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Le programme de Fontaine

Pierre Colmez

Abstract. Jean-Marc Fontaine passed away in January 2019. He is famous for his rings and

his program of classification of representations of the absolute Galois groups of local fields

that turned p -adic Hodge theory into one of the most powerful tool of arithmetic geometry

and algebraic number theory. We give an overview of this program with an emphasis on

Fontaine's own contributions to it.

Mathematics Subject Classification (2010). Primary: 11; Secondary: 01,14, llSxx, 14Fxx.

Keywords. Théorie de Hodge, périodes, nombre p-adique, représentation galoisienne, courbe

elliptique.

Three rings for the Elven-kings under the sky,
Berts. Ba, BdR.

Seven for the Dwarf-lords in their halls of stone,

EQ„, AQ,.. bQ„> E, A, B, A,
Nine _for mortal Men doomed to die,

Qp ZP, Fp, Qp, Fp, Cp, eCp, QBht,
One ring to rule them all,

Ajnf •

Introduction

J'ai vu Fontaine pour la première fois à un exposé qu'il a donné au séminaire

Delange-Poitou-Pisot en 1985. Je ne me souviens plus de rien sauf du fait qu'au
milieu de tas de choses incompréhensibles, il avait parlé d'un 2iit p-adique qui
avait l'air particulièrement difficile à définir.

L'année suivante, je me suis retrouvé assistant normalien à Grenoble avec

Fontaine comme patron officiel (mon problème de thèse m'avait été fourni par
John Coates, alors en poste à Orsay), mais il était à Minneapolis pour collaborer

avec William Messing. Je n'ai donc commencé à discuter avec lui que l'année
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d'après, à son retour des États-Unis. Pour donner corps à une idée absurde qui
me trottait dans la tête, j'avais besoin que la valuation p-adique de 2/jr vaille

et il m'a confirmé que cette formule lui disait quelque chose (je l'ai trouvée

quelques années plus tard, sous une forme déguisée, dans son joli article [5]).
Encouragé par cette réponse, je me suis mis à essayer de calculer la valuation

p-adique d'autres nombres intéressants et je suis vite tombé sur un problème

que je ne savais pas comment attaquer. Je suis donc retourné discuter avec

Fontaine et j'étais tombé sur la bonne personne puisque ce genre de questions
était précisément l'objet de son cours Peccot; il m'a donc renvoyé au volume

d'Astérisque [2] issu de ce cours puis, pour faire bonne mesure, m'a donné la
solution dans le cas qui m'intéressait à l'époque [54]; j'ai eu, par la suite [55],
besoin d'un cas plus général et ce volume d'Astérisque m'a été indispensable.

Cela m'a permis de me familiariser avec les anneaux Bcris et B(ir • Cette

première rencontre avec les anneaux de Fontaine et le programme de Fontaine est

loin d'avoir été la dernière: une fois que l'on s'est approprié un de ces fameux

anneaux, il est difficile de s'en détacher J'ai eu de multiples occasions de

discuter des aspects de ce programme avec Fontaine, au gré de mes visites à Orsay

(du temps où le RER B marchait), ou pendant des conférences et programmes
spéciaux, un peu partout dans le monde. Je lui dois par exemple la suggestion,
lors d'une conférence à Venise, que le «lemme fondamental» (nommé ainsi pour
faire râler les automorphes) de notre article en commun pouvait servir de point
de départ pour le développement d'une théorie d'objets analytiques analogues
à ses presque Cp -représentations. Quand j'ai enfin réussi à mettre sur pied la

théorie en question [56], il a commencé à tout réinterprèter de manière beaucoup

plus naturelle et géométrique et il est dommage que l'article annoncé (cf. [17]),

en collaboration avec son étudiant Jérôme Plût, n'ait jamais vu le jour (ce n'est

pas le seul article dont la non publication est regrettable, mais comme Fontaine
racontait à qui voulait bien l'entendre les idées qu'ils poursuivait, la plupart des

résultats qu'il n'a pas écrits l'ont été par d'autres).

Que mon chemin ait croisé celui de Jean-Marc Fontaine a été une des grandes
chances de ma vie, et contribuer à son programme un des bonheurs de ma carrière
de mathématicien. Fontaine avait un talent spécial pour définir les bons objets et

poser les bonnes questions et, dans la suite de ce texte, j'essaie de présenter ces

objets et les conjectures qui les lient, en mettant l'accent sur les contributions de

Fontaine lui-même à la preuve de ces conjectures.

Un survol rapide du programme. Fe corps R des nombres réels n'est pas le seul

complété possible de Q : à chaque nombre premier p est associé un complété Qp

(le corps des nombres p -adiques) ; il y a donc, en sus du monde réel, un monde

p-adique pour chaque nombre premier p ; le théorème d'Ostrowski dit que ce sont
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tous les mondes possibles et la manière dont ces mondes interagissent est encore
très mystérieuse. Le programme de Fontaine vit complètement dans le monde

p-adique; il a deux versants: un versant arithmétique visant à décrire et classifier
les Qp-représentations du groupe de Galois absolu Gk d'une extension finie K
de Qp, et un versant géométrique visant à comprendre les Qp -représentations de

Gk provenant de la géométrie.
La partie géométrique du programme, motivation initiale du programme,

repose sur les anneaux Bcris, Bst et B^r dont les propriétés sont énoncées

au n° 1.4.3 et la construction au § 1.5. Ces anneaux permettent d'énoncer les

conjectures CcriS, Cst et CdR de Fontaine décrivant les représentations de Gk
venant de la géométrie (n° 1.4.4). En ce qui concerne la partie arithmétique
du programme, ces anneaux permettent aussi de découper, à l'intérieur des Qp -

représentations de Gk des sous-classes privilégiées de représentations (contenant
celles venant de la géométrie) : les représentations cristallines, semi-stables, de

Rham, etc. Deux conjectures de Fontaine (la conjecture de monodromie p-
adique « de Rham => potentiellement semi-stable » et la conjecture « faiblement
admissible =$ admissible ») fournissent une description complète de ces classes

de représentations en termes d'objets provenant de l'algèbre linéaire, nettement

plus faciles à décrire. (Tout ceci est expliqué dans le § 2.2.)
Un autre anneau de Fontaine (qu'il note <fnr est à la base de la théorie des

((p, T) -modules (cf. §2.3) dont le but est de donner une description de toutes

les Qp-représentations de Gk, ce qui constitue une perspective orthogonale à

la précédente. Cette théorie est l'outil le plus puissant dont on dispose à l'heure
actuelle pour étudier les Qp -représentations de Gk

Enfin, je dirai quelques mots (§3) d'un addendum relativement récent: la

courbe de Fargues-Fontaine, un objet fascinant qui permet de « géométriser »

toute la partie arithmétique du programme, et plus [65].
Je ne parlerai pas de plusieurs directions importantes récentes, en particulier la

convergence avec le programme de Langlands focal [48, 57] ou tout ce qui a trait
à des résultats « en famille » car cela nous entraînerait trop foin (et de nouveaux

objets apparaissent régulièrement, l'un des derniers en date [63] répondant au

nom poétique de champ des (<p, F)-modules d'Emerton et Gee).

Je ne dirai rien non plus des applications [46, 14, 27] de ce programme aux
valeurs spéciales de fonctions L (le programme de Fontaine fournit les outils pour
décoder complètement - conjecturalement - l'information arithmétique contenue

dans des nombres comme Ç(k) » Pour ^ cntier T 2), ni à l'étude des

points rationnels sur les courbes [75, 37, 77],

Applications globales. Avant de passer à la description du programme de

Fontaine, je voudrais indiquer brièvement comment on l'utilise pour étudier les
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représentations de Gq Gal(Q/Q) (après tout, ce sont plutôt elles qui intéressent

les arithméticiens) et, en particulier, comment il intervient dans la correspondance
de Langlands globale (dans le sens Galois -> automorphe, le plus difficile et le

plus intéressant pour un arithméticien). Je m'excuse du flou artistique de ce qui
va suivre; le reste du texte est plus précis.

La géométrie algébrique fournit des Qp-représentations de Gq en pagaille;
celles-ci ont des propriétés spéciales. Les inclusions de Q dans R et Qf
fournissent des inclusions Gr c Gq et Gqt c Gq pour tout nombre premier

l. Si p : Gq -» GLjfQ^) vient de la géométrie, sa restriction à Gq( est,

d'après Grothendieck, « non ramifiée » pour tout l sauf un nombre fini, et sa

restriction à Gqp est «de Rham», d'après la conjecture CdR de Fontaine. Une

représentation ayant ces propriétés est dite géométrique (terminologie introduite

par Fontaine et Mazur) et la conjecture de Fontaine-Mazur [15] est que toute

Qp -représentation géométrique de Gq, absolument irréductible, provient de la

géométrie. Cette conjecture a l'air complètement folle, mais ce qui a donné

confiance à Fontaine et Mazur est un petit argument de dimensions pour les

représentations de dimension 2. Les Qp -représentations de dimension 2 de Gqp
forment un espace analytique de dimension 5 ; à l'intérieur, les représentations
de de Rham sont une réunion dénombrable d'espaces de dimension 2 (les deux

conjectures de Fontaine mentionnées ci-dessus ramènent la question à l'étude

d'objets provenant de l'algèbre linéaire, dont les espaces de paramètres sont

relativement faciles à décrire). Par ailleurs, les représentations de dimension 2

de Gq, non ramifiées en dehors d'un ensemble fini fixé de nombres premiers,
forment un espace qui est, conjecturalement, de dimension $ 3. Comme 3 +2^5,
on peut espérer que les espaces se coupent transversalement et donc qu'il n'y
ait qu'un nombre dénombrable de représentations géométriques (ce qui est le

minimum pour croire à la conjecture, vu qu'il n'y a qu'un nombre dénombrable

de variétés algébriques définies sur Q).

Il n'y a aucun espoir d'attaquer directement cette conjecture, et on cherche

plutôt à prouver qu'une représentation géométrique de Gq est modulaire (i.e. est

la représentation attachée à une représentation automorphe, ce qui présume que
l'on sache attacher des représentations galoisiennes aux formes automorphes ce

qui fait, depuis 60 ans, l'objet d'un nombre impressionnant de travaux, le plus
abouti étant [84]). Depuis les travaux de Wiles [95] sur le grand théorème de

Fermât, on procède de la manière suivante pour prouver que p : Gq —> GLd(QP)
est modulaire:

• On montre que la réduction p de p modulo p est modulaire (programme
de Langlands modulo p dont l'archétype est la conjecture de Serre [91, 90]

prouvée par Khare et Wintenberger [73, 74]).
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• On fixe une composante irréductible de l'espace des représentations de de

Rham, et on montre, en comparant des espaces de déformations, que l'on
a assez de formes automorphes pour atteindre toutes les représentations

géométriques dont la réduction modulo p est p et dont la restriction à Gqp
varie dans cette composante.

Démontrer que p est modulaire n'a pas l'air beaucoup plus facile que de prouver
que p est modulaire, mais Taylor [93] a réalisé que l'on pouvait souvent prouver un

résultat plus faible (modularité de la restriction à un sous-groupe ouvert d'indice
fini), ce qui a permis de démontrer des tas de théorèmes de modularité potentielle
avec des retombées arithmétiques spectaculaires (en direction des conjectures
plus que quinquagénaires de Sato-Tate et de Hasse-Weil), les derniers en date

étant [34, 47].
En ce qui concerne le second point, plus la composante irréductible sur laquelle

on travaille est compliquée et plus les résultats sont difficiles à prouver. Dans les

applications à la correspondance de Langlands globale, on part d'un système de

Qp-représentations, une pour chaque p, et il suffit de prouver la modularité de

l'une d'entre elles, ce qui permet de prendre p assez grand pour que la situation
devienne sympathique (i.e. « Fontaine-Laffaille » en p Dans les applications à la

conjecture de Fontaine-Mazur, on n'a qu'une représentation à notre disposition et

il faudra attendre que la convergence, mentionnée ci-dessus, entre le programme
de Fontaine et la correspondance de Langlands locale ait progressé un peu plus

pour pouvoir avancer.

1. Périodes des variétés algébriques

1.1. Nombres p-adiques.

1.1.1. Le corps Cp [76, 62]. Le corps R est le complété de Q pour la valeur
absolue | | ; le corps des nombres p -adiques Q/; est son complété pour la norme
p-adique \ \p définie de la manière suivante: si a 6 Z, on note vp(a) le nombre de

fois qu'on peut diviser a par p (on a vp(0) +oo). On a vp(ab) vp(a) + vp(b)
et vp{a + h) ^ inf:(vp(a),vp(b)). La première propriété permet d'étendre vp à 0
en posant vp(a/b) vp(a) — vp(b) et implique que, si on pose \x\p p~vr(x\
alors \xy\p |x|p|y|p ; la seconde implique que \x + y\p -< sup(|x|p, \y\p)
(inégalité ultramétrique, plus forte que l'inégalité triangulaire).

L'inégalité ultramétrique fait que Zp {x e Qp, \x\p ^ 1} est un sous-

anneau de Qp, l'anneau des entiers p -adiques ; on note Z* le groupe de ses

unités (c'est l'ensemble des x e Zp vérifiant |x|p 1). L'application naturelle

Z/pnZ —r Zp/pnZp est un isomorphisme pour tout n, ce qui fournit une seconde
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construction, algébrique, de Zp et : Zp — Um Z/pnZ — {(x„)„6n, xn e

Z/pnZ, xn+i xn mod p"} et Qp Zpli]- Ces deux constructions de

permettent de combiner des méthodes purement algébriques et des méthodes

analytiques pour attaquer les problèmes p -adiques, ce qui est souvent très utile.

La norme p-adique s'étend de manière unique à la clôture algébrique Qp
de Qp (si [K : Q,,] < oo et si x e K, alors \x\p |Njç/qp(x)|1/[â::0/'1 ; c'est
la même formule que celle exprimant le module d'un nombre complexe). Le

corps Qp n'est pas complet pour | |p ; on note Cp son complété. Si L est un

sous-corps de Cp, on note {x e L, \x\p ^ 1} l'anneau de ses entiers,

et mi l'idéal {x e L, \x\p < 1} (qui est maximal). L'algorithme de Newton

permet de prouver que Cp est algébriquement clos et donc que le processus
s'arrête (ouf!). Les corps C et Cp ont même cardinal et sont algébriquement
clos; si on croit à l'axiome du choix, on peut donc fabriquer un isomorphisme
Cp ^ C, mais il n'en existe pas de raisonnable. Une grande partie de ce qui
suit est issue du désir de comprendre quelles sont les incarnations p -adiques
de nombres complexes intéressants comme 2in /|z|=1 ~ ou bien encore1

r(l/4)r(l/2) _ ~ r+oo dx
r(3/4) ~Ah vur^-

1.1.2. Le groupe Gqp [89]. Une énorme différence entre R et Q/; est que
R est presque algébriquement clos, ce qui n'est pas le cas de Qp : la clôture

algébrique Qp de Qp est de degré infini sur et le groupe de Galois absolu

GQp GaKQp/Qf, est un groupe infini (mais profini, i.e. limite projective de

groupes finis), très intéressant. Plus généralement, si K est une extension finie
de Qp, le groupe Gk Gal(QP/K) est un groupe infini.

Le groupe Gqp admet une filtration décroissante naturelle par des «groupes
de ramification ». Cela induit une filtration croissante naturelle sur Q, par des

sous-corps Q^, pour u ^ 0. Si u < 1, alors Q^u) est le corps Q" obtenu en

rajoutant à Qp toutes les racines de l'unité d'ordre premier à p. Le corps Q^''

s'obtient en rajoutant à Q^r les pl^N, pour N premier à p, mais les Qp \ pour
u > 1, n'ont pas de description sympathique.

Si £ est une racine de l'unité d'ordre une puissance de p et si a e Gqp
alors cr(£) est une racine de l'unité de même ordre. On en déduit l'existence
de /(a) e Z* tel que <r(£) Çx(-a\ pour toute racine de l'unité d'ordre une

1 Ce second nombre est une période (voir ci-dessous) de la courbe elliptique E d'équation
y2 x3 — x : c'est (au signe près) l'intégrale de <u le long du chemin fermé dans E (C)
dont la projection dans P'(C) C U {00} (par (x,y) i->- x) est constituée du segment [00,1 +e],
suivi d'un cercle de centre 1 et rayon e, suivi du segment [1 +£,00]; l'intégrale ne dépend pas de

e et quand e -* 0 la contribution du cercle tend vers 0, et comme a/x3 — x change de signe après

avoir parcouru un cercle de centre 1, les intégrales et sont égales (et pas opposées comme on

pourrait le penser), et l'intégrale le long du chemin est 2/,+°° jd*_
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puissance de p. Il n'est pas difficile de prouver que /(or) x(a)x(r)> et donc

que x ' Gqp —> Z* est un morphisme de groupe: c'est le caractère cyclotomique;
il va jouer un rôle important dans ce qui suit.

Le groupe Gqp agit par des isométries sur Qp, et l'action de Gqp sur Q/;
s'étend par continuité à Cp : l'orbite sous l'action de Gqp d'un élément de Q/;

est finie mais celle d'un élément de Cp \QP ne l'est pas.

1.2. Périodes des courbes elliptiques.

1.2.1. Courbes elliptiques et réseaux de C. Si A est un réseau de C

(i.e. A Z(0\ ® Zco2, où (0)1,(02) est une base de C sur R), on définit
une fonction (la fonction p de Weierstrass) méromorphe, A -périodique, par la

formule

Comme une fonction holomorphe A -périodique est bornée et donc constante

d'après le théorème de Liouville, un petit calcul montre que p vérifie l'équation
différentielle (p')2 4p3 — g2p~g3 où g2 — 60G4(A) et g3 140Ge(A), et

les G2/c(A) sont les nombres complexes définis par:

L'application z h» <p(z) — (p(z),p'(z)) est un isomorphisme de surfaces de

Riemann compactes de C/A sur les points complexes E(C) de la courbe

elliptique E d'équation affine Y2 4A3 — g2X — g3 (et d'équation projective
ZY2 4A3 — g2XZ2 — g3Z3), envoyant 0 sur le point à l'infini de E(C) (de

coordonnées projectives (0, 1,0) correspondant à la direction verticale).
Via cet isomorphisme, la forme différentielle dz correspond à co — ß- (i.e.

<f)*a> ^= ß dz), et A s'identifie au réseau des périodes de co

(i.e. l'image du groupe d'homologie singulière Hi(E(C),Z) par u i-> fuco).
L'application (E,oo) m» A envoyant une courbe elliptique E sur C, munie d'une
forme différentielle holomorphe co, sur le réseau des périodes de co est une

bijection sur l'ensemble des réseaux de C.
Plus généralement, on peut intégrer une 1-forme fermée a sur C/A (vue

comme variété différentielle) le long d'un chemin fermé u, et (a,m) h» fua
fournit un accouplement (l'accouplement des périodes) entre le groupe de

cohomologie de de Rham f/d'R(C/ A - un C-espace vectoriel de dimension
2 engendré par dz et dz - et //i(C/A,Z), et cet accouplement induit, via cp,

un isomorphisme (cas particulier du théorème de de Rham)
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H^r(E(O) 4 Hom(/y1 (E(C),Z), C).

La décomposition //JR(C/A CdzQjCdz correspond, via (p, à la décomposition
de Hodge II'iR(X(C)) ®p+q=l H,KQ(X(C)) existant pour n'importe quelle
variété projective lisse X sur C (et pour tout degré i de cohomoiogie).

1.2.2. La formule de Legendre. Pour construire un accouplement des périodes
dans le monde /?-adique, il y a deux difficultés évidentes et une plus cachée. Les

difficultés évidentes sont d'interpréter p-adiquement les groupes //dR(£(C)) (que
devient dz et Hi(E(C), Z) : la topologie p-adique étant totalement discontinue,
la notion de chemin p-adique est un peu minée.

Commençons par la première difficulté: comment interpréter dz de manière

plus algébrique. La forme p(z,A)dz n'est pas holomorphe mais les résidus en

ses pôles sont nuls (i.e. elle est de seconde espèce). Elle fournit donc une forme

linéaire sur H\{C/Z,Z): pour définir fur], il suffit d'intégrer sur un chemin

représentant u et qui évite les pôles; la nullité du résidu faisant que le résultat

ne change pas si on passe «juste en-dessous» ou «juste au-dessus» d'un pôle.
Par prolongement analytique en .y 0 de la formule

/ y^ \ _ y^ f (1 + s) dz s dz \
l 2—' (z — Co)\z — 0)\2s t—1

V (z — (û)2\z — (û\2s \z — ùj\2+2s)'
vû>eA v 1 1 2 «eA x 1 ' 1 1 '

on obtient l'identité suivante2 dans Hom(//i(C/A,Z),C), où a>i,w2 est une base

directe de A sur Z :

2/:x _p dz + G2(A) dz H — dz — 0.
ù)2ù)i — CO1CO2

Soit maintenant E une courbe elliptique définie sur un corps K de caractéristique

0 (i.e. E est d'équation affine Y2 4X3—g2X—g3, avec g2, g3 e K), et soit

K(E) le corps des fonctions rationnelles sur E (i.e. K(E) fj^-^x^+g-^x+g® ^
Ce qui précède suggère de considérer le groupe H^R(E/K), quotient de l'espace
des a e K(E) • np, de seconde espèce, par l'espace des dF, pour
F e K(E) : on obtient de la sorte un AT-espace vectoriel de dimension 2 dont

une base est co r\ X
Si K est un sous-corps de C, on a un isomorphisme naturel

"dR(^(C)) C <8>k H^r(E/K),

puisque (p*ri p(z. A) dz. Par contre, la décomposition de Hodge ci-dessus

n'existe pas forcément sur K car elle fait intervenir G2(A) qui est, en général,

2 La série E^eAxjO} a un pôle en j 0 de résidu
,g2 comme on le voit

en comparant avec l'intégrale îTjfrfe •
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transcendant sur K. Ce qui subsiste est Infiltration de Hodge : Fil0 //JR (E/K),
Fil2 0 et Fil1 est le sous-espace H°(E,Ql) des formes holomorphes (de

dimension 1, engendré par co).

Choisissons une base directe e\,e2 de H\(E(C),Z) sur Z. La matrice
(<«2 772)' °ù ÙJi lu œ et I' lu 1' est Ä'a>> matrice des périodes de E

(elle dépend, de manière transparente, des choix de co, t], u\,u2, d'où les

guillemets autour du «la»). Les coefficients de cette matrice des périodes (i.e. les

périodes de E) sont des nombres intéressants sur lesquels on dispose de plus de

conjectures que de résultats. La relation entre pdz, dz et dz fournit la formule
de Legendre: si u,v e H\(E(C),Z), alors

où u$v e Z est le déterminant de u,v dans la base e\,e2. Si E est définie sur

Q, on a le résultat remarquable suivant.

Théorème 1.1 (Nesterenko [79]). Les trois nombres e2l7r«2/«i j*p_ et M_ sont

algébriquement indépendants.

Si on part de la courbe elliptique d'équation Y2 4X3 — X, le théorème

précédent implique que n, en et T(i) sont algébriquement indépendants.

1.2.3. La formule de Legendre p-adique. Si K est une extension finie de Q„
et si E est une courbe elliptique définie sur K, le groupe H^R(E/K) a une

existence /7-adique. Qu'en est-il de Hi(E(C),Z)

• Le module de Täte. Si M est un groupe commutatif, on note M [//'] le

sous-groupe des x vérifiant pnx 0, et on définit le module de Täte TP(M)
de M comme l'ensemble des (w„)nen, avec un e M[p"] et pun+1 w„,
pour tout n. Alors TP{M) est un Zp-module car chacun des M[p") l'est (Zp
agissant à travers Zp/pn Z/pn). Par exemple, si A est un réseau de C,
l'application u h» (p~nu)neN identifie A à un sous-Z-module de TP(C/A) et

on a TP(C/A) Zp A

Maintenant, via l'isomorphisme cp • C/A E(C), la loi d'addition sur C/A
induit une loi d'addition sur E{C) pour laquelle l'élément neutre (noté 0) est

le point à l'infini. On a Pi + P2 + P2 0 si et seulement si P1.P2.P3
sont les points d'intersection (avec multiplicité) de E avec une droite du plan

projectif, ce qui fournit des formules purement algébriques pour cette loi de

groupe, et si E est définie sur K, il en est de même de la foi d'addition. En

transportant l'identité TP(C/A) Zp A, on obtient un isomorphisme naturel

Zp <g> H\{E(C),Z) TP{E) qui montre que l'on peut définir Zp (g) H\IE{C).Z)
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de manière purement algébrique, sans parler de chemin. Si E est définie sur K,
l'addition étant définie sur K, le module TP(E) est muni d'une action Zp-linéaire
continue de Gk-

Si K est une extension finie de Qp, et si E est une courbe elliptique définie

sur K, un analogue p-adique de l'accouplement de périodes (co,u) i-+ fu oj

sur H^r(E(C)) x H\{E{C),Z) serait donc un accouplement (w.u) fu m sur

H^R(E/K)xTp(E), et comme Gk agit p-adiquement continûment sur TP(E), on

veut que cet accouplement respecte cette action de Gk (i.e. a(fuco)).
Comme nous allons le voir, ceci conduit à une difficulté imprévue.

• L'accouplement de Weil. La formule de Legendre a un avatar algébrique donné

par l'accouplement de Weil (u.v) h» (u,v)„ de E[pn] x E[pn] dans fipll. Cet

accouplement est antisymétrique et parfait (il identifie E[pn] à Hom(£[p"], tipn)).
Si E est définie sur K, cet accouplement commute à l'action de Gk ; si K est

un sous-corps de C, si cp : C/A ^ E(C) comme d'habitude, et si u,v e A, alors

(0(jSr),0(pr)>„ exp(2ijr ^).
Les )„ se recollent pour fabriquer un accouplement Zp -linéaire, antisymétrique

> : Tp(E) x TP(E) -> Tp(jlpoo parfait et commutant à l'action de Gk, ce

qui fournit un isomorphisme a2Tp(E) Tp{pp0a) de Zp[Gk\-modules.

Supposons maintenant E définie sur Q (et donc aussi sur Q;, et C). Soit

e\,e2 une base orientée de H\(E(C),Z) sur Z; c'est aussi une base de TP(E)
sur Zp, et on note u(Jv, si u,v e TP{E), le déterminant de (u,v) dans la base

(ci, e2) D'après la formule de Legendre, fu m fv q — jv oj fu r] 2ijr (u$v), si

u,v e H\ (E(C), Z). Si on dispose d'un accouplement «périodes p-adiques»

H^E/Qr) x Tp(E) -a Cp, alors (m, v) h» fu co fv p - fv cû fu t) est une forme
bilinéaire alternée sur TP(E), et donc de la forme (2iji)p(u§v), avec (2in)p e Cp.
Si cet accouplement est non dégénéré, alors (2in)p ^ 0. Maintenant, une

forme bilinéaire alternée sur TP(E) n'est rien d'autre qu'une forme linéaire

sur a2Tp(E) ^ Tp(fipco). Or u\}u e Zp est fixe par Gqp et a e Gqp agit par
multiplication par /(rr) sur Tp(fip00) (par définition de x)- H s'ensuit que, si

l'accouplement «périodes p-adiques» commute, comme on le souhaite, à Gqp

on doit avoir

rr((2i7t)p) /(rr)(2/7r)/,, pour tout a 6 Gqp

1.2.4. Pas de 2 ire dans Cp. Le résultat suivant, première pierre de la théorie
de Hodge p-adique, montre que ce n'est pas possible.
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Théorème 1.2 (Täte [92]). Soit k o Z. Alors

{x e Cp, a(x) x^fx, Va eGQ)J} " * ~
[{0} si k ^ 0.

Pour k — 1, ce théorème dit qu'il n'y a pas de 2in dans C;,. Le cas k 0

(théorème d'Ax-Sen-Tate) a une histoire amusante. On peut tracer les débuts de

ce qui deviendra la théorie de Hodge /;-adique dans une série d'échanges [91]

entre Serre et Täte du début de l'année 1965 (Serre 07/01/65, Täte 12/01/65, Serre

29/01/65, Täte 02/02/65, etc.). Dans sa lettre du 02/02/65, Täte considère que c'est

un exercice, mais quelques mois plus tard (lettre du 28/05/65), Serre commence
à s'inquiéter: «Depuis un certain temps, j'essaie vainement de prouver ce que tu
dis être un exercice (as-tu vraiment regardé?) [...] J'ai d'abord cru que «c'était
évident», et plus j'ai regardé, moins c'est devenu évident; si bien que depuis

quelques jours, j'essaie plutôt de faire un contre-exemple. » (Que (Qp)G<ip Qp

est une conséquence de la théorie de Galois, mais il n'y a aucune raison, a priori,
pour que (Qp)Gqp soit dense dans (Cp)G,->'' bien que Qf) soit dense dans Cp.)
Tout est rentré dans l'ordre en 1966, et nous avons maintenant trois preuves de ce

résultat par Tate, par Sen et par Ax (celle d'Ax (janvier 1967) est très astucieuse

et totalement élémentaire mais apporte moins que les deux autres).

Puisque 2in n'existe pas dans Cp, on peut envisager de le rajouter de force, et

donc de considérer l'anneau Hht Cp\t, t~l], anneau que l'on munit d'une action
de GQp en faisant agir Gqp sur t par le caractère cyclotomique (i.e. n(t) /(a)t
si a e GQp) et d'une graduation stable par Gqp en posant GFBHt tlCp si

i e Z. Le th. 1.2 peut se reformuler sous la forme: les points fixes de Bht sous

l'action de sont

Bht ~ K.

On n'a toujours pas d'accouplement naturel H^R(E/K) x TP(E) ->• Bht, non

dégénéré et commutant à l'action de Gk, mais on s'en rapproche3: il existe un

accouplement naturel non dégénéré (//0(£,G1) © H1(E,ô')) x TP{E) -* Bht,
et cet accouplement commute à l'action de Gk- Il y a plusieurs manières de

construire cet accouplement (Täte, Raynaud, Coleman, Fontaine). Je vais expliquer
la construction de Fontaine de la partie de l'accouplement qui ne se réalise pas
dans Cp, à savoir l'accouplement H°(E, G1) x TP(E) -» Cpt.

1.2.5. Une première approximation d'un lin p-adique. Une des raisons pour
lesquelles 2in n'existe pas dans Cp est que sur C*, une fois choisie la valeur
de logp, on a log(xy) logx + log y pour tous x,y (alors que, sur C, cette

3 La filtration de Hodge fournit une suite exacte 0 -> H°(E, £2') ->• H^R(E/K) -* H '(E, G) -> 0.
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formule n'est vraie qu'à un multiple de 2in près): c'est dû à l'ultramétricité
de la norme p -adique. En particulier, si sn est une racine p" -ième de 1, alors

pn\ogen loge„ log 1 0, et donc loge« 0. Fontaine a réalisé que
cela n'impliquait nullement que la différentielle (formellement d loge«) soit

nulle. Cette différentielle vit dans le module £2 des différentielles de Kahler de

Ûq sur Zp (si A est une Zp -algèbre, le module ^a/zp des différentielles de

Kähler de A sur Zp est le A -module engendré par des symboles da, pour
a e A, avec les relations naturelles da 0, si a e Zp, et d(a + b) — da + db
et d{ab) adb + h da si a,b e A). On munit Q, de l'action évidente de Gqp
i.e. a(a dx) a(a) d(a(x)).

Théorème 1.3 (Fontaine [5]). Fixons un générateur (s„)n de Tp(fip0o).

(i) din P^di±± si „ e N et x(ct)4^. si a e G0n et n e N.v ' £n ' s„+1 ' V S„ > £„

(ii) Soit a [a e Qp, vp(a) ^ — ~j}. L'application p~na t-> a-jp-, pour

ne N et a e Gq induit un isomorphisme i : Qp/o —* f2, et on a

o"0(û)) si a e Gqp et a e Qp.

Le (i) est juste une traduction de ce que e„ spn+, et o(en) e*. La

preuve du (ii) est un exercice un peu astucieux reposant sur le résultat standard

suivant: si [K : Q^] < oo, il existe a e Gk tel que Gk ZP[a\ ; si P e ZP[X]
est le polynôme minimal de a, alors 0 dP(a) — P'(a)da et l'application
a i—^ a d(x induit un isomorphisme Gk/P'(oc)Gk -* &eK/zp

Remarque 1.4. Soit TP(Q) le module de Täte de 0. 11 ressort du (i) que

(^—)n e Tp(ß), et on déduit du (ii) un isomorphisme at -> Tp(Q), où â est

l'adhérence de a dans Cp (et donc Qp/a — Cp/a envoyant at sur (i(p~na))n,
et commutant à l'action de Gqp En particulier, t — (~(f^-)n se comporte comme

on le voudrait pour un lin p-adique (c'est une première approximation du lin
p -adique de Fontaine), et le apparaissant dans la définition de a correspond

à la formule vp(lin)

Soit maintenant E une courbe elliptique définie sur K, d'équation Y2

4X3 — g2X — g$. Soit a) — comme d'habitude. On suppose, pour

simplifier, que #2, £3 e Gk et que 4X3 - giX — g3 n'a pas de racine double

modulo m/f : cela a pour conséquence le fait que l'addition © sur E (et donc aussi

la multiplication mp par p) est définie sur Gk et que, si v (x,y) e E(Qp),
alors au moins une des expressions 12^2^g2 » d(f ~ xd(p) a un sens dans

Q (si deux de ces expressions ont un sens, elles donnent le même résultat grâce
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aux manipulations usuelles sur les formes différentielles, et on définit wfo e

comme n'importe laquelle de ces expressions).

La forme co est invariante par translation et on a m*<» pœ (sur C/A,
cela correspond à ce que d(z + a) dz et d(pz) pdz)\ on en déduit que

(vi © v2)*ûj v*o) + v*(t> et mp{v)*co pv*co. (Si on ne fait pas l'hypothèse

simplificatrice, ces deux formules restent vraies pour pra>, où r est assez grand

pour tuer les dénominateurs apparaissant dans les formules d'addition.)
Pour construire l'accouplement H°(E,Q1) x TP(E) -> Cpt, il suffit alors

de définir fuco, si u (un)n e TP(E), comme (u*co)n e Tp(Q) (de même,

t e TpiQ.)). Que l'on obtienne bien un élément de Tp{Çl) résulte de

mp(v)*(i> pv*co; la Zp-linéarité résulte de (iq © v2)*co v*co + v*a), et la

commutation à l'action de Gk est immédiate sur la définition de l'action de Gk
sur G.

1.3. Périodes et théorèmes de comparaison.

1.3.1. La cohomologie de de Rham algébrique. Soit X une variété projective
lisse, de dimension d, définie sur un corps K de caractéristique 0. On dispose,

grâce à Grothendieck [67], d'une définition purement algébrique de la cohomologie
de de Rham de X : les HdR(X/K) sont les groupes d'hypercohomologie4 du

complexe de de Rham algébrique &x ^x
Les HdR(X/K) sont des A'-espaces vectoriels de dimension finie et, si K

est un sous-corps de C, on a un isomorphisme naturel C HlAR{X/K)
HdR(X(C)), où X(C) est considérée comme variété différentielle de dimension

2d.
Le complexe de de Rham admet une filtration décroissante par les 0 ->

••• -> 0 -> £lqx -> ^+1 ->•••, ce qui munit les HlAR(X/K) d'une filtration
décroissante: la filtration de Hodge, et on a Fi\9 HldR{X/K)/Fi\q+l HlAR(X/K)
Hl~q (X,Qqx). Par ailleurs, la théorie de Hodge fournit une description de

HdR(X(C)) en termes de formes harmoniques, dont on déduit un isomorphisme
naturel

C HldR(X/K) s C ®K ®^=0 H'-^X, ß*)).

4 Par exemple, si les U/. Ui^r, sont des ouverts affines recouvrant X, le groupe H^fiX/K)
est le quotient de l'espace des ((û>;)/, avec a>t e £2'(t//) et f,j s û(Uj n Uj) vérifiant
db)j 0 et dfij =wj - (Oj, par l'espace des ((dfi)i,(fj —fôi<j), avec f,- e e(Ui).

Si E est une courbe elliptique, pour représenter la forme rç X^y- de cette façon, on peut utiliser
le fait que, si a e E(C), et si ta est la translation par a (i.e. t* f(x) f(xQa)), alors t*v — ri dfa
sur UanUo, où Un E \ {0} et Ua E \ {a} ; alors Ua et Un recouvrent E, ij e S2'(Un),
t*ri s Q'(Ua), et (v,t*V,fa) définit un 1-cocycle du complexe de de Rham de E dont l'image dans

/K) est r,.
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Autrement dit, la filtration de Hodge est naturellement scindée sur C (mais

pas, en général, sur K car le scindage sur C peut faire intervenir des nombres

transcendants).

1.3.2. Périodes complexes. Si K est un sous-corps de C, l'intégration fu a>

d'une /-forme différentielle m le long d'un cycle u de dimension / fournit un

accouplement HldR(X/K)x Hi(X(C),Z) -»• C, et les fu oj sont les périodes de co.

Par ailleurs, le lemme de Poincaré permet de montrer que l'inclusion du complexe
C -+ 0 -> 0 -> • • • dans le complexe de de Rham induit un isomorphisme

Hl{X{C),C) //jR(A(C)) (interprétation de Weil [49] de l'isomorphisme de de

Rham), et donc un isomorphisme

C H1 (X(C), Q) s C H^X/K),

et les périodes des formes différentielles apparaissent dans la matrice de cet

isomorphisme dans des bases des deux espaces (l'espace H1 (X(C), Q) s'interprète
donc aussi, naturellement, comme Hom(//i(A(C). Z), Q)). C'est sous cette forme

que l'on va chercher à définir les périodes /?-adiques. Notons que, si on combine

l'isomorphisme ci-dessus avec la décomposition de Hodge de C®k //'|R(A/K)
mentionnée plus haut, on obtient une décomposition de Hodge pour H'(X(C), Q),
à savoir

C Hi(X(Q.Q) ^ ©< =0(C <g>* W-^X,^)).
Il reste à comprendre ce qui peut jouer le rôle de Hl(X(C),Q) et aussi dans

quel anneau vivent les périodes /?-adiques puisque nous avons vu que Cp n'est

pas un bon candidat.

1.3.3. Algébrisation de H'(X(C),Q). Le groupe Hl(X(C),Q) ne semble pas
avoir d'incarnation purement algébrique; par contre Qp ®q //'(A(C),Q) en a

une (de la même manière que, pour une courbe elliptique E, le Zp -module

Tjp ® Hi(E(C),Z) s'identifie naturellement au module de Täte TP(E) de E): un

théorème d'Artin [36] fournit un isomorphisme naturel Qp <Siq Hl{X(C),Q) ^
///((A, Qp) avec le groupe de cohomologie étale de X qui, lui, peut se définir
de manière purement algébrique (cela repose sur un résultat fondamental de

Grothendieck disant que, si X est une variété algébrique, alors tout revêtement

topologique fini de A(C) est aussi, naturellement, une variété algébrique).
Comme dans le cas de TP(E), si X est définie sur K, alors Gk agit sur

l'extension des scalaires X-g de X à A", et donc aussi sur H^(X~^,QP). Par

ailleurs, la cohomologie étale ne change pas si on étend les scalaires à un autre

corps algébriquement clos contenant K. Comme les coefficients des équations
définissant X vivent dans un sous-corps de K de type fini sur Q et qu'un tel
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corps peut se plonger dans C, on en déduit, via les théorèmes de comparaison
précédents, l'identité

dim* H'dR(X/K) dimQp H^, Qp).

En résumé, si K est un corps de caractéristique 0, et si X est une variété

projective lisse de dimension d, définie sur K, alors, pour tout i e {0, 1, • • • 2d},
on dispose de:

• H'iR(X/K), un A"-espace vectoriel de dimension finie muni d'une filtration
décroissante par des sous- K -espaces vectoriels,

• Hlt(XK>Qp)' un Qp -espace vectoriel de dimension finie muni d'une action

Qp -linéaire continue de G*,

ces deux espaces ayant la même dimension (sur leurs corps respectifs).

1.4. Périodes p -adiqucs.

1.4.1. La conjecture de Hodge-Tate. Supposons maintenant que [A" : Q/;] < oo,
et continuons à supposer que X est une variété projective lisse, définie sur

K. L'analogue /?-adique du théorème de comparaison de de Rham serait un

isomorphisme

®QP hL(XK> Qp) HdR(x/K)

commutant à l'action de G*, où B> est une A"-algèbre munie d'une action de

G*. Comme on l'a vu dans le cas des courbes elliptiques, on ne peut pas prendre
Bn — Cp. Dans le même article [92] où il prouve le th. 1.2, Täte formule une

conjecture sur l'existence d'un isomorphisme comme ci-dessus, mais où l'espace
vectoriel filtré HlàR(X/K) est remplacé par son gradué ®lq=0Hl~q(X, £lq) (ce qui

perd pas mal d'information). La reformulation à la Fontaine de cette conjecture
utilise l'anneau Bht Cp[t,t~l] introduit ci-dessus.

Conjecture 1.5 (Täte). Si X est une variété propre et lisse définie sur K et si

i e N, on a un isomorphisme naturel

(CHT) tHT : BHT H'k(X ® K, Qp) BHT <SK W))

commutant à l'action de Gk et respectant les graduations.

Remarque 1.6. (i) Si on prend les termes de degré 0 des deux côtés, on obtient

un isomorphisme naturel, commutant à l'action de G*,

Cp ®0/, Hlk(X®K, Qp) ^ ®iq=0{t~qCp ®k W-iiX.Q.")),
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ce qui est la manière traditionnelle d'énoncer la conjecture: existence d'une

décomposition de Hodge-Tate pour Cp <%qp Hlét(X ® K, Qp) (encore plus

traditionnellement, on note Cp(-q) le Gk-module t~qCp : si V est un

Gif-module et k est un entier, on note V(k) le tordu à la Tate (Tate twist)
de V par yk ~ i-e- on multiplie l'action de Gk sur V par yk

(ii) Si on prend les points fixes par Gk, le membre de droite devient la

cohomologie de Hodge ®lq=0Hl~q(X, Qq) (puisque K) et le membre

de gauche hérite d'une graduation (induite par la graduation sur Bht)- La

graduation qu'on en déduit sur la cohomologie de Hodge est la graduation
naturelle (i.e. Grq Hl~q (X,Qq)). Autrement dit, la cohomologie étale

(munie de l'action de Gk) encode la cohomologie de Hodge (munie de sa

graduation).

Täte, lui-même [92], a prouvé cette conjecture dans le cas des variétés

abéliennes (analogues, en dimension arbitraire, des courbes elliptiques) avec

«bonne réduction». Raynaud a étendu ce résultat aux variétés abéliennes générales,

ce qui permet d'en déduire le résultat pour le H1 de toute variété; la preuve de

Fontaine ci-dessus pour les courbes elliptiques s'étend aux variétés abéliennes,

et fournit une preuve simple [5] du résultat de Raynaud. Malheureusement, il
semble que ces méthodes élémentaires ne s'étendent pas à H1, pour i ^ 2.

1.4.2, Structures additionnelles sur la cohomologie de de Rham. Une grande

spécificité de la géométrie sur un corps p-adique K est qu'on peut réduire

«modulo p » les équations d'une variété X définie sur K et obtenir une variété

XK sur le corps fini k 6'k /m/r (pour que ce soit possible, il faut partir
d'équations à coefficients dans Ûk, i.e. d'un modèle sur Ûk)- Dans les bons

cas, la variété XK est un miroir assez fidèle de la variété X, et la cohomologie
de X «ne dépend que de XK ». De plus, comme XK est en caractéristique p, il
y a une action du frobenius x i-^ xp sur XK et on peut espérer que cette action
induise une action sur la cohomologie de X.

Les bons cas sont ceux où les singularités de XK (ou plus exactement du

modèle) sont les plus gentilles possible. Si X est une variété algébrique lisse

sur K :

• on dit que X a bonne réduction si elle admet un modèle lisse sur Ûk
(auquel cas XK est lisse sur /c);

• on dit que X est semi-stable si elle admet un modèle sur Ûk dont les

singularités sont «localement» de la forme Xi Xr m, où m est une

uniformisante de K (i.e. un générateur de m/f
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On espère que toute variété lisse sur K devient semi-stable sur une extension

finie de K (c'est vrai pour les courbes); c'est peut-être un peu optimiste: des

singularités franchement méchantes apparaissent quand on réduit modulo p (par

exemple, si on réduit la courbe projective de Fermât Xp + Yp+ZP 0 modulo p,
on trouve la droite X + Y + Z 0 avec multiplicité p, mais on peut faire bien

pire mais on n'a pas de contrexemple.
Si X est semi-stable, on dispose d'une cohomologie H^K construite par Hyodo

et Kato [70] (et appelée cohomologie de Hyodo-Kato): les HlUK(X) sont des Kq-

espaces vectoriels de dimension finie (K0 K nQ"), munis d'un frobenius <p

bijectif, Kq-semi-linéaire5, et d'un opérateur N «de monodromie» Kn-linéaire,

nilpotent, vérifiant la relation N<p p <pN. De plus, on a un isomorphisme naturel

« de Hyodo-Kato » :

tHK : K ®Ko H^iX) s H^Çi/K).

Dans le cas de bonne réduction on a N 0, et on retrouve une cohomologie
introduite antérieurement par Grothendieck [68] et développée par- Berthelot [44],
à savoir la cohomologie cristalline H'ris.

Autrement dit H^K(X) est muni d'un <p, d'un N, et d'une filtration (la
filtration de Hodge sur HlAR(X/ K)) après extension des scalaires à K : c'est

ce que Fontaine appelle, fort à-propos, un (<p, N) -module filtré. Si A a bonne

réduction, H^K(X) est aussi un (<p, N)-module filtré mais sur lequel N 0, ce

que Fontaine appelle un <p -module filtré.

1.4.3. Les anneaux de périodes p -adiques. L'anneau Bht est un peu artificiel et

ne prend pas en compte les structures supplémentaires existant sur la cohomologie
de de Rham. Ceci a conduit Fontaine à construire des anneaux Bcris C Bst c BdR

beaucoup plus fins (et beaucoup plus compliqués) que BHt : sa motivation initiale
était de comprendre H1 dans le cas de bonne réduction. Je donne la construction
de ces anneaux au n° 1.5.2, mais pour énoncer les résultats et pour la plupart des

applications, on peut prendre un point de vue axiomatique et n'utiliser que leurs

propriétés ci-dessous.

Les anneaux Bcris c Bst c Bjr sont des anneaux topologiques munis d'actions
continues (compatibles) de Gqp et de structures supplémentaires stables par Gqp

et, si [K : Q^,] < oo, les points fixes sous l'action de Gk sont:

Bfâ K et B^=B^ K0.

• Bst est muni d'un frobenius (p et d'un opérateur « de monodromie » N,
commutant tous les deux à Gqp et vérifiant la relation N o (p — pcp o N

5Le frobenius x i-> x" sur k se relève, de manière unique, en un automorphisme (p de Ko-
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• Beds C Bst est le noyau de N (et est muni de l'action de <p).

• BdR est un corps, et est muni d'une filtration décroissante (BJ1R),eZ, stable

par GQp, compatible avec la multiplication (i.e. B^R • B^R c B^R7 et

l'anneau gradué associé ©/ezCB^/B^1) n'est autre que BHt-

Ces anneaux sont reliés par les suites exactes fondamentales, avec6 Be B^r~',
ensemble des x e Bcris vérifiant ip(x) x (la plus délicate est la troisième; c'est
aussi la plus importante) :

0 —>• Bcrjs —> Bst Bst —> 0.

0 —> Be —> Bcrjs —> BcrjS —> 0,

0 -> Qp Be—>BdR/B°R 0.

Il en ressort que l'on peut retrouver Qp à l'intérieur de Bst (ou Bcris) en utilisant
les structures additionnelles (<p, N et la filtration). C'est un point fondamental

de la théorie de Fontaine : couplé avec les conjectures Cst et CcrjS ci-dessous, il
fournit une description de la mystérieuse représentation Qp) de Gk en

termes d'objets nettement plus faciles à calculer et à décrire.

1.4.4. Les théorèmes de comparaison p -adiques. Une fois que l'on dispose
des anneaux Bcris, Bst et BdR, il est tentant de formuler les conjectures CcriS

(cas de bonne réduction), Cst (cas semi-stable) et CdR (cas général).

Conjecture 1.7 (Fontaine). Soit K une extension finie de Q/;, et soit X une

variété projective lisse définie sur K. On a des isomorphismes naturels:

(C_cris) icris : BcriS ®q/, H^fXjr, Qp) Bcrjs ® ^() HcrifiX

(C—st) ist : B^ ®qp ll'^fX-^, Qp) Bst (8)k() 7/il«

(C_dR) tdR : BdR ®Q/, HifXç, Qp) ^ BdR H'dR(X),

commutant aux actions de Gk, (p, N et respectant les filtrations.
De plus, ist s'obtient à partir de icrjS par extension des scalaires de Bcris à

Bst et tdR s'obtient à partir de tst par extension des scalaires de Bst à BdR.

Remarque 1.8. (o) Chacune des conjectures CcriS, Cst et CdR implique la

conjecture Cht pour les variétés auxquelles elle s'applique.

6Le e en indice vient des travaux de Bloch et Kato |46| qui ont utilisé les anneaux de Fontaine

pour définir des sous-groupes H}(Gk,V), H'(Gk,V) Hg(GK,V) du groupe de cohomologie
galoisienne H1 (Gk, V), si V est une Q,, -représentation de Gk Les indices e, f, g sont les

premières lettres de «exponential», «finite» et «geometric». Le groupe HI(Gk,V) est le noyau de

HfGK,V) ^ H\GK,Ke V).
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(i) Quand Fontaine a formulé la conjecture Cst, la cohomologie de Hyodo-
Kato n'existait pas encore, et la conjecture incluait l'existence d'une théorie

cohomologique ayant les propriétés de la cohomologie de Hyodo-Kato [70,

40]. La définition de cette cohomologie utilise pleinement la géométrie

logarithmique introduite par Fontaine et Illusie et développée par Kato [71].

(ii) Ces conjectures ont donné lieu à énormément de travaux (par exemple [39,

40, 45, 64, 80, 83, 94], liste non exhaustive, loin s'en faut) et sont maintenant
des théorèmes (y compris sans hypothèse de projectivité ou de lissité). Un
des premiers résultats est celui de Fontaine et Messing [9] qui, dans le

cas de bonne réduction, construisent une flèche Fil°(Bcris <8> IfXJX ))<fiT=l -»
Héi(X~k,Qp), mais n'arrivent à montrer que c'est un isomorphisme que si

K K0 et si ^ p — 1 (en utilisant ce qui est connu sous le nom de

théorie de Fontaine-Laffaille, cf. rem. 2.6). En ce qui concerne Cst, Fontaine

lui-même [10] l'a démontrée pour H1 (ce qui lui a donné la confiance
nécessaire pour énoncer la conjecture: il était un peu surprenant qu'il suffise

de rajouter log p à BcrjS pour obtenir le bon anneau) en s'appuyant sur un
résultat fondamental de Raynaud [82].

(iii) Il y a eu récemment des résultats pour les variétés analytiques [83, 60, 59],

(iv) Les preuves pour i ^ 2 sont considérablement plus délicates que celles des

résultats qui les ont inspirés pour les variétés sur C. Une grosse différence

entre les deux situations est qu'on peut recouvrir une variété complexe par
des boules ouvertes dont la cohomologie est essentiellement triviale, alors

qu'en /7-adique, les pièces de base sont plus compliquées que des boules,
mais même les boules ont une cohomologie hautement non triviale.

1.5. Construction des anneaux de périodes p -adiqucs.

1.5.1. A ring to rule them all Aj„f. Soit

% {(x«)neN- xn e &CpIP, x„ + i xn. V» £ N} fim &Cp/P
x^xp

Alors Ûç\, est un anneau de caractéristique p car x xp est un morphisme
d'anneaux en caractéristique p. Si x (-x„)«=n e U(:i, et si x„ est un relèvement

* Dn h-de xn dans 0çp, alors x„ converge dans ûç (car a — b e p ôc;, implique
ap ~bp e pk+l Ûqp), et la limite x" ne dépend pas du choix des x„. Si on pose
vb(x) vp(x"), alors vb est une valuation sur pour laquelle il est complet.

Il s'ensuit que, si a e vérifie vb(a) > 0, alors Cbp ^cb[^] est le corps

des fractions de ûc\, et que t,'1' s'étend en une valuation de Cbp.

On fait agir Gqp sur U(;i, composante par composante (via son action sur

Xcp ; cette action s'étend naturellement à Cp.
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Théorème 1.9. Cbp est un corps algébriquement clos de caractéristique p, complet

pour v° et l'action de Gqp sur Cp est continue.

Soit7 en — e2llllpn, de telle sorte que s (e«)nen est un élément de GCb

sur lequel a e Gqp agit par cr(s) (défini comme XdfceN ~
puisque a(s„) e„^a\ par définition du caractère cyclotomique y.

Soit Ajnf l'unique anneau A, complet pour la topologie /?-adique, tel que

A/pA Gc\, (et donc Ajnf W(GCb), l'anneau des vecteurs de Witt à

coefficients dans GCb Il existe un unique système multiplicatif de représentants
de Grb dans Ainf (les représentants de Teichmüller). Si x e Gc\, notons [xl
son représentant de Teichmüller. Tout élément de Ajnf peut s'écrire, de manière

unique, sous la forme EteN/fel' °ù les x& sont des éléments arbitraires de

Grb Par unicité des vecteurs de Witt, A;nf est muni d'un frobenius <p donné
^-P

par Pk\xk\) IZkeN Pklxkh et d'une action de Gqp commutant à (p.

On définit 6 : Ainf -> GCp par 0(LfeeN Pk\xk\) Hk^Pkxi- Alors 6 est

un morphisme surjectif d'anneaux dont le noyau est engendré ([7, prop. 2.4]) par

[e]-l
1

[eGp] - 1
'

Remarque 1.10. (i) Les formules pour l'addition et la multiplication des vec¬

teurs de Witt sont assez épouvantables: par exemple, modulo p2, on a

p-i
([x0] + /?[xi]) + ([y0] + /'[yi]) [-Xo+Lol + P xi+y\ + J2 tTï-xoPyoP~l)/P

L
1

Heureusement, on se rend compte assez vite qu'on n'en a jamais besoin;
savoir qu'elles existent suffit.

(ii) Il y a deux manières fructueuses de penser à Ainf suivant ce que l'on veut

faire; si on s'intéresse à la détermination des idéaux premiers de Ainf, le plus
efficace est de voir p comme une variable [22] (si on fait du 3-adique, il
faut voir 3 comme une variable et de penser à Ajnf comme étant Gcb [[/?]]

(cf. th. 3.9); si on s'intéresse à la convergence de certaines séries, il est

souvent utile d'imaginer que c'est Gcp [[£]]. Dans les deux cas, il faut faire
attention à « ne pas oublier les retenues » quand on fait des additions ou des

multiplications

1.5.2. Les anneaux elfîques Bcris, Bst, BdR. Fontaine a défini les anneaux BdR,

Bcris Ct Bst en trois étapes : [7] pour BdR, [8] pour BcriS et [10, 12] pour Bst. Soit

7 Pour donner un sens à cette égalité, on nnte Q la clôture algébrique de Q dans C et on fixe un

plongement de Q dans Q,,.
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Bj~R lim(Ajnf[-^]/£fc). C'est un anneau de valuation discrète, de corps résiduel

Cp (et donc, si on croit à l'axiome du choix, isomorphe à Cp[[f]]), contenant le

complété AcrjS de Ajnf[^y, k e N] pour la topologie /t-adique. L'action de Gqp
s'étend à tous ces anneaux et, si on pose

f iog[*] -x;^.
k^l

alors t e Aces est une uniformisante de B^~R, et

a (0 log[e/(a)] log([s]*(a)) x(er)f,

ce qui fait de t un analogue /7-adique de lin (c'est le 2in p-adique de

Fontaine; que t soit une uniformisante de B^}~R implique que f / 0, mais que

son image dans Cp est nulle, en accord avec le théorème de Täte).

Le frobenius (p s'étend par continuité à AcrjS, et <p(t) pt. L'action de cp

s'étend donc au sous-anneau Bcris Acris[j] B+is[±] (avec B+is Acris[|])
de BdR et on note Be le sous-anneau B^r1 de BdR. On munit BdR

de la filtration décroissante par les B'JR t ' B(R<, pour i e Z ; cette filtration est

stable par Gqp
En tant qu'anneau abstrait, on a Bst Bcris[M], où u e BdR est un analogue

p -adique de log p défini par

k^l

où pb — (p,pl!p,pl!p2,...) e üCb Ce sous-anneau est stable par Gqp : il
existe c : Gqp Zp tel que o{u) — u + c(a)t, si a e Gqp On munit Bst d'un
Frobenius en posant q>(u) pu et d'un «opérateur de monodromie» N ^.
On a la relation N<p ptpN.

Il y a deux énoncés cruciaux et non triviaux (en plus des propriétés énoncées

au n° 1.4.3) à prouver pour faire marcher la machine:

• K <S)k0 Beds BdR est injective, si [K : Qp] < oo et K0 K n Q.
• m est transcendant sur BCris-

Le premier de ces énoncés est prouvé dans [7] (avec une variante de Bcris : il

y a plein d'anneaux qui peuvent jouer le rôle de Bcrjs dans toute cette histoire;
l'anneau BcrjS s'est imposé car AcriS s'interprète [8] comme 7/CJCq ce qui
fait qu'il apparaît naturellement dans les preuves des théorèmes de comparaison);
la preuve simplifiée de [12] est trop simple pour être honnête.
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2. Représentations galoisiennes

Soient K une extension finie de Qp et K0 — K fl Qp comme d'habitude.

2.1. La stratégie de Fontaine. Fontaine a développé à partir de la fin des

années 1970, un programme visant à classifier et décrire les Qp -représentations
de Gk (i.e. les Qp-espaces vectoriels de dimension finie, munis d'une action

Qp-linéaire continue de Gk), en termes plus concrets.

2.1.1. Représentations B -admissibles. La stratégie de Fontaine part de

l'observation suivante: si on dispose d'une -algèbre topologique B, munie

d'une action Q,,-linéaire continue de Gk et de structures additionnelles stables

sous l'action de Gk, on peut associer à toute -représentation V de Gk un

invariant Dß(V) en prenant les points fixes (B ®Qp V)°K de B V sous

l'action de Gk- Alors Dß(K) est un BGk -module muni des structures additionnelles

sur B et qui est souvent plus facile à décrire que la représentation V dont

on est parti. Un tel anneau B permet en outre de découper la sous-catégorie des

représentations B -admissibles :

Définition 2.1. Une Q/; -représentation V de G k est B -admissible si B (8>q/; V

est triviale, i.e. isomorphe à BàxmV en tant que représentation de Gk-

Tout l'art consiste à ciseler de bons anneaux et Fontaine a été un véritable

orfèvre en la matière.

2.1.2. B -admissibilité et cohomologie galoisienne. Soit V une Qr -représentation

de Gk - Choisissons une base de V sur Q/;, et notons U„ e GLj (Qp
la matrice de l'action de a e Gk dans cette base. On a Uar UaUr, et

comme Gk agit trivialement sur Qp, les Ua vérifient la relation de cocycle

Uox Ua(j(Ur). La B -admissibilité de V se traduit par l'existence d'une base

de B® V sur B, fixe par Gk, et donc par l'existence de M e GL^{B) telle que
Ua pour tout a e Gk (Fe. le 1-cocycle o \-> Ua est un cobord:

sa classe dans H1(Gk,GL(i(B)) est triviale).
Par exemple, si on munit Q/; de latopologie discrète, alors H1 (Gk, GL^ (Qp))

est trivial (théorème 90 de Hilbert); on en déduit que V est Qp -admissible si

et seulement si Gk agit sur V à travers un quotient fini. Le résultat suivant est

nettement plus profond.

Théorème 2.2 (Sen [87]). V est Cp -admissible si et seulement si le sous-groupe
d'inertie de Gk (Fe Gk H GalfQ^/Q^) agit à travers un quotient fini.
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En particulier, Qp(l) n'est pas Cp-admissible (i.e. il n'y a pas de 2in
dans Cp).

2.2. Description des représentations issues de la géométrie.

2.2.1. La hiérarchie des représentations p-adiques. On peut appliquer le

programme ci-dessus avec les anneaux Bcris, Bst, BdR Bht » Qp • Bens (sous-

anneau de BdR engendré par Qp et Bcris), Bst Ceci permet de définir
les notions suivantes pour une Qp -représentation V de Gjç '

• V est dite cristalline si elle BcrjS -admissible et potentiellement cristalline si

elle est • Bcris -admissible.

• V est dite semi-stable si elle Bst-admissible et potentiellement semi-stable

si elle est Qp • Bst-admissible.

• V est dite de Rham si elle est BdR-admissible.

• V est dite Hodge-Tate si elle est Bht-admissible.

Les relations entre les différents anneaux fournissent les implications suivantes :

cristalline => potentiellement cristalline

I
semi-stable => potentiellement semi-stable

de Rham => ffodge-Tate

Remarque 2.3. (i) Toutes les implications ci-dessus sont strictes à l'exception
de «pst => dR» qui est, en fait, une équivalence. L'implication réciproque,
connue sous le nom de «conjecture de monodromie p-adique de Fontaine»,
a été ramenée par Berger [41], en utilisant la théorie des (<p, F) -modules

du §2.3, à un énoncé portant sur les équations différentielles /?-adiques (la

«conjecture de monodromie p -adique de Crew» [61]), qui a été prouvé dans

la foulée par André [35], par Mebkhout [78] et par Kedlaya [72]. 11 y a eu

depuis d'autres preuves, utilisant des techniques variées, de la conjecture de

Fontaine.

(ii) Les extensions non triviales de Qp par Q/>0) sont de Rham (et même

semi-stables). Fontaine avait conjecturé [7] que les extensions non triviales
de Qp(l) par Qp ne sont pas de Rham, ce qui a été démontré par Bloch

et Kato [46]. Comme ces extensions sont Hodge-Tate, on en déduit le fait

qu'il n'existe pas d'isomorphisme Gk -équivariant de B^j"R sur Cp[[/]]. Par

contre, Fontaine a démontré [19] que si on rajoute log lin à BHt ou à

BdR, on obtient les mêmes représentations admissibles : les représentations
de Hodge-Tate sont presque de Rliam.
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(iii) Les conjectures CdR Cst et CcriS se traduisent par le fait que les repré¬

sentations de Gk « provenant de la géométrie » sont de Rham, et donc

potentiellement semi-stables (et même semi-stables ou cristallines si on part
de variétés semi-stables ou ayant bonne réduction).

(iv) On dispose d'une description « explicite » des représentations potentielle¬

ment semi-stables (th. 2.4), très utile pour les applications à la géométrie

arithmétique.

2.2.2. Représentations semi-stables et (cp, N) -modules filtrés. Un (<p,N)-
module filtré est, comme son nom l'indique, un module muni d'un <p, d'un
N et d'une filtration Plus précisément, soit K une extension finie de Qp, et soit

K0 K HQ. Un (<p,N) -module filtré sur K est la donnée de:

• un (<p, N)-module D sur K(), i.e. un K() -espace vectoriel D de dimension

finie, muni d'une action semi-linéaire bijective d'un frobenius <p et d'un
opérateur N vérifiant Ncp p<pN,

• une structure de K -module filtré sur Dk K 0^o D, i.e. une filtration
décroissante sur Dk par des sous-/é-espaces vectoriels D'K, pour i e Z,
avec DlK Dk si i est suffisamment petit, et DlK 0 si i est suffisamment

grand.

Si V est une représentation semi-stable de Gk, de dimension d, on pose

Dst(U) (Bst ®Qp Vf* et DdR(F) (BdR <g>Qp V)G*.

Alors Dst(U) est, naturellement, un (<p, A)-module filtré sur K, de rang d :

Dst(U) est un Ko -module de rang d puisque Ko, et est muni
des actions de <p et N existant sur Bst ; DdR(K) est un AT-module de

rang d puisque B^ K, et est muni de la filtration de BdR ; l'inclusion
K 0k„ Dst(U) ^ DdR(U), induite par l'inclusion K <8>k0 Bst ^ BdR, est une

bijection pour des raisons de dimension.
On dit qu'un (ip, N)-module filtré sur K est admissible s'il est de la forme

Dst(K), avec V semi-stable. Le problème est de donner une caractérisation plus
concrète de cette condition.

Si D est un (<p, W) -module filtré sur K, le rang rg(D) de D est la dimension
de D sur A"0. Si D est de rang 1, on définit le degré deg(Z)) de D par la

formule

deg(D) tN(D)-tH(D),
où tN(D) et tn(D) sont définis en choisissant une base e de D sur K0 :

• il existe À e K* tel que <p(e) Xe, et on pose tff(D) vp(X) ;

• il existe i e Z, unique, tel que e e D'K \ D1^1, et on pose ?#(£>) i
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Si D est de rang r ^ 2, alors det D Ar D est de rang 1, et on définit le

degré de D par deg(D) deg(detZ)) et la pente de D par p.{D) drg^ff • On

dit que D est faiblement admissible, si jiiD) 0 et si //(D') L 0, pour tout

sous- {cp, N) -module filtré D' de D

Théorème 2.4. V h» Dst(K) induit une équivalence de catégories de la catégorie
des représentations semi-stables de Gk sur celle des (<p, N) -modules filtrés sur
K faiblement admissibles, le joncteur inverse étant

D h> Vst(£>) (Bst ®*0 D)v=1'n=0 n Fil°(BdR DK).

Remarque 2.5. L'intérêt de ce résultat est qu'il permet de traduire tout problème

portant sur les représentations semi-stables en un problème portant sur des objets
concrets. Par exemple, il est très facile de construire des (cp, N) -modules filtrés
faiblement admissibles et, si K est fixé, il n'est pas si difficile de décrire

explicitement l'espace des (cp, N)-modules filtrés sur K, faiblement admissibles,
de rang fixé.

Ce résultat a une longue histoire. La formule pour le foncteur inverse résulte

juste de la manière dont on peut décrire Q/; à l'intérieur de Bst en utilisant
les suites exactes fondamentales du n° 1.4.3. Fontaine a prouvé qu'un (cp,N)-
module filtré admissible est faiblement admissible [4] et conjecturé [4, 13]

que la réciproque est vraie (conjecture « faiblement admissible admissible »

ou simplement « fa => a »), ce que nous [16] avons fini par démontrer

en 1999.

Avant notre preuve du cas général, il y avait eu des résultats partiels, le plus

probant étant celui de Fontaine et Laffaille [6] pour les (<p, A)-modules filtrés sur

lesquels N 0, dans le cas K K0, et tels qu'il existe a e Z avec Df Dk
et Da^fp~x 0 (i.e. la longueur de la filtration est ^ p — 1

Remarque 2.6. La théorie de Fontaine-Laffaille va plus loin car elle décrit non

seulement Vst(D) mais aussi les Zp -réseaux de Vst(£>) stables par Gk, ce qui
est fondamental pour beaucoup d'applications arithmétiques.

2.2.3. Le lemme fondamental. Notre preuve est un dévissage assez pénible

permettant de se ramener au cas de Fontaine-Laffaille et reposant sur le th. 2.7 (dit
«lemme fondamental») ci-dessous. Dans l'énoncé, U (B+is)l?'=/' et un fragment
de la suite exacte fondamentale fournit une suite exacte 0 -> Qpt -> U -* Cp —» 0,

ce qui fait que U ressemble beaucoup à Cp © Q^, tandis que l'on a une suite

exacte 0 tCp -> Bjjx/t2 -» Cp -> 0 qui fait que Bj"R/f2 ressemble beaucoup
à Cp ®CP (cf. § 2.4 pour des compléments sur cette ressemblance).
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Théorème 2.7. Soient ai,...,ah e Cp, et v\ .me B^R/t1 tels que

h h

~Y^aiO(vi) 0, mais ® 0(u;) ^0 dmzs C^, (giQ^ Cp.
i=1 i=1

Enfin, soit

Y {u\, • Uh U, (0(î^i 9(uh)) (x«i,..., xah), avec x e Cp).

Alors p : Y -»• /Bj"R//2B^R tCp, définie par p(ui,..., ufi) ]C?=i uivi< est

surjective et son noyau est un Qr -espace vectoriel de dimension h.

Ce résultat est surprenamment difficile à prouver directement: si on fixe

z 6 Cp, et qu'on essaie de trouver x e Cp tel qu'il existe des relèvements afix
de off a: dans U tels que Xa=i vi — tz, on se heurte à des problèmes

qui semblent inextricables (en particulier parce que les afix ne sont définis

qu'à Qpt près et donc que x h» z est multivaluée). Quand Fontaine m'a dit

qu'il avait besoin de ce lemme pour faire marcher sa stratégie, j'ai bien sûr

essayé l'approche directe, sans aucun succès. J'allais abandonner quand je me

suis souvenu que Wintenberger m'avait mentionné que l'on pouvait faire les

constructions de Fontaine en famille (il n'est pas le seul à avoir eu cette idée: lui
en avait besoin pour étudier comment varient les périodes dans une famille de

variétés abéliennes [97]; en 1999 c'était «bien connu»). Avec ce point de vue,

l'application jc h* z peut s'exprimer comme une limite de fonctions algébriques,

ce qui fournit un point de départ solide pour attaquer le problème.
Il y a eu, par la suite, d'autres preuves de la conjecture «fa => a», dont une

de Fontaine [20] prouvant en parallèle les conjectures «fa =>• a» et «dR =£> pst»
et qu'il a utilisé comme fil conducteur de son cours à Tsinghua en 2004 et de son

livre avec Ouyang Yi [21]. La preuve la plus satisfaisante est probablement celle

utilisant la classification des fibrés sur la courbe de Fargues-Fontaine (cf. n° 3.3.2).

2.3. Les (cp, T) -modules. La théorie des (cp, T) -modules a été développée par
Fontaine [11] pour donner une description de toutes les représentations /7-adiques
de Gk : une Qp -représention de dimension d du mystérieux groupe Gk est

encodée dans la donnée de deux matrices A, B e GLj(Bk) vérifiant une relation
de commutation Ay(B) B<p(A). Le prix à payer est que le corps B^ qui
intervient est largement plus compliqué que Q/;, mais la théorie des (<p, F) -

modules s'est révélée, à l'usage, un outil extrêmement puissant pour l'étude des

représentations de Gk

2.3.1. Les séries de Coleman. Pour illustrer les concepts qui vont suivre,

commençons par un résultat frappant de Coleman [53] :
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Théorème 2.8. Soit sn e2l7I^p", et soit Fn — Qp(sn). Si u (un)nen vérifie

un e Fn et Nfn+1/irJI(M„+i) un, pour tout n 1, il existe Gu e Z^[[T]][7"_1],
unique, telle que Gu(en — 1) un, pour tout n ^ 1.

L'unicité de Gu est immédiate (un élément de ZP[[T]] n'a qu'un nombre fini
de zéros), mais l'existence ne l'est pas.

Soit une famille d extensions finies de Qp, avec LB c f/j+i pour
tout n, et soit Lœ Dne^Ln. Définissons l'ensemble

^(Loo) {(w„)„en. avec w„ e Ln et NLii+l/Ln(un+l) un, pour tout n ^ 0}

des systèmes compatibles pour les applications normes. Cet ensemble ne dépend

que de /JOO et pas du choix des Ln ; la théorie du corps des normes le munit, si

Loo est raisonnable, d'une structure de corps de caractéristique p. Par exemple,

l'extension cyclotomique F^ Qp(ßpoo) est raisonnable, et X(F0o) ^ FP((L)),
l'isomorphisme correspondant envoyant u sur l'image de la série de Coleman

Gu modulo p.
La construction du corps A(Loo) apparaît dans un exposé de Fontaine au

séminaire de théorie des nombres de Grenoble [1], en 1971, mais la théorie n'a
vraiment été développée, par Fontaine et Wintenberger [3, 96], qu'une dizaine

d'années plus tard.

2.3.2. Le corps des normes d'une extension APF. La terminologie officielle

pour «raisonnable» est «strictement arithmétiquement profinie» ou «strictement
APF ». On dit que est strictement APF si :

• on peut écrire L^ Un^Ln, avec [Ln : Q^,] < oo, Ln c Ln+1,

• il existe c > 0 tel que, pour tout n ^ 0,

(*) vp(o(x) — x) ^ vp(x) + c, pour tous x e Ln+1 et a e Gl„

Des exemples naturels d'extensions strictement APF sont:

• l'extension cyclotomique K(iLp00), avec [K : Q^] < oo,

• l'extension de Kummer avec [K : Qp] < oo et a e K*,

• une extension galoisienne Kœ de K, [K : Qp] < oo, de groupe de Galois

un groupe de Lie p-adique (comme Z*, (ZpZf), GL^(Zp), etc.) avec

[(*00 n Q") : Qp] < oo.

(Les deux premiers exemples sont élémentaires; le troisième est une

conséquence d'un résultat de Sen [86].)
Si Loo est strictement APF, le corps résiduel C/JOO/m/,^, de L^ est un corps

fini F?, et on a le résultat suivant.
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Théorème 2.9. (i) Si (.xn)„,(yn)n e X(Loo), alors NLn+k/Ln(xn+k + yn+k)

converge vers sn e Ln et (sn)n e If(Loo).

(ii) Jc.v lois + et définies par (xn)n + (yn)n Gn)n el (xn)n (yn)n

(xny„)n, l'ensemble X(Loo) est un corps de caractéristique p, isomorphe
à F, ((D).

(iii) 57 AL» est extension finie, galoisienne, de L^, alors X(M00) est une

extension galoisienne de X(Loo) et Ga\.{X{M00)/-f (/JOO)) GalfA/oo/L») ;

les groupes de Galois absolus de /JOC et X(L00) s'identifient donc canoni-

quement.

(iv) Si L0o est une extension galoisienne de K, et [K : Qp] < oo, le groupe
GaliLoo/K) s'identifie à un sous-groupe du groupe des automorphismes
continus de Af(Loo).

Remarque 2.10. Si L<*> est une extension galoisienne de K, avec [K : Qp] < oo,
ce théorème fournit un dévissage de Gk '

1 -> Gf^((D> -* Gk -x Ga^Loo/K) -> 1.

Si Lœ est l'extension cyclotomique de K, le groupe Gal(Loo//0 est

particulièrement simple puisque c'est un sous-groupe fermé d'indice fini de Z*, et

le dévissage obtenu est à la base de la théorie des fip, F) -modules résumée

ci-dessous.

La clé de la preuve du (i) est la propriété (*) qui implique que, modulo pc,
on a Nl„+i/l„(x) x'L"+i:L"' si x e é?Ln+l ; cela permet aussi de prouver le

résultat suivant, crucial pour ce qui va suivre. (Le corps Cj, et s e Cp sont

définis au n° 1.5.1.)

Théorème 2.11. Si Lest une extension APF, X{IJOO) est naturellement un

sous-corps de Cbp et la clôture séparable de XiL^) est dense dans Clp.

Par exemple, l'inclusion de X(Qp(p,p00)) — FP((T)) dans envoie T
sur £ — 1.

2.3.3. Quelques anneaux gnomiques. Si [K : Q^] < oo, on note /L»
l'extension cyclotomique K{pp00) de A', et on note E/f le corps des normes de

Koo vu comme sous-corps de Cp. On a donc, en particulier, Eq^ F^e— 1)).

D'après le th. 2.9, la clôture séparable E de Eq^ est la réunion des Ek et,

si on note Hk C Gk le noyau du caractère cyclotomique / : G k -> Z*, on a

Gal(E/Ek) — Hk- On note r# le groupe Gall/L»/K) Gk/Hk, et donc x
induit un isomorphisme de F/r sur un sous-groupe fermé d'indice fini de Z*.
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Soit A W(C[p) l'anneau des vecteurs de Witt à coefficients dans Cbp (c'est
aussi le complété de Ainf[^j] pour la topologie p-adique). Soit n [e] — 1 e A

On note Aq/( l'adhérence dans A de Zp[7r, n~x] ; c'est l'anneau des J2kez aklïk >

avec ak eZp et —> 0 quand k -* — oo. On a

cp(jt) [e]p—1 {\+n)p — 1 et fr(tt) 1 (I+tt)*^—1, si <7 e Gqp

Il s'ensuit que Aqp est stable par cp et par Gqp qui agit à travers Tq^.
Il existe un unique sous-anneau A de A p -saturé (x e A et px e A

=ï x e A) et complet pour la topologie p-adique, contenant Aqp et tel que

A/pA E c A/pA. Cet anneau est stable par Gqp et par f et on a

Ah AQp et A*=1 =ZP.
Si [AT : Qp] < oo, on pose Ak AHk Alors Ak est stable par cp et par

Gk agissant à travers et on a Ak /PAk Ek
Enfin, on pose8 B A[i], Ak[],\- Alors B et Bjf sont des corps

munis d'actions de cp et de Gk commutant entre elles, Gk agit à travers rk
sur Bjç, et

B1)5=1 Q,, et BHk Bx.

Remarque 2.12. En général, si F K^ D Qp- il existe jik e Ak tel que Ak
soit l'ensemble des J2kZakJtK > avec ak e @f et -> 0 quand k —oo (i.e.

Ak a la même forme que Aq mais les formules donnant l'action de (p et IV
sur tck ne peuvent pas vraiment s'expliciter (l'expérience montre que ce n'est

pas un vrai problème).

2.3.4. L'équivalence de catégories de Fontaine. Un (<p, T)-module D sur B^
est un B/f-espace vectoriel de dimension finie muni d'actions semi-linéaires de

<p et \'k commutant entre elles. Un {(p, F)-module sur B^ est étale si (p est de

pente 0 ce qui se traduit, si D est de rang d, par l'existence d'une base de D

sur Bk dans laquelle la matrice de <p appartient à GL^(Ax).
Si V est une -représentation de Gk, on pose D(V) (B ®qp V)Hk

C'est un \\Hk BA -module muni d'une action résiduelle de Gk/Hk IV et

d'une action de (p provenant du frobenius cp sur B ; c'est donc un (cp, F)-module
sur Bjf.

Théorème 2.13 (Fontaine [11]). Si V est une Qp -représentation de Gk, le ((p, T)-
module D(V) est étale et V i-> IX V induit une équivalence de catégories de

la catégorie des Qp -représentations de Gk sur celle des (<p, F) -modules étales

sur Bk, le fondeur inverse étant D i-> V(D) (B (giß^- D)'p=l.

8 L'anneau B est celui mentionné dans l'introduction sous le nom de S
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Remarque 2.14. (i) Pour beaucoup d'applications, il est inutile de savoir com¬

ment le foncteur V m- D(V) est défini; savoir qu'il existe suffit.

(ii) Comme Fk est procyclique (au moins si p / 2 ou bien si p 2 et K
contient V—T), si y est un générateur de T/j, un (<p, T)-module D est

complètement décrit par les actions de <p et de P. Si on choisit une base

de D, et si on note A et B les matrices de y et <p dans cette base, la

seule contrainte est la commutation de (p et y qui se traduit par la relation

Ay(B) B<p{A).

(iii) B et B^J"R sont tous deux obtenus à partir de Ajnf, mais pour aller de

l'un à l'autre (et donc pour retrouver les invariants «elfiques» à partir des

(<p, T)-modules, ce qui est important pour les applications arithmétiques), il
faut utiliser des anneaux intermédiaires [50, 51, 41].

2.3.5. Application à la cohomologie galoisienne. Plaçons-nous dans la situation

où rjç est procyclique et choisissons un générateur y de T/f. Si V est

une Qp -représentation de Gk, le groupe Hï(Gk,V) classifie les extensions

0-+V-^-E—yQp->0 de représentations de Gk (agissant trivialement sur

Qp). Via l'équivalence de catégories du th.2.13, une telle extension correspond
à une extension 0 D{V) —> D(E) -» Bjf -»• 0. Si on choisit un relèvement

e e D(E) de 1 e Bjç-, et que l'on pose x — (y — \)e et y (<p — l)e, alors

x et y appartiennent à D(V) et décrivent complètement D(E) (si on connaît

D(V) ; par ailleurs, comme on peut modifier e par un élément de D(V), le

couple (x,y) n'est déterminé par D(E) qu'à addition près de ((y — l)z, (<p— l)z),
avec z e D(V). On en tire le résultat suivant.

Proposition 2.15. On a un isomorphisme naturel

Ce résultat (et beaucoup d'autres développés dans la thèse de Herr [69]) a été

présenté par Fontaine dans un exposé au Newton Institute, peu de temps avant la

conférence où Wiles a annoncé la preuve du grand théorème de Fermât9. Dans

l'esprit de Fontaine, c'était une étape dans la preuve de la « loi de réciprocité

explicite » conjecturée par Perrin-Riou [81], et portant sur sa généralisation des

séries de Coleman (l'exponentielle de Perrin-Riou). Fontaine n'a rien écrit à ce

sujet, mais son programme a été mené à bien [52, 42],

H\GK,V) -=
{{x, y) e D(V) x D(V), (cp - l)x (y - 1 )y}

{((y - l)z, (<P - l)z), z e D(V)}

'Fontaine était rentré à Paris au moment de la conférence, mais il suivait les événements de près
et a utilisé ses entrées au journal Le Monde pour assurer au résultat de Wiles la publicité qu'il méritait.
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2.4. Les presque Cp -représentations. Soit K une extension finie de Qp. La
théorie des presque Cp -représentations [18] de Gk a été développée par Fontaine
dans son cours à FIHP, pendant le semestre p-adique, en 1997, avec pour but la

preuve de « fa =>• a » esquissée ci-dessous.

2.4.1. L'action de Cp perdue et retrouvée. Un joli résultat (frappant car archi-
faux si on remplace Cp par Q;, à la base de la théorie est le suivant [19,

prop. 6.2] :

Théorème 2.16. Si X : Cp —> Cp est Qp -linéaire continue, et commute à l'action
de Gk, alors il existe c e K tel que X(x) ex, pour tout x G Cp.

Une Cp-représentation est un Cp-espace de dimension finie, muni d'une
action semi-linéaire de Gk- Ces objets ont été classifiés par Sen [88], et le

th. 2.16 permet de prouver [19, th.6.1] que beaucoup d'information est encodée

dans l'action de Gk '

Théorème 2.17. Si ttj, W2 sont deux Cp -représentations de Gk, toute application
Qp -linéaire continue, Gk -équivariante, de W\ dans W2, est Cp -linéaire.

2.4.2. Presque-Cp-représentations. Une presque-Cp -représentation W est un

Qp-espace de Banach muni d'une action continue de Gk tel qu'il existe une

Cp-représentation W' de Gk et V' c W', V c W des sous- Qp -espaces
vectoriels de dimension finie stables par Gk, tels que W/V ^ W'/V', en

tant que représentations de Gk On a donc des suites exactes :

0 V -> W' -* W'/ V -> 0, 0 V W -+ W'/ V 0,

de telle sorte que W est obtenu à partir de W' « en quotientant par V et en

rajoutant V ». Une telle description s'appelle une présentation de W. Le résultat
fondamental de la théorie est le suivant.

Théorème 2.18 ([18, th. 5.1]). (i) Si W est une presque-Cp -représentation,

Dim W (dim W, ht W), dim W — dime,, W' et

ht W diniQ^ V - diniQp V',

ne dépendent que de W et pas de la présentation.

(ii) Si f : W\ —? W2 est un morphisme de presque-Cp-représentations, alors
Ker / et Im / sont des presque- Cp -représentations, et :

Dim W\ Dim Ker / + Dim Im f.
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Par exemple les espaces U et BJR/t2 apparaissant dans l'énoncé du lemme

fondamental (th. 2.7) sont des presque--représentations dont les Dimensions

respectives sont (1,1) et (2,0).
Je n'assistais pas au cours de Fontaine, mais il me racontait ce qu'il faisait

et j'avais été frappé par le fait qu'il pouvait facilement retrouver la dimension
du petit Qp -espace vectoriel, mais pas celle du gros Cp -espace vectoriel : les

calculs de cohomologie galoisienne de Täte permettent de montrer que les groupes
H1(Gk, W) sont de dimension finie sur Qp, nuls si i ^ 2, et

dimQ/) H°(Gk, W)-dimQp HX{GK, W) + dimQ/) H2(GK, W) -[K : QP]ht(JF).

Il ne semble pas y avoir d'invariant galoisien permettant de retrouver dim W et

la preuve du th.2.18 ci-dessus a dû attendre quelques années; elle repose sur le

« lemme fondamental » dont il a été question plus haut.

Remarque 2.19. Un résultat surprenant de la théorie est que l'on peut imposer à

W' d'être triviale (i.e. isomorphe à Cp comme Gk-module) dans la définition
de presque- Cp -représention ; on obtient les mêmes objets. Par exemple le Täte

twist Cy,(l) (qu'on a vu être très différent de Cp puisqu'il n'y a pas de 2in
dans Cp) ne diffère de Cp que par des -représentations de dimension finie
de GK-

2.4.3. Une preuve de la conjecture «fa =>• a». La preuve de «fa => a» que
Fontaine avait en vue est la suivante. Soit D un (<p, A)-module filtré sur K, de

rang h. Si r e N, on pose

XrA(D) (t~rB+ <8*0 D)n=0'V=1 et X^r(D) (rrB+ D*)/Fil0.

Alors X£t(D) et XjR(D) sont des presque-Cp -représentations et, si r est assez

grand, on a

Dim X^t(D) (rh — în(D), h) et Dim XràR(D) — [rh -tfjiD), 0).

Maintenant, si D est faiblement admissible, Fst(D) est, d'après un vieux résultat

de Fontaine [4], de dimension ^ h sur (V et égale au noyau de X£t(D) —>

A'jr(D), si r est assez grand. Si on note W le conoyau de X^(D) -> X^R(D), on

a dim W 0 puisque dim Fst(Z)) 0 et dim Xsrt(Z)) dimA'j'R(D); il s'ensuit

que ht W ^ 0. Comme ht Vst(D) + ht XjR(D) ht Jfst(D) + ht W, on déduit
des inégalités précédentes que dimQ^ Vst(D) h, i.e. D est admissible, et que
W 0.
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3. La courbe de Fargues-Fontaine

Comme je le raconte dans [58], la courbe JfFF de Fargues-Fontaine a vu
le jour à Trieste, dans la nuit du 5 septembre 2009. Fontaine avait réalisé, 2

mois plus tôt, que l'anneau Be est principal (à sa grande surprise) en

s'appuyant sur des résultats de Kedlaya [72] et Berger [43], mais il a fallu des

sauts intellectuels audacieux pour imaginer que Be pouvait être considéré comme
l'anneau des fonctions sur une courbe affine, puis que l'on pouvait compactifier
cette courbe affine en rajoutant un point oo de manière à obtenir une courbe

projective 9fFF. Cette courbe permet de donner une incarnation géométrique à tous
les objets du programme de Fontaine; on en déduit une preuve particulièrement
limpide de la conjecture « faiblement admissible => admissible ». Nous allons
donner des telles incarnations pour:

• la suite exacte fondamentale 0 —>• Qp -> Be -» Bj~R -* 0,

• les représentations de Gk pour [K : Q^] < oo,

• les (<p, N)-modules filtrés.

On peut interpréter de même les (<p, T) -modules et, dans son dernier
article [23], Fontaine décrit les presque Cp -représentations en termes de faisceaux

cohérents sur 9fFF.

3.1. La courbe. Tout ce qui suit est tiré de [22],

3.1.1. La courbe comme espace projectif. La courbe A"FF offre de grandes
similarités avec la droite projective P1 sur C. Pour souligner ces similarités,
introduisons les notations suivantes:

• (pour P1) K C, s/ C[T], X CUT"1)), JC+ Cp-"1]],
S? — ®n^o^n, où &n est l'espace des polynômes homogènes C[A\ Y]
de degré n

• (pour XFF) K Qp, fi/ Be, JC BdR, JT+ B+R, ^ ®n>o@>n,

où (B+sr=pn.

Dans les deux cas, on a les faits algébriques suivant (nettement moins évidents

pour 9fFF que pour P1 : le (i) correspond à la suite exacte fondamentale) :

Théorème 3.1. (i) La suite 0 K -> s/ —> JC/JC+ —> 0 est exacte.

(ii) Tout élément de S?n est le produit de n éléments de uniquement
déterminés à l'ordre près et à multiplication près par des élément de K*.
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Dans les deux cas, 3? est une K -algèbre, naturellement graduée, et l'espace

projectif Z associé n'est autre que P1 dans le premier cas, et XFF dans le

second :

• Les points de Z sont en bijection avec les idéaux homogènes maximaux de

&, et donc avec \ {0})/AT* ;

• les ouverts non vides de Z sont de la forme Uf Z \ V(f) où, si / e ,3g,

V(f) est l'ensemble des zéros de / (i.e. l'ensemble des t e &\j K* divisant

/). Si f e éPj \{0}, l'anneau G(Uf) des fonctions entières sur Uf est la

réunion (croissante) des £Z>dn

Si / est une fonction méromorphe sur Z (i.e. / e Fracf.r/)), on note vz(f)
l'ordre du zéro de / en z 6 Z et on a, dans les deux cas, la formule immédiate

mais fondamentale J2zez vz (/) o.

3.1.2. La courbe vue comme compactification d'un espace affine. Dans les

deux cas, on privilégie un point oo de Z : dans le cas de P1, c'est le point
correspondant à Y et dans le cas de ZFF, c'est le point correspondant à t, le

2ijt de Fontaine; dans le cas de P1 on note t — y le paramètre local en oo,
et on pose T y (et donc t T-1). Alors, dans les deux cas, stf est l'anneau

G(Z\{oo}) des fonctions entières sur Z \ {oo} et est le complété G x,oo
de l'anneau local en oo. La «suite exacte fondamentale» ((i) du th. 3.1 pour
XFF) s'interprète donc géométriquement comme la suite

0 G(X) —* G(X \ {oo}) —> Fr( G x,oo)/ Gx,oo ~^ Ci-

Maintenant, P1 est obtenu en compactifiant la droite affine par un point à l'infini,
et on peut aussi construire Z AFF en recollant un point oo au schéma affine

Spec(j2/). Il faut épaissir un peu oo pour que l'ensemble tienne, et on est ramené à

recoller Spec(JT+) et Spec(^/) le long de SpecpT) : il suffit de définir l'anneau

G(U) des fonctions holomorphes sur un ouvert non vide U de Z. Un tel ouvert
est de la forme Spec(^/[^]) ou Spec(^[^]) U {oo}, avec u e s/ ; dans le pemier

cas, on pose G(U) ], dans le second G(U) fl Jf+.

Remarque 3.2. Il y a quand même une différence essentielle entre Z P1

et Z Aff. Dans le cas Z P1, le corps des constantes (i.e. les fonctions

holomorphes sur Z tout entier) est C et le corps résiduel en oo est aussi C ;

dans le cas de AFF, le corps des constantes est Qp mais le corps résiduel en

oo est le corps résiduel de ßj"R et donc est Cp qui est de dimension infinie sur

QP- Cette différence provient de ce que P1 est de type fini sur C, alors que
XFF n'est pas de type fini sur Qp.
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3.2. Fibrés sur X. Dans la suite on note simplement X la courbe de Fargues-
Fontaine XFF. On note Xe l'ouvert Spec(Be) de telle sorte que X XeU{oo}.

3.2.1. Fibrés et B -paires. Si A est un fibré vectoriel sur X, on peut lui associer

la paire (Me(S), M^iS)) définie par

Me(S) H°(Xe, A), M+R(S) dx,oc ®ex A.

Alors Me(é?) est un Be-module libre (puisque Be &{Xe) est principal) de rang
fini, et M^R(S) est un B j~R-réseau de B(|r Me(S) ; une telle structure est

appelée une B-paire. Réciproquement, une B -paire Me, MdR) définit un fibré

A sur X : si U est un ouvert de Xe, on a

H°(U.S) 0{U) ®Be Me et H°(U U{oo},<?) (û(U)®Be Me)nM+R.

L'application A (Me(S). MdR(S)) est une équivalence de catégories de la

catégorie des fibrés sur X sur celle des B -paires. (Remplacer Be par C[7'] et

B^"r par CffF-1]] fournit une description - à la Beauville-Laszlo [38] - des fibrés

sur P1.)

L'espace H°(X,S) des sections globales de A est l'espace des sections sur

X \ {oo} se prolongeant sur un voisinage infinitésimal de oo, et donc

3.2.2. Le fibré A(A). Si A est un fibré sur X, on peut associer à A deux

invariants additifs dans les suites exactes : son rang rg(A) et son degré deg(A)
défini par deg(A) deg(detA) où, si A? est un fibré de rang 1 sur A, et

si (Be,f"B+R) est la B -paire associée, on pose degAf —n (on a aussi

degAf ,;zfv), si .v est une section méromorphe globale de JS). On

définit la pente p(S) de A comme le quotient ^§y
Si A — f g Q, avec d,h entiers premiers entre eux et h ^ 1, on définit

un fibré A(A) sur X de la manière suivante. On considère le P -module gradué

®»eN(®ni/,'=,'',+" ' et on note 'e fibré associé: si u e (B^;is)<iC'=/7, et si Uu
fo A

est l'ouvert sur lequel u est inversible, alors A)) ((B^is)[b])'i0 p

Proposition 3.3. (i) A(A) est de rang h, de degré d, et de pente A.

(ii) Les sections globales de A(A) sont données par:

H°(X, A) MAS') n Md+ (A).
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3.2.3. Classification des fibres. Munie des deux invariants rang et degré, la

catégorie des fibrés sur X est une catégorie de Harder-Narasimhan (comme celle
des fibrés sur une courbe projective lisse). Cela a pour conséquence l'existence,

sur tout 4, d'une filtration canonique 0 40 C 4i C C 4- 4 (la filtration
de Harder-Narasimhan), strictement croissante, telle que Si/Si-i soit semi-stable

pour tout i 1 ,r (ce qui signifie que /r(4') < /r(4/4_i) pour tout sous-

objet strict 4' de 4/4-1 et telle que la suite des pentes /x(4 /4—i soit

strictement décroissante.

Le délicat résultat suivant est fondamental.

Théorème 3.4 ([22, th. 8.2.10]). Si 4 est un fibré sur X, il existe des nombres

rationnels Ai > A2 ••• ^ Ar, uniquement déterminés, tels que

4 ss û(Xi) © ••• © 4(Ar).

Remarque 3.5. (i) Il résulte de ce théorème que la filtration de Harder-
Narasimhan de 4 est scindée comme dans le cas de P1 où l'on a, grâce à

Grothendieck [66], une décomposition comme ci-dessus mais où les A, sont
des entiers.

(ii) Une grosse différence avec le cas de P1 est que Hl(X, 4(A)) 7^ 0 si A < 0 :

par exemple Hl(X, 4(—1)) B^/(fB^ © Qp) ; une extension nontriviale
de 4 par â{—1) est de pente ~. Cette différence vient de ce que Be,
bien que principal, n'est pas euclidien10, contrairement à C[T].

Le théorème de classification des fibrés admet comme corollaire le résultat

suivant qui est le point de départ d'une belle histoire, loin d'être terminée [65, 85].

Théorème 3.6. X est géométriquement simplement connexe : tout revêtement étale

fini de X est de la forme E ® X, où [E : Qp] < 00.

3.3. Fibrés Gk -équivariants.

3.3.1. Fibrés Gk -équivariants et représentations de Gk - Le groupe G K agit
naturellement sur X. Le point 00 est fixe par Gk et tous les autres points de

X ont une orbite infinie sous l'action de Gk - L'action de Gk sur

â[X \ {00}) Be et &x,00 — Bj~R,

qui s'en déduit est l'action naturelle.

Via l'identification entre fibrés sur X et ZI-paires, les fibrés Gk -équivariants
s'identifient aux (Gk, B)-paires, i.e. les B-paires (Me,M^~R) où Me est muni

10 Un exemple nettement plus sexy que le sempiternel Z[ l+^~—] des leçons d'agrégation!
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d'une action semi-linéaire de Gk et M^R c Bjr <S>bc, Me est stable par Gk
(objets introduits par Berger [43]).

Si S est un fibré Gk -équivariant sur X, sa filtration de Harder-Narasimhan

est constituée de fibrés Ga:-équivariants (car l'action de Gk respecte les pentes
des fibrés). Il découle du th. 3.4 et de la prop. 3.3 que, si ê est semi-stable

de pente 0, alors fI°(X, 4) est une Qp -représentation de Gk - On en déduit le

résultat suivant qui fournit une description « géométrique » des Qp -représentations
de Gk.

Théorème 3.7. Les fondeurs

V i-> V ®qp Ü et S h-> 11° (X,

induisent des équivalences de catégories inverses l'une de l'autre entre la catégorie
des Qp -représentations de Gk et celle des fibrés Gk -équivariants sur X, semi-

stables de pente 0.

3.3.2. (cp, N) -modules filtrés et fibrés Gk -équivariants. On peut associer à

un (<p, iV)-module filtré D sur K, une (Gk, 5)-paire (Me(D), et donc

un fibré Gk -équivariant S'(D) sur X, en posant

Me(D) (Bsl®KoD)N=0'<>>=1 et M+(D) Fil°(B+R DK).

Un petit exercice de traduction nous donne:

Proposition 3.8. Soit D un (cp, N)-module filtré sur K.

(i) rg(<?(£>)) rg(D), deg(#(£>)) deg(D) et n(£(D)) p(D).

(ii) D est faiblement admissible si et seulement si <?(D) est semi-stable, de

pente 0.

Comme S(D) est semi-stable, de pente 0, si et seulement si D est

admissible (grâce au th. 3.7 et à la définition d'admissible), cela fournit une

preuve particulièrement limpide de la conjecture «fa => a» (bien sûr, toute la

difficulté s'est concentrée dans la preuve du th. 3.4).

3.4. Idéaux maximaux de La preuve du th. 3.1 demande d'étudier les zéros

des éléments de Ajnf, ce qui se fait en s'inspirant [22, th. 2.4.6 et n° 1.5.2] de la

stratégie dans le cas de ûq [[L]].
Si * Y,k<EfixkTk e ûCp[[T]} (resp. x Pklxk\ e Ajnf), le polygone

de Newton NPX de x est la plus grande fonction convexe / : R+ —>• R+ U {+00}
telle que f(k) ^ inf,-^ vp(xi) (resp. f(k) ^ inf,^ vb(xi)), pour tout k e N.
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Dans les deux cas, NPX est une fonction convexe décroissante, linéaire par

morceaux, et A < 0 est une pente de NPX s'il existe un intervalle sur lequel
la dérivée de NPX est À ; la multiplicité de A est la longueur de cet intervalle

(c'est un entier >: 1

Théorème 3.9. Soit x un élément de 0cp[[T}] ou de Ainf, et soit A une pente
de NPX, de multiplicité d.

• Si x e Ûqp [[7']], il existe ai,..., a(t e mc„, uniques à permutation près,

vérifiant vp(aj) —A, et tels que x — (T — aj)y avec

yz0c„[[T] ].

• Si x e Ainf, H existe a\ aq e mCb vérifiant v {ai) — -A, et tels que

x (P ~ bi]) (?- [ad))y avec y e Ainf.

Dans les deux cas, NPy est obtenu en enlevant de NPX le segment de pente
A.

Le cas de Ûq [[L]] est parfaitement classique, et on en déduit que l'ensemble
des idéaux maximaux fermés de ^cp[[T]][^\ est en bijection naturelle avec mcp
(la bijection envoie a e mcp sur l'idéal (T — a)).

Dans le cas de Ajnf, on en déduit que a h- (p - [a]) induit une surjection
de mCb sur l'ensemble des idéaux premiers fermés non nuls (qui sont aussi les

maximaux fermés) de Ajnf[^] et donc que cet ensemble est le quotient de mCb

par une certaine relation d'équivalence. Cette relation d'équivalence est difficile
à décrire mais on dispose d'une autre paramétrisation (th. 3.10), plus directe, des

idéaux maximaux fermés de Ajnf[^]. L'énoncé du résultat va demander un peu
de préparation.

Si x e mci, posons £x e Ainf ; on a (x [x1"] + pux, où

ux est une unité de Ajnf ; le th. 3.9 permet d'en déduire que (£x) est un idéal

premier de Aj„f.
On fait agir ï,p sur mci, par oa{x) (1 + x)a — 1. Si y cra(x) avec

a e Z*, les idéaux (£x) et (Çy) de Ainf sont égaux (car u — 1 divise ua — 1 et

ua — 1 divise (ua)lla — 1 u — 1

Théorème 3.10. x i-> (Çx) induit une bijection de m(.i, /Z* sur l'ensemble des

idéaux maximaux fermés de Ajnf[A].

Remarque 3.11. (i) mcp est aussi un quotient de mCb : c'est le quotient par

Zp si on fait agir a e Zp par a - x eax (eZp est l'ensemble des z e Cp
vérifiant 1, et l'application mCb mcp est simplement a a").
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(ii) Dans les deux cas, 0 joue un rôle particulier vu qu'il est fixe par les actions
de Z* et Z,p et c'est le seul point ayant un stabilisateur non trivial. Il est

donc raisonnable de le supprimer et donc de considérer les ensembles |Z)X|

et |y | des idéaux maximaux fermés de Ûqp [|T]][i, et Ainf[-~, au

lieu de 0cp[[T]][\\ et Ajnf[A]. Alors |DX| et |K| sont les points classiques
d'espaces analytiques Dx (qui n'est autre que la boule unité ouverte épointée,
i.e. privée de 0) et Y (qui est un objet plus exotique). Les isomorphismes
ensemblistes

|DX| (mCb \ {0})/Zp et \Y| (mc, \ {0})/Z*

sont la trace sur les points classiques d'isomorphismes d'espaces «analytiques

» mais pour donner un sens aux quotients correspondants, il faut sortir
du cadre des espaces analytiques (ou même adiques) et passer dans le monde
des diamants [85],

Épilogue

Il y aurait encore beaucoup à dire sur le devenir des constructions de

Fontaine et le lecteur est invité à consulter |58J pour un éclairage différent,
les exposés Bourbaki de la bibliographie pour des développements de certains
des points mentionnés dans le texte, et les documents regroupés sur https://
webusers.imj-prg.fr/~pierre.colmez/FW.html pour des photos instantanées

de mathématiques en train de se faire.
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