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Right Angled Artin Groups and partial commutation,
old and new

Laurent Bartholdi, Henrika Härer and Thomas Schick

Abstract. We systematically treat algebraic objects with free partially commuting generators

and give short and modern proofs of the various relations between them. These objects

include right angled Artin groups, polynomial rings, Lie algebras, and restricted Lie

algebras in partially commuting free generators. In particular, we compute the /»-central

and exponent- p series of all right angled Artin groups, and compute the dimensions of
their subquotients. We also describe their associated Lie algebras, and relate them to the

cohomology ring of the group as well as to polynomial and power series rings in partially

commuting variables. We finally show how the growth series of these various objects are

related to each other.

Mathematics Subject Classification (2010). Primary: 20F36; Secondary: 20F65, 20F12,

20F14, 20F40, 17B50, 16S37.
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1. Introduction

Right angled Artin groups (RAAGs) are a prominent geometric/combinatorial
class of groups. Originally introduced as "partially commuting free groups", they

interpolate in an interesting way between free groups and free abelian groups. Of
particular interest are several additional algebraic objects which are canonically
coming along and are closely related to the structure of the RAAGs, in particular
(graded) Lie algebras and polynomial rings, both in free partially commuting
generators. The purpose of this article is to give a complete description of many
relevant properties and relations, offering modern and accessible proofs. Many of
the results quoted below appear already in other sources, though the computation
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of the exponent- p and lower p -central series is new; throughout this text p
denotes a prime number, fixed once and for all.

1.1. The actors. Let T be an undirected graph, with vertex set V and edge set

E (consisting of 2-element subsets of V). The right angled Artin group (RAAG)
Ar associated with T is the group defined in terms of generators and relations

as

Ar — (V I vw wv whenever {d.id} e E).

The purpose of this note is to describe classical subgroup series in dp such as

the lower-central and p -lower-central series, and relate them to other algebraic

objects defined in terms of T as follows.
Let k be a commutative ring. We define unital associative k-algebras

Rr (V I vw wv whenever {u, id} e E),

Sr {y I v2 — 0, vw — —wv Wv, w V, and vw 0 whenever {d, id} E).

Note that Rr is the familiar algebra of polynomials in partially commuting
variables, and similarly Sr can be considered as an exterior algebra in partially
commuting variables.

Observe that Rr and Sr are graded algebras with deg(r) 1 for all v V.
Therefore, they admit a natural topology, in which basic eighbourhoods of 0 (say

in Rr are spans of the set of all monomials of degree > n. We define

Rr the completion of Rr in this topology.

Just as Rr is a non-commutative polynomial algebra, Rr is an algebra of power
series in partially commuting variables.

We also define a Lie algebra over Ik,

Lr (V I [v, id] 0 whenever {d, w} e E),

and, if k is an algebra over F/;, a restricted Lie algebra (see Section 2 for a

review of restricted Lie algebras)

Lr,p — (V I [d, id] 0 whenever {v, w} e E)p.

Let us have a look at the extreme cases.

(1) If T is the complete graph on d vertices then Tr Zd, Rr is the

polynomial algebra in d variables k[Ai,..., Xj], Sp is the Grassmann

algebra /\*(krf), and Lr krf with trivial bracket.

(2) If T is the empty graph on d vertices then A r is the free group Fa,
Rr is the free associative algebra on d generators, .S'r ik 1 ® Ik/' with
trivial multiplication except 1 x =x, and Lr is the free Lie algebra on d

generators; for more details see Section 1.4.
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1.2. Subgroup series. Let G be any discrete group, and let p: G -* Rx be a

representation of G in an associative augmented k -algebra R with augmentation
ideal m (namely, an algebra equipped with an epimorphism to k with kernel

m). With this representation is associated a natural sequence of subgroups, called

generalized dimension subgroups,

8n,p p—1 (1 + ru") ker(G -v (R/mnY).

In case R kG and p is the regular representation, we write 8„^g for 5«,p-

In addition, there are classical subgroup series, defined intrinsically within G :

• The lower central series (yn) given by yi — G and yn [y„_i,G];

• the rational lower central series yn^o {g e G | g e yn for some k ^ 0};

• for a prime p fixed throughout the discussion, the exponent- p central series

Xn,p given by Xi,p — G and Xn,p [Xn-\,p,G]X^lp, or more directly

^n,p nm+i>n Ym 1

• again for a prime p fixed throughout the discussion, the Brauer-Jennings-
Lazard-Zassenhaus series [Zas, Jenl, Laz], also called p -dimension or p -

central series, given by y\,p G and y„tP [ïn-\,p,G]y^n/pli p, or more

directly y„tP Ump' >n Ym

All these series are central, meaning that yn/Yn+1 belongs to the center of
G/yn+1, etc. We moreover have [ym,yn\ 1= ym+n, etc. A classical

consequence [MKS, Section 5.3] is that ©n>1 yn/yn+1, etc., are graded Lie algebras

over Z. The addition is induced by the group multiplication and the Lie bracket

is induced by the commutator.
The groups y„,o enjoys the extra property that yn,o/Yn+i,o is torsion-free (and

it is the fastest descending central series with this property), so 0n>1 Yn,o/ïn+i,o
is Z-free. In particular, if yn/Yn+ \ is torsion free for each n, then yn,0 Yn

for each n

We have X^up c Xn+\tP so ©„>j XntP/Xn+i^p is an elementary abelian p-
group. Similarly, Yn,p L Ynp,p Furthermore, these series are fastest descending
under these requirements. It is now classical [Zas] that ®n>1 Yn,p/Yn+\,p is a

restricted Lie algebra over '¥p. The additional, " p -power" operation as part of
the restricted Lie algebra structure is induced by the p -power operation in the

group.
Classical results identify 8n^o with some of the above series in case k

is a field: we have 8n^o Yn,P where p > 0 is the characteristic of k
[Hal2, Jenl, Jen2], However, for general G, the identification of 8nj/x; is a

fundamental open problem of group theory.
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1.3. Results. We consider the series defined above for the group Ar- The main

purpose of this text is to exhibit numerous relations between these algebraic

objects; detailed definitions and proofs will be given in subsequent sections. The

main tool is an extension to dp of Magnus's work on the free group [MKS, §5],

embedding it into the units of the free non-commuting power series ring. This

extension seems first considered in [Dro].

Definition 1.1 (Augmentation ideals). Recall that a commutative ring k is fixed.

Denote by m the augmentation ideal of ftp (he. the ideal of polynomials
in partially commuting variables with zero constant term), and by m (Ar) the

augmentation ideal of kdp - We also denote by mp the ideal m + pRp.

Theorem 1.2 (Augmentation powers). For all n we have

m(Ar)n/m(AT)n+l ^mn/mn+l.

We remind the reader that Koszul algebras are a particular kind of associative

algebras (see [Pri] or Section 4) for which a "small" projective resolution may
easily be computed. Moreover, there is the important concept of Koszul duality.
We obtain the following results, which for k Q already appear in [PS2], Recall

that a clique in a graph is a subset of vertices in which all vertices are connected

to each other.

Theorem 1.3 (Group cohomology). Let S1 he the circle with hase point *. The

following suhspace of the torus (S1 )v is a classifying space for Ar:

(1.1) *r= U (^1)C x{*}K\c.
C ç V a clique

We have H*(Ar; k) Sr.
The rings Rr and Sr are Koszul algebras, and Koszul duals to each other:

(Sr)[ Rr-

Theorem 1.4i (Central series and dimension subgroups). In the group Ar we

have

(1-2) Yn Yn,o and Q y„>0 Q Yn,P {!}
aigZ /ZGZ

In particular, Ar is finitely generated and residually torsion-free nilpotent, so

(by [Gru| *1heorem 2.1) Ar is also a residually finite p-group for every p.
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Theorem 1.4ii (Central series and dimension subgroups). For arbitrary k there

is a faithful representation

(1.3) p : Ay —> Rr*; v 1 + v for v e V.

The corresponding generalized dimension subgroups satisfy

Iy„
o if k has characteristic 0,

'

Yn,p if k has characteristic p.

Together with Tlteorem 1.2 we obtain an isomorphism of filtered associative

k -algebras (hut not Hopf algebras; see Theorem 1.7 below!)

kdp := lim(k/lr/r<7(dr)") —* lim(/?r/m") Ry-

In particular, the classical dimension subgroups coincide:

(1-5) i5«,lkylp $n,ß-

The Lie algebras Lr and Ly,p are tightly connected to their associative

counterparts:

Theorem 1.5i (Lie algebras). The algebra Ry is a Hopf algebra. If the ring k
is a Z -free module then we have

(1.6) Ly Primitives(Ry) and Rr U(Lr).

the universal enveloping algebra of Ly, while if k is an Fp -algebra then

(1.7) Lyp Primitives (Ry) and Ry Up(Lr,p),

the p-universal enveloping algebra of Ly^p. The Lie algebra cohomology of Ly
is

H*(Ly, k) ^ Sr.

All the above isomorphisms are natural, in the sense that they are induced by the

identity map V —> V, and therefore compatible with homomorphisms induced by

a map of graphs V —> V.

The Lie algebra associated with the lower central series was already determined
in [DK2] as Ly. We extend this result as follows:

Theorem 1.5ii (Lie algebras). For any ring k, we have, as Lie algebras,

Ly ^ (J)(y«/y„+1) <8>z k.
n> 1
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If k has characteristic p then as restricted Lie algebras

Lr,p (§)(yn,p/Yn+i,p) k.
n> 1

If k has characteristic p > 3 tfie/i vwY/t k[7r] the polynomial ring in one degree-1
variable n

Lr k[7r] + k

in in

Rr k[jr] s ®„>, (m£/m£+l) <8>z k;

under that isomorphism, multiplication by n corresponds to the map induced by

^n,p 3 8 ^ £ An+i;P.
A// the above isomorphisms are natural, in the sense that they are induced by

the identity map V —> V, and therefore compatible with homomorphisms induced

by a map of graphs V - > V.

For a graded algebra R ®n>0 Rn over k such that each Rn is a finitely
generated free k-module, recall that its Poincaré series is the power series

^rank(R„)tn.
n>0

For a group G (X), its growth series is 4>g(0 Ylg&G » w't'1 l#l denoting
the word length of g G (word length and growth series depend on the fixed

generating set J). The first two claims of the following result appear in [DK1]:

Theorem 1.6 (Poincaré and growth series). The Poincaré series of Sy is

\v\

oSr(0 X>»(r)'".
n=0

where cn(V) denotes the number of cliques of size n (i.e., complete subgraphs

of V with n vertices).
The Poincaré series of Rr and Sy are connected by the relation

d>«r(0-$Sr(-0 1,

and the growth series of Ay is

In our next result, originally appearing in [KM, Theorem 16.10], we determine

the Malcev completion of Ar - We refer to [Mai, Qui2] and the more recent [ PS1]

for a review of this construction.
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Theorem 1.7 (Malcev completions). Assume k <Q>. There is then an isomorphism

ßexp- Rr —* Q<4r of filtered, complete Hopf algebras; via this isomorphism, Ly
is the Malcev Lie algebra of Ay, and the Malcev completion of Ay is given on

generators by

yl
Ar —> exp(Lp) C Rr via the classical power series v i-> 7 — V» e K

z—' n\
n>0

We also show the following related result on formality in the sense of rational

homotopy theory; see Section 8 for a review of the notion.

Theorem 1.8 (Formality). The classifying space Xy of Ar of (I A) is formal.

1.4. Examples and illustrations. Let us consider, as sketched in the Introduction,
the two extreme cases of graphs L, the complete and empty graphs.

If F is the complete graph on V, then Ay is free Abelian with basis V, and

Rp is a usual polynomial algebra in variables V. The standard Koszul complex is

given by the exterior algebra Sp A*(^)< ar|d coincides with the cohomology
ring of Ay — ZK. The classifying space At is the usual torus (S1)17. The

exponent-/? central series satisfies Xn<p — pn~xZV, and the /^-dimension series

satisfies yn,p — p'ZK whenever pl~l < n < pl. The growth series are readily
computed as

(\+t\m 1 y1/1 an
• <1)«r(0=fY3yJ 4>sr(O (l+0

If, on the other hand, T is the empty graph on V, then Ay is free with basis

V, and Ry is a polynomial algebra in non-commuting variables V. The algebra

Sr is reduced to k©kL with V2 0, and coincides with the cohomology ring
of Ay. The classifying space At is a wedge of \V\ circles. The Lie algebras

Ly and the restricted Lie algebra LyiP are free. The growth series are readily
computed as

*Rr(,)IhtT' ^r(') l + |K|«.

These results can be seen as special cases of the following constructions. If P

is the disjoint union of two graphs Tj U P2, then Ay — Ay{ * Ay2 is a free

product of groups, and similarly Ly and Ry are free products in their respective

categories, and 5p Sr, © ^r2/(l ©0 — 0© 1). The space At is the wedge

(one-point union) of At, and Xy2, and the growth series of Ay, Ry,Sy may be

easily be deduced from those of Ayt, Ay2, etc.:
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1

V ®RrJ + \ *RrJ'

l-<Dsr (l-<fsri) + (l"^r2)-
If F is the join of two graphs Fi and r2, namely the graph obtained from

Tj U r2 by adding all edges between Ti and P2, then Ar Arx x- Ar2 is a

direct product, and similarly Lp Lp, xLp2 ar>d ^r, ® ^r2, while 5p is

,SYi <8>Sr> qua k-module, with product (a<g)b)(c®d) (—l)desd>)deg(c)(ac<g>kd).

The classifying space is Xr Ar, xlr2, and the growth series 4>/ip, <t>«r and

<t>5r behave multiplicatively:

$/lr 4>2ipi • (b/ip2, cpRp • 4)Rp2, Osp 4>sri • 0Sp2.

Finally, all the objects constructed are functorial, in the sense that graph

morphisms induce maps between the corresponding objects: if T, F' are graphs
and / : T -> T' is a map from the vertex set of F to that of F' sending

edges of T to edges of F', then there is an induced group homomorphism

/*: Ar —> Ar', ring homomorphism Rr —> Rr> and Sp (note the

direction!), etc. Furthermore, if / is injective and full (meaning that { f(v), f(w)}
is an edge in T' precisely when is an edge in F) then the corresponding

group and ring homomorphisms are injective.

1.5. Structure of the article. The article introduces and relies on quite a number

of different concepts (Hopf algebras, the Magnus map, These are introduced

one after the other in the following sections. In particular, Section 2 collects

some basic information about (restricted) Lie algebras and Hopf algebras which

we use as technical tools; we prove the first part of Theorem 1.5i in it.

Section 3 introduces the Magnus map, which embeds the group Ar into the

units of the partially commuting power series ring Rr, proving (1.3). We show

that this map is compatible with the central series filtrations (and dimension series

filtrations). The explicit knowledge of the structure of the power series ring can
be transferred to Ar to give the desired information about the latter. We also

prove Theorem 1.2 in it.

We next introduce cohomological notions in Section 4, and use them to prove
Theorem 1.3.

We study central series in more depth in Section 5, and prove there further

parts of Theorem 1.4ii. The remaining statements about the central series require
more knowledge on the Lie algebras Lr, which we describe in Section 6; we prove
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Theorems 1.4 i and 1.5ii there. We also complete there the proof of Theorem 1.5i

that pertains to Lie algebra cohomology.

Finally Section 7 proves Theorem 1.6 and Section 8 proves Theorem 1.7. We

apologize to the reader if the proofs are not given in strictly linear order; we

found it preferable to prove individual statements of the main results where the

appropriate tools were introduced.

2. Lie and Hopf algebras

We first recall from [Jac] that a restricted Lie algebra over k, in characteristic

p, is a Lie algebra equipped with an extra operation, written x i-> x^p\ called

the p-mapping and subject to the following axioms, where we use the standard

multi-commutator convention [x,y,z] — [x,[y,z]], etc. For all x,y in the Lie

algebra and a e k,

[y,x^] [y,x,... ,x] (p factors 'x'); apx^\
p-1

(x + y)^ x[/?] + y[p] + ^2 s'(x> y)
i 1

for the Lie expressions Sj(X, Y) defined by

~[X,tX + Y tX + Y] £>(*, yy with p - 1 factors 'tX + Y'.

For example, if p 2 then ,vi(À7 Y) [X, Y], and if p — 3 then ,vi(W, Y)
[Y, X, Y] and s2{X, Y) [X, F, X].

We adopt the convention that, in characteristic 0, every Lie algebra is restricted

with trivial p -mapping. This way, from now on we can uniformly work with
restricted Lie algebras.

Recall that every restricted Lie algebra L has a restricted universal enveloping

algebra, a unital associative algebra UP(L) equipped with a map of restricted

Lie algebras L —UP(L), universal with respect to this property. The Lie bracket

in L is identified with the commutator [x,y] xy — yx, and the p -mapping in

L is identified with the /»-power operation in UP(L). The map L UP(L) is

injective.
Recall next that a Flopf algebra is an associative algebra R equipped with

additional structure, in particular an augmentation e: R > k and a coproduct
A : R -» R 0 R which are algebra homomorphisms, and an antipode S : R —> R

which is an algebra antihomomorphism, subject to some axioms that we shall

not need; see [Swe].
We will use the following classical facts, see [Ser, Theorem III.5.4 and

Exercise 2],
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Proposition 2.1. The (restricted) universal enveloping algebra U(L), respectively

UP(L), is a Hopf algebra. The augmentation, coproduct and antipode are given

by

e: U(L) —s» U(L)/{L) k; A(x) x <g> 1 + 1 <g> x; S(x) —x Vx L.

In a Hopf algebra H, call x 6 H PRIMITIVE if A(x) x ® 1 + 1 ® x; the

primitive elements of H form a Lie subalgebra P of H. If the ring k is a

Jj-free module, then the primitive elements in U(L) coincide with L, while if L
is restricted and k is p-torsion then the primitive elements in UP(L) coincide
with L;

If a (restricted) Lie algebra over k is given by a (restricted) Lie algebra

presentation, then by the universal property the same presentation, now as a

presentation of algebras over k, defines its (restricted) universal enveloping

algebra. In particular, Rr is the (restricted) enveloping algebra of Lr or Lr,p,
respectively.

Proof of Theorem 1.5i. As a universal enveloping algebra, Rr U(Ly) is by

Proposition 2.1 a Hopf algebra (this also appears in [Sch ]), and its Lie subalgebra
of primitive elements P is equal to Lr or Lr.p, when considered as subset of
Rr in the obvious way.

We note for later use the following standard constructions, see also [Quil].

Proposition 2.2. If G is a group then the group ring kG is a Hopf algebra
with augmentation, coproduct and antipode given as follows:

s: kG k induced by the map G —> {1); A (g) — g®g; S(g) — g-1 Vg e G.

Furthermore, if H is a Hopf algebra and ru denotes its augmentation ideal

ker(e), then ®„>0 run/mn+x is naturally a graded Hopf algebra.

3. The Magnus map

3.1. Filtrations and gradings. We first recall that, since the relations of Rr
and Sfi are homogeneous, these rings are naturally graded by setting deg(v) 1

for all v V. We view Rp as a ring of polynomials in partially commuting
variables v e V.

Let us consider the augmentation ideal vj — {V) in Rr. It consists of all

polynomials without constant term. Note that mn then consists of all polynomials
with no terms of degree < n. We define a topology on Rr by declaring the sets
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m" to form a basis of neighbourhoods of 0, and let Rp be the completion of
Rr in this topology. We thus have

Rr mn/mn+l, Rr ]^[ tu"/uj"+1.
n>0 n>0

We write W for the closure of m in Rr It consists of all power series with

vanishing constant term, and similarly Wn consists of the power series with no
terms of degree < n.

For comparison, consider the group ring kAp, and let m(Ar) denote the

augmentation ideal of kAp; it is the ideal

(g - 1 I g e Ar) (u - 1 | u e V).

We topologize kAp by declaring the m(Ar)n to form a basis of neighbourhoods
of the identity, and let k/tr denote the corresponding completion. Moreover,
let gr(kAp) := ©,;>0 Tu(Ar)n/Tn(Ar)n+x be the associated graded algebra. We

isolate the main ingredient of Theorem 1.2:

Lemma 3.1. We have Rr gr(kAp) as graded algebras via the natural map

a: Rr -» gr(kAp); vj i-> [(wy — 1)] for vj e V.

Proof. The isomorphism between the degree-n subspace of Rr and m(Ar)n /
m(Ar)n+l can be proven by elementary considerations, since m{Ar)n/ru(4r)"+1
is generated by expressions (t>i — 1) • • • (vn — 1).

However, here is a somewhat more elegant shortcut: As we noted in

Propositions 2.1 and 2.2, kTr, gr(kTr), and Rr are all cocommutative

Hopf algebras, with coproduct induced respectively by A (g) — g 0 g, by

A([g ~ H) [(g — 1) ® 1 + 1 0> (g— 1 )] f°r g e and by A(u) v ® 1 + 1 0 v

for I' e V.
The map a: Rr gr(kTr) is a well defined map of unital graded algebras

because the defining commutation property for the Vj in Rr is satisfied for their

images, and all these elements are of degree 1. Moreover, we see that this map
is a map of Hopf algebras.

Finally, a is an isomorphism when restricted to the degree 1 subspaces, since

m/tu2 kF (Ar/[Ar, Ap]) <8> k ^ m (Ar)/m (Ar)2

Here, the last isomorphism is the standard isomorphism of the first group
homology Hl(A p;k) Ar/[Ap,Ar]®k as m (Ar)/tu (Ar)2. We conclude

by [MM, Theorems 5.18 and 6.11] that a is an isomorphism: it is a map between

cocommutative Hopf algebras both generated as algebras in degree 1 and the

map is an isomorphism in degree 1. This shortcut already appears in [Quil].
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Remark 3.2. An alternative proof of Lemma 3.1 was kindly suggested to us by

Jacques Darné: there are natural maps

Ar D V —> Rr and Rr D V —> kdr,

which induce isomorphisms k/lp <-> Rr by universal properties. Since gr Rr
Rr, the result (and the last statement of Proposition 3.6) follow.

Proof of Theorem 1.2. Lemma 3.1 gives an isomorphism between the degree-

n part of Rr and m {Ar)n / m (Ar)n+X Since Rr is graded and not only
filtered, its degree-« part is znn/mn+1, so we get the desired isomorphism
zun/mn+i m{Ar)n/Tu{Ar)n+x for each ne N.

3.2. The Magnus map. We turn to the fundamental tool we use in relating the

group Ar with the algebra Rr it is the "Magnus map"

Ar —> 1 + vu ç Rr ç Rr,
(3.1) R:

v h* 1 + v for v e V.

Here, Rr* is the group of multiplicative units of Rr We have to map to the

completion because we have to map u_1 to r(v)"1 1 — v + v2 — v3 -I which
is an infinite sum. It is immediate that the commutation relations between the

v eV defining Ar also hold between the /i(v), therefore /i is well defined.

It is easy to describe quite explicitly a basis of the polynomial ring in partially
commuting variables Rr This comes hand-in-hand with a kind of normal form
for elements of Ar'-

Definition 3.3. A word vef vLn" with vt c V and e' e Z is called V-reduced

if the number n of factors vef cannot be reduced by application of any sequence

of moves which are either

(Ml) remove u?,

(M2) replace the piece uf'uf+V ^ V;,+e, + ' (if u/ u; + i), or

(M3) replace by v*£lvp (if vi+i) e E).
Note that none of these moves increases the number of factors.

As we shall see in Proposition 3.5, the set of (M3)-equivalence classes of
T-reduced words is a basis of Ry ; more precisely, any set of representatives

of (M3)-equivalence classes of reduced words of length n forms a basis of the

degree-« component of Rr Indeed Rr is a monoid ring, so a family of words

forms a linearly independent set if the words represent distinct elements of the

monoid, or a fortiori of the group Ar
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In case k Z, or more generally if k has characteristic 0, it is known that
the Magnus map p is injective, see [Wad, Corollary 4.8], We adapt this argument
to k of non-zero characteristic, arriving at some of the original results of this

note:

Lemma 3.4. Let k be a ring of characteristic p > 0.

Consider g e Ar. There exists a maximal k N, and minimal s\,...,Sk e N,
such that there is a V-reduced monomial m tuf

'
• • w£

k
with non-zero

coefficient in p(g). This monomial is unique. Furthermore, if vefi Vn" is a

reduced representative of g then n k and Vi---v„ u>i and ps' |c,- and
the coefficient of m in p(g) is (e\p~Sl)---(enp~s").

Proof. Consider a F -reduced representative vef ven" of g. By definition,

p(vef venn) (1 + Ui)ei • • • (1 + v„)e"

which is a possibly infinite (if one of the c; is negative) F;,-linear combination
of words over V. Write ej ps> lj so that p does not divide tj. Because we

are in characteristic p, we have (1 + vj)e> (1 + Vj
1 fj

We may now apply a variant of Magnus's original argument [Mag, Satz I]:
Multiplying out (using the power series for the inverse), we obtain a multiple
of vf

' v% "
precisely once, with coefficient ^0gFp. Other terms

either have fewer syllables or larger exponents. The monomial v\---vn and all
other monomials with the same number of syllables and possibly larger exponents
are Y -reduced, because any sequence of moves which would reduce one of them

could be applied in the same way to the original iq' • • • v„" and would reduce its

number of factors, as well. Therefore the term uf
'

• • • vf " indeed is uniquely
determined as the T -reduced monomial in ß(g) with non-zero coefficient with
maximal number of syllables and minimal exponents.

Since j-i(g) is independent of the choice of representative of g, every
other F-reduced representative (Uj)e'i • • • (v'n,)e»' must satisfy n n' and

Vl v„ v[

From this (and we note it for further use) we may deduce that every element

of Ay has an essentially unique reduced representative:

Proposition 3.5 ([Wad, Theorem 4.14]). If vef and w{1 • • • Wm' are two
reduced words representing the same element of Ar, then one can he obtained

from the other by a finite number of applications of (M3). In particular, n m.

Proof. We note first by Lemma 3.4 that m n. We then proceed by induction

on m. Consider the equal elements veff • vefll and v~[e'w{1 Wm". The latter
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is not T -reduced, again by Lemma 3.4, so there must exist k e N with Wk — uj
and {ui.KJi} e E for all i < k. If /& ^ e\ then w{1 w£" is T-
reduced, yet again contradicting Lemma 3.4, so ft e\ and we apply induction

to vef ''' vm' and w(l w£k where the factor with hat is left out.

We express the first claim of Theorem 1.4ii as the following

Proposition 3.6. For arbitrary k, the Magnus map p: Ay —> Ry 'v injective.
It maps yn(Ay) into the subgroup 1 + m" of 1 +zn C Rr- We get an induced

map of graded Lie algebras

Fl- 0y«(-4r)/y«+i(/lr) -» 0(1 + wn)/{\ +mn+x) ^ 0 mn/mn+l c Rr.
n>1 «>1 «>1

where the Lie algebra structure of Rr is the one induced from the algebra
structure.

The algebra map induced by p on the group algebra ik A y extends continuously
to an isomorphism of filtered associative k -algebras

p : k/lr —> Ry.

In particular,

kAr/tun{Ar) kAy/Tnn(,Ay) Ry/tu" Ry/m" gr(k4r)/ gr(k4r)>«,

using Lemma 3.1 for the last isomorphism. As k -modules, these are of course
also isomorphic to (Rr)<n "r(k Ay) <n.

Proof. Let k' be the image of Z in k; it is either Z or Z/N for some integer N.
The case Z is already covered; if k' Z/iV, let p be a prime number dividing N.
We prove the stronger statement that the composition Ay Rr -» Rr is

injective, i.e., we assume without loss of generality that k Fp. Injectivity of

p for k Fp directly follows from Lemma 3.4.

It is an elementary calculation in non-commutative power series that the 1+W
form a central series of subgroups of 1 + W. By the minimality and functoriality
of the lower central series,

yn( 1 4- W) ç 1 +mn and then p(yn(Ay)) ç 1 +mn.

Elementary calculations in the non-commutative power series ring also show that

we have an isomorphism of associated graded Lie algebras

0(1 +Wn)/(l +W)n+1 + w] h* [in]
n>1 n>1
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where the right hand side is the graded Lie algebra structure underlying the

associated graded algebra Rr (with only the central summand m/ml of Rr
missing). As Rr is already a graded algebra, it coincides with its associated

graded. For details of these computations, compare, e.g., [Wad, Lemma 4.10].

Finally, the induced algebra map kAp —> Rr is compatible with the

augmentation homomorphisms as the same is true for the initial map /x: rip ->
1 + W (all elements on the left and on the right have augmentation 1

Consequently, it preserves the filtrations by powers of the augmentation ideals
and induces a homomorphism gr(/x) on the associated graded algebra. On the

generating set V this homomorphism is evidently the inverse of the map a of
Lemma 3.1.

We learn that our homomorphism of complete filtered algebras /x: kAp —> Rr
induces an isomorphism of the associated graded algebras. By general theory
therefore ~fi itself is an isomorphism. In more detail, kAp is the inverse limit
of the kv4r/rrr"(/4r), and correspondingly for Rr. Inductively and using the

54emma, Jt/m": kAp/nT'TAp) -> Rr/mn is an isomorphism (as ~JZ/mn is the

extension of ~fi/jnn~x by the isomorphism gr(/x)„). Finally, ~fi is an isomorphism
as limit of isomorphisms.

4. Cohomology

A (topological) way to define and compute the cohomology of a discrete

group G is via a classifying space XG By definition, this is a connected CW-
cell complex with jti(Xg) G whose universal covering is contractible. We

then have H*(G;k) H*(XG\k).

Proof of Theorem 1.3, first claims. To compute the structure of the cohomology
ring //*(4p;k), we first show that AT of (1.1) is a (particularly nice) classifying
space for rip The space AT inherits a CW-cell structure (indeed a cube complex
structure) from the product cell structure of (S1)1', where S1 has just one 0-cell

{*} consisting of the base point and one 1 -cell. Then AT has a single vertex
*v and precisely one loop (S1)'"' x for each generator v e V. The

2-cells in AT give the commutation relations. By the standard computation of
the fundamental group of CW-complexes (based on the van Kampen theorem)
we then have n\(Xr,*v) Ap.

Furthermore, the link of the single vertex in AT is a flag complex, since every
subset of a clique is a clique. Therefore, Ap is a cube complex whose link is a

flag complex, so AT is a locally CAT(O) space [Gro], see [BH, Theorem 5.18],

so its universal cover is contractible.
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The cells given in the expression of Xy above form a basis of the homology
of Am : the differentials in the cellular chain complex vanish identically, because

every cell sits in a subcomplex which is the cellular chain complex of a torus
with precisely this property. Note that we get a basis of //*(Ar;k) as free k-
module by the images of the fundamental classes of all subtori Tc where C

runs through the cliques in F. As the homology is finitely generated free, the

cohomology is canonically the dual of the homology. We see that H*(Xr;k)
is precisely the quotient of the exterior algebra H*(TV; k) /\*(kK), the

cohomology of the ambient torus Tv, by the submodule generated by all products

Vi...vr such that iq vr do not span a clique in F. The comparison map
is induced by the inclusion Xy ^ Tv. That this map is surjective with the

claimed kernel follows by naturality and the know (co)homology of Tv, together
with the information about the rank of f/*(JVp; Ik we obtained from the cellular

complex. Now the quotient algebra is precisely the algebra .S'r and we have

proven H*{Ay,k) H*(Xy; k) Sr as algebras.

We note that H*(AT;k) Sr has a natural k-basis indexed by cliques C
in F: a degree-k basis element corresponding to a clique C {uo,...,ujfc-i} is

given by the product vc '= '7-1 •vo ~ to make this definite, we pick a total

ordering of the vertices and write the factors in decreasing order.

4.1. Koszul algebras. Returning to general theory, consider a graded associative

algebra R presented as T(W)/I for a finitely generated free k -module W, its
tensor algebra T(W) and an ideal / < 77IF). In case / is generated by a subspace

/2 of IF®2, the algebra is called quadratic, and it then admits a quadratic dual
R! := T{W*)/(Ij )', here by I^ we mean the subset of (IF*)®2 ^ (tp®2)*
annihilating /2. Clearly R-! ^ R. Now, with kF the free k-module with basis

V, setting

Gr (v 0 w — w <S> v for {u, w} e E) c kF®2,

Gs '= {v 0 w for {u, m} ^ E, v <g> w + w <8> v for {v, w} e E) c kF®2,

we have as algebras

Rr T(kV)/(GR) and Sr A*(kF)/(u A w for {u, w} £ E) T(kV)/{Gs).

Let us identify kF®2 with (kF®2)* via the basis {v <g> w \ v, w e V) and its
dual basis. Then Gs is the annihilator of Gr (they clearly annihilate each other,
and the ranks add up to the total dimension |F|2), and therefore Ry and .S"r are

quadratic duals of each other.

Recall that a quadratic algebra R is called Koszul if its Koszul complex
is acyclic, see [LV, §3.4.3]. We recall the Koszul complex (in our concrete
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situation) below and we mention that this is only one of a number of different

equivalent characterizations of the Koszul property. It implies that the Yoneda

algebra Ext^(k.k) is isomorphic to P!, compare [Pri, Theorem 2.5].

Proof of Theorem 1.3, second claim. We now show that Pp and Sr are Koszul.
We use the fact [LV, Proposition 3.4.5] that a quadratic algebra is Koszul if and

only if its quadratic dual is. Therefore it suffices to prove the Koszul property for

Sr, and for supercommutative (ah (—1 )degadegi/ra) algebras there is a simple
sufficient (but not necessary) condition, the existence of a quadratic Gröbner
basis [Yuz, Theorem 6.16], Recall that a Gröbner basis for an ideal / < A*(kV)
is a set G of generators for / such that the leading terms (with respect to a

compatible order of monomials) of elements of G generate the same ideal as the

leading terms of all elements of / Now G {u A w | {u, w} £ E) is a Gröbner

basis, as follows from Buchberger's criterion: "for all /, /' e G whose respective

leading terms g, g' have least common multiple I, the syzygy (t/g)f — (l/g')f
must vanish".

Alternatively and without using Gröbner basis, the work of Fröberg [Fro, in

particular Section 3] also implies that Rr (and .SY are Koszul. His proof runs

essentially as follows and uses directly the Koszul complex of Rp which we

now construct. Consider the right Rr -module P* — HomtfSp, Pr). Recall that,

qua k-module, Np is finitely generated free with basis indexed by cliques in T.

Consequently, this basis induces an isomorphism P* -^4 0cucPr, where the

sum is over the cliques in T. It is bigraded by Sr- and Rr -degree. Consider
the map d : P* —» P* with

d(f)(p) ^vf(vp) for / e P*, p e Sp.
veV

In our basis, d((vk-\ • vf) r) XX-1)7 (vk-\ • • • pf • • • Uo) • Vjr. A direct

computation shows that d2 — 0. Note that d increases the Pr-degree by 1, and

decreases the Sr -degree by 1, so (P*,<i) becomes a chain complex of finitely
generated free Pp-modules, graded by Sp -degree.

To prove acyclicity of the Koszul complex (P*,d) we define a chain

contraction map ,v : P* P*+1 of k-modules as follows. Recall that we have a

k-basis of P* given by elements vc-w for a clique C of V and a basis element

w of Pp given as a F -reduced monomial over V according to Definition 3.3.

To define s(vc w) we consider two cases. If we can write w vw' in reduced

form with v e V and with w' a word in letters from V in such a manner that

v < minC (for the total ordering on V picked above) and such that C U {u}
is a clique of T, then we choose v minimal with this property, and we set

s(vc vw') := wcu{v) • w'. Otherwise, we set s(vc w) 0.
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We now carry out the elementary calculation to see that s is a chain

contraction, meaning sd +ds 1 — e, where e: P* -* k is the augmentation map,

projecting onto the summand of bidegree (0,0). For this, consider x vc w

The calculation splits into three cases.

(1) If C — 0 and w 1, then (sd + ds)(x) 0 (1 — e)(jc).

(2) Assume that C {vo,...,t>fc} 0 and w cannot be written in the form

w — vw' as above. Then

ds(x) 0 while sd(x) 2_)(—l)J's((ufc-i •••vj up) • Vjw).

By hypothesis, no letter in w can be swapped with vj and added to C\{uy },
so all summands vanish except the 0th which is x.

(3) Assume that C {no, • • v^} and w can be written in the form v~iw'
such that C U {u_i} is a clique in T, with u_i < minC, chosen minimal

among all such possibilities. Then r_i commutes with all vj, so

k—1

sd(x) ^2(-\)Js(vc\{vj} -VjV-iw') • Vjw',
7=0

k—1

ds(x) d(«cut»} • w') ^2 (-l)J+1wc\{vy-}u{v_1} ' vjw',
j=-1

and the terms cancel pairwise except the one with j — — 1, giving again

(ds + sd)(x) x.
It follows that P* is a free AT -resolution of k.

We note that the usual definition of Koszul algebras is given over fields of
characteristic 0; however, in our case, we need not impose any restriction on the

commutative ring k (other than interpreting (kF)* as naturally isomorphic to

kK), since the rings and ST are k-free.

5. Central series

5.1. Labute's general theory. Labute gave in [Lab] a condition under which a

presentation (V \ 71) of a group G determines a presentation of the associated

Lie algebra L(G) := ©n>1 y„(G)/yn+i(G). Such a group presentation is now
called "mild", and Anick gave in [Ani] a valuable criterion for this to happen:

view all re TZ as elements of the free associative algebra T(ZL), under the

Magnus embedding Fy -» T(ZV). Let n be such that r — le vjn \ mn+l,
and let r' denote the image of r in the quotient mn/wn+ l. Then {V \ TZ)
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is mild if and only if {r' \ r e TV) is "inert". We need not define here the

meaning of "inert" (a.k.a. "strongly free", see, e.g., [HL]), but merely note that

there are powerful sufficient conditions guaranteeing that a set is inert in the

free associative algebra, one of them being that it forms a Gröbner basis. It
follows then quite generally that the Lie algebra L(G) admits as presentation

(V I r' Vr e TV), see [Lab, Theorem 1]; and a similar statement holds for the

restricted Lie algebra ©„>j Xn,p(G)/\n+ltP(G), see [Lab, Theorem 3], Labute's

conditions are non-trivial to check, so we shall in fact recover his results rather

than use them.

5.2. First easy results for RAAGs. By Proposition 3.6 the rings Rr/arn and

kTr/mfG)" are isomorphic, so the dimension subgroups 8n,ß and S„,ik,4r are

equal. This establishes the corresponding part of Theorem 1.4ii, in particular (1.5).

Furthermore, since the Magnus map p has image in the subring of Rr generated

by 1 and V, the groups 8ndepend on k only via the image k' of Z in k.
We consider two cases: if k has characteristic 0 then the dimension subgroups

associated with the rings k and Q agree. If, on the other hand, k has characteristic

p, then the dimension subgroups associated with the rings k and agree. In
all cases, we reduce to the case k e {FP,Z}.

Proof of Ecjimtion (1.4) of Theorem 1.4ii. We apply the classical results of
Jennings and Hall. For k Q we have yra>o S„xAr ; compare [Jen2, Hal2] which

treat the case of torsion-free nilpotent groups to which the general case easily
reduces. For k Fp we have yn,p 8n^Ar \ compare [Jenl] which treats the

case of finite p -groups to which the general case easily reduces. Since we already
established (1.5), Equation (1.4) follows.

Proof of second part of (1.2) in Theorem 1.4 i. In Rr, clearly or" — {()}.
As p is injective by the already established (1.3), it follows that D«>o &n,ß {'}
and therefore by (1.4) also f\>o>Vo 0} f\>0}Y/>- 1=1

6. Lie algebras associated with Y

Recall that the cohomology of a Lie algebra L, defined as Ext[/(£)(k,k),
may be computed using its Chevalley complex (f\*(L°),d), with L° the "small
dual" of L, namely

L° {f e L* I ker0 contains a finite-codimensional ideal},

and the differential d \ L° -» /\2 L° is the dual of the Lie bracket map f\2 L -* L
(extended to all degrees by requiring d to be a graded derivation). Note that
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L° is just so defined that the image of d belongs to /\2 L ° C (/\2 L)*. Since

/\*{L°) is a graded commutative algebra and d is a derivation, the homology

(/\*(L°),d) is naturally a graded commutative algebra.

Proof of Theorem 1.5i, Lie algebra cohomology of Ly. The enveloping algebra
of Ly is Rr, which is Koszul with Koszul dual Sy, so we have

H*(Lr, k) (L°), d\ ExtRr(k,k) ST.

Note that /\* If admits two gradings, one as an exterior algebra and one inherited
from the grading of Ly. In H*(/\*(L°),d), these two gradings coincide - this
is precisely the content of Sy being a Koszul algebra.

In the following, we write L for Ly if the characteristic of k is 0, and for LytP
if the characteristic of k is p, and view L as a subset of Ry U(L). Following
Magnus' method [MKS, Theorem 5.12], consider x e L„, i.e. homogeneous of
degree n. Then x is a linear combination (with coefficients in k) of a collection
of bracket arrangements 0, <pi(vi,...,vn). The assignment

Ln 3 (pi i-> <t>i(yvn) e y„ ç Ay

is well defined on the subset of bracket arrangements, since [u, ui] 1 e Ay for
each {v,w} e E. It extends k-linearly to a map

v: Ln Yn/Yn+I Ik

of k-modules. This map is clearly surjective, since yn/Yn+1 is spanned by n-
fold bracket arrangements, for an arbitrary group. Furthermore, the composition

/xlov: L -> Ry with given in Proposition 3.6 is a Lie algebra map sending v

to v. Therefore this composition is the inclusion of L into Ry and is in particular
injective. This implies that v is an isomorphism with inverse the Magnus map

RL

Proof of Theorem 1.4i. Consider k Z. Since Lr is Z-free, it follows in

particular that yn(^4r)/y«+i(^r) is torsion-free for each n, and therefore

fn,o04r) Yn(Ay) for all n.

Proof of Theorem 1.5ii, first two claims. The isomorphism v identifies Ly and

®„>i(y«/y«+i) k.

Proposition 6.1. Consider k a ring in which p is regular (namely px 0

=>• x 0), and define the ideal mp (p, V) of Ry.
The associated graded ring ®„>0 ^/t^p + l is isomorphic to Ry <g>z Wp[it},

with 7i of degree 1 mapped to [p] e wpj tu£ under the isomorphism.
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Proof. Powers of mp define a new filtration on R?, in which v V still
has degree 1, but in addition p also has degree 1 ; thus for instance p2v3

belongs to the fifth term of the filtration. The ring Rp is k-free. When

passing to the associated graded ring for the new grading, we get on the

one hand Q)Tnp /mp+l. On the other hand, this graded ring is obtained from
the old associated graded (which is the graded algebra Rr) by replacing each

copy of k by its own associated graded under the filtration (/?"), namely by

©«>o p"k/p"+1k (k//7k)[jr] ; it is here that we require p to be regular. This

replacement amounts to tensoring over Z with Wp{n].

In case p > 3, we are now ready to identify the non-restricted Lie algebra

®n>\^n,p/^n+\,p with Lp Fp[;r]. Let us temporarily write
ßn /x—

1
1 +W"). We make the following claim.

Lemma 6.2. For p > 3 prime, the Magnus map p induces a composition of
(,non-restricted) Lie algebra isomorphisms over Fp[jt], still written pl,

PL- ® ^n,p /^n+ l,p * ® ßn/ßn+i -* Lr Fpfc],
n>1 n>1

with the first map induced by inclusion Xn,p < ßn and the second map induced

by ßn/ßn+i 3 [1 T a] h» a e mp/mp+x.
In particular, we have ßn Xn,p.

Proof. To check that the first map is well-defined, it suffices to show An,p<ßn-
We have mp — ^Zm+i>n Plvjm Consider g e ym, so by definition p(g) \ + x

for some x e mm We then have ji(gp' (1 +x)p' \+ plx-\ e 1+

so piYm) ^ 1 + Since \n>p T\m+i>n Ym we have shown Xn>p < ßn.
Because the Magnus map /x: rip ->• 1+W c ^p is injective by Proposition 3.6,

so is the induced map ßn/ßn+\ (1 +nf^)/(l +m"p+l) TUp/tup + l, which is

our second map.
Since p > 3, the assignment jr • [g] := [gp] for g A„,p (with gp e \n+\,p)

gives 0A„j;P/An+isp the structure of an [rr]-module. For this we use the

Hall-Petrescu identities [Hall, Theorems 3.1, 3.2]: If g,h belong to an arbitrary

group G, then (,gh)p gphp[h, g]"a(g,h) with n — (^) and af, a universal

expression in y3. This implies (gh)p gphp mod yn+2,P for g,h e y„tP if
either n >2 or n — 1 and p > 3. However, beware that if n 1 and p — 2

then this does not hold in general, so the p -power operation is not linear. We see

that pl maps this /?-power operation to multiplication by n on Lp Fp[jt].
It follows that pl is an Fp [n] -Lie algebra homomorphism. Its image contains
V which generates Lp, so pl is surjective. Finally, Lp <g>z F^tt] is the free
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Lie algebra over ¥p[jt] modulo the relations [t?,iu] 0 for {u,u>} e E. Those

relations are clearly satisfied in the F^f^J-Lie algebra 0M>1 Xn,p/Xn+i,P, so the

map hl is an isomorphism.
It then follows that the second map is surjective and therefore an isomorphism,

so the first is also bijective, from which we deduce ßn Xn_p.

Proof of Theorem I Aii, 0/t — ynp in characteristic p. Let k be an algebra

over Fp. By [Quil], the Lie algebra ®„>i(}/«,j,/)/«+i,p)<8>zk is isomorphic to the

primitive subalgebra of ®„>0 m{Ar)n lm(Ar)n+l Rr, namely to Lr.p

Proof of Theorem 1.5ii, last claim. This is precisely Lemma 6.2 and Proposition

6.1.

7. Growth series

We derive now some relations between the Poincaré series of Sr, Rr, Rr
and Lr,p from general considerations. We recall that, for a graded algebra
R 0„>o Rn its Poincaré series is <3>R(t) E»>o rank(tf„)l".

Proof of Theorem 1.6. First, we use Koszul duality between R r and .ST to deduce

• T>sr(—f) 1, see [LV, Theorem 3.5.1]. This relationship between the

Poincaré series of Rr and ST was already noted in [CF, SY],
We have 0Sr(f) E«>0 rank Hn(Ar, k)t" E„>o c«(r)t" > with c«(r) the

number of «-cliques in T, from our explicit basis of Sr given in Section 4.

The relation between T/q and 4>^r is given by the Poincaré-Birkhoff-Witt
theorem, namely the fact that Rr and the symmetric algebra over Lr, respectively
the degree-/? truncated symmetric algebra over Lr,p, are isomorphic as graded

k-modules. It is expressed by the relation

£<** - n - n
«>0 n> 1 v 7 n> 1 v 7

if OÄr(0 J2n>oant", 4Yr(0 E„>i b„tn, and OLr /)(0 E„>i <V" •

Finally, we consider the growth series of the group Ar - It is the function

0^r(t) Ege/tr?"^"' whh IItII the minimal number of terms of V U V~l

required to write g as a product. We cite [AP]:

4.,re) 4.*r(®).
Indeed, as we saw in Proposition 3.5, every element g Ar can be written in
the form g vef if," for some cy e Z \ {0} as a word of minimal length; and
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this expression is unique up to permuting some terms according to rule (M3).
Let / be the set of (M3)-equivalence classes (iq vn) of minimal-length

sequences. For an element [iq vn] of /, the collection of all such terms

Dj1 • • • ven" contributes (/ + t2 + t3 +)" (t/( 1 - t))n to the growth series of
Rr because each e, can be an arbitrary positive natural number; and it contributes

(2t/(l —t))n to the growth of Ap, taking into account the signs of the e,-. Since

we obtain all elements of Ar and all basis elements of Rr that way, we have

^(0 E(^7)'-E(T^Ö)' ^(TT7)-

using 2t/(\ —t) — (2t/(l + ?))/( 1 — 2//( 1 + /))• We have hnished the proof of
Theorem 1.6.

8. Malcev completions

In this section we fix Ik Q. Recall from [PS 1] that a Malcev Lie algebra is a

Lie algebra L over Q, given with a descending filtration (L„)„>i of ideals such

that L is complete with respect to the associated topology, and satisfying L\ L
and [Lm,Ln\ L Lm+n and such that ®„>i Ln/Lll + \ is generated in degree I.
Every Malcev Lie algebra admits an associated exponential group exp(L), which
is L as a set, with product given by the Baker-Campbell-Hausdorff formula

x • y x + y + [x, y]/2 -\

Lazard proved in [Laz] that every group homomorphism p: G —» exp(L)
induces a morphism of graded Lie algebras ©„>! Yn/Vn+i ®„>x Ln/Ln+x.

A Malcev completion of a group G is a homomorphism p : G exp(L)
for a Malcev Lie algebra L, universal in the sense that every representation
G/Vn exp(L') for a (nilpotent) Malcev Lie algebra L' factors uniquely through

exp(L/L„); see [PS1, Definition 2.3].

Quillen gave a direct construction of the Malcev completion of a group
in [Quil, Qui2]: let QG proj limQG/mn be the completion of the group
ring; then QG is a complete Hopf algebra. Let L be its Lie subalgebra of
primitive elements; it is a Malcev Lie algebra for the filtration Ln LC\tnn. Let

exp: L —> QG be the usual power series map exp(x) 1 +x+x2/2-| which
makes sense in QG. Then its image G := exp(L) is a subgroup of the group of
multiplicative units. It identifies with the Lie group associated to the Malcev Lie
algebra L, and it consists precisely of the grouplike elements in QG, namely the

g 6 1 + m satisfying A(g) g ® g. The representation p: G -> exp(L);g g
is the Malcev completion of G.
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The Magnus map /z: Ap -> Rr yields an isomorphism of associative algebras

Q A p Rr Both algebras are actually complete Hopf algebras, but the Magnus

isomorphism does not preserve the Hopf algebra structure: v e V c 0 A p is

group-like, meaning A(v) — v 0 v while v e V C Rr is primitive, meaning

A(v) v 0 1 + 1 ® v ; so A(ß(v)) A(1 + v) 10 1 + v 0 1 + 1 0 v while
(/X 0 ß)(A(v)) (1 + v) 0 (1 + v).

The Magnus map ß is, in fact, the truncation to order 1 of a Hopf algebra

isomorphism ßexp: QTp Rr, given on v e V by the classical exponential
series

Rcxp(v) J2 1 + v + 0(v2).
n>0

Proof of Theorem 1.7. The proof that /xeXp is an isomorphism of filtered associative

algebras is exactly the same as that of Theorem 1.4ii, and will not be repeated.

On the other hand, the fact that /xexp is a coalgebra map follows formally from
the fact that the power series exp maps primitive elements to group-like elements:

AOexpOO) A(^~V/«i) X] A0)7«!
«>0 «>0

_
(U <g) 1 + 1 <g> v)" _ y—x (v (gl 1)£(1 (gl v)m

" n\ " t\m\
n> 0 l,m> 0

(exp v ® 1)(1 <g) exp v) (ßexp <g) ßexp)(A(u)).

We have proven the first claim.

It now suffices to use this isomorphism /zcx|l to make even more concrete the

construction of Quillen sketched above: in QAp the space of primitive elements

is slightly mysterious, for example, it contains

log(g) log(l -(1 -g)) -]T(1 — g)n/n Vg G Ar.
n> 1

In contrast to this, its exponential is the Malcev completion naturally containing
Ap In Rp the opposite holds: the space of primitive elements is the Lie subalgebra

Lr while its exponential cannot be better defined than as the exponential of Lp.
In all cases, the Hopf algebra isomorphism /xexp directly yields the remaining

claims of Theorem 1.7.

We now turn to formality in the sense of Sullivan in rational homotopy theory.
A finite CW-complex X is called formal if its algebraic minimal model is quasi-

isomorphic to (H*(X;Q), 0). This implies that the rational homotopy type of X
is determined in a precise way by its rational cohomology ring. For details on

rational homotopy theory compare [Sul] or the more recent [FHT].
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We finally prove that the space Ap constructed in Section 4 is formal. Recall

that we defined Ap as a (cubical) subspace of the smooth manifold (R/Z)F.
It makes perfect sense to restrict smooth differential forms on (R/Z)K to Ap.
We dehne A*(Ap) to be the algebra of all such restrictions; it is a commutative
differential graded algebra (cdga). It is an easy exercise that this cdga is quasi-
isomorphic to the standard cdga over R of rational homotopy theory associated

to Ap. There are basic one-forms dxv on (R/Z)F coming from the obvious
coordinate functions, for v e V. Their images in A * Ap generate a sub-cdga
with trivial differential, whose homology is //*(Ap;R) by Theorem 1.3. The

inclusion of this sub-cdga in T*(Ap) is a quasi-isomorphism, showing that Ap
is formal.

We now explicitly exhibit a minimal model for Ap. Recall from Section 6

the Chevalley complex (/\*(L^),d) of Lp. Note that Lp is graded, and L°r

may be identified with the graded dual of Lp. Consequently, there is a natural

map L°r -» Q V given by restricting to the degree-1 part. This map induces

a map of graded algebras /\*(L°r) —> A*W/)/(u A w f°r {v,w} fi E) — Sr.
Even better, this is a map of cdgas from the Chevalley complex to Sp, the latter

equipped with zero differential, and indeed is a quasi-isomorphism. These are
manifestations of the Koszul duality of Sr and Rp U(Lp). As Ap is formal
and Rp H*(Ap;Q) we conclude that /\*(L^,d) is a minimal model of Ap.

Here is yet an alternative proof: a group is called 1 -formal if its Malcev Lie
algebra is quadratic. It therefore follows from Theorem 1.7 that Ap is 1-formal.
The cohomology ring H*(Ar;Q) S'p is Koszul by Theorem 1.3, so Ap is

formal by [PS2, Proposition 2.1],

9. Outlook

9.1. Subgroup growth. Baik, Petri, and Raimbault determined the subgroup
growth of Ap in terms of the graph T. Dehne s„ (A p) as the number of
subgroups of Ar of index precisely n. Then [BPR, Theorem A] establishes

log(,v„04r))
hm ,——- a(T) - 1,

n ^oo n 10g(«)

i.e., sn{Ay) grows like («!)a<r,~' Here, a(T) is the independence number of
T, the largest number of vertices such that the full subgraph of F spanned by
them is discrete.

We do not discuss the rather complicated proof here. We leave it an open
question to find a corresponding result for the growth of the number of finite
index Lie subalgebras of Lp. Indeed, we expect that these two series are closely
related and that the latter is slightly easier to control than (.v«(/tp))„6N.
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We have identified y„,p{Ar) with &n,¥PpAr in Theorem 1.4ii. For a group
G, we could define yn,pe as the subgroup generated by y„ and all yf with

ipJ > npe~l. When G is free, it was shown by Lazard that yn,pe(G) coincides

with the dimension subgroup Sn,z/PeZ[G] while this does not hold for general

G, see [Mor].
We leave it as an exercise to extend Lazard's result to A r.

9.2. Homology gradients. Given a group G and a nested sequence of finite
index normal subgroups Gn < G with [~\n Gn {1}, one defines for a field k
the k-homology gradients

A-2)(G;k) := lim sup ^ for i e N.
» [G : G„\

For general groups G, it is unclear whether this quantity depends on the particular
chain {Gn}. Until recently, it was also unclear in which manner this quantity
depends on the coefficients k. Avradmidi, Okun, and Schreve in [AOS] use

the classifying space Xp and induced cell structures for coverings to explicitly
compute these homology gradients. Let Fr be the flag complex generated by F,
i.e., the largest simplicial complex with vertex set V and edge set E. Then

bf\AT\V) =b~l(Fv-k)

where £>*(Fr;k) denotes the dimension of the reduced homology of Fr. In

particular, for RAAGs the homology gradient is independent of the chain of
normal subgroups, even though in many examples it does depend on the field of
coefficients k.

Acknowledgments. We are deeply grateful to Jacques Darné, Pierre de la Harpe
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