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The Conway-Sloane calculus for 2-adic lattices

Daniel ALrLcock, Itamar GaL and Alice MARK

Abstract. We motivate and explain the system introduced by Conway and Sloane for
working with quadratic forms over the 2-adic integers, and prove its validity. Their system
is far better for actual calculations than earlier methods, and has been used for many years,
but no proof has been published before now.
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1. Introduction

Our goal in this paper is to explain the system that Conway and Sloane
developed for working with lattices (quadratic forms) over the ring of 2-adic
integers Z,. Algorithms were already known for determining when two lattices
were isometric, and for finding a canonical form for each one. But these were
clumsy. In his influential book on quadratic forms, Cassels even wrote about
2-adic integral canonical forms: “only the masochist is invited to read the rest
of this section” [Cas, §8.4]. To this day, 2-adic lattices retain their reputation for
complexity.

But the 2-adic part of a lattice over 7Z is its most important part. Many
questions about Z-lattices reduce to p-adic versions of the same questions,
where p varies over the primes. For example, consider the question of whether
one Z-lattice is isometric to another. We restrict to the case of rank > 3 and
some fixed indefinite signature, because then it is (almost) true that an isometry
exists if and only if one exists p-adically for each p. Most questions about
p-adic lattices are easy for odd p, including this isomorphism problem. So all
the real work takes place at p = 2. Other examples of questions with this same
flavor are whether a lattice represents a given number, or whether one lattice
admits another as a direct summand (or as a primitive sublattice). See Section 2
for a little more on this larger picture.
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The Conway-Sloane calculus [CS, ch. 15] is much simpler than previous
approaches to 2-adic lattices, for example the original papers on invariants and
canonical forms by Pall [Pal] and Jones [Jon]. It is widely used in modern
applications, for example [Alll, BEF, HM, Tur|. The innovation of Conway and
Sloane was to introduce “oddity fusion” and “sign walking” operations, which are
notationally simple and generate all equivalences. Strangely, their formal statement
of results (their Theorem 10) completely avoids these operations. So it has the
same unwieldy feel as the papers of Pall and Jones just mentioned. Proofs of
their theorem appear in [Xu]| and in Bartels’ unpublished dissertation [Bar]|. But
the literature contains no treatment of the calculus as it is actually used. We hope
to make it more accessible. All is new here are the “givers” and “receivers” of
Section 4, and the “signways” of Section 6. In particular, we use signways to
correct an error in their formulation of canonical forms.

Here is a fairly detailed overview of the calculus. Our goal is to show what
it looks like and what it involves, rather than to explain it properly. For that, see
the formal development beginning in Section 3.

Unimodular lattices. The first step in all approaches to 7, -lattices is to classify
the unimodular ones. Conway and Sloane indicate them by symbols like L = l;’ 2
or 133 or 1;*. The main number 1 says that 1. is unimodular (over Z»). If L is
even, which is to say that all norms are even, then the subscript is II. Otherwise,
L is diagonalizable and the subscript is the oddity o(L) of L, meaning the sum
mod 8 of the diagonal terms in any diagonalization. As defined in this paper,
the oddity is not a lattice invariant in general. But for unimodular lattices it is,
because for them it coincides with the 2-signature, which is an invariant. See
section 3 for more discussion. The superscript is not a signed number, but rather
a sign and a separate nonnegative integer. The integer is dim L. The sign is +
or — according to whether det(L) = £1 or £3 mod 8. The sign, dimension
and oddity turn out to determine the isometry class of L. We prove this in
Theorem 5.1.

An example of the notation: the lattices with diagonal inner product matrices
(1,—1,3), (—1,—1,-3) and (3,3,—3) are all unimodular, with determinant 43
(up to squares), hence sign —. They also have dimension 3 and oddity 3 € Z/8.
So they are isometric to each other, and we write 132 to represent their isometry
class. We built these lattices by starting with the symbol 132 and choosing three
terms inside (...) to have product £3 and sum 3 (both mod 8). In this way it
is always easy to construct representative lattices for any symbol 1.

The symbols behave cleanly under direct sum: signs multiply and dimensions
and subscripts add. For subscripts this means addition in Z/8, together with the
special rule 1+ ¢ = . For example, 157 @ 13° @ 17* = 137,
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Jordan decompositions. A general 7Z,-lattice can be expressed as a direct sum,
where the terms are got by rescaling unimodular lattices by distinct powers of 2.
This is called a Jordan decomposition and the terms are called Jordan constituents.
Conway and Sloane use symbols like 177, 252, 417 and 64;? to indicate them.
These lattices are got from the unimodular lattices with the same decorations,
namely 1;‘2, I 1]"3 and liz, by scaling inner products by 1, 2, 4 and 64
respectively. The scale of each term means this scaling factor. The type is I or I
according to whether the unimodular lattice is odd or even. A general Z,-lattice
is a direct sum of such terms, for example

(1.1) 122,243 16! 322 64,2 1281 2561512,

where we have suppressed + signs in superscripts and @ symbols between the
terms. A Jordan symbol means an expression like (1.1), describing a Jordan
decomposition. We will use this example many times: it is complicated enough
to illustrate many phenomena.

There are two main ways that the case of p an odd prime is simpler than the
p = 2 case. The first is that the unimodular classification is simpler: one needs no
subscripts. The second is that the Jordan decomposition is unique up to isometry.
So when p is odd, understanding a p-adic lattice amounts to a writing down
something like (1.1) without subscripts. Equivalences between distinct Jordan
decompositions are the subtle part of 2-adic lattice theory. Conway and Sloane
introduced oddity fusion and sign walking to organize these equivalences.

Oddity fusion. An example of nonuniqueness of Jordan decomposition is
(1.2) G, = A e e

These are the same except for the oddities (subscripts) of the terms, and in all three
cases the sum of the oddities is 3 mod 8. This illustrates a general phenomenon
called oddity fusion: when the scales of a sequence of Jordan constituents are
consecutive powers of 2, and the subscripts are oddities rather than “II””, then
those constituents “share” their oddities.

To express this more formally we say two terms of type I are in the
same compartment if the terms at all intermediate scales also have type I.
In example (1.1) there are three compartments: one consisting of the terms of
scales 2 and 4, one consisting of the term of scale 16, and one consisting of
the terms of scales 128 and 256. (The scale 8 term is unwritten because it is
0-dimensional. But it has type I, hence separates 2 and 4 from 16.) Usually
one indicates the compartments with brackets, for example

(1.3) 1% [2:%47  [[187] 327 645 1281, 2561512 *
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The brackets are usually omitted for a compartment consisting of a single term,
so here we would omit the brackets that enclose 16].

“Oddity fusion” means that two Jordan symbols J, J’, which are the same
except for the subscripts in a compartment, represent isometric lattices if the sum
of the oddities over that compartment in J is equal to the corresponding sum
in J'. Therefore we record this sum (the compartment’s oddity) rather than the
oddities of the individual terms. We attach it as a subscript to the closing bracket.
For example, we write [27243]; rather than any of the three Jordan symbols in
(1.2). This notation displays less information, while still capturing the isometry
class, so it is more canonical. After oddity fusion, our example (1.3) becomes

(1.4) 12[2724%), 16! 322 6472 [128! 2561],512;*
| 3 1 I II 0 Il

Most of the simplicity of the Conway—Sloane approach comes from the use of
oddity fusion. We call a symbol like (1.4) a 2-adic symbol.

Sign walking. Oddity fusion does not generate all equivalences between 2-adic
Jordan decompositions. For example, (1.4) turns out to be isometric to each of

(1.5) 172 [2% 4%]_, 167 327 6472 [128" 256'],512;*
L 1
(1.6) 12 [22473]_, 16} 327 6472 [128" 256'],512;*
| |
(1.7) 13 [272473]_,16_3 323 6457 [128" 256'],512;*
| S —

In each case we have negated the signs of two nearby scales of (1.4), and changed
by 4 the oddity of each compartment involved. The underbrackets indicate the
terms whose signs were changed. In (1.5) and (1.6) the only compartment of (1.4)
involved was [2724%]3, so we changed its oddity by 4. In (1.7) the compartment
167 was also involved, so we also changed its oddity by 4.

The rules for which pairs of terms admit such a sign walk are subtle enough
that we postpone them to Section 6. But to illustrate the flexibility they provide,
we show which terms of our example can interact with each other via some chain
of sign walks:

(1.8) 13 2724%)5161 32F 6442 [128" 256'],512;*
L |1 11

We call these groups of terms signways, suggesting highways along which signs
can move (or cancel). In the language of Conway and Sloane, the classification of
2-adic lattices amounts to the theorem that sign walking generates all equivalences
between 2-adic symbols. (Theorem 6.2.)

Some equivalence relations are like mazes, where it is not clear which “moves”
to make when seeking an equivalence between two objects, or perhaps only
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an arcane recipe for these moves is available. This is the nature of earlier
classifications of 2-adic lattices. Happily, sign walking is simple. For any given
2-adic symbol, the sign walks generate an elementary abelian 2-group, acting
simply transitively on the 2-adic symbols that are equivalent to it. (See the proof
of Theorem 6.3.) In (1.8) this group is (Z/2)* x(Z/2)x(Z/2). The (Z/2)* factor
changes signs in the first signway, arbitrarily subject to maintaining the overall
sign. The factors Z/2 play the same role for the other signways. The alterations
of oddities that accompany any given sign walk are easy to figure out.

One can use sign walking to define a canonical form: walk all the — signs as
far left as possible, canceling pairs of such signs when possible. Then all signs
will be + except perhaps for the first terms of some of the signways. For (1.8)
this canonical form is

172 [224%)_, 167 323 6472 [128" 256711,512;

The main virtues of the Conway-Sloane notation are that (i) it allows easy passage
between the notation and the lattices, (ii) it behaves well under direct sum and
scaling, and duality too, (iii) no more information is displayed than necessary,
and (iv) rather than being constrained to a single canonical form, one can easily
pass between all possible 2-adic symbols for a particular lattice. See Example 6.5
for an illustration of (iv): we find all the Z,-lattices whose sum with (2,2) is
isometric to (1.4).

After some (strictly) motivational background in Section 2, we cover some
technical preliminaries in Section 3. Then Section 4 defines what we call a fine
decomposition of a 2-adic lattice and describes some moves between them. In
Section 5 we classify the unimodular lattices and introduce oddity fusion. In
Section 6 we define 2-adic symbols and prove that sign walking generates all
equivalences between them. We also discuss canonical forms and how to define
some numerical invariants of 2-adic lattices. The final section is devoted to the
proof of Theorem 4.4.

This note developed from part of a course on quadratic forms given by the
first author at the University of Texas at Austin, with his lecture treatment greatly
improved by the second and third authors.

2. The larger picture

This section is meant to describe how the 2-adic lattice theory fits into the
larger theory of integer quadratic forms. It is not needed later in the paper.

A lattice over Z or the p-adic integers 7Z, means a free module equipped
with a symmetric bilinear pairing that takes values in the fraction field Q or
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Qp . An isometry from one such lattice to another means a module isomorphism
that preserves inner products. In many situations one wants to understand whether
two Z-lattices are isometric. If L is a Z-lattice, then L ® Z, is a 7Z, -lattice.
If L’ is another Z-lattice, then L, L’ are said to lie in the same genus if they
have the same signature and L® Z, and L' ®Z, are isometric for all primes p.
Isometric 7 -lattices obviously lie in the same genus.

The famous Hasse-Minkowski theory of quadratic forms over @@ says that two
quadratic spaces over Q are isomorphic if and only if they are isomorphic over
R and every Q,. It would be unreasonable to hope for the corresponding result
for lattices over Z: that the genus determines the isomorphism class. What is
surprising is how close to truth this comes.

Until work of Eichler in the 1950s, it was open whether the genus determines
the isomorphism class of an indefinite Z -lattice of dimension > 3. Eichler
discovered a subtle equivalence relation, whose equivalence classes are called
spinor genera. Each genus consists of finitely many spinor genera, and each
spinor genus consists of finitely many isometry classes of lattices. But some mild
hypotheses promote both cases of “finitely many” to “one”:

Theorem 2.1. An indefinite genus G of dimension n > 3 consists of exactly one
spinor genus, unless there exists some prime p such that G ® Z, is p-adically
diagonalizable, with the p-power parts of the diagonal terms all being distinct.
If G is integral, then this exceptional case can only occur if p('zl) | detG.

Theorem 2.2 (Eichler). An indefinite spinor genus of dimension >3 consists of
exactly one isometry class.

Note that the rational number detG is determined by the signature and the
p-adic valuations of the p-adic determinants. And the Z,-lattice G ® Z, is
well-defined, by the definition of a genus. See [CS, Ch. 15, Thm. 19], or the
proof of the Corollary to Lemma 3.7 in [Cas, Ch. 10], for Theorem 2.1. See [Eic]|
or [Cas, Ch. 10, Thm. 1.4] for Theorem 2.2. The restriction to indefinite forms
and dimension > 3 is essential: in dimension 2 the spinor genus behaves very
differently than in higher dimensions, and for definite forms a genus typically
contains many isomorphism classes.

Except in small dimension, lattices with the distinct-powers-of- p property in
Theorem 2.1 do not seem to occur in nature. So these two theorems form the basis
for our statement in the introduction that for indefinite lattices of dimension > 3,
it is “almost” true that genera coincide with isometry classes. Even if a genus
(indefinite of rank > 3) does have the distinct-powers-of-p property, it can still
consist of a single isometry class, and one can check this. It is just no longer
guaranteed.
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This almost-correspondence between genera and isomorphism classes is the
reason that many questions about Z-lattices reduce to Z,-lattices. For p > 2, a
Zp-lattice has only one isomorphism class of Jordan decomposition. And each
Jordan constituent J is characterized by its scale, dimension and sign. In this
case there is no subtlety to the isometry classification: to determine whether two
p-adic lattices are isometric one just finds Jordan decompositions and compares
them. So the p = 2 case accounts for most of the isometry analysis.

(For odd p, the sign of J is defined as the Legendre symbol (%) = %1,
where ¢ is a unit of Z, such that detJ = dp”. We always abbreviate this
symbol to +. Although we did not say so in the introduction, when p = 2 the
sign of J is Kronecker’s generalization (%) of the Legendre symbol.)

A second common question about a 7Z -lattice L is whether a given lattice
M occurs a direct summand. When L is the only lattice in its genus, and the
signatures of M and L are compatible, this reduces to the question of whether
M & 7, is a summand of L. ® Z, for all primes p. For p > 2 this is easy:
M ® Z, is a summand if and only if each constituent of M ® Z, either is
lower-dimensional than the corresponding constituent of L ® Z,, or else has the
same dimension and sign. The corresponding question for p = 2 is more subtle
— see Example 6.5 for a taste of the required analysis.

A third common question is whether M occurs as a primitive sublattice
of L. Under the same conditions as in the previous paragraph, this reduces to
the problem of building a suitable candidate for the orthogonal complement of
M®Z, in L&®Z,, for each prime p. The case of odd p is no longer trivial, but
still the p = 2 case usually dominates the analysis. See [All2] for an extended
calculation of this sort.

3. Preliminaries

Now we begin our formal exposition. Henceforth, an integer means an element
of the ring 7Z, of 2-adic integers, and we write (Q, for Z,’s fraction field. We
assume known that two odd elements of Z, differ by a square factor if and only
if they are congruent mod 8. Every nonzero x € Y, can be written uniquely as
2%y with a € Z and u a unit of Z,. We call u the odd part of x.

A lattice I means a finite-dimensional free module over 7Z,, equipped with a
Q5 -valued symmetric bilinear form. We call L nondegenerate it the natural map
L. — Hom(L,Q,) is injective. In this case, the dual lattice L* = Hom(L,Z,)
is naturally identified with the set of vectors in L ® @, that have integral inner
products with all elements of L. We call L integral if all inner products in L
are integers. An integral lattice is called even if all its elements have even norm
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(self-inner-product), and odd otherwise. If L is integral and nondegenerate, then
we regard it as a sublattice of L*.

The determinant det . means the determinant of the inner product matrix of
any basis for L, and is well-defined up to multiplication by squares of units of Z,.
In particular, the odd part of det L is well-defined mod 8. If L is integral and
nondegenerate then det L = [L™ : L] up to a unit of Z,. We call L unimodular
it L = L*; this is equivalent to L being integral with odd determinant.

The sign of a unimodular lattice U means the Kronecker symbol
Recall that this is defined as +1 or —1 according to whether detU = +1 or
+3 mod 8. We will always abbreviate £1 to +. The Kronecker symbol has
special properties that are important in quadratic reciprocity. But these play no
role in this paper; for us it is just a way to record information about odd numbers
mod 8.

Now consider a lattice got by scaling the inner product on a unimodular
lattice. We say it has type 1 or I according to whether the unimodular lattice is
odd or even. For example, (2) has type I, although it is an even lattice, because
it was got by scaling the odd lattice (1). On the other hand, (42) has type I,
because it was got by scaling the even unimodular lattice (7 }).

The last invariant we need is a Z/8-valued invariant of quadratic spaces
over Q,, called the 2-signature and written o,. It is easy to compute. A not-
quite-invariant similar to the 2-signature, called the oddity, is defined below. It
is even easier to compute, and is what is actually used in the Conway-Sloane
calculus.

(452).

To compute the 2-signature of a quadratic space V over QQ», choose any
basis for which the inner product is diagonal. Then o,(V) € Z/8 is defined as
the sum of the odd parts of the diagonal entries, plus 4 for each diagonal entry
which is an antisquare. Here an antisquare is defined as a 2-adic number of
the form 2°%y where u = 43 mod 8. The fact that o,(V) is independent of
the choice of basis is surprising. See [CS, Ch. 15, §6.1-6.2] for a proof. Some
examples:

02({(1,3.3.7)) =1+34+34+7=4  (mod 8)
02((1,3.3,14) =1 +3+3+7=4
02((1,3,6,7)) =1+34+34+74+4=0

(3.1) 02(0)=0({l,-1)=1-1=0

(3.2) 02(21) =02((2.6) =1 +3+4=0

In the last two lines we started with even unimodular lattices, diagonalized
them over Q», and then computed o7. The 2-signature is obviously additive:
o (V ® V') = 02(V) @ oz(V') for any quadratic spaces V,V’' over Q.
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Conway and Sloane define the “oddity” of V' to be just another name
for o,(V). But in actual wuse, “oddity” seems to refer to the subscripts used
in their calculus, rather than o,. Our own experience is that this shift of language
is very natural, since the subscripts are what one actually uses. It seems to be
their experience too: their statement of oddity fusion [CS, p. 381] hints at this, and
this is the only sensible interpretation of “... the total oddity of a compartment
must be changed by 4 mod 8, precisely when ...” [CS, p. 382]. (For experts:
they are discussing sign walking, and sign walking within a compartment replaces
the corresponding set of Jordan constituents by new Jordan constituents, without
changing the sublattice they span. Since the “oddity” changes under this, they
cannot be referring to o, of the sublattice.)

We resolve this conflict by defining oddity according to actual use. We only
define it for lattices got by scaling unimodular lattices, and for lattices which are
expressed as direct sums of such lattices. So it is a function not on lattices but
on lattices equipped with such a direct sum decomposition. We only speak of the
oddity of a lattice when it is understood which decomposition we mean. If L is
got by scaling a unimodular lattice U by a power of 2, then the oddity o(L)
is defined as o,(U). If L is expressed as a direct sum of rescaled unimodular
lattices, then o(L) is defined as the sum of the oddities of the summands. By
this definition the oddity is additive: o(L & M) = o(L) + o(M).

The oddity is often the same as the 2-signature; to describe the difference we
begin with direct sum decompositions of a 2-adic lattice:

Lemma 3.1. Every 2-adic lattice is a direct sum of 1-dimensional lattices and
copies of the lattices (9 %) and (3 1), scaled by powers of 2.

Proof. After pulling off some summands (0) it is enough to treat the nondegen-
erate case. By scaling it is enough to treat the integral case. We use induction on
dimension and the fact that any sublattice with odd determinant is a summand.
Suppose a nondegenerate intergral lattice L is given; by scaling we may suppose
some inner product is odd. A vector of odd norm spans a summand, and then
we can appeal to induction. So suppose [ is even, and choose two elements
with odd inner product. Their inner product matrix (7 °d4) has determinant
(even)(even) — (odd)?> = 3 mod 4. Therefore they span a summand and we can
apply induction to the complementary summand.

All that remains to prove is: every 2-dimensional even unimodular lattice U
is isomorphic to (93) or (31). If U ® Q> has an isotropic vector then so
does U . Choosing a primitive one as the first basis vector and using row and
column operations proves U = (‘1’ (1)) This argument applies in particular if det U
is (in the square class of) —1. This is because an orthogonal basis for U ® Q,

has isotropic inner product matrix (§ _ssquare) = (5 %)-
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Now suppose U is anisotropic. We have reduced to the case detU = 3
mod 8. Therefore U has an inner product matrix of the form (% ,}) where
u,v are units. And detU = 3 mod 8 also forces u = v mod 8. The vectors
(1,0), (1,1), (2,1) and (3,1) have norms = 2u, 6u, —2u and —6u mod 16.
Therefore U has a vector of norm = 2 mod 16. Rescaling it gives a norm 2
lattice vector. Rescaling a supplementary basis vector multiplies the determinant
by a square, so we may suppose the determinant is exactly 3. Then a row/column
operation lets us take the off-diagonal terms to be 1, after which detU = 3

forces U =~ (21). ]
12

Suppose L is a unimodular lattice decomposed as a direct sum corresponding
to a diagonalization (dy,...,d,), with the d; units in Z, . By definition, both L’s
oddity and 2-signature are d; +---+d, (mod 8). Every even unimodular lattice
is a sum of copies of summands ({}) and (%1). Our calculations (3.1)-(3.2)
shows that such a lattice has 2-signature 0, hence also oddity 0.

Scaling a unimodular lattice by a power of 2 might change the 2-signature,
by introducing or eliminating antisquares. But it leaves the oddity alone. For
example, scaling (3) by 2 to get (6) changes the 2-signature from 3 to 7 but
leaves the oddity equal to 3. The general rule is: any direct sum decomposition
as in Lemma 3.1 has oddity equal to the sum (mod 8) of the odd parts of
the 1-dimensional terms. We will discuss oddity further when we introduce fine
decompositions in Section 4 and Jordan decompositions in Section 5.

For unimodular lattices, the dimension, sign, type and oddity turn out to be
a complete set of invariants. We prove this in Theorem 5.1. Conway and Sloane
express the isometry class of a unimodular lattice as lf:" where + is the sign,
n is the dimension and ¢ is either the formal symbol I (for even lattices) or the
oddity (for odd lattices). In particular, the subscript implicitly records the parity
of the lattice. We just saw that all even unimodular lattices have oddity 0, so in
this case there is no point recording it.

If ¢ is a power of 2 then (after Theorem 5.1) we will write qﬁt” or gF"
for the lattice got from 13" or 1" by rescaling all inner products by g. For
example, 2y has inner product matrix (4 2). The subscript records whether the
lattice has type I or I, which we recall is the scale-invariant generalization of
the oddness/evenness of unimodular lattices. The number ¢ is called the scale of
the symbol (or lattice). Although one quickly learns the rules, the following table
lets one read off the oddity and 2-signature of any sum of scaled unimodular
lattices:

& 1, or 2;“ 27 1 or 2f
(33) o) t t 0 invariant under scaling by 2
02(L) t t+4 0 invariant under scaling by 4
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Except for special cases, we will not use this notation until we have classified
the unimodular lattices in Theorem 5.1. The special cases are in dimension 1 and
the even case in dimension 2: for ¢ any power of 2 we define

T A q_3 ar a’
as  (¢) (—q)  (3¢)  (=3q) o8l (ZL)
with oddity 1 —1 3 -3 0 0

These definitions are compatible with the more general notation. We will usually
omit the symbol @ from direct sums, for example writing 17 13'4? for
1X ® 13" @ 42, To lighten the notation one usually suppresses plus signs in
superscripts, for example 11, 15" 47, and/or suppresses the dimensions when they
are 1, for example 17, 1542, One could suppress even more, such as leaving
the subscript blank for summands of type 1. But excessive abbreviation is more
error-prone than helpful.

4. Fine symbols

In this section we work with a finer decomposition of a lattice than the usual
Jordan decomposition. The goal is to establish that certain “moves” between such
decompositions do not change the isometry class of the lattice. This will make
the corresponding facts for Jordan decompositions in the next section easy to
state and prove. Theorem 4.4, proven in section 7, captures the full classification
of 2-adic lattices, but in a very clumsy way. The rest of this paper recasts this
classification in a simpler form.

By a fine decomposition of a lattice L we mean a direct sum decomposition
in which each summand (or rerm) has the form ¢}, g7} or gi?, with the last
case only occurring if every term of that scale has type II. The name reflects
the fact that no further decomposition of the summands is possible. By (3.3), the
oddity of (this decomposition of) L can be read off as the sum mod 8 of the
numerical subscripts. And the 2-signature of L can be got from that by adding 4
for each term ¢ with ¢ = 2°%_ A fine decomposition always exists, by starting

1 s +2

with a decomposition as a sum of ¢;'’s and g;~’s (Lemma 3.1) and applying

the next lemma repeatedly.
Lemma 4.1. If &, ¢ are signs then 15 152 admits an orthogonal basis.
8 t

Proof. Write M and N for the two summands and consider the three elements of
(M/2M)@® (N/2N) that lie in neither M/2M nor N/2N . Any lifts of them have
odd norms and even inner products. Applying row and column operations to their
inner product matrix leads to a diagonal matrix with odd diagonal entries.  [J
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In order to discuss the relation between distinct fine decompositions of a given
lattice, we introduce the following special language for 1-dimensional lattices only.
We call qf“l and g—5; “givers” and qfll and ¢3! “receivers”. (Type I lattices are
neither givers nor receivers.) The idea is that a giver can give away two oddity
and remain a meaningful symbol (¢ — ¢*, or ¢—3 — g3 ), while a receiver
can accept two oddity. We often use a subscript R or G in place of the oddity,
so that lg and 1; mean 1]" and 1”5, while 1; and 1 mean I"_'1 and 15 .
Scaling inner products by —3 negates signs and preserves giver/receiver status,
while scaling them by —1 preserves signs and reverses giver/receiver status.

A fine symbol means a sequence of symbols qﬁﬁ and q}% orG - We replace R
and G by numerical subscripts whenever convenient, and regard two symbols as
the same if they differ by permuting terms. Two scales are called adjacent if they
differ by a factor of 2.

Lemma 4.2 (Sign walking). Consider a fine symbol and two terms of it that
satisfy one of the following conditions:

(0) they have the same scale;

(1) they have adjacent scales and different types;

(2) they have adjacent scales and are both givers or both receivers;

(3) their scales differ by a factor of 4 and they both have type 1.

Consider as well the fine symbol got by negating the signs of these two terms,

and in case (2) also changing both from givers to receivers or vice-versa. Then
the two fine symbols represent isometric lattices.

An alternate name for (3) might be sign jumping. Conway and Sloane
informally describe it as a composition of two sign walks of type (1). For
example,

112204 — 1olag%al - 1of2tacl

They also observe that this doesn’t really make sense: ZH_O is illegal because the
0-dimensional lattice has determinant 1, hence sign +.

Proof. Tt suffices to prove the following isometries, where & &’ are signs, X
represents R or G, and X’ represents R or G:

(0) EF S R e o [50 a FTY
(1) 18298, e 17 2F  and 15,207 & 157 7%
2) 15,25 o 155257

3) 15 45, = 1% 455
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The first part of (0) is trivial except for the assertion 177> 17% =~ 1,2 1;2. Choose
a norm 4 vector x of the right side. Then choose y to have inner product 1
with x. The span of x and y is even of determinant = —1 mod 8, so it is a
copy of 13'2. Its orthogonal complement must also be even unimodular, hence
one of lﬂiz, hence 11‘1*' 2 by considering the determinant.

The second part of (0) is best understood using numerical subscripts: we must
show 1¢ 1’;"1 = 1,1, 1;‘14, ie., (t,0') = (t+4,1t'+4). To see this, note that the left
side represents ¢ + 41’ =t +4 mod 8, that this is odd and therefore corresponds
to some direct summand, and the determinants of the two sides are equal. Note
that givers and receivers always have oddities congruent to 1 and —1 mod 4
respectively, so changing a numerical subscript by 4 doesn’t alter giver/receiver
status. Furthermore, the sign on 1% changes since exactly one of 7,7 + 4 lies in
{£1} and the other in {#£3}, and similarly for 1";‘: The same argument works
for (3), in the form 154 =~ 1,2,4.¢ .

For the first part of (1) we choose a basis for lﬁz with inner product matrix
(2 o&n) where the lower right corner depends on . Replacing the second basis
vector by its sum with a generator of 233(’, changes the lower right corner by 2
mod 4. This toggles the 2 x 2 determinant between —1 and 3 mod 8. Therefore
it gives an even unimodular summand of determinant —3 times that of lﬁz, hence
of sign —e. Since the overall determinant is an invariant, the determinant of its
complement is therefore —3 times that of 2§£?. So the complement is got from
25(1,2 by scaling by —3. We observed above that scaling by —3 negates the sign
and preserves giver/receiver status, so the complement is 2;?/2. The second part
of (1) follows from the first by passing to dual lattices and then scaling inner
products by 2. (It is easy to see that the dual lattice has the same symbol with
each scale replaced by its reciprocal.)

(2) After rescaling by —3 if necessary to take ¢ = +, it suflices to prove
132‘% =~ 15 21}8’, ie, (1,2) = (3,6) and (1,—6) = (3,—2). In each case one
finds a vector on the left side whose norm is odd and appears on the right, and
then compares determinants. (]

Further equivalences between fine symbols are phrased in terms of “compart-
ments”. A compartment means a set of type I terms, the set of whose scales
forms a sequence of consecutive powers of 2, and which is maximal with these
properties. For example in lﬁ 25 2% 4g 165, the set of scales that have type I are
{2,4,16}. These fall into two strings of consecutive powers of 2, namely {2, 4}
and {16}. So there are two compartments: 2, 25 4"G' and 165.

Lemma 4.3 (Giver permutation and conversion). Consider a fine symbol and
the symbol obtained by one of the following operations. Then the lattices they
represent are isometric and have the same oddity.
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(1) Permute the subscripts G and R within a single compartment.

(2) Convert any four G'’s in a compartment to R’s, or vice versa.

Proof. Giver permutation, meaning operation (1), can be achieved by repeated
use of the isomorphisms 1g, l‘j; o I%ISG' and 1§ 2‘% =~ 1% 22; (scaled up or
down as necessary). To establish these we first rescale by —3 if necessary, to
take ¢ = + without loss of generality. This leaves the cases (I,—1) = (—1,1),
(1,3) == (—1,-3), (1,-2) == (—1,2) and (1,6) = (—1,10). One proves each by
finding a vector on the left whose norm is odd and appears on the right, and
then comparing determinants. To see the invariance of the oddity, imagine the
giver giving 2 oddity to the receiver. This converts the giver to a receiver and
vice-versa.

For giver conversion, meaning operation (2), the oddity is invariant by the same
argument as for giver permutation. It remains to prove the isomorphism of the
lattices. We assume first that more than one scale is present in the compartment,
so we can choose terms of adjacent scales. Assuming four G’s are present in
the compartment, we permute a pair of them to our chosen terms, then use sign
walking to convert these terms to receivers. This negates both signs. Then we
permute these R’s away, replacing them by the second pair of G’s, and repeat
the sign walking. This converts the second pair of G’s to R’s and restores the
original signs.

For the case that only a single scale is present we first treat what will be the
essential cases, namely

12

IE1E1E1E = 15151518 and 15151514

112
> |
=+
x+
o+

That is,
(1,1,1,1) = (-1,-1,—-1,—-1) and (-3,1,1,1) = (3, —1,—1,—1)

In the first case we exhibit a suitable basis for the left side, namely (2,1,1,1) and
the images of (—1,2,1,—1) under cyclic permutation of the last 3 coordinates.
In the second we note that the left side is the orthogonal sum of the span of
(1,0,0,0) and (0,1, 1, 1), which is a copy of (—3,3), and the span of (0,—1,1,0)
and (0,0,1,—1), which is a copy of liz. Since each of these is isometric to its
scaling by —1, so is their direct sum.

Now we treat the general case when only a single scale is present. Suppose
there are at least 4 givers. By scaling by a power of 2 it suffices to treat the
unimodular case. By sign walking we may change the signs on any even number
of them, so we may suppose at most one — is present. (Recall that sign walking
between terms of the same scale doesn’t affect subscripts G or R.) By the
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previous paragraph we may convert four G’s to R’s. Then we reverse the sign
walking operations to restore the original signs. L]

The following theorem captures the full classification of 2-adic lattices. It is
already simpler than the results in [Jon] and [Pal]. But fine symbols package
information poorly, and much greater simplification is possible. We will develop
this in the next two sections.

Theorem 4.4 (Equivalence of fine symbols). Two fine symbols represent isometric
lattices if and only if they are related by a sequence of sign walking, giver
permutation and giver conversion operations.

Although it is natural to state the theorem here, its proof depends on
Theorem 5.1. The first place we use it is to prove Theorem 6.2, so logically
the proof could go anywhere in between. But in fact we defer it to Section 7 to
avoid breaking the flow of ideas.

5. Jordan symbols

In this section we define and study the Jordan decompositions of a lattice.
The main point is that “oddity fusion” neatly wraps up all the giver permutation
and conversion operations from the previous section. We begin by classifying the
unimodular lattices:

Theorem 5.1 (Unimodular lattices). A unimodular lattice is characterized by its
dimension, type, sign and oddity.

Recall that for unimodular lattices, the oddity is defined to be the 2-signature.
Since the 2-signature is a genuine invariant of lattices, the oddity is a genuine
invariant of unimodular lattices. Also, recall from (3.1)-(3.2) that all even
unimodular lattices have vanishing 2-signature (hence vanishing oddity).

Proof. Consider unimodular lattices U, U’ with the same dimension, type, sign
and oddity, and fine symbols F, F’ for them. The product of the signs in F
equals the sign of U, and similarly for U’. Since U and U’ have the same
sign, we may use sign walking to make the signs in F the same as in F’. If
U,U’ are even then the terms in F are now the same as in F', so U = U’. So
suppose U, U’ are odd.

By giver permutation, and exchanging F and F’ if necessary, we may suppose
that all non-matching subscripts are R in F and G in F’. And by giver conversion
we may suppose that the number of non-matching subscripts is k& < 3. Since
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changing a receiver to a giver without changing the sign increases the oddity by
two, o(U’) = o(U) + 2k. Since o(U’) = o(U) mod 8 we have k = 0. So the
terms in F are the same as in F', and U = U’. O

We now have license to use the notation g" and ¢i" from Section 3. We

say that such a symbol is legal if it represents a lattice. The legal symbols are

ay’

gi;  and g

4o qiy» da°  and ¢33

q,i” with n > 2 and 1t = n mod 2

gi™ with n positive and even
A good way to mentally organize these is to regard the conditions for dimensions
# 1,2 as obvious, remember that g2 and gy 2 are illegal, and remember that the
subscript of q;“ determines the sign.

The illegality of 12 and 152 follows by considering all possible sums 15" 15!
When the signs ¢,¢& are the same, either both subscripts are in {+1} or both
are in {+3}, so the total oddity cannot be 4. When the signs are different, one
subscript is +1 and the other is +3, so the total oddity cannot be 0.

This calculation used the simple rules for direct sums of unimodular lattices:
signs multiply and dimensions and subscripts add, subject to the special rules
I4+0=0and I+¢=1:.

A Jordan decomposition of a lattice means a direct sum decomposition whose
summands (called constituents) are unimodular lattices scaled by distinct powers
of 2. By the Jordan symbol for the decomposition we mean the list of the
symbols (or terms) qu" and ¢ for the summands. An example we will use in
this section and the next, and mentioned already in the introduction, is

(5.1) 13 2242 ; 16] 325 6477 128] 256!, 5127

It is sometimes convenient and sometimes annoying to allow trivial (0-
dimensional) terms in a Jordan decomposition.

The main difficulty of 2-adic lattices is that a given lattice may have several
inequivalent Jordan decompositions. The purpose of the Conway-Sloane calculus
is to allow one to move easily between all possible isometry classes of Jordan
decompositions. Some of the data in the Jordan symbol remains invariant under
these moves. First, if one has two Jordan decompositions for the same lattice L,
then each term in one has the same dimension as the term of that scale in the
other. (Scaling reduces the general case to the integral case, which follows by
considering the structure of the abelian group L*/L.) Second, the type I or I of
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the term of any given scale is independent of the Jordan decomposition. (One can
show this directly, but we won’t need it until after Theorem 6.2, which implies
it.) The signs and oddities of the constituents are not usually invariants of L.

We define a compartment of a Jordan decomposition just as we did for fine
decompositions: a set of type I constituents, whose scales form a sequence of
consecutive powers of 2, and which is maximal with these properties. The example
above has three compartments: 2243, 16; and 128} 2561 ,. The oddity of a
compartment means the oddity of the direct sum of its Jordan constituents. By
the definition of the symbols, the compartment oddity is the sum (mod 8) of the
subscripts of those constituents. Caution: The oddity of a compartment depends
on the Jordan decomposition, and is not an isometry invariant of the underlying
lattice. See Lemma 6.1 for how it can change. Despite this non-invariance, the
oddity of a compartment is useful:

Lemma 5.2 (Oddity fusion). Consider a lattice, a Jordan symbol J for it, and
the Jordan symbol J' got by reassigning all the subscripts in a compartment, in
such a way that that all resulting terms are legal and the compartment’s oddity
remains unchanged. Then J,J' represent isometric lattices.

Proof. By discarding the rest of J we may suppose it is a single compartment.
The argument is similar to the odd case of Theorem 5.1. We refine J,J’ to fine
symbols F, F'. By hypothesis, the terms of J’ have the same signs as those
of J. It follows that for each scale, the product of the signs of F’s terms
of that scale is the same as the corresponding product for F’. Therefore sign
walking between equal-scale terms lets us suppose that the signs in F are the
same as in F’. Recall from the proof of Lemma 4.2(0) that this sort of sign
walking amounts to the isomorphisms 15! 161 =~ 176} 17¢'1 | which don’t change
the compartment’s oddity. By Lemma 4.3, giver permutation and conversion also
leave the compartment oddity invariant.

By giver permutation and possibly swapping F with F’, we may suppose that
the non-matching subscripts are R’s in F and G’s in F’. By giver conversion
we may suppose k < 3 subscripts fail to match, and the assumed equality of
oddities shows k& = 0. Therefore the fine symbols are the same, so the lattices
are isometric. [l

6. 2-adic symbols

One can translate sign walking between fine symbols to the language of Jordan
symbols, but it turns out to be fussier than necessary. Things become simpler once
we incorporate oddity fusion into the notation as follows. The 2-adic symbol of
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a Jordan decomposition means the Jordan symbol, except that each compartment
is enclosed in brackets and the enclosed terms are stripped of their subscripts,
whose sum in Z/8 is attached to the right bracket as a subscript. This is called
the compartment’s oddity. For our example (5.1) this yields

12 22470 [16% ] 32 4 ® [128" 256 51371

If a compartment consists of a single term, such as [16'],, then one usually omits
the brackets:

(6.1) 12 [2724%),16; 327 6477 [128' 256'],512;*

Lemma 5.2 shows that the isometry type of a lattice with given 2-adic symbol
is well-defined.

If a compartment has total dimension < 2 then its oddity is constrained
by its overall sign in the same way as for an odd unimodular lattice of that
dimension. For compartments of dimension 1 this is the same constraint as
before. In 2 dimensions, [1727], and [1727], are illegal (cannot come from
any fine symbol) because each term 11 or 2 would have 41 as its subscript,
while each term 1 or 2. would have +3 as its subscript. There is no way to
choose subscripts summing to 0. The same reasoning shows that [I72%], and
[1727], are also illegal.

Lemma 6.1 (Sign walking for 2-adic symbols). Consider the 2-adic symbol of
a Jordan decomposition of a lattice, and two nontrivial terms of it that satisfy
one of the following:

(1) They have adjacent scales and different types;

(2) they have adjacent scales and type 1, and their compartment either has
dimension > 2 or compartment oddity +2;

(3) they have type 1, their scales differ by a factor of 4, and the term between
them is trivial.

Then the 2-adic symbol got by negating their signs, and changing by 4 the
oddity of each compartment that contains at least one of the terms, represents
an isometric lattice.

Remark. As in Lemma 4.2, one could also call (3) sign jumping. If the
intermediate term were nontrivial of type I, then one could achieve the same
effect by two moves (1). If the intermediate term had type I, then one could
achieve a similar effect by two moves (2). It would not be quite the same, because
both moves would affect the same compartment. So its oddity would change by 4
twice, i.e., not at all.
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Our example (6.1)
12 [2724%];16] 323 642 [128" 256'],5127*
can walk to 132 [224%]_, 16] 327 6472 [128" 256'],512;* by (1),

| I

or 17 [247%]_, 16} 32 64y [128' 25615127 by (2),
[ ——
or 17272477 167} 323 6477 [128' 256'],5127* by ().
| A

Underbrackets indicate the terms involved in the moves. One can also sign walk
between scales 16 and 32, between scales 64 and 128, and between scales 256
and 512. But no sign walk is possible between scales 128 and 256, because that
compartment has dimension 2 and oddity # £2 mod 8. More conceptually, a
sign walk would give the illegal compartment [12872567 ]4.

Proof. Refine the Jordan decomposition to a fine decomposition F, apply the
corresponding sign walk operation (1)—(3) from Lemma 4.2 to suitable terms of
F, and observe the corresponding change in the 2-adic symbol. In case (2) some
care is required because Lemma 4.2 requires both terms of F to be givers or
both to be receivers. If the compartment has dimension > 2 then we may arrange
this by giver permutation (which preserves compartment oddity by Lemma 4.3).
In dimension 2 the hypothesis

(compartment oddity) = 2 mod 8

rules out the case that one is a giver and one a receiver, since givers and receivers
have subscripts 1 and —1 mod 4 respectively. L]

Theorem 6.2 (Equivalence of 2-adic symbols). Suppose given two lattices with
Jordan decompositions. Then the lattices are isometric if and only if the 2-adic
symbols of these decompositions are related by a sequence of the sign walk
operations in Lemma 6.1.

Proof. The previous lemma shows that sign walks preserve isometry type. So
suppose the lattices are isometric. Refine the Jordan decompositions to fine
decompositions, apply Theorem 4.4 to obtain a chain of intermediate fine symbols,
and consider the corresponding 2-adic symbols. Lemma 4.3 shows that giver
permutation and conversion don’t change compartment oddities, so they leave
2-adic symbol unchanged. In the proof of Lemma 5.2 we explained why sign
walking between same-scale terms also has no effect. The effects of the remaining
sign walk operations are recorded in Lemma 6.1. O

A lattice may have more than one 2-adic symbol, but the only remaining
freedom lies in the positions of the signs:
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Theorem 6.3. Suppose two given lattices have 2-adic symbols with the same
scales, dimensions, types and signs. Then the lattices are isometric if and only if
the symbols are equal, which amounts to having the same compartment oddities.

Proof. If a 2-adic symbol S of a lattice L admits a sign walk affecting the signs
of the terms of scales 2', 2/ then we write A; ;(S) for the resulting symbol. No
sign walks affect the conditions for A; ; to act on S, since they don’t change the
type of any term or the oddity mod 4 of any compartment. So we may regard
A;,; as acting simultaneously on all 2-adic symbols for L. By its description
in terms of negating signs and adjusting compartments’ oddities, A;; may be
regarded as an element of order 2 in the group {+1}7 x (Z/8)¢ where T is the
number of terms present and C is the number of compartments.

The assertion of the lemma is that if a sequence of sign walks on S restores the
original signs, then it also restores the original oddities. We rephrase this in terms
of the subgroup A of {£1}7 x(Z/8)C generated by the A; ;. Namely: projecting
A to the {£1}7 factor has trivial kernel. This is easy to see because the A; ; are
ordered so that they are A;, j.,.... A, j, With i; < j1 < i < jo <+ <y < jp.
The linear independence of their projections to {£1}7 is obvious. []

To get a canonical symbol for a lattice L one starts with any 2-adic symbol S
and walks all the minus signs as far left as possible, canceling them when possible.
To express this formally, we say two scales can interact if their terms are as
in Lemma 6.1. (We noted in the previous proof that the ability of two scales
to interact is independent of the particular 2-adic symbol representing L.) We
define a signway as an equivalence class of scales, under the equivalence relation
generated by interaction. The language suggests a pathway or highway along
which signs can move (or cancel).

One can find the signways without fussing with the conditions in Lemma 6.1.
First cut the 2-adic symbol into the “trains” of Conway and Sloane, and then (in
rare cases) cut some of the trains into signways. To cut the 2-adic symbol into
trains, cut between each pair of consecutive powers of 2 for which both terms have
type II. This includes O-dimensional constituents, which always have type 1. To
get the signways, inspect each train for “bad” compartments [¢='r*']gors Where
q,r are consecutive powers of 2. Cut in the middle of each such compartment.
To get the three signways in our example,

split here to get two trains
i
17 [2724%)516; 327 647> [128" 256'],512*

and then split the second train here.
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Each signway has a term of smallest scale, and by sign walking we may suppose
that all minus signs are moved to these terms or canceled with each other. Then
we say the symbol is in canonical form, which for our example is

172 [224°]_, 16] 323 642 [128' 2567 11,5127
Theorem 6.3 implies:

Corollary 6.4 (Canonical form). Given lattices L,L' and 2-adic symbols S,S’
for them in canonical form, L = L' if and only if S = 5'. ]

Conway and Sloane’s discussion of the canonical form is in terms of trains.
They asserted that signs can walk up and down the length of a train, so that
after walking signs leftward, there is at most one sign per train. But this is not
true, as pointed out in [Alll]. One cannot walk the minus sign in [128'2567!],
leftward because there is no way to assign the subscripts in 128, 2561l so that
the compartment has oddity 0.

Example 6.5. As an extended demonstration of sign walking, we determine the

lattices M with the property that M & (2,2) =~ L. where L is from (6.1). Note
that (2,2) = 23. Obviously we require

+2 4437 ctlqnE2 442 +1 el +

M :|1H2”4?316? gos 6477 [128% 256 Jy5125*

We have marked the signways with underbrackets. The 3rd and 4th of these
become the 2nd and 3rd signways of L after summing with 25. No sign walking
is possible between distinct signways. So the isomorphism M @23 =~ L shows that
the terms in these signways in M can be taken to coincide with the corresponding
terms in L. Next, the first two signways of M fuse with the 25 summand to
form the first signway of L. The overall sign of this in L is —, so the total
number of — signs in the first two signways of M must be odd. By sign walking
in the second signway of M, we reduce to

M= (1724316328 or 1347°16,32F) @ 6472([128'256'],512;*
where ¢ and u are unknowns. Now we sum with 23 to get
L= (17222471632 or 1§12247),,,1632F) @ -

Then we sign walk between the first two terms, or between the second and third,
to make the signs match those in (6.1). That is,

Lz (1%[2—243]6+I16;32§) s
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Both this and (6.1) represent L, and the signs match, so the subscripts must too.
Therefore 6 -+t =3 and u = 1. That is,

M = 1247316} 3236472128 256", 5127

where one ambiguous sign is + and the other is —. The two possibilities are
distinct because both are in canonical form. It follows that the isometry group of
L has two orbits on summands isomorphic to (2,2).

One can use the ideas of the proof of Theorem 6.3 to give numerical invariants
for lattices, if one prefers them to a canonical form. The following invariants come
from Theorem 10 of [CS, Ch. 15], which is proven in [Xu]. One records the scales,
dimensions and types, the adjusted oddity of each compartment, and the overall
sign of each signway (the product of the signs of the signway’s terms). Here
the adjusted oddity of a compartment means its oddity plus 4 for each — sign
appearing in its Ist, 3rd, Sth, ... position, with each — sign after that compartment
counted as occurring in the “(k + 1)st” position, where k is the number of terms
in the compartment. It is easy to check that sign walking leaves these quantities
unchanged.

As an example, the adjusted oddity of the compartment [2724%], in

12 [2 %4716 322 6~ [1281 2561, 5107

is 3+4+4+4=7. The 3 is the ordinary oddity, and the first 4 is because
the compartment has sign — in its first position. The last two 4’s come from the
signs on the terms of scales 64 and 512. For purposes of the adjusted oddity,
each of these counts as appearing in the “third” position of the compartment,
hence contributes 4 to the adjusted oddity.

These invariants are clumsy because of the definition of adjusted oddity, which
has the ugly feature that it depends on signs outside the signway containing the
relevant compartment. This goes against the principle that simplified Example 6.5:
distinct signways are isolated from each other.

Furthermore, these invariants are really just a complicated way of recording the
canonical form while pretending not to. We will show how to construct the unique
2-adic symbol in canonical form having the same invariants as any chosen 2-adic
lattice. To do this we first observe that the types of the constituents determine
the compartments. The oddities of the compartments are the same mod 4 as the
given adjusted oddities. This data controls which sign walks are possible, hence
determines the signways. We set the sign of the first term of each signway equal
to the given overall sign of that signway, and the other signs to +. The signs
then allow one to compute the compartment oddities from the adjusted oddities.
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7. Equivalences between fine decompositions

In this section we give the deferred proof of Theorem 4.4: two fine symbols
represent isometric lattices if and only if they are related by sign walks and giver
permutation and conversion. Logically, it belongs anywhere between Theorems 5.1
and 6.2. The next two lemmas are standard; our proofs are adapted from Cassels
[Cas, pp. 120-122].

Lemma 7.1. Suppose L is an integral lattice, that x,x’" € L have the same odd
norm, and that their orthogonal complements x*,x't are either both odd or
both even. Then xt = x'*.
Proof. First, (x — x’)? is even. If it is twice an odd number then the reflection
in x — x’ is an isometry of L. This reflection exchanges x and x’, so it gives
an isometry between x and x’t. This argument applies in particular if x-x’ is
even. So we may restrict to the case that x-x’ is odd and (x —x’)? is divisible
by 4. Next, note that (x + x’)? differs from (x — x)? by 4x-x’ = 4 mod 8.
So by replacing x’ by —x’ we may suppose that (x — x')> = 4 mod 8. This
replacement is harmless because +x’ have the same orthogonal complement.

If it happens that (x —x’)- L € 27, then the reflection in x — x’ preserves
L and we may argue as before. So suppose some y € L has odd inner product
with x — x’. Then the inner product matrix of x,x —x’,y is

?

| mod 2,

1
0
? ?

- o O

which has odd determinant. Therefore these three vectors span a unimodular
summand of L, so L has a Jordan decomposition whose unimodular part L
contains both x and x’. Note that x’s orthogonal complement in L is even
just if its orthogonal complement in L is, and similarly for x’. So by discarding
the rest of the decomposition we may suppose L = Ly, without losing our
hypothesis that x*, x’t are both odd or both even. Now, x' is unimodular with
det(x1) = (det L)/x? and oddity o(x) = o(L) —x?, and similarly for x’. Since
x2 = x?, Theorem 5.1 implies x*+ == x"*. O
Lemma 7.2. Suppose L is an integral lattice and U,U’ C L are isometric even
unimodular sublattices. Then U+ =~ U'+.

Proof. U & (1) has an orthogonal basis xi,..., X, by Lemma 4.1, and we write
b 5. SO v/ for the basis for U’ @ (1) corresponding to it under some isometry

U = U’. Apply the previous lemma #» times, starting with L & (1). (In the nth
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application we need the observation that the orthogonal complements of U, U’ in
L are both even or both odd. This holds because these orthogonal complements
are even or odd according to whether L is even or odd.) 0

Lemma 7.3. Suppose L is an integral lattice and that 12;' is a term in some
fine symbol for L. Then we may apply a sequence of sign walking and giver
permutation and conversion operations to transform any other fine symbol F for
L into one possessing a term lg.

Proof. We claim first that after some of these operations we may suppose F' has
a term 17 . Because L is odd, F’s terms of scale 1 have the form lﬁmG. If
F has more than one such term then we can obtain a sign + by sign walking,
so suppose it has only one term, of sign —. If there are type 1 terms of scale 4
then again we can use sign walking, so suppose all scale 4 terms have type II.
We can do the same thing if there are any terms 21:]’:2. Or terms ZﬂrG, if the
compartment consisting of the scale 1 and 2 terms has at least two givers or
two receivers. This holds in particular if there is more than one term of scale 2.
So we have reduced to the case

— — +
F=1guc4 8- o F=1g062Rorc %1 8"

where in the latter case one subscript is G and the other is R. (Here and below,
the superscript and subscript dots indicate any possibilities for the number of
terms at that scale, and their decorations in that position. In particular, there
might be no terms of that scale. The dots at the end indicate terms of higher
scale than the ones already listed.) By giver permutation we may suppose

F=lgug4i8i o F=I1g24y8 -

None of these cases occur, because these lattices don’t represent 1 mod 8§,
contrary to the hypothesis that some fine decomposition has a term lg. This
non-representation is easy to see because L is (+3) or (5,—2) or (5,6), plus a
lattice in which all norms are divisible by 8.

So we may suppose F has a term 11, and must show that after further
operations we may suppose it has a term lg. We are done unless our term 17
is 1}:. If the compartment C containing it has any givers then we may use giver
permutation to complete the proof. So suppose C consists of receivers. If there
are 4 receivers then we may convert them to givers, reducing to the previous
case. If C has two terms of different scales, neither of which is our 1}; term,
then we may use sign walking to convert them to givers, again reducing to a
known case. Only a few cases remain, none of which actually occur, by a similar
argument to the previous paragraph.
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Namely, after more sign walking we may take F to be
(1} 25 or 1525 2%)45 -+ or (1} or 15 1% or 15 15 1%)25 -+
The first set of possibilities is

((—1,-2) or (—~1,6) or (—1,—2,-2) or (—1,-2,6))
@ (a lattice with all norms divisible by 8)

none of which represent 1 mod 8. The second set of possibilities is

((-1) or {(—1,—1) or (-1,3) or (—=1,—1,—1) or {(—1,—1,3))
@ (a lattice with all norms divisible by 4)

and only the last two cases represent 1 mod 8. But in these cases every vector x
of norm I mod 8 projects to x := (1,1,1) in U/2U, where U is the summand
(—1,—1,—1) or (—1,—1,3). There are no odd-norm vectors orthogonal to x since
the orthogonal complement of x in U/2U consists entirely of self-orthogonal
vectors. So while these lattices admit norm 1 summands, they do not admit fine
decompositions with lg terms. [

Lemma 7.4. Suppose ¢ = x. Then Lemma 7.3 holds with 15 in place of 1.

Proof. If F has two terms of scale 1, or a scale 2 term of type I, then we can
use sign walking. The only remaining case is I = 1;82 2 45+ . Write U for
the 17%% summand and note that any two elements of L with the same image
in L/(2QU ®UL) = U/2U have the same norm mod 4. Direct calculation shows
that the norms of the nonzero elements of U/2U are 0,0,2 or 2,2,2 mod 4,
depending on . Now consider the summand U’ = lﬁz of L that we assumed
to exist. By considering norms mod 4 we see that U’/2U’ — U/2U cannot be
injective, so it must have image 0 or Z/2. Since all self-inner products in U/2U
vanish, we obtain the absurdity that all inner products in U’ are even. ]

Proof of Theorem 4.4. The “if” part has already been proven in Lemmas 4.2
and 4.3, so we prove “only if”. We assume the result for all lattices of lower
dimension. By scaling by a power of 2 we may suppose L is integral and some
inner product is odd, so each of F and F’ has a nontrivial unimodular term.
First suppose L is odd, so the unimodular terms of F and F’ have type I.
By rescaling L by an odd number we may suppose F has a term lz;. By
Lemma 7.3 we may apply our moves to F’ so that it also has a term ]g. The
orthogonal complements of the corresponding summands of L are both even (if
the unimodular Jordan constituents are 1-dimensional) or both odd (otherwise).
By Lemma 7.1 these orthogonal complements are isometric. They come with
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fine decompositions, given by the remaining terms in F, F’. By induction on
dimension these fine decompositions are equivalent by our moves.

If L is even then the same argument applies, using Lemmas 7.4 and 7.2 in
place of Lemmas 7.3 and 7.1. Ll
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