) of Lr. Note that Lr is graded, and L},
may be identified with the graded dual of L. Consequently, there is a natural
map L} — QV given by restricting to the degree-1 part. This map induces
a map of graded algebras A™(L3) — A(QV)/(v A w for {v,w} ¢ E) = Sr.
Even better, this is a map of cdgas from the Chevalley complex to Sr, the latter
equipped with zero differential, and indeed is a quasi-isomorphism. These are
manifestations of the Koszul duality of Sy and Rr = U(Lr). As Xr is formal
and Spr = H*(Xr:Q) we conclude that A*(L%,d) is a minimal model of Xr.

Here is yet an alternative proof: a group is called 1-formal if its Malcev Lie
algebra is quadratic. It therefore follows from Theorem 1.7 that Ar is 1-formal.
The cohomology ring H*(Xr:Q) =~ St is Koszul by Theorem 1.3, so Xr is
formal by [PS2, Proposition 2.1].

9. Outlook

9.1. Subgroup growth. Baik, Petri, and Raimbault determined the subgroup
growth of Ar in terms of the graph TI'. Define s,(Ar) as the number of
subgroups of Ar of index precisely n. Then [BPR, Theorem A] establishes

log(sn(Ar)) (D)1,
n—oo  pnlog(n)

i.e., sp(Ar) grows like (n)*-1 Here, a(T") is the independence number of
I, the largest number of vertices such that the full subgraph of I' spanned by
them is discrete.

We do not discuss the rather complicated proof here. We leave it an open
question to find a corresponding result for the growth of the number of finite
index Lie subalgebras of Lr. Indeed, we expect that these two series are closely

related and that the latter is slightly easier to control than (s,(Ar))neN.
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We have identified y, ,(Ar) with &, JFp,Ar in Theorem 1.4ii. For a group
G, we could define y, ,c as the subgroup generated by y, and all V; with
ip! > np¢'. When G is free, it was shown by Lazard that Yn,pe(G) coincides
with the dimension subgroup 8, 7/,cz[G) While this does not hold for general
G, see [Mor].

We leave it as an exercise to extend Lazard’s result to Ap.

9.2. Homology gradients. Given a group G and a nested sequence of finite
index normal subgroups G, <« G with [, G, = {1}, one defines for a field k
the k-homology gradients

hi(Gu: k)

b(z)(G k) = llmsup GGyl

for i € N.

For general groups G, it is unclear whether this quantity depends on the particular

chain {G,}. Until recently, it was also unclear in which manner this quantity

depends on the coefficients k. Avradmidi, Okun, and Schreve in [AOS] use

the classifying space Xr and induced cell structures for coverings to explicitly

compute these homology gradients. Let Fr be the flag complex generated by I’
e., the largest simplicial complex with vertex set V' and edge set £. Then

b (Ar; k) = b1 (Fr: k)

where b, (Fr;k) denotes the dimension of the reduced homology of Fr. In
particular, for RAAGs the homology gradient is independent of the chain of
normal subgroups, even though in many examples it does depend on the field of
coefficients k.

Acknowledgments. We are deeply grateful to Jacques Darné, Pierre de la Harpe
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