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Le programme de Fontaine

Pierre CoLMEZ

Abstract. Jean-Marc Fontaine passed away in January 2019. He is famous for his rings and
his program of classification of representations of the absolute Galois groups of local fields
that turned p-adic Hodge theory into one of the most powerful tool of arithmetic geometry
and algebraic number theory. We give an overview of this program with an emphasis on
Fontaine’s own contributions to it.

Mathematics Subject Classification (2010). Primary : 11; Secondary : 01, 14, 11Sxx, 14Fxx.

Keywords. Théorie de Hodge, périodes, nombre p-adique, représentation galoisienne, courbe
elliptique.

Three rings for the Elven-kings under the sky,
Bcris» Bst b BdR 5

Seven for the Dwarf-lords in their halls of stone,
Eg,, Ag,, Bg,, E, A, B, A,

Nine for mortal Men doomed to die,

Qp, Z[), Fp, 61;, Fp, Cpa ﬁCpa QZr, Bur,
One ring to rule them all,
Aing .

Introduction

J’ai vu Fontaine pour la premiere fois a un exposé€ qu’il a donné au séminaire
Delange-Poitou-Pisot en 1985. Je ne me souviens plus de rien sauf du fait qu’au
milieu de tas de choses incompréhensibles, il avait parlé d’un 2iz p-adique qui
avait I’air particulierement difficile a définir.

L’année suivante, je me suis retrouvé assistant normalien a Grenoble avec
Fontaine comme patron officiel (mon probléme de thése m’avait été fourni par
John Coates, alors en poste a Orsay), mais il était 2 Minneapolis pour collaborer
avec William Messing. Je n’ai donc commencé a discuter avec lui que 1I’année
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d’apres, a son retour des Etats-Unis. Pour donner corps i une idée absurde qui
me trottait dans la téte, j’avais besoin que la valuation p-adique de 2iz vaille
p_lT et il m’a confirmé que cette formule lui disait quelque chose (je I’ai trouvée
quelques années plus tard, sous une forme déguisée, dans son joli article [5]).
Encouragé par cette réponse, je me suis mis a essayer de calculer la valuation
p-adique d’autres nombres intéressants et je suis vite tombé sur un probleme
que je ne savais pas comment attaquer. Je suis donc retourné discuter avec
Fontaine et j’étais tombé sur la bonne personne puisque ce genre de questions
était précisément 1’objet de son cours Peccot; il m’a donc renvoyé au volume
d’Astérisque [2] issu de ce cours puis, pour faire bonne mesure, m’a donné la
solution dans le cas qui m’intéressait a I’époque [54]; j’ai eu, par la suite [55],
besoin d’un cas plus général et ce volume d’Astérisque m’a été indispensable.

Cela m’a permis de me familiariser avec les anneaux B, et Bgr. Cette
premiere rencontre avec les anneaux de Fontaine et le programme de Fontaine est
loin d’avoir été la derniére: une fois que l'on s’est approprié un de ces fameux
anneaux, il est difficile de s’en détacher ... J’ai eu de multiples occasions de
discuter des aspects de ce programme avec Fontaine, au gré de mes visites & Orsay
(du temps ol le RER B marchait), ou pendant des conférences et programmes
spéciaux, un peu partout dans le monde. Je lui dois par exemple la suggestion,
lors d’une conférence a Venise, que le «lemme fondamental » (nommé ainsi pour
faire réler les automorphes) de notre article en commun pouvait servir de point
de départ pour le développement d’une théorie d’objets analytiques analogues
a ses presque C,-représentations. Quand j’ai enfin réussi a mettre sur pied la
théorie en question [56], il a commencé a tout réinterpréter de maniére beaucoup
plus naturelle et géométrique et il est dommage que I’article annoncé (cf. [17]),
en collaboration avec son étudiant Jéréme PI(t, n’ait jamais vu le jour (ce n’est
pas le seul article dont la non publication est regrettable, mais comme Fontaine
racontait a2 qui voulait bien I’entendre les idées qu’ils poursuivait, la plupart des
résultats qu’il n’a pas écrits I'ont été par d’autres).

Que mon chemin ait croisé celui de Jean-Marc Fontaine a été une des grandes
chances de ma vie, et contribuer & son programme un des bonheurs de ma carriere
de mathématicien. Fontaine avait un talent spécial pour définir les bons objets et
poser les bonnes questions et, dans la suite de ce texte, j essaie de présenter ces
objets et les conjectures qui les lient, en mettant 1’accent sur les contributions de
Fontaine lui-méme a la preuve de ces conjectures.

Un survol rapide du programme. Le corps R des nombres réels n’est pas le seul
complété possible de Q : a chaque nombre premier p est associé un complété Q,
(Ie corps des nombres p-adiques); il y a donc, en sus du monde réel, un monde
p-adique pour chaque nombre premier p ; le théoreme d’Ostrowski dit que ce sont
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tous les mondes possibles et la mani¢re dont ces mondes interagissent est encore
tres mystérieuse. Le programme de Fontaine vit complétement dans le monde
p-adique; il a deux versants: un versant arithmétique visant a décrire et classifier
les Q,-représentations du groupe de Galois absolu Gx d’une extension finie K
de Q,, et un versant géométrique visant a comprendre les Q, -représentations de
Gk provenant de la géométrie.

La partie géométrique du programme, motivation initiale du programme,
repose sur les anneaux B, By et Bgr dont les propriétés sont énoncées
au n° 1.4.3 et la construction au §1.5. Ces anneaux permettent d’énoncer les
conjectures Ceris, Cy et Cgr de Fontaine décrivant les représentations de Gg
venant de la géométrie (n° 1.4.4). En ce qui concerne la partie arithmétique
du programme, ces anneaux permettent aussi de découper, a I'intérieur des Q-
représentations de Gg , des sous-classes privilégi€es de représentations (contenant
celles venant de la géométrie): les représentations cristallines, semi-stables, de
Rham, etc. Deux conjectures de Fontaine (la conjecture de monodromie p-
adique «de Rham = potentiellement semi-stable » et la conjecture « faiblement
admissible = admissible ») fournissent une description compléte de ces classes
de représentations en termes d’objets provenant de ’algebre linéaire, nettement
plus faciles a décrire. (Tout ceci est expliqué dans le §2.2.)

Un autre anneau de Fontaine (qu’il note &M ) est A la base de la théorie des
(¢, ') -modules (cf. §2.3) dont le but est de donner une description de toutes
les Q,-représentations de Gk, ce qui constitue une perspective orthogonale a
la précédente. Cette théorie est 1'outil le plus puissant dont on dispose a I’heure
actuelle pour étudier les Q,-représentations de Gg .

Enfin, je dirai quelques mots (§3) d’un addendum relativement récent: la
courbe de Fargues-Fontaine, un objet fascinant qui permet de « géométriser »
toute la partie arithmétique du programme, et plus [65].

Je ne parlerai pas de plusieurs directions importantes récentes, en particulier la
convergence avec le programme de Langlands local [48, 57] ou tout ce qui a trait
a des résultats « en famille » car cela nous entrainerait trop loin (et de nouveaux
objets apparaissent régulierement, I’'un des derniers en date [63] répondant au
nom poétique de champ des (¢, I')-modules d’Emerton et Gee).

Je ne dirai rien non plus des applications [46, 14, 27] de ce programme aux
valeurs spéciales de fonctions L (le programme de Fontaine fournit les outils pour
décoder complétement — conjecturalement — 1’information arithmétique contenue
dans des nombres comme {(k) =}, -, ,%k pour k entier = 2), ni a I’étude des
points rationnels sur les courbes [75, 37, 77].

Applications globales. Avant de passer a la description du programme de
Fontaine, je voudrais indiquer brievement comment on I'utilise pour étudier les
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représentations de Gg = Gal(Q/Q) (aprés tout, ce sont plutot elles qui intéressent
les arithméticiens) et, en particulier, comment il intervient dans la correspondance
de Langlands globale (dans le sens Galois — automorphe, le plus difficile et le
plus intéressant pour un arithméticien). Je m’excuse du flou artistique de ce qui
va suivre; le reste du texte est plus précis.

La géométrie algébrique fournit des Q,-représentations de Gg en pagaille;
celles-ci ont des propriétés spéciales. Les inclusions de Q dans R et Qq
fournissent des inclusions Gg C Gg et Gg, C G pour tout nombre premier
€. Si p: Gg — GL4(Qp,) vient de la géométrie, sa restriction a Gg, est,
d’aprés Grothendieck, «non ramifiée » pour tout £ sauf un nombre fini, et sa
restriction a Gq, est «de Rham», d’apres la conjecture Cyr de Fontaine. Une
représentation ayant ces propriétés est dite géométrigue (terminologie introduite
par Fontaine et Mazur) et la conjecture de Fontaine-Mazur [15] est que route
Q, -représentation géométrique de G, absolument irréductible, provient de la
géométrie. Cette conjecture a 1’air complétement folle, mais ce qui a donné
confiance a Fontaine et Mazur est un petit argument de dimensions pour les
représentations de dimension 2. Les Q, -représentations de dimension 2 de G,
forment un espace analytique de dimension 5; a l’intérieur, les représentations
de de Rham sont une réunion dénombrable d’espaces de dimension 2 (les deux
conjectures de Fontaine mentionnées ci-dessus raménent la question a I’étude
d’objets provenant de 1’algebre linéaire, dont les espaces de parametres sont
relativement faciles a décrire). Par ailleurs, les représentations de dimension 2
de Gg, non ramifiées en dehors d’un ensemble fini fixé de nombres premiers,
forment un espace qui est, conjecturalement, de dimension < 3. Comme 342 < 5,
on peut espérer que les espaces se coupent transversalement et donc qu’il n’y
ait qu’'un nombre dénombrable de représentations géométriques (ce qui est le
minimum pour croire a la conjecture, vu qu’il n’y a qu’un nombre dénombrable
de variétés algébriques définies sur Q).

Il n’y a aucun espoir d’attaquer directement cette conjecture, et on cherche
plutdt a prouver qu'une représentation géométrique de G¢ est modulaire (i.e. est
la représentation attachée a une représentation automorphe, ce qui présume que
I’on sache attacher des représentations galoisiennes aux formes automorphes ce
qui fait, depuis 60 ans, I’objet d’un nombre impressionnant de travaux, le plus
abouti étant [84]). Depuis les travaux de Wiles [95] sur le grand théoreme de
Fermat, on procede de la maniére suivante pour prouver que p: Ggo — GL4(Q))
est modulaire :

e On montre que la réduction p de p modulo p est modulaire (programme
de Langlands modulo p dont I’archétype est la conjecture de Serre [91, 90]
prouvée par Khare et Wintenberger [73, 74]).
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e On fixe une composante irréductible de I’espace des représentations de de
Rham, et on montre, en comparant des espaces de déformations, que I’on
a assez de formes automorphes pour atteindre toutes les représentations
géométriques dont la réduction modulo p est p et dont la restriction a Gy,
varie dans cette composante.

Démontrer que p est modulaire n’a pas I’air beaucoup plus facile que de prouver
que p est modulaire, mais Taylor [93] a réalis€ que I’on pouvait souvent prouver un
résultat plus faible (modularité de la restriction a un sous-groupe ouvert d’indice
fini), ce qui a permis de démontrer des tas de théoremes de modularité potentielle
avec des retombées arithmétiques spectaculaires (en direction des conjectures
plus que quinquagénaires de Sato-Tate et de Hasse—Weil), les derniers en date
étant [34, 47].

En ce qui concerne le second point, plus la composante irréductible sur laquelle
on travaille est compliquée et plus les résultats sont difficiles a prouver. Dans les
applications a la correspondance de Langlands globale, on part d’un syst¢me de
Q, -représentations, une pour chaque p, et il suffit de prouver la modularit¢ de
I’une d’entre elles, ce qui permet de prendre p assez grand pour que la situation
devienne sympathique (i.e. « Fontaine-Laffaille » en p). Dans les applications a la
conjecture de Fontaine-Mazur, on n’a qu’une représentation a notre disposition et
il faudra attendre que la convergence, mentionnée ci-dessus, entre le programme
de Fontaine et la correspondance de Langlands locale ait progressé un peu plus
pour pouvoir avancer.

1. Périodes des variétés algébriques

1.1. Nombres p-adiques.

1.1.1. Le corps C, [76, 62]. Le corps R est le complété de Q pour la valeur
absolue | | ; le corps des nombres p-adiques Q) est son complété pour la norme
p-adique | |, définie de la maniere suivante: si a € Z, on note v,(a) le nombre de
fois qu’on peut diviser a par p (ona v,(0) = 4+o00). On a vy(ab) = vy(a)+v,(h)
et vy(a +b) = inf(vp(a), vp(h)). La premiere propriété permet d’étendre v, a Q
en posant v,(a/b) = v,(a) —v,(h) et implique que, si on pose |x|, = p~Ur®)
alors [xyl, = |xlplylp: la seconde implique que |x + yl, < sup(x|p. |y])
(inégalité ultramétrique, plus forte que I'inégalité triangulaire).

Linégalité ultramétrique fait que Z, = {x € Qp, |x|, < 1} est un sous-
anneau de Qp, [’anneau des entiers p-adiques; on note Zj le groupe de ses
unités (c’est I’ensemble des x € Z, vérifiant |x|, = 1). L'application naturelle
Z/p"Z — ZL,/p"Zy est un isomorphisme pour tout n, ce qui fournit une seconde
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construction, algébrique, de Z, et Q,: Z, = l(i_n_ln Z/p"ZL = {(xn)neN, Xn €
Z/p"Z, xy+1 = x, mod p"} et Q, = Zp[%]. Ces deux constructions de Q,
permettent de combiner des méthodes purement algébriques et des méthodes
analytiques pour attaquer les problemes p-adiques, ce qui est souvent tres utile.

La norme p-adique s’étend de maniére unique a la clture algébrique Gp
de Q, (si [K:Qp] <oo etsixeK, alors |x|, = [Ngjq, (x)|/IKQ]: ¢est
la méme formule que celle exprimant le module d’'un nombre complexe). Le
corps 6,, n’est pas complet pour | |,; on note C, son complété. Si L est un
sous-corps de C,, on note &p = {x € L, |x|, < 1} I'anneau de ses entiers,
et my lidéal {x € L, |x|, < 1} (qui est maximal). L’algorithme de Newton
permet de prouver que C, est algébriquement clos et donc que le processus
s’arréte (ouf!). Les corps C et C, ont méme cardinal et sont algébriquement
clos; si on croit a ’axiome du choix, on peut donc fabriquer un isomorphisme
C, = C, mais il n’en existe pas de raisonnable. Une grande partie de ce qui
suit est issue du désir de comprendre quelles sont les incarnations p-adiques
de nombres complexes intéressants comme 2im = fl e

z|=1 "z
LQUOPA/2) _ o oo _dx
I'(3/4) 1 Sz

ou bien encore!

1.1.2. Le groupe Gg, [89]. Une énorme différence entre R et Q, est que
R est presque algébriquement clos, ce qui n’est pas le cas de Q, : la cloture
algébrique Gp de Q, est de degré infini sur Q, et le groupe de Galois absolu
Gq, = Gal(Q,/Qp) est un groupe infini (mais profini, i.e. limite projective de
groupes finis), trés intéressant. Plus généralement, si K est une extension finie
de Q,, le groupe Gg = Gal(ﬁp /K) est un groupe infini.

Le groupe Gq, admet une filtration décroissante naturelle par des « groupes
de ramification ». Cela induit une filtration croissante naturelle sur Q, par des

SOus-corps 61(:)7 pour u = 0. Si u <1, alors (_j;u) est le corps Q3 obtenu en
—(1
rajoutant a Q, toutes les racines de 1'unité d’ordre premier a p. Le corps Q;)

s’obtient en rajoutant a Q' les pYN pour N premier & p, mais les 631), pour
u > 1, n’ont pas de description sympathique.

Si ¢ est une racine de I'unité d’ordre une puissance de p et si o € Gq,,
alors o(¢) est une racine de I'unit€ de méme ordre. On en déduit I’existence
de x(o) € Z; tel que o() = ¢x©@)  pour toute racine de I'unité d’ordre une

'Ce second nombre est une période (voir ci-dessous) de la courbe elliptique E d’équation
¥2 = x3 —x: Cest (au signe prés) I'intégrale de w = de le long du chemin fermé dans E(C)
dont la projection dans P!(C) = CU {oo} (par (x,y) — x) est constituée du segment [oo, 1 + ¢],
suivi d’un cercle de centre 1 et rayon g, suivi du segment [1 + &,00]; I'intégrale ne dépend pas de
& et quand & — 0 la contribution du cercle tend vers 0, et comme +/x3 — x change de signe aprés
avoir parcouru un cercle de centre 1, les intégrales [, et j;o sont égales (et pas opposées comme on

pourrait le penser), et I'intégrale le long du chemin est 2 [ 1+°° \%
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puissance de p. Il n’est pas difficile de prouver que y(ot) = y(o)x(r), et donc
que y:Gq, — Z; est un morphisme de groupe: c’est le caractére cyclotomique
il va jouer un réle important dans ce qui suit.

Le groupe Gg, agit par des isométries sur —Qp, et I'action de Gg, sur Gp

s’étend par continuité a C, : I'orbite sous I'action de Gg, d’un élément de Q,
est finie mais celle d’un €lément de C, \ Q, ne I’est pas.

1.2. Périodes des courbes elliptiques.

1.2.1. Courbes elliptiques et réseaux de C. Si A est un réseau de C
(ie. A = Zw; ® Zw,, ou (wy,w,) est une base de C sur R), on définit
une fonction (la fonction g de Weierstrass) méromorphe, A -périodique, par la

formule
1 1 1
PN = 5+ ) (72 ——2)-
d weA\{0} (z - ) 4

Comme une fonction holomorphe A -périodique est bornée et donc constante
d’apres le théoréme de Liouville, un petit calcul montre que g vérifie I’équation
différentielle (p')? =493 —gr o — g3 ol g2 = 60G4(A) et g3 = 140Ge(A), et
les Gor(A) sont les nombres complexes définis par:

1 1 :
EW’ sz(A) = Z ﬁ’ si k=2,

weAN{0}

Go(A) =lim

weA\{0}

L’application z +— ¢(z) = (p(2),€'(z)) est un isomorphisme de surfaces de
Riemann compactes de C/A sur les points complexes E(C) de la courbe
elliptique E d’équation affine Y2 = 4X3 — g, X — g3 (et d’équation projective
ZY?2 =4X3 —g,XZ? — g373), envoyant 0 sur le point & I’infini de E(C) (de
coordonnées projectives (0, 1,0) correspondant a la direction verticale).

Via cet isomorphisme, la forme différentielle dz correspond a w = dTX (1

P*w = ¢;§.d};)() = ‘;)i,’ = dz), et A <s’identifie au réseau des périodes de w
(i.e. 'image du groupe d’homologie singuliere H,(E(C),Z) par u — [ ).
L’application (E,w) — A envoyant une courbe elliptique £ sur C, munie d’une
forme différentielle holomorphe w, sur le réseau des périodes de w est une
bijection sur I’ensemble des réseaux de C.

Plus généralement, on peut intégrer une 1-forme fermée o sur C/A (vue

comme variété différentielle) le long d’un chemin fermé u, et (a,u) — [ o

fournit un accouplement (l’accouplement des périodes) entre le groupe de
cohomologie de de Rham H (C/A) — un C-espace vectoriel de dimension
2 engendré par dz et dz — et H1(C/A,Z), et cet accouplement induit, via ¢,
un isomorphisme (cas particulier du théoreme de de Rham)
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Hlx (E(C)) = Hom(H,(E(C),Z), C).

La décomposition Hj,(C/A) = Cdz@CdZ correspond, via ¢, a la décomposition
de Hodge HéR(X(C)) = @piq=i HP4(X(C)) existant pour n’importe quelle
variété projective lisse X sur C (et pour tout degré i de cohomologie).

1.2.2. La formule de Legendre. Pour construire un accouplement des périodes
dans le monde p-adique, il y a deux difficultés évidentes et une plus cachée. Les
difficultés évidentes sont d’interpréter p-adiquement les groupes H le(E (C)) (que
devient dz 7) et H1(E(C),Z) : la topologie p-adique étant totalement discontinue,
la notion de chemin p-adique est un peu minée.

Commengons par la premiere difficulté: comment interpreter dz de maniere
plus algébrique. La forme g(z, A)dz n’est pas holomorphe mais les résidus en
ses poles sont nuls (i.e. elle est de seconde espéce). Elle fournit donc une forme
linéaire sur Hy(C/Z,Z): pour définir [, 7, il suffit d’intégrer sur un chemin
représentant u et qui €vite les poles; la nullité du résidu faisant que le résultat
ne change pas si on passe «juste en-dessous » ou «juste au-dessus» d’un pole.

Par prolongement analytique en s = 0 de la formule

—1 B (1+4+s)dz sdz
(X emar=am) = Z(eome—or * o)

weA weA

on obtient I’identité suivante? dans Hom(H(C/A,Z),C), ol w;,w, est une base
directe de A sur Z:
2im
pdz+ Gy(AN)dz+ ——dz = 0.
wrw1 —wWiwr
Soit maintenant £ une courbe elliptique définie sur un corps K de caractéris-
tique O (i.e. E est d’équation affine Y2 = 4X3—g,X —g3, avec g3, g3 € K), et soit

K(E) le corps des fonctions rationnelles sur £ (i.e. K(F) = e 5&"%’; s ).

Ce qui précede suggere de considérer le groupe Hj(E/K), quotient de I’espace
des a € Q}mz) = K(E) - %, de seconde espece, par I'espace des dF, pour
F € K(E): on obtient de la sorte un K -espace vectoriel de dimension 2 dont
une base est w = d—}‘,)(—, N = XdTX.

Si K est un sous-corps de C, on a un isomorphisme naturel

Hir(E(C)) = C®x Hir(E/K),

puisque ¢*n = gp(z,A)dz. Par contre, la décomposition de Hodge ci-dessus
n’existe pas forcément sur K car elle fait intervenir G2(A) qui est, en général,

2La série Y eavo; pprzs @ un pole en s =0 de résidu T = 52— comme on le voit
dxdy

en comparant avec I'intégrale [, -, 17555 -
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transcendant sur K . Ce qui subsiste est la filtration de Hodge: Fil° = H le(E /K),
Fil> = 0 et Fil' est le sous-espace H°(E, Q') des formes holomorphes (de
dimension 1, engendré par w).

Choisissons une base directe ¢q,¢; de H;(E(C),Z) sur Z. La matrice
(@2 m)s ol wj = [, w et n = [ n,est «la» matrice des périodes de E
(elle dépend, de manicre transparente, des choix de w, n, ui,uz, d’ou les
guillemets autour du «la»). Les coefficients de cette matrice des périodes (i.e. les
périodes de E) sont des nombres intéressants sur lesquels on dispose de plus de
conjectures que de résultats. La relation entre pdz, dz et dz fournit la formule

de Legendre: si u,v € H(E(C),Z), alors

Lw[vn—LwLn:2in(uuv),

ol uffv € Z est le déterminant de u,v dans la base e¢1,e>. Si E est définie sur
Q. on a le résultat remarquable suivant.

Théoréme 1.1 (Nesterenko [79]). Les trois nombres e2i™@2/@1 5L et 7 sont

algébriquement indépendants.

Si on part de la courbe elliptique d’équation Y? = 4X3 — X, le théoreme
précédent implique que w, e* et I‘(%) sont algébriquement indépendants.

1.2.3. La formule de Legendre p-adique. Si K est une extension finie de Q,,
et si E est une courbe elliptique définie sur K, le groupe Hg(E/K) a une
existence p-adique. Qu’en est-il de H,(E(C),Z)?

e Le module de Tate. Si M est un groupe commutatif, on note M[p"] le
sous-groupe des x vérifiant p"x = 0, et on définit le module de Tate T,(M)
de M comme I’ensemble des (u,)nen, avec u, € M[p"] et pup+1 = uy,
pour tout n. Alors 7,(M) est un Z,-module car chacun des M [p"]| l'est (Z,
agissant a travers Z,/p" = Z/p"). Par exemple, si A est un réseau de C,
Iapplication u — (p™"u),en identifie A a un sous-Z-module de 7,(C/A) et
ona T,(C/A) =Z,®z A.

Maintenant, via I’isomorphisme ¢ : C/A = E(C), la loi d’addition sur C/A
induit une loi d’addition sur E(C) pour laquelle I’élément neutre (noté 0) est
le point a l’infini. On a P; + P, + P; = 0 si et seulement si Py, Py, Ps
sont les points d’intersection (avec multiplicité) de £ avec une droite du plan
projectif, ce qui fournit des formules purement algébriques pour cette loi de
groupe, et si £ est définie sur K, il en est de méme de la loi d’addition. En
transportant I’identité 7,(C/A) = Z, ®z A, on obtient un isomorphisme naturel
Z,® H(E(C),Z) =~ T,(E) qui montre que ['on peut définir Z, @ Hi(E(C),Z)
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de maniére purement algébrique, sans parler de chemin. Si E est définie sur K,
I’addition étant définie sur K, le module 7,(E) est muni d’une action Z, -linéaire
continue de Gg.

Si K est une extension finie de Q,, et si £ est une courbe elliptique définie
sur K, un analogue p-adique de I’accouplement de périodes (w,u) — [ w
sur Hle(E(C)) x H\(E(C),Z) serait donc un accouplement (w,u) > [, @ sur
H le(E /K)xT,(E), et comme Gk agit p-adiquement continiiment sur 7,(E), on
veut que cet accouplement respecte cette action de Gk (i.e. fa(u) w=0(f,w)).
Comme nous allons le voir, ceci conduit a4 une difficulté imprévue.

e [’accouplement de Weil. La formule de Legendre a un avatar algébrique donné
par I’accouplement de Weil (u,v) +— (u,v), de E[p"] x E[p"] dans p,.. Cet
accouplement est antisymétrique et parfait (il identifie E[p"] @ Hom(E[p"], p,n)).
Si E est définie sur K, cet accouplement commute a I’action de Gk ; si K est
un sous-corps de C, si ¢ : C/A = E(C) comme d’habitude, et si u,v € A, alors

($(2), ¢ (), = expim “22).

Les {, ) se recollent pour fabriquer un accouplement Z, -lin€aire, antisymétrique
(. ) Tp(E) x TH(E) = Tp(ppeo), parfait et commutant a I’action de Gg, ce
qui fournit un isomorphisme A*7,(E) == Tp(p,00) de Z,[Gg]-modules.

Supposons maintenant E définie sur Q (et donc aussi sur Q, et C). Soit
e1,ez une base orientée de H;(E(C),Z) sur Z; c’est aussi une base de 7,(E)
sur Z,, et on note uflv, si u,v € T,(E), le déterminant de (u,v) dans la base
(e1,e2). D’aprés la formule de Legendre, [ o [ n— [ o [, n = 2in (uflv), si
u,v € Hi(E(C),Z). Si on dispose d’un accouplement « périodes p-adiques »
H(E/Qp) X To(E) — Cp, alors (u,v) — [ w [ n— [ o[ n est une forme
bilinéaire alternée sur 7,(E), et donc de la forme (2im),(uflv), avec (2iw), € C,.
Si cet accouplement est non dégénéré, alors (2im), # 0. Maintenant, une
forme bilinéaire alternée sur 7,(E) n’est rien d’autre qu’une forme linéaire
sur A2T,(E) = Tp(ppee). Or ufiv € Z, est fixe par Gq, et o € Gg, agit par
multiplication par y(o) sur Tp(p,e) (par définition de y). Il s’ensuit que, si
I"accouplement « périodes p-adiques» commute, comme on le souhaite, a G, ,
on doit avoir

U((Zij'[)p) = x(0)(2im),, pour tout o € G, .

1.2.4. Pas de 2ix dans C,. Le résultat suivant, premiére pierre de la théorie
de Hodge p-adique, montre que ce n’est pas possible.
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Théoreme 1.2 (Tate [92]). Soit k € Z. Alors

(x € Cpy o(x) = x(0)'x, Yo € G, } = {Qp s =i
{0} sik #NO.

Pour k = 1, ce théoreme dit qu’il n’y a pas de 2iw dans C,. Le cas k =0
(théoréeme d’Ax-Sen-Tate) a une histoire amusante. On peut tracer les débuts de
ce qui deviendra la théorie de Hodge p-adique dans une série d’échanges [91]
entre Serre et Tate du début de 1’année 1965 (Serre 07/01/65, Tate 12/01/65, Serre
29/01/65, Tate 02/02/65, etc.). Dans sa lettre du 02/02/65, Tate considére que c’est
un exercice, mais quelques mois plus tard (lettre du 28/05/65), Serre commence
a s’inquiéter: « Depuis un certain temps, j’essaie vainement de prouver ce que tu
dis étre un exercice (as-tu vraiment regardé ?) [...] J’ai d’abord cru que «c’était
évident », et plus j’ai regardé, moins c’est devenu évident; si bien que depuis
quelques jours, j’essaie plutdt de faire un contre-exemple. » (Que (GP)GQP =Q,
est une conséquence de la théorie de Galois, mais il n’y a aucune raison, a priori,
pour que (QP)GQP soit dense dans (CP)GQP bien que Gp soit dense dans C,.)
Tout est rentré dans 1’ordre en 1966, et nous avons maintenant trois preuves de ce
résultat par Tate, par Sen et par Ax (celle d’Ax (janvier 1967) est trés astucieuse
et totalement élémentaire mais apporte moins que les deux autres).

Puisque 2ix n’existe pas dans C,, on peut envisager de le rajouter de force, et
donc de considérer ’anneau Byr = C,[t,77!], anneau que I'on munit d’une action
de Gq,, en faisant agir Gg, sur ¢ par le caractere cyclotomique (i.e. o(t) = y(o)t
si 0 € Gg,) et d’une graduation stable par Gq, en posant Gr'Byr = 1'Cp si
i € Z. Le th.1.2 peut se reformuler sous la forme: les points fixes de Byt sous
I’action de ¥k sont

G
BOK = K.

On n’a toujours pas d’accouplement naturel Hle(E /K) x Tp(E) — Byr, non
dégénéré et commutant a 1’action de Gk, mais on s’en rapproche?: il existe un
accouplement naturel non dégénéré (H°(E,QY) @ HY(E, ©)) x T,(E) — Byr,
et cet accouplement commute a I’action de Gg. Il y a plusieurs manieres de
construire cet accouplement (Tate, Raynaud, Coleman, Fontaine). Je vais expliquer
la construction de Fontaine de la partie de I'accouplement qui ne se réalise pas
dans C,, a savoir I’accouplement H°(E, Q') x T,(E) — Cpt.

1.2.5. Une premiére approximation d’un 2ix p-adique. Une des raisons pour
lesquelles 2in n’existe pas dans C, est que sur C}, une fois choisie la valeur
de log p, on a log(xy) = logx + logy pour tous x,y (alors que, sur C, cette

3La filtration de Hodge fournit une suite exacte 0 > HO(E, Q') —> HL(E/K)— H'(E,6)— 0.
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formule n’est vraie qu’a un multiple de 2iz pres): c’est di a I'ultramétricité
de la norme p-adique. En particulier, si &, est une racine p”-icme de 1, alors
ptloge, = loge,’,’n = logl = 0, et donc loge, = 0. Fontaine a réalisé que
cela n’impliquait nullement que la différentielle % (formellement d loge, ) soit
nulle. Cette différentielle vit dans le module 2 des différentielles de Kéhler de
Oq, sur Zp (si A est une Z,-algebre, le module 24,7, des différentielles de
Kéhler de A sur Z, est le A-module engendré par des symboles da, pour
a € A, avec les relations naturelles da =0, si a € Z,, et d(a +b) = da + db
et d(ab) =adb+bda si a,b € A). On munit 2 de Iaction évidente de G, ,
i.e. o(adx) =o0(a)d(o(x)).

Théoreme 1.3 (Fontaine [5]). Fixons un générateur (en)n de Tp(fpoo).
. den . ; s
(i) %:p:n—:l', sineN et 0(%)2){(0)‘%, si 0 € Gg, et n €N.

(ii) Soit a = {a € Q,, vp(a) = —ﬁ}, L application p™"a v+ a

ne€N e ac 05, induit un isomorphisme 1 : Q,/a — Q, et on a
P

o(t(a)) = x(o)(o(a)), si 0 € Gg, et a € Gp.

dey
En

, pour

Le (i) est juste une traduction de ce que &, = &b, et o(g,) = e La
preuve du (ii) est un exercice un peu astucieux reposant sur le résultat standard
suivant: si [K : Qp] < oo, il existe o € Ok tel que Ok = Zy[a]; si P € Z,[X]
est le polyndme minimal de «, alors 0 = dP(x) = P’(¢)da et I’application
a + ado induit un isomorphisme @k /P’(a)0x — Qox/z, -

Remarque 1.4. Soit 7,(2) le module de Tate de Q. Il ressort du (i) que

(%)n € Tp(2), et on déduit du (ii) un isomorphisme at > T,(2), ou a est

I’adhérence de a dans C, (et donc ﬁp/a = C,/ @), envoyant at sur (t«(p~"a))n,

et commutant a I’action de Gg, . En particulier, = (ds%)n se comporte comme

on le voudrait pour un 2izw p-adique (c’est une premiere approximation du 2ix
1

p -adique de Fontaine), et le »—1 apparaissant dans la définition de a correspond
1

a la formule v,(2in) = 1
Soit maintenant E une courbe elliptique définie sur K, d’équation Y? =

4X3 — g, X — g3. Soit @ = 94X = 12%’: ~~ comme d’habitude. On suppose, pour

simplifier, que g.,g3 € Ok et que 4X> — g2 X — g3 n’a pas de racine double
modulo mg : cela a pour conséquence le fait que I’addition & sur E (et donc aussi
la multiplication m, par p) est définie sur Ok et que, si v = (x,y) € E(ﬁp),
alors au moins une des expressions ‘%, lziff gz,d(f) - xd(%) a un sens dans
Q2 (si deux de ces expressions ont un sens, elles donnent le méme résultat griace
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aux manipulations usuelles sur les formes différentielles, et on définit v*w € Q
comme n’importe laquelle de ces expressions).

La forme w est invariante par translation et on a myw = pow (sur C/A,
cela correspond a ce que d(z +a) = dz et d(pz) = pdz); on en déduit que
(v1 ®v2)*0 = viw+vio et my(w)*w = pv*ew. (Si on ne fait pas I’hypothese
simplificatrice, ces deux formules restent vraies pour p”w, ou r est assez grand
pour tuer les dénominateurs apparaissant dans les formules d’addition.)

Pour construire ’accouplement H®(E, Q') x T,(E) — C,t, il suffit alors
de définir [ @, si u = (ux)a € TH(E), comme (ujw), € T,(R) (de méme,
[ = (s;dTT)n € T,(K2)). Que 'on obtienne bien un élément de 7,(L2) résulte de
my(v)*ew = pv*w; la Z,-linéarité résulte de (v; ® v2)*w = viw + viw, et la
commutation a [’action de Gg est immédiate sur la définition de I’action de Gg
sur €2.

1.3. Périodes et théorémes de comparaison.

1.3.1. La cohomologie de de Rham algébrique. Soit X une variété projective
lisse, de dimension d, définie sur un corps K de caractéristique 0. On dispose,
grice a Grothendieck [67], d’une définition purement algébrique de la cohomologie
de de Rham de X : les H (iR(X /K) sont les groupes d’hypercohomologie* du
complexe de de Rham algébrique Oy — Q) — Q% — -

Les H(‘iR(X /K) sont des K -espaces vectoriels de dimension finie et, si K
est un sous-corps de C, on a un isomorphisme naturel C Qg HéR(X /K) =
HiR(X(C)), ou X(C) est considérée comme variété différentielle de dimen-
sion 2d.

Le complexe de de Rham admet une filtration décroissante par les 0 —

-0 - Q% - Q4 — ..., ce qui munit les Hi(X/K) d’une filtration
décroissante : la filtration de Hodge, et on a Fil! Hio (X /K)/Fil! T HIL (X/K) =
H'™4(X,Q%). Par ailleurs, la théorie de Hodge fournit une description de
Hi:(X(C)) en termes de formes harmoniques, dont on déduit un isomorphisme
naturel

C®k Hig(X/K) = C®k (Do H (X, Q%))

4Par exemple, si les U;, 1 <i <r, sont des ouverts affines recouvrant X, le groupe Hd‘R(X /K)
est le quotient de I’espace des ((w;)i,(fi.j)i<;), avec w; € QI(U;) et fi; € 6(U; NU;) vérifiant
dw; =0 et dfi.j = w; —w;, par Uespace des ((dfi)i, (fi — fi)i<;), avec f; € 6(U;).

Si E est une courbe elliptique, pour représenter la forme n = X % de cette fagon, on peut utiliser
le fait que, si a € E(C), et si t, est la translation par a (i.e. t¥ f(x) = f(x©a)), alors tin—n =df,
sur U, NUy, od Up = EN{0} et U, = E \{a}; alors U, et Uy recouvrent E, n € Q1 (Up),
txn e Q'(U,), et (n,t¥n, fu) définit un 1-cocycle du complexe de de Rham de E dont I'image dans
HR(E/K) est n.
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Autrement dit, la filtration de Hodge est naturellement scindée sur C (mais
pas, en général, sur K car le scindage sur C peut faire intervenir des nombres
transcendants).

1.3.2. Périodes complexes. Si K est un sous-corps de C, Iintégration [,
d’une i-forme différentielle @ le long d’un cycle » de dimension i fournit un
accouplement H éR(X /KYx Hi(X(C),Z) — C, et les fu w sont les périodes de w.
Par ailleurs, le lemme de Poincaré permet de montrer que |’inclusion du complexe
C—>0—0— - dans le complexe de de Rham induit un isomorphisme
H'(X(C),C) = Hl,(X(C)) (interprétation de Weil [49] de I'isomorphisme de de
Rham), et donc un isomorphisme

C®g H (X(C), Q) = C®k Hix(X/K),

et les périodes des formes différentielles apparaissent dans la matrice de cet
isomorphisme dans des bases des deux espaces (I’espace H'(X(C), Q) s’interpréte
donc aussi, naturellement, comme Hom(H;(X(C),Z),Q)). C’est sous cette forme
que I’on va chercher a définir les périodes p-adiques. Notons que, si on combine
I’isomorphisme ci-dessus avec la décomposition de Hodge de C ®g HéR(X /K)
mentionnée plus haut, on obtient une décomposition de Hodge pour H'(X(C),Q),
a savoir
C®q H'(X(C).Q) = &) _,(C®x H' ™9 (X.Q%)).

Il reste & comprendre ce qui peut jouer le role de H*(X(C),Q) et aussi dans
quel anneau vivent les périodes p-adiques puisque nous avons vu que C, n’est
pas un bon candidat.

1.3.3. Algébrisation de H’(X(C),Q). Le groupe H(X(C),Q) ne semble pas
avoir d’incarnation purement algébrique; par contre Q, ®q H (X(C),Q) en a
une (de la méme maniére que, pour une courbe elliptique E, le Z,-module
Z,® H,(E(C),Z) s’identifie naturellement au module de Tate 7,(E) de E): un
théoréme d’Artin [36] fournit un isomorphisme naturel Q, ®q H H(X(C),Q) =~
Hgt(X ,Qp) avec le groupe de cohomologie étale de X qui, lui, peut se définir
de maniere purement algébrique (cela repose sur un résultat fondamental de
Grothendieck disant que, si X est une variété algébrique, alors tout revétement
topologique fini de X(C) est aussi, naturellement, une variété algébrique).
Comme dans le cas de T,(E), si X est définie sur K, alors Gk agit sur
I’extension des scalaires Xz de X a K, et donc aussi sur H! (X%, Qp). Par
ailleurs, la cohomologie étale ne change pas si on étend les scalaires a un autre
corps algébriquement clos contenant K. Comme les coefficients des équations
définissant X vivent dans un sous-corps de K de type fini sur Q et qu’un tel
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corps peut se plonger dans C, on en déduit, via les théorémes de comparaison
précédents, 1’identité

dimg Hip(X/K) = dimg, H (X%, Qp).

En résumé, si K est un corps de caractéristique 0, et si X est une variété
projective lisse de dimension d, définie sur K, alors, pour tout i € {0,1,---,2d},
on dispose de:

° HéR(X /K), un K -espace vectoriel de dimension finie muni d’une filtration
décroissante par des sous- K -espaces vectoriels,

e H ét(Xf, Q,), un Q,-espace vectoriel de dimension finie muni d’une action
Q, -linéaire continue de Gy,

ces deux espaces ayant la méme dimension (sur leurs corps respectifs).
1.4. Périodes p-adiques.

1.4.1. La conjecture de Hodge-Tate. Supposons maintenant que [K : Q,] < oo,
et continuons a supposer que X est une variété projective lisse, définie sur
K. L'analogue p-adique du théoreme de comparaison de de Rham serait un
isomorphisme

By ®q, H} (X%, Qp) = By ®k Hip(X/K)

commutant a I’action de Gk, ou B est une K -algebre munie d’une action de
Gg . Comme on I’a vu dans le cas des courbes elliptiques, on ne peut pas prendre
By = C,. Dans le méme article [92] ot il prouve le th. 1.2, Tate formule une
conjecture sur I’existence d’un isomorphisme comme ci-dessus, mais ou I’espace
vectoriel filtré Hj,(X/K) est remplacé par son gradué @} _oH'~9(X,Q9) (ce qui
perd pas mal d’information). La reformulation a la Fontaine de cette conjecture
utilise I'anneau Byr = C,[¢,77!] introduit ci-dessus.

Conjecture 1.5 (Tate). Si X est une variété propre et lisse définie sur K et si
i € N, on a un isomorphisme naturel

(Cur) it 2 Bur ®q, HL(X ® K,Qp) = Bur ®x (8o H (X, Q9))

commutant a ’action de Gk et respectant les graduations.

Remarque 1.6. (i) Si on prend les termes de degré 0 des deux cOtés, on obtient
un isomorphisme naturel, commutant a I’action de Gk,

C, ®o, HL(X 8 K,Q,) = @_(r7C, ®x H'77(X, Q1))
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ce qui est la maniere traditionnelle d’énoncer la conjecture: existence d’une
décomposition de Hodge-Tate pour C, ®q, Hét(X ® K,Q,) (encore plus
traditionnellement, on note C,(—¢) le Gg-module 79C,: si V est un
Gk -module et k est un entier, on note V (k) le tordu a la Tate (Tate twist)
de V par y* — i.e. on multiplic I’action de Gk sur V par yk).

(ii)) Si on prend les points fixes par Gk, le membre de droite devient la
cohomologie de Hodge &} _,H' (X, Q) (puisque Bg{f = K) et le membre
de gauche hérite d’une graduation (induite par la graduation sur Byr). La
graduation qu’on en déduit sur la cohomologie de Hodge est la graduation
naturelle (i.e. Grf = H*79(X,Q?)). Autrement dit, la cohomologie étale
(munie de I’action de Gk ) encode la cohomologie de Hodge (munie de sa
graduation).

Tate, lui-méme [92], a prouvé cette conjecture dans le cas des variétés
abéliennes (analogues, en dimension arbitraire, des courbes elliptiques) avec
«bonne réduction ». Raynaud a étendu ce résultat aux variétés abéliennes générales,
ce qui permet d’en déduire le résultat pour le H'! de toute variété; la preuve de
Fontaine ci-dessus pour les courbes elliptiques s’étend aux variétés abéliennes,
et fournit une preuve simple [5] du résultat de Raynaud. Malheureusement, il
semble que ces méthodes élémentaires ne s’étendent pas 2 H’, pour i > 2.

1.4.2. Structures additionnelles sur la cohomologie de de Rham. Une grande
spécificité de la géométrie sur un corps p-adique K est quon peut réduire
«modulo p » les équations d’une variété X définie sur K et obtenir une variété
X, sur le corps fini xk = Og/mg (pour que ce soit possible, il faut partir
d’équations a coefficients dans €k, i.e. d'un modéle sur Ox). Dans les bons
cas, la variété X, est un miroir assez fidele de la variété X, et la cohomologie
de X «ne dépend que de X, ». De plus, comme X, est en caractéristique p, il
y a une action du frobenius x — x? sur X, et on peut espérer que cette action
induise une action sur la cohomologie de X .

Les bons cas sont ceux ol les singularités de X, (ou plus exactement du
modele) sont les plus gentilles possible. Si X est une variété algébrique lisse
sur K :

e on dit que X a bonne réduction si elle admet un modele lisse sur £k
(auquel cas X, est lisse sur «);

e on dit que X est semi-stable si elle admet un modéle sur &k dont les
singularités sont «localement» de la forme X;---X, = w, ol @ est une
uniformisante de K (i.e. un générateur de mg ).
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On espere que toute variété lisse sur K devient semi-stable sur une extension
finie de K (c’est vrai pour les courbes); c’est peut-étre un peu optimiste: des
singularités franchement méchantes apparaissent quand on réduit modulo p (par
exemple, si on réduit la courbe projective de Fermat X#+Y?+2Z% = (0 modulo p,
on trouve la droite X +Y + Z = 0 avec multiplicité p, mais on peut faire bien
pire ...), mais on n’a pas de contrexemple.

Si X est semi-stable, on dispose d’une cohomologie Hjy construite par Hyodo
et Kato [70] (et appelée cohomologie de Hyodo-Kato): les Hlf{K(X ) sont des K-
espaces vectoriels de dimension finie (Ko = K N QJ"), munis d’un frobenius ¢
bijectif, Kjy-semi-linéaire>, et d’un opérateur N «de monodromie » Ky -linéaire,
nilpotent, vérifiant la relation N¢ = p ¢ N . De plus, on a un isomorphisme naturel
«de Hyodo-Kato » :

g & K @, Hi () 2 HiR (XK.

Dans le cas de bonne réduction on a N = 0, et on retrouve une cohomologie
introduite antérieurement par Grothendieck [68] et développée par Berthelot [44],
a savoir la cohomologie cristalline HZ, .

Autrement dit H{IK(X ) est muni d’un ¢, d’'un N, et d’une filtration (la
filtration de Hodge sur Hé'R(X /K)) apres extension des scalaires a K : c’est
ce que Fontaine appelle, fort a-propos, un (¢, N)-module filtré. Si X a bonne
réduction, H{IK(X ) est aussi un (¢, N)-module filtré mais sur lequel N =0, ce

que Fontaine appelle un ¢-module filtré.

1.4.3. Les anneaux de périodes p-adiques. L’anneau Byt est un peu artificiel et
ne prend pas en compte les structures supplémentaires existant sur la cohomologie
de de Rham. Ceci a conduit Fontaine a construire des anneaux B s C By C Bgr
beaucoup plus fins (et beaucoup plus compliqués) que Byt : sa motivation initiale
était de comprendre H'! dans le cas de bonne réduction. Je donne la construction
de ces anneaux au n° 1.5.2, mais pour énoncer les résultats et pour la plupart des
applications, on peut prendre un point de vue axiomatique et n’utiliser que leurs
propriétés ci-dessous.

Les anneaux B C By C Bgr sont des anneaux topologiques munis d’actions
continues (compatibles) de Gq,, , et de structures supplémentaires stables par G,
et, si [K:Qp] < oo, les points fixes sous I'action de Gk sont:

Gk _ Gk _ pGk _

e By est muni d’un frobenius ¢ et d’un opérateur «de monodromie» N,
commutant tous les deux a Gg, et vérifiant la relation Nog = ppoN.

5Le frobenius x > x” sur k se reléve, de maniére unique, en un automorphisme ¢ de Ko.
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e B C By est le noyau de N (et est muni de ’action de ¢).

e Bgr est un corps, et est muni d’une filtration décroissante (BQR)iEz, stable
par Ggq,, compatible avec la multiplication (i.e. BQR - BéR C Bfﬂ,:j ), et
I’anneau gradué associé GBiez(BfiR/Biﬁiil) n’est autre que Byr.

Ces anneaux sont reli€s par les suites exactes fondamentales, avec® B, = Bfr'i_"sl ,
ensemble des x € B Vérifiant ¢(x) = x (la plus délicate est la troisieme; c’est

aussi la plus importante) :

N
0 — Bgis > By — By — 0,

p—1
0 — B, = Byis — Beris — 0,

0 — Q, — B,—Bgr/B); — 0.

Il en ressort que l'on peut retrouver Q, a l'intérieur de By (ou Bis) en utilisant
les structures additionnelles (¢, N et la filtration). C’est un point fondamental
de la théorie de Fontaine: couplé avec les conjectures Cg et Cgis ci-dessous, il
fournit une description de la mystérieuse représentation 11 ét(X?’ Q,) de Gk en
termes d’objets nettement plus faciles a calculer et a décrire.

1.4.4. Les théoremes de comparaison p-adiques. Une fois que 'on dispose
des anneaux Bjs, By et Bgr, il est tentant de formuler les conjectures Cpig
(cas de bonne réduction), Cy (cas semi-stable) et Cqr (cas général).

Conjecture 1.7 (Fontaine). Soit K une extension finie de Qp, et soit X une
variété projective lisse définie sur K. On a des isomorphismes naturels :

(C_cris) teris - Beris ®qQ, Hgt(Xf’ Qp) = Beris XK, Héris(X),
(C_st) it : By ®0, H (X%, Qp) = By ®x, Hix(X),
(C_dR) R : Bar ®q, H.,(Xg. Qp) = Bar ®x Hig(X),

commutant aux actions de Gk, ¢, N et respectant les filtrations.
De plus, 1y s’obtient a partir de i.is par extension des scalaires de Bs a
By et (gr s'obtient a partir de 1y par extension des scalaires de By d Bgr.

Remarque 1.8. (0) Chacune des conjectures Cgis, Cgy et Cgr implique la
conjecture Cyr pour les variétés auxquelles elle s’applique.

6Le e en indice vient des travaux de Bloch et Kato [46] qui ont utilisé les anneaux de Fontaine
pour définir des sous-groupes H}(Gg,V), H}(GK,V) H}(Gg,V) du groupe de cohomologie
galoisienne H'(Gg,V), si V est une Q,-représentation de Gg . Les indices e, f, g sont les

premicres lettres de « exponential », « finite » et « geometric ». Le groupe H!(Gk,V) est le noyau de
H'(Gk,V)— H'(Gk,B. ®q, V).
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(i) Quand Fontaine a formulé la conjecture Cg, la cohomologie de Hyodo-
Kato n’existait pas encore, et la conjecture incluait I’existence d’une théorie
cohomologique ayant les propriétés de la cohomologie de Hyodo-Kato [70,
40]. La définition de cette cohomologie utilise pleinement la géométrie
logarithmique introduite par Fontaine et Illusie et développée par Kato [71].

(ii) Ces conjectures ont donné lieu a énormément de travaux (par exemple [39,
40, 45, 64, 80, 83, 94], liste non exhaustive, loin s’en faut) et sont maintenant
des théoremes (y compris sans hypotheése de projectivité ou de lissité). Un
des premiers résultats est celui de Fontaine et Messing [9] qui, dans le
cas de bonne réduction, construisent une fleche Fil° (Beris ® H(fris(X Ne=1
H (X%, Qp), mais n'arrivent & montrer que ¢’est un isomorphisme que si
K = Ky et si i < p—1 (en utilisant ce qui est connu sous le nom de
théorie de Fontaine-Laffaille, cf. rem. 2.6). En ce qui concerne Cy, Fontaine
lui-méme [10] ’a démontrée pour H! (ce qui lui a donné la confiance
nécessaire pour énoncer la conjecture : il était un peu surprenant qu’il suffise
de rajouter log p a B pour obtenir le bon anneau) en s’appuyant sur un
résultat fondamental de Raynaud [82].

(iii) II y a eu récemment des résultats pour les variétés analytiques [83, 60, 59].

(iv) Les preuves pour i = 2 sont considérablement plus délicates que celles des
résultats qui les ont inspirés pour les variétés sur C. Une grosse différence
entre les deux situations est qu’on peut recouvrir une variété complexe par
des boules ouvertes dont la cohomologie est essentiellement triviale, alors
qu'en p-adique, les picces de base sont plus compliquées que des boules,
mais méme les boules ont une cohomologie hautement non triviale.

1.5. Construction des anneaux de périodes p-adiques.

1.5.1. A ring to rule them all Aj,¢. Soit

s P - _— .
ﬁc"’p — {(xn)neNa Xn € ﬁC,,/P, Xo+1 = Xns Vn e N} = Llil ﬁCp/p
x—xP
Alors ﬁcl;) est un anneau de caractéristique p car x > x? est un morphisme
d’anneaux en caractéristique p. Si x = (Xp)neN € O , €t 8i X, est un relevement
P

A ph k . 3
de x, dans Oc,, alors %, converge dans Oc, (car a —b € p*O¢, implique

aP —b? € p*t10¢ ), et la limite x* ne dépend pas du choix des £,. Si on pose
W(x) = vp(x#), alors v” est une valuation sur ﬁc’,’, pour laquelle il est complet.
Il s’ensuit que, si a € ﬁc}:, vérifie v"(x) > 0, alors CE’) = ﬁct;) [é] est le corps
des fractions de &y et que v” g’étend en une valuation de Cb.

On fait agir Gg, sur ﬁcg composante par composante (via son action sur

Oc, ); cette action s’étend naturellement a C;.
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Théoreme 1.9. CE, est un corps algébriquement clos de caractéristique p, complet

b ] . b i
pour v’ et l'action de Gg, sur C, est continue.

Soit” &, = €27/P"  de telle sorte que & = (g,),en €St un élément de ﬁcﬁ,

sur lequel o € Gg, agit par o(s) = ¥ (défini comme Y .y (Xf))(g — TRy,
puisque o(g,) = ¢X°), par définition du caractére cyclotomique .

Soit Ajpr I'unique anneau A, complet pour la topologie p-adique, tel que
A/pA = ﬁC?, (et donc A = W(ﬁcjg ), 'anneau des vecteurs de Witt a
coefficients dans ﬁc?, ). Il existe un unique systéme multiplicatif de représentants
de ﬁcﬁ, dans Aj.r (les représentants de Teichmiiller). Si x € ﬁcg , notons [x]
son représentant de Teichmiiller. Tout élément de Aj,r peut s’écrire, de manicre
unique, sous la forme ), p¥[xx], ol les xix sont des éléments arbitraires de

ﬁc’;, . Par unicité des vecteurs de Witt, Ay est muni d’un frobenius ¢ donné
par ¢(Q ren prx]) = Y keN pk [x,f], et d’une action de G, commutant a ¢.

On définit 0 : Aint — Oc, par 8(Ygen PFIk]) = Ygen PFxE. Alors 6 est
un morphisme surjectif d’anneaux dont le noyau est engendré ([7, prop. 2.4]) par

[e] —1

SZ [31/17]_]'

Remarque 1.10. (i) Les formules pour I’addition et la multiplication des vec-
teurs de Witt sont assez épouvantables: par exemple, modulo p?, on a

p_l 7 . .
([xol+p Lxal)+([vol+p [v1]) = [xo+yol+p |:X1+J’1+Z %Xélpy(()p_l)/p]-
i=1
Heureusement, on se rend compte assez vite qu’on n’en a jamais besoin;
savoir quelles existent suffit.

(ii) Il y a deux manieres fructueuses de penser a Ajyr suivant ce que ’on veut
faire : si on s’intéresse a la détermination des idéaux premiers de Ay, le plus
efficace est de voir p comme une variable [22] (si on fait du 3-adique, il
faut voir 3 comme une variable !) et de penser a Aj,ry comme étant ﬁcl;) ([Pl
(cf. th.3.9); si on s’intéresse a la convergence de certaines séries, il est
souvent utile d’imaginer que c’est Oc,[[§]]. Dans les deux cas, il faut faire
attention a «ne pas oublier les retenues » quand on fait des additions ou des
multiplications ...

1.5.2. Les anneaux elfiques B, By, Bgr. Fontaine a défini les anneaux Bggr,
B.iis et By en trois étapes: [7] pour Bgr, [8] pour Bgs et [10, 12] pour Byg. Soit

7Pour donner un sens i cette égalité, on note Q la cloture algébriqgue de Q dans C et on fixe un
plongement de Q dans Q,,.
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BCTR = l(iLn(Ajnf[%]/Ek). C’est un anneau de valuation discrete, de corps résiduel
C, (et donc, si on croit a I’axiome du choix, isomorphe a C,[[¢]]), contenant le
complété A, de Amf[%, k € N] pour la topologie p-adique. L’action de Gg,
s’étend a tous ces anneaux et, si on pose

I =loglg] = Z (1

k=1

alors f € Agis est une uniformisante de BdR,

a(t) = log[e*@] = log ([e]*) = x(o)t,

ce qui fait de ¢ un analogue p-adique de 2iw (c’est le 2im p-adique de
Fontaine; que t soit une uniformisante de B(J{R implique que ¢ # 0, mais que
son image dans C, est nulle, en accord avec le théoréeme de Tate).

Le frobenius ¢ s’étend par continuité a Acrs, et (p(t) = pt. L'action de ¢
s’étend donc au sous-anneau Bers = Agris[1] = B[] (avec B = Ams[%])

de Bgr = BSLR[%], et on note B, le sous-anncau B‘C”m de B4r. On munit Bgr
de la filtration décroissante par les BdR = t’B(‘fR, pour i € Z; cette filtration est
stable par G, -

En tant qu’anneau abstrait, on a By = Big[u], ol u# € Bgr est un analogue

p-adique de log p défini par

R P I =1 ()

k=1

oun p® = (p,p'/?, pV ..) € ﬁcb. Ce sous-anneau est stable par Gg, : il
existe ¢ : Gq, > Zp tel que o(u) =u+c(o)t, si 0 € Gg,. On munit By d’un
Frobenius en posant ¢(u) = pu et d’'un «opérateur de monodromie » N = %.
On a la relation N = poN .

Il y a deux énoncés cruciaux et non triviaux (en plus des propriétés énoncées

au n° 1.4.3) a prouver pour faire marcher la machine:
° K ®k, Beris — Bar est injective, si [K :Qp] <o et Ko = KN Qgr.
° u est transcendant sur B .

Le premier de ces énoncés est prouvé dans [7] (avec une variante de B : il
y a plein d’anneaux qui peuvent jouer le role de Bgs dans toute cette histoire;
I'anneau Beis s’est imposé car Acs s’interprete [8] comme Hu“(ﬁﬁp), ce qui
fait qu’il apparait naturellement dans les preuves des théorémes de comparaison);

la preuve simplifiée de [12] est trop simple pour étre honnéte.



508 P. CoLMEZ
2. Représentations galoisiennes

Soient K une extension finie de Q, et Ko = K N Qg’ comme d’habitude.

2.1. La stratégie de Fontaine. Fontaine a développé a partir de la fin des
années 1970, un programme visant a classifier et décrire les Q,-représentations
de Gk (i.e. les Qp-espaces vectoriels de dimension finie, munis d’une action
Q, -linéaire continue de Gg ), en termes plus concrets.

2.1.1. Représentations B -admissibles. La stratégic de Fontaine part de
I’observation suivante: si on dispose d’une Q,-algebre topologique B, munie
d’une action Q,-linéaire continue de Gk et de structures additionnelles stables
sous I’action de Gk, on peut associer a toute Q,-représentation V de Gk un
invariant Dg(V') en prenant les points fixes (B ®q, V)6k de B ®q, V sous
I’action de Gg. Alors Dg(V) est un BYX -module muni des structures addition-
nelles sur B et qui est souvent plus facile a décrire que la représentation V' dont
on est parti. Un tel anneau B permet en outre de découper la sous-catégorie des
représentations B -admissibles :

Définition 2.1. Une Q) -représentation V de Gk est B-admissible si B ®q, V
est triviale, i.e. isomorphe 2 BY4™Y en tant que représentation de Gg .

Tout I’art consiste a ciseler de bons anneaux et Fontaine a €t€ un véritable
orfevre en la matiere.

2.1.2. B -admissibilité et cohomologie galoisienne. Soit V une Q,-représenta-
tion de Gk . Choisissons une base de V sur Q,, et notons U, € GL;(Q))
la matrice de l’action de o € Gg dans cette base. On a U,, = U,U,, et
comme Gk agit trivialement sur Q,, les U, vérifient la relation de cocycle
Uy = Uso(Uy). La B-admissibilité de V' se traduit par I’existence d’une base
de B®V sur B, fixe par Gk, et donc par I’existence de M € GL4(B) telle que

« = M~ 1o(M), pour tout o € Gk (i.e. le 1-cocycle o + U, est un cobord:
sa classe dans H'(Gg,GLg(B)) est triviale).

Par exemple, si on munit 61, de la topologie discréte, alors H'(Gg,GLy4 (Gp))
est trivial (théoreme 90 de Hilbert); on en déduit que V' est Q,-admissible si
et seulement si Gy agit sur V a travers un quotient fini. Le résultat suivant est
nettement plus profond.

Théoreme 2.2 (Sen [87]). V est C,-admissible si et seulement si le sous-groupe
d’inertie de Gk (i.e Gx NGal(Q,/Qy)) agit a travers un quotient fini.
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En particulier, Q,(1) n’est pas C,-admissible (i.e. il n’y a pas de 2ix

dans C,).

2.2. Description des représentations issues de la géométrie.

2.2.1. La hiérarchie des représentations p-adiques. On peut appliquer le
programme ci-dessus avec les anneaux Bis, Bg, Bar, Bur. Qp - Beis (sous-

anneau de Bgr engendré par Gp et Beris), ﬁp-Bst ... Ceci permet de définir
les notions suivantes pour une Q,-représentation V de Gg :

V' est dite cristalline si elle Bs-admissible et potentiellement cristalline si
elle est Q, - Beis-admissible.

V' est dite semi-stable si elle By -admissible et potentiellement semi-stable
si elle est Q, - By -admissible.

V' est dite de Rham si elle est Bgr -admissible.

V' est dite Hodge—Tate si elle est Byr-admissible.

Les relations entre les différents anneaux fournissent les implications suivantes :

cristalline = potentiellement cristalline

J I

semi-stable = potentiellement semi-stable

U

de Rham =——————= Hodge-Tate

Remarque 2.3. (i) Toutes les implications ci-dessus sont strictes a I’exception

(ii)

de «pst = dR» qui est, en fait, une équivalence. L’implication réciproque,
connue sous le nom de «conjecture de monodromie p-adique de Fontaine »,
a été ramenée par Berger [41], en utilisant la théorie des (¢, I')-modules
du §2.3, a un énoncé portant sur les équations différentielles p-adiques (la
«conjecture de monodromie p-adique de Crew » [61]), qui a été prouvé dans
la foulée par André [35], par Mebkhout [78] et par Kedlaya [72]. Il y a eu
depuis d’autres preuves, utilisant des techniques variées, de la conjecture de
Fontaine.

Les extensions non triviales de Q, par Q,(1) sont de Rham (et méme
semi-stables). Fontaine avait conjecturé [7] que les extensions non triviales
de Qp(1) par Q, ne sont pas de Rham, ce qui a été démontré par Bloch
et Kato [46]. Comme ces extensions sont Hodge—Tate, on en déduit le fait
qu’'il n’existe pas d’isomorphisme Gk -équivariant de B:R sur Cpl[t]]. Par
contre, Fontaine a démontré [19] que si on rajoute log 2iw a Byr ou a
Bg4r, on obtient les mémes représentations admissibles: les représentations
de Hodge—Tate sont presque de Rham.
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(iii) Les conjectures Cgr, Cg et Cgis se traduisent par le fait que les repré-
sentations de Gg «provenant de la géométrie » sont de Rham, et donc
potenticllement semi-stables (et méme semi-stables ou cristallines si on part
de variétés semi-stables ou ayant bonne réduction).

(iv) On dispose d’une description «explicite » des représentations potentielle-
ment semi-stables (th.2.4), trés utile pour les applications a la géométrie
arithmétique.

2.2.2. Représentations semi-stables et (¢, N)-modules filtrés. Un (¢, N)-
module filtré est, comme son nom I’indique, un module muni d’un ¢, d’un
N et d’une filtration Plus précisément, soit K une extension finie de Q,, et soit
Ko = KNQ,. Un (¢, N)-module filtré sur K est la donnée de:

e un (¢, N)-module D sur Ky, i.e. un Kg-espace vectoriel D de dimension
finie, muni d’une action semi-linéaire bijective d’un frobenius ¢ et d’un
opérateur N vérifiant No = pgN,

e une structure de K-module filtré sur Dx = K ®k, D, i.e. une filtration
décroissante sur Dk par des sous- K -espaces vectoriels Di. pour i € Z,
avec D% = Dk si i est suffisamment petit, et D% = 0 si i est suffisamment
grand.

Si V' est une représentation semi-stable de Gk, de dimension d, on pose
Dy(V) = By ®q, V)¢ et Dar(V) = (Bar ®q, V).

Alors Dy (V) est, naturellement, un (¢, N)-module filtré sur K, de rang d :
Dy (V) est un Kp-module de rang d puisque Bg" = Ky, et est muni
des actions de ¢ et N existant sur Bg; Dgr(V) est un K-module de
rang d puisque Bg}f = K, et est muni de la filtration de Bgr; l’inclusion
K ®k, Dgt(V) < Dgr(V), induite par I'inclusion K ®k, By < Bgr, est une
bijection pour des raisons de dimension.

On dit qu'un (¢, N)-module filtré sur K est admissible §’il est de la forme
Dy (V), avec V semi-stable. Le probléme est de donner une caractérisation plus
concrete de cette condition.

Si D estun (¢, N)-module filtré¢ sur K, le rang tg(D) de D est la dimension
de D sur Ky. Si D est de rang 1, on définit le degré deg(D) de D par la
formule

deg(D) = tn(D) —tg(D),
ou ty(D) et ty(D) sont définis en choisissant une base ¢ de D sur Ko :
o il existe A € Kj tel que ¢(e) = Ae, et on pose tn(D) = vp(A);

o il existe i € Z, unique, tel que ¢ € Di \ D', et on pose ty(D) =i.
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Si D est de rang r = 2, alors detD = A" D est de rang 1, et on définit le

degré de D par deg(D) = deg(det D) et la pente de D par u(D) = ‘i‘;g((DE;)_ On

dit que D est faiblement admissible, si w(D) = 0 et si u(D’) < 0, pour tout
sous- (¢, N)-module filtré D’ de D.

Théoréme 2.4. V +— Dy (V') induit une équivalence de catégories de la catégorie
des représentations semi-stables de Gg sur celle des (¢, N)-modules filtrés sur
K faiblement admissibles, le foncteur inverse étant

D = Vy(D) = By ®k, D)*="V="NFil’Byr ®x Dk).

Remarque 2.5. Lintérét de ce résultat est qu’il permet de traduire tout probleme
portant sur les représentations semi-stables en un probléme portant sur des objets
concrets. Par exemple, il est trés facile de construire des (¢, N)-modules filtrés
faiblement admissibles et, si K est fixé, il n’est pas si difficile de décrire
explicitement I’espace des (¢, N)-modules filtrés sur K, faiblement admissibles,
de rang fixé.

Ce résultat a une longue histoire. La formule pour le foncteur inverse résulte
juste de la maniére dont on peut décrire Q, a l’intérieur de By en utilisant
les suites exactes fondamentales du n° 1.4.3. Fontaine a prouvé qu'un (¢, N)-
module filtré admissible est faiblement admissible [4] et conjecturé [4, 13]
que la réciproque est vraie (conjecture « faiblement admissible = admissible »
ou simplement «fa = a»), ce que nous [16] avons fini par démontrer
en 1999.

Avant notre preuve du cas général, il y avait eu des résultats partiels, le plus
probant €tant celui de Fontaine et Laftaille [6] pour les (¢, N)-modules filtrés sur
lesquels N =0, dans le cas K = Ky, et tels qu’il existe a € Z avec D§ = Dk
et DEP71 =0 (ie. la longueur de la filtration est < p —1).

Remarque 2.6. La théorie de Fontaine-Laffaille va plus loin car elle décrit non
seulement V(D) mais aussi les Z,-réseaux de V(D) stables par Gk, ce qui
est fondamental pour beaucoup d’applications arithmétiques.

2.2.3. Le lemme fondamental. Notre preuve est un dévissage assez pénible
permettant de se ramener au cas de Fontaine-Laffaille et reposant sur le th. 2.7 (dit
«lemme fondamental ») ci-dessous. Dans I’énoncé, U = (B;,is)“’zp et un fragment
de la suite exacte fondamentale fournit une suite exacte 0 - Q,t — U — C, — 0,
ce qui fait que U ressemble beaucoup a C, & Q,, tandis que 'on a une suite
exacte 0 — tC, — B(J{R /12 — C, — 0 qui fait que B(J{R /1% ressemble beaucoup

~

a C,®C, (cf. §2.4 pour des compléments sur cette ressemblance).
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Théoréme 2.7. Soient «y,...,ap € C,, et vy,...,v4 € B:{R/r2 tels que

h h
> wif(v;) =0, mais Y e ® 0(v;) # 0 dans Cp ®q, Cp.

i=1 i=1

Enfin, soit
Y ={ur,...,up €U, (0(u1),...,0us)) = (xa1,...,xay),avec x € Cp}.

Alors p:Y — tBj,'R tsz'R = tC,, définie par p(uy,...,up) = Z:‘zluivi, est
surjective et son noyau est un Q,-espace vectoriel de dimension h.

Ce résultat est surprenamment difficile a prouver directement: si on fixe
z € Cp, et quon essaie de trouver x € C, tel qu’il existe des relevements o;x
de ojx dans U tels que Z,}-’:l ;X v; = tz, on se heurte a des problémes
qui semblent inextricables (en particulier parce que les @;x ne sont définis
qua Q,r pres et donc que x — z est multivaluée). Quand Fontaine m’a dit
qu’il avait besoin de ce lemme pour faire marcher sa stratégie, j’ai bien sir
essayé I’approche directe, sans aucun succes. J’allais abandonner quand je me
suis souvenu que Wintenberger m’avait mentionné que l’on pouvait faire les
constructions de Fontaine en famille (il n’est pas le seul a avoir eu cette idée: lui
en avait besoin pour étudier comment varient les périodes dans une famille de
variétés abéliennes [97]; en 1999 ¢’était «bien connu »). Avec ce point de vue,
I’application x + z peut s’exprimer comme une limite de fonctions algébriques,
ce qui fournit un point de départ solide pour attaquer le probleme.

Il y a eu, par la suite, d’autres preuves de la conjecture «fa = a», dont une
de Fontaine [20] prouvant en parall¢le les conjectures «fa = a» et «dR = pst»
et qu’il a utilisé comme fil conducteur de son cours a Tsinghua en 2004 et de son
livre avec Ouyang Yi [21]. La preuve la plus satisfaisante est probablement celle
utilisant la classification des fibrés sur la courbe de Fargues-Fontaine (cf. n°® 3.3.2).

2.3. Les (¢,I')-modules. La théorie des (¢, I")-modules a été développée par
Fontaine [11] pour donner une description de toutes les représentations p-adiques
de Gk : une Q,-représention de dimension d du mystérieux groupe Gk est
encodée dans la donnée de deux matrices A, B € GL;(Bg) vérifiant une relation
de commutation Ay(B) = Bg(A). Le prix a payer est que le corps Bg qui
intervient est largement plus compliqué que Q,, mais la théorie des (¢, I')-
modules s’est révélée, a I'usage, un outil extrémement puissant pour I’étude des

représentations de Gg .

2.3.1. Les séries de Coleman. Pour illustrer les concepts qui vont suivre,
commencons par un résultat frappant de Coleman [53]:
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Théoreme 2.8. Soit &, = ¢2™/?" | ¢t soit F, = Qp(en). Si u = (Up)nen Vérifie
up € Fy et Np, . /F, (Unt1) = n, pour tout n =1, il existe Gy € Ly[[T1[T7],
unique, telle que G,(e, — 1) = uy,, pour tout n = 1.

[’unicité de G, est immédiate (un élément de Z,[[7’]] n’a qu’un nombre fini
de zéros), mais I’existence ne 1’est pas.

Soit (Ln)nen une famille d’extensions finies de Q,, avec L, C L, pour
tout n, et s0it Lo = UpenLy,. Définissons I’ensemble

X L) = {(Mn)neN, avec uy € Ly et Np, /1, (Upt+1) = Uy, pour tout n = O}

des systémes compatibles pour les applications normes. Cet ensemble ne dépend
que de Ly et pas du choix des L, ; la théorie du corps des normes le munit, si
L est raisonnable, d’une structure de corps de caractéristique p. Par exemple,
I’extension cyclotomique Foo = Qp(ftye0) est raisonnable, et X(Foo) = Fp((T)),
I’isomorphisme correspondant envoyant u# sur I’'image de la série de Coleman
G, modulo p.

La construction du corps X(Le,) apparait dans un exposé de Fontaine au
séminaire de théorie des nombres de Grenoble [1], en 1971, mais la théorie n’a
vraiment ét€é développée, par Fontaine et Wintenberger [3, 96], qu'une dizaine
d’années plus tard.

2.3.2. Le corps des normes d’une extension APF. La terminologie officielle
pour «raisonnable » est «strictement arithmétiquement profinie » ou « strictement
APF ». On dit que Lo, est strictement APF si:

e on peut écrite Loo = UpeNLn, avec [L, 1 Qp] < 00, Ly C Lyqs,

il existe ¢ > 0 tel que, pour tout n = 0,

(*) Vp(o(x) —x) = vp(x) +¢c, pourtous x € L,y et 0 € G,,.

Des exemples naturels d’extensions strictement APF sont:

e l’extension cyclotomique K(g,), avec [K :Qp] < oo,

e |’extension de Kummer K(cxl/Poo), avec [K 1 Qp] <oo et a € K*,

e une extension galoisienne Ko de K, [K : Qp] < oo, de groupe de Galois
un groupe de Lie p-adique (comme Z3, (ZO; ZIP), GL4(Zp), etc.) avec
[(Koo N Q) 1 Qp] < 00.

(Les deux premiers exemples sont élémentaires; le troisicme est une consé-

quence d’un résultat de Sen [86].)

Si Lo est strictement APF, le corps résiduel €7, /my, . de Lo estun corps
fini F,, et on a le résultat suivant.
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Théoréme 2.9. (i) Si (xp)n, (Yn)n € X(Loo), alors NL,,+k/Ln(xn+k + Ynik)
converge vers $p € L, et (Sp)n € X(Loo).

(i) Muni des lois + et - définies par (xp)n + (Vn)n = Sndn € Xp)n - (Yn)n =
(XnYn)n, Uensemble X (L) est un corps de caractéristique p, isomorphe
a F,((T)).

(iii) Si My, est une extension finie, galoisienne, de L, alors X(My) est une
extension galoisienne de X(Los) et Gal(X(Moo)/ X(Loo)) = Gal(Meo/ L) ;
les groupes de Galois absolus de Lo et X(Loo) §’identifient donc canoni-
quement.

(iv) Si Lo est une extension galoisienne de K, et [K : Qp] < oo, le groupe
Gal(Loo/K) s’identifie a un sous-groupe du groupe des automorphismes
continus de X(Lo).

Remarque 2.10. Si L, est une extension galoisienne de K, avec [K : Qp] < oo,
ce théoréme fournit un dévissage de Gg :

1 — GFq((T)) —> GK — Gal(Loo/K) — 1.

Si Lo est I’extension cyclotomique de K, le groupe Gal(Lo./K) est parti-
culierement simple puisque c¢’est un sous-groupe fermé d’indice fini de Z7, et

le dévissage obtenu est a4 la base de la théorie des (¢, I')-modules résumée
ci-dessous.

La clé de la preuve du (i) est la propriété (x) qui implique que, modulo p¢,
ona Ny, /p,(x)= xlEntribal i x € @p, ., ; cela permet aussi de prouver le
résultat suivant, crucial pour ce qui va suivre. (Le corps C'I’J et & € C; sont
définis au n° 1.5.1.)

Théoreme 2.11. Si L., est une extension APF, X(Ly) est naturellement un
sous-corps de C; et la cloture séparable de X(Lo,) est dense dans C;.

Par exemple, I’inclusion de X(Qp(g,e0)) = Fp((T)) dans C;’, envoie T
sur e — 1.

2.3.3. Quelques anneaux gnomiques. Si [K : Qp,] < oo, on note K
I’extension cyclotomique K(g,) de K, et on note Ex le corps des normes de
Ko vu comme sous-corps de C;’,. On a donc, en particulier, Eq, = F,((¢—1)).
D’aprés le th. 2.9, la cloture séparable E de Eq, est la réunion des Eg et,
si on note Hg C Gk le noyau du caractere cyclotomique y : Gg — Z7, on a
Gal(E/Eg) = Hg. On note 'k le groupe Gal(K./K) = Gg/Hg, et donc y
induit un isomorphisme de I'x sur un sous-groupe fermé d’indice fini de Zj.



Le programme de Fontaine 515

Soit A = W(Ch) T'anneau des vecteurs de Witt a coefficients dans C) (c’est
aussi le complété de Amt[ b]] pour la topologie p-adique). Soit = = [e]—l €A.
On note Aq, I’adhérence dans A de Z,[m, w~']; c’est anneau des 3,7 ap

avec ax € Z, et ax — 0 quand k — —o0. On a
o(m) = [8]P—1 = (147)P—1 et o(x) = [e]*—1 = (14+7)* @1, si 0 € Gg,, .

Il s’ensuit que Aq, est stable par ¢ et par Gq, qui agit a travers Ig, -

Il existe un unique sous-anneau A de A, p-saturé (x € A et px € A
= x € A) et complet pour la topologie p-adique, contenant Ag, et tel que
A/pA = E C A/pA Cet anneau est stable par Gq, et par ¢, et on a
AH =Aq, et A= =17,.

Si [K:Qp] < oo, on pose Ag = AHk  Alors Ag est stable par ¢ et par
Gk agissant a travers 'k, et on a Ax/pAx = Egk.

Enfin, on pose® B = A[7], Bx = Ak[;]. Alors B et Bg sont des corps
munis d’actions de ¢ et de Ggx commutant entre elles, Gg agit a travers I'x
sur By, et

=1=-Q, et BFx =Byg.

Remarque 2.12. En général, si F' = Ko N QJ', il existe nx € Ak tel que Ag
soit ’ensemble des ) ;. akarIk(, avec ay € Or et a — 0 quand £k — —oco (i.e.
Ak ala méme forme que Ag, ), mais les formules donnant ’action de ¢ et 'k
sur g ne peuvent pas vraiment s’expliciter (I’expérience montre que ce n’est
pas un vrai probléeme).

2.3.4. L’équivalence de catégories de Fontaine. Un (¢, I')-module D sur Bg
est un By -espace vectoriel de dimension finie muni d’actions semi-linéaires de
¢ et 'y commutant entre elles. Un (¢, I')-module sur Bg est érale si ¢ est de
pente 0 ce qui se traduit, si D est de rang d, par ’existence d’une base de D
sur Bx dans laquelle la matrice de ¢ appartient a GL4(Ag).

Si V est une Q,-représentation de Gg, on pose D(V) = (B ®q, V)Hx
C’est un B”% = By -module muni d’une action résiduelle de Gg/Hg = I'x et
d’une action de ¢ provenant du frobenius ¢ sur B; c’est donc un (¢, I')-module
sur Bg.

Théoréme 2.13 (Fontaine [11]). Si V est une Q,-représentation de Gg, le (¢,T")-
module D(V) est étale et V + D(V) induit une équivalence de catégories de
la catégorie des Q,-représentations de Gg sur celle des (¢, I")-modules étales
sur By, le foncteur inverse étant D v V(D) = (B ®p, D)*=!.

—
8 ’anneau B est celui mentionné dans l'introduction sous le nom de & .
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Remarque 2.14. (i) Pour beaucoup d’applications, il est inutile de savoir com-
ment le foncteur V +— D(V) est défini; savoir qu’il existe suffit.

(ii) Comme [k est procyclique (au moins si p # 2 ou bien si p =2 et K
contient +/—1), si y est un générateur de 'k, un (g, I")-module D est
completement décrit par les actions de ¢ et de I'. Si on choisit une base
de D, et si on note A et B les matrices de y et ¢ dans cette base, la
seule contrainte est la commutation de ¢ et y qui se traduit par la relation

Ay(B) = By(A).

(iii) B et B(]LR sont tous deux obtenus a partir de Aj,, mais pour aller de
I’'un a l'autre (et donc pour retrouver les invariants «elfiques » a partir des
(¢, I')-modules, ce qui est important pour les applications arithmétiques), il

faut utiliser des anneaux intermédiaires [50, 51, 41].

2.3.5. Application a la cohomologie galoisienne. Placons-nous dans la situation
ou Ik est procyclique et choisissons un générateur y de I'g. Si V est
une Q,-représentation de Gk, le groupe H'(Gk,V) classifie les extensions
00—V - E — Q, - 0 de représentations de Gk (agissant trivialement sur
Q,). Via I’équivalence de catégories du th.2.13, une telle extension correspond
a une extension 0 — D(V) — D(E) - Bxg — 0. Si on choisit un relevement
e € D(E) de 1 € Bk, et que I'on pose x = (y —1)e et y = (¢ — 1)e, alors
x et y appartiennent a D(V) et décrivent complétement D(E) (si on connait
D(V)); par ailleurs, comme on peut modifier e par un élément de D(V), le
couple (x,y) n’est déterminé par D(E) qu’a addition pres de ((y—1)z, (¢ —1)z),
avec z € D(V). On en tire le résultat suivant.

Proposition 2.15. On a un isomorphisme naturel

{(x,¥) € D(V) x D(V), (¢ — Dx = (y — 1)y}

H'(Gg,V) =
(Gk.V) {((y—])Z,((P— 1)z), z € D(V)}

Ce résultat (et beaucoup d’autres développés dans la thése de Herr [69]) a été
présenté par Fontaine dans un exposé au Newton Institute, peu de temps avant la
conférence ol Wiles a annoncé la preuve du grand théoreme de Fermat®. Dans
I’esprit de Fontaine, ¢’était une étape dans la preuve de la «loi de réciprocité
explicite » conjecturée par Perrin-Riou [81], et portant sur sa généralisation des
séries de Coleman (I’exponentielle de Perrin-Riou). Fontaine n’a rien écrit a ce
sujet, mais son programme a été mené a bien [52, 42].

9 Fontaine était rentré & Paris au moment de la conférence, mais il suivait les événements de pres
et a utilisé ses entrées au journal Le Monde pour assurer au résultat de Wiles la publicité qu’il méritait.
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2.4. Les presque C,-représentations. Soit K une extension finie de Q,. La
théorie des presque C,,-représentations [18] de Gk a été€ développée par Fontaine
dans son cours a I'IHP, pendant le semestre p-adique, en 1997, avec pour but la
preuve de «fa = a» esquissé€e ci-dessous.

2.4.1. L’action de C, perdue et retrouvée. Un joli résultat (frappant car archi-
faux si on remplace C, par Q,) a la base de la théorie est le suivant [19,
prop. 6.2]:

Théoréme 2.16. Si A : C, — C, est Q,-linéaire continue, et commute a I’action
de G, alors il existe ¢ € K tel que A(x) = cx, pour tout x € C,.

Une C,-représentation est un Cj,-espace de dimension finie, muni d’une
action semi-linéaire de Gg. Ces objets ont €té classifiés par Sen [88], et le
th.2.16 permet de prouver [19, th.6.1] que beaucoup d’information est encodée
dans I’action de Gg :

Théoreme 2.17. Si Wy, W, sont deux C,-représentations de Gk, toute application
Q, -linéaire continue, G -équivariante, de Wy dans W, est C,-linéaire.

2.4.2. Presque-C, -représentations. Une presque-C, -représentation W est un
Q, -espace de Banach muni d’une action continue de Gk tel qu’il existe une
C,-représentation W' de Gg et V' C W', V C W des sous-Q,-espaces
vectoriels de dimension finie stables par Gg, tels que W/V =~ W'/V’, en
tant que représentations de Gg . On a donc des suites exactes:

0=V =W SW/V -0, 0=V ->W->W/V >0,

de telle sorte que W est obtenu a partir de W’ «en quotientant par V' et en
rajoutant V' ». Une telle description s’appelle une présentation de W . Le résultat
fondamental de la théorie est le suivant.

Théoreme 2.18 ([18, th.5.1]). (i) Si W est une presque-C, -représentation,

Dim W = (dim W,ht W),dim W = dim¢, W' er
ht W = dime V — dime V’,
ne dépendent que de W et pas de la présentation.

(i) Si f : Wi — W, est un morphisme de presque-Cp,-représentations, alors
Ker f et Im [ sont des presque-C, -représentations, et:

Dim W; = DimKer f 4+ DimIm f.
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Par exemple les espaces U et B:{R/ t? apparaissant dans I’énoncé du lemme
fondamental (th.2.7) sont des presque-C, -représentations dont les Dimensions
respectives sont (1,1) et (2,0).

Je n’assistais pas au cours de Fontaine, mais il me racontait ce qu’il faisait
et j'avais été frappé par le fait qu’il pouvait facilement retrouver la dimension
du petit Q,-espace vectoriel, mais pas celle du gros C,-espace vectoriel: les
calculs de cohomologie galoisienne de Tate permettent de montrer que les groupes
Hi(GK, W) sont de dimension finie sur Q,, nuls si i =2, et

dimg, H(Gg, W) —dimq, H'(Gk, W) +dimqg, H*(Gg, W) = —[K : Qplht(W).

Il ne semble pas y avoir d’invariant galoisien permettant de retrouver dim W et
la preuve du th.2.18 ci-dessus a di attendre quelques années; elle repose sur le
« lemme fondamental » dont il a été question plus haut.

Remarque 2.19. Un résultat surprenant de la théorie est que I’on peut imposer a
W'’ d’étre triviale (i.e. isomorphe a Cg comme Gg-module) dans la définition
de presque- C, -représention; on obtient les mémes objets. Par exemple le Tate
twist C,(1) (qu'on a vu étre trés différent de C, puisqu’il n'y a pas de 2in
dans C,) ne differe de C, que par des Q,-représentations de dimension finie
de G K-

2.4.3. Une preuve de la conjecture «fa = a». La preuve de «fa = a» que
Fontaine avait en vue est la suivante. Soit D un (¢, N)-module filtré sur K, de
rang h. Si r € N, on pose

XL(D) = (t7"Bf @k, D)V="=1 et X[R(D) = ("B}, ®k Dk)/Fil’.

Alors X (D) et Xj,(D) sont des presque-C, -représentations et, si r est assez
grand, on a

Dim X} (D) = (rh —tn(D),h) et DimXjz(D) = (rh —ty(D),0).

Maintenant, si D est faiblement admissible, V(D) est, d’aprés un vieux résultat
de Fontaine [4], de dimension < i sur Qp, et égale au noyau de X, (D) —
Xir(D), si r est assez grand. Si on note W le conoyau de X{(D) — X (D), on
a dimW = 0 puisque dim V(D) =0 et dim X (D) = dim X (D) ; il s’ensuit
que htW = 0. Comme htVy(D) + ht X[ (D) = ht Xy(D) + ht W, on déduit
des inégalités précédentes que dimg, V(D) = h, i.e. D est admissible, et que
W =0.
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3. La courbe de Fargues—Fontaine

Comme je le raconte dans [58], la courbe X' de Fargues—Fontaine a vu
le jour a Trieste, dans la nuit du 5 septembre 2009. Fontaine avait réalisé, 2
mois plus tdt, que I’anneau B, = B‘é’;l est principal (4 sa grande surprise) en
s’appuyant sur des résultats de Kedlaya [72] et Berger [43], mais il a fallu des
sauts intellectuels audacieux pour imaginer que B, pouvait étre considéré comme
I’anneau des fonctions sur une courbe affine, puis que ’on pouvait compactifier
cette courbe affine en rajoutant un point co de maniere a obtenir une courbe
projective XFF . Cette courbe permet de donner une incarnation géométrique 2 tous
les objets du programme de Fontaine; on en déduit une preuve particulierement
limpide de la conjecture «faiblement admissible = admissible ». Nous allons

donner des telles incarnations pour:

e la suite exacte fondamentale 0 — Q, — B, — B}, — 0,
e les représentations de Gk, pour [K :Q,] < co,

e les (¢, N)-modules filtrés.

On peut interpréter de méme les (¢, [")-modules et, dans son dernier
article [23], Fontaine décrit les presque C, -représentations en termes de faisceaux
cohérents sur XFF.

3.1. La courbe. Tout ce qui suit est tiré de [22].

3.1.1. La courbe comme espace projectif. La courbe X' offre de grandes
similarités avec la droite projective P! sur C. Pour souligner ces similarités,
introduisons les notations suivantes:

e (pour P')y K = C, o = C[T], ¥ = C(T™"), #+ = C[T'],
P = @p=0Pn, o0 H, est ’espace des polynomes homogenes C[X,Y]
de degré n.

o (pour X™) K =Q,, o =Be, # =B, #T =B, P = Dp20Pn,
ot &, = (B )#=r".

Dans les deux cas, on a les faits algébriques suivant (nettement moins évidents
pour XFF que pour P! : le (i) correspond a la suite exacte fondamentale):
Théoréme 3.1. (i) La suite 0 > K — o — # /. #T — 0 est exacte.

(ii) Tout élément de P, est le produit de n éléments de &1, uniquement
déterminés a l'ordre prés et a multiplication prés par des élément de K*.
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Dans les deux cas, &2 est une K -algebre, naturellement graduée, et ’espace
projectif Z associé n’est autre que P! dans le premier cas, et X' dans le
second :

e Les points de Z sont en bijection avec les idéaux homogenes maximaux de
2, et donc avec (£ \{0})/K*;

e les ouverts non vides de Z sont de la forme Uy = Z\V(f) ou, si f € &,
V(f) est I’ensemble des zéros de f (i.e. I’ensemble des ¢t € &2, /K* divisant
f).Si fe Py \{0}, 'anneau &(Uy) des fonctions entieres sur Uy est la
réunion (croissante) des %c@dn.

Si f est une fonction méromorphe sur Z (i.e. f € Frac(«/)), on note v.(f)
I'ordre du zéro de f en z € Z et on a, dans les deux cas, la formule immédiate
mais fondamentale ) ., v:(f) =0.

3.1.2. La courbe vue comme compactification d’un espace affine. Dans les
deux cas, on privilégie un point co de Z: dans le cas de P!, c’est le point
correspondant a Y et dans le cas de X FF est le point correspondant a ¢, le
2im de Fontaine; dans le cas de P!, on note t = % le parametre local en oo,
et on pose T = % (et donc t = T71). Alors, dans les deux cas, & est I’anneau
O(Z \ {oo}) des fonctions entieres sur Z \ {oo} et # ™+ est le complété 5’;(500
de I'anneau local en oco. La «suite exacte fondamentale » ((i) du th. 3.1 pour
XFF) g’interpréte donc géométriquement comme la suite

0— O(X) > O(X \ {o0}) —> Fr(ax,oo)/ ﬁx,m — 0.

Maintenant, P! est obtenu en compactifiant la droite affine par un point a infini,
et on peut aussi construire Z = X' en recollant un point oo au schéma affine
Spec(«). 1l faut €paissir un peu oo pour que I’ensemble tienne, et on est ramené a
recoller Spec(.# *) et Spec(#) le long de Spec(.#") : il suffit de définir I’anneau
O(U) des fonctions holomorphes sur un ouvert non vide U de Z. Un tel ouvert
est de la forme Spec(«/[1]) ou Spec(«/[+]) U {oo}, avec u € & ; dans le pemier
cas, on pose &(U) = «/[1], dans le second &(U) = #[+] N+,

Remarque 3.2. Il y a quand méme une différence essentielle entre Z = P!
et Z = X', Dans le cas Z = P!, le corps des constantes (i.e. les fonctions
holomorphes sur Z tout entier) est C et le corps résiduel en oo est aussi C;
dans le cas de X', le corps des constantes est Q, mais le corps résiduel en
oo est le corps résiduel de B, et donc est C, qui est de dimension infinie sur
Q,. Cette différence provient de ce que P! est de type fini sur C, alors que
XY nest pas de type fini sur Q,.
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3.2. Fibrés sur X. Dans la suite on note simplement X la courbe de Fargues-
Fontaine X'. On note X, I'ouvert Spec(B,) de telle sorte que X = X, U {co}.

3.2.1. Fibrés et B -paires. Si & est un fibré vectoriel sur X, on peut lui associer
la paire (M (&), M&E(éa)) définie par

Mo (&) = HY(Xe, &), ME(E) = 6 x,00 Qo &.

Alors M.(&) est un B, -module libre (puisque B, = &(X,) est principal) de rang
fini, et Mcﬁ;{(@“’) est un BCJ{R-réseau de Bgr ®B, M.(&); une telle structure est
appelée une B -paire. Réciproquement, une B -paire (Me,M&E) définit un fibré
& sur X : si U est un ouvert de X., on a

H(U,&) = 6(U)®p, M, et H°(U U{o0},&) = (6(U) @8, Me) N M.

L application & (Me(éa),Md;(é”)) est une équivalence de catégories de la
catégorie des fibrés sur X sur celle des B-paires. (Remplacer B, par C[T] et
B(TR par C[[T~!]] fournit une description — & la Beauville-Laszlo [38] — des fibrés
sur P1)

Lespace H°(X,&) des sections globales de & est I’espace des sections sur
X \ {o0} se prolongeant sur un voisinage infinitésimal de oo, et donc

H°(X,8) = Me(&) N MG (&).

3.2.2. Le fibré & (1). Si & est un fibré sur X, on peut associer a & deux
invariants additifs dans les suites exactes: son rang rg(&) et son degré deg(&)
défini par deg(&) = deg(det&) ol, si £ est un fibré de rang 1 sur X, et
si (Be,t"B:{R) est la B-paire associée, on pose deg.¥ = —n (on a aussi
deg.¥ = > _cxvz(s), si s est une section méromorphe globale de .Z). On

définit la pente (&) de & comme le quotient dregg(g).

S1 4= % € Q, avec d,h entiers premiers entre eux et 2 = 1, on définit

un fibré #(A) sur X de la manieére suivante. On considere le P -module gradué

h d+ . . _ .
Dren(B )P =P et on note O(A) le fibré associé: si u € (BE,)=7, et si Uy,

v, S
est 'ouvert sur lequel u est inversible, alors H°(U,, 6(A)) = (BLOIZ])" 7 .
Proposition 3.3. (i) (1) est de rang h, de degré d, et de pente A.
(ii) Les sections globales de ©(A) sont données par:

B ye"=r’ i 1=0,
0

cris
si A <O0.

H(X,00)) = {
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3.2.3. Classification des fibrés. Munie des deux invariants rang et degré, la
catégorie des fibrés sur X est une catégorie de Harder—Narasimhan (comme celle
des fibrés sur une courbe projective lisse). Cela a pour conséquence I’existence,
sur tout &, d’une filtration canonique 0 = & C & C --- C &, = & (la filtration
de Harder-Narasimhan), strictement croissante, telle que &;/&;—1 soit semi-stable
pour tout i = 1,...,r (ce qui signifie que pu(&") < u(é;j/&—1) pour tout sous-
objet strict &' de &;/&—1) et telle que la suite des pentes w(&;/é;—1) soit
strictement décroissante.
Le délicat résultat suivant est fondamental.

Théoreme 3.4 ([22, th.8.2.10]). Si & est un fibré sur X, il existe des nombres
rationnels Ay = Ay = --- = A,, uniquement déterminés, tels que

E=O0M) S & O

Remarque 3.5. (i) Il résulte de ce théoreme que la filtration de Harder—
Narasimhan de & est scindée comme dans le cas de P! ou I'on a, grace a
Grothendieck [66], une décomposition comme ci-dessus mais oli les A; sont
des entiers.

(ii) Une grosse différence avec le cas de P! est que H'(X, (L)) #0si A1 <0:
par exemple H'(X,&(—1)) = BL, /(1B & Q,); une extension nontriviale
de & par £(—1) est de pente _71 Cette différence vient de ce que B,,
bien que principal, n’est pas euclidien'®, contrairement a C[T’].

Le théoréeme de classification des fibrés admet comme corollaire le résultat
suivant qui est le point de départ d’une belle histoire, loin d’€tre terminée [65, 85].

Théoréme 3.6. X est géométriquement simplement connexe : tout revétement étale
fini de X est de la forme E® X, ou [E :Q,] < co.

3.3. Fibrés Gg -équivariants.

3.3.1. Fibrés Gg -équivariants et représentations de Gg. Le groupe Gk agit
naturellement sur X . Le point oo est fixe par Gk et tous les autres points de
X ont une orbite infinie sous 1’action de Gg . L'action de Gg sur

O(X \{c0}) =B, el Oxo =Bk,

qui s’en déduit est I’action naturelle.
Via I’identification entre fibrés sur X et B-paires, les fibrés Gg -équivariants
s’identifient aux (Gg, B)-paires, i.e. les B-paires (Me’Mde) ou M, est muni

10 Un exemple nettement plus sexy que le sempiternel Z[H—12 v2—19] des lecons d’agrégation !
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d’une action semi-linéaire de Gg et M;ﬁ C Bgr ®B, M. est stable par Gg
(objets introduits par Berger [43]).

Si & est un fibré Gg -équivariant sur X, sa filtration de Harder-Narasimhan
est constituée de fibrés Gk -équivariants (car ’action de Gk respecte les pentes
des fibrés). Il découle du th.3.4 et de la prop.3.3 que, si & est semi-stable
de pente 0, alors H°(X,&) est une Q,-représentation de Gg. On en déduit le
résultat suivant qui fournit une description « géométrique » des Q, -représentations
de GK.

Théoréme 3.7. Les foncteurs
Vi V®g, @ et & HX, &)

induisent des équivalences de catégories inverses ['une de ’autre entre la catégorie
des Qp-représentations de Gy et celle des fibrés G -équivariants sur X, semi-
stables de pente 0.

3.3.2. (¢, N)-modules filtrés et fibrés Gk -équivariants. On peut associer a
un (¢, N)-module filtré D sur K, une (Gg, B)-paire (M.(D), M (D)), et donc
un fibré Gg -équivariant &(D) sur X, en posant

M.(D) = By ®k, D)V=%=! et ML (D) =Fil°(B}, ®k Dk).

Un petit exercice de traduction nous donne:

Proposition 3.8. Soit D un (¢, N)-module filtré sur K.
(i) rg(&(D)) =rg(D), deg(&£(D)) = deg(D) et u(&(D)) = u(D).

(i) D est faiblement admissible si et seulement si &(D) est semi-stable, de
pente 0.

Comme &(D) est semi-stable, de pente 0, si et seulement si D est
admissible (grice au th.3.7 et a la définition d’admissible), cela fournit une
preuve particulierement limpide de la conjecture «fa = a» (bien sir, toute la

difficulté s’est concentrée dans la preuve du th. 3.4).

3.4. Idéaux maximaux de . La preuve du th.3.]1 demande d’étudier les zéros
des éléments de Ajy¢, ce qui se fait en s’inspirant [22, th.2.4.6 et n° 1.5.2] de la
stratégie dans le cas de O¢,[[T]].

Si x =Y yen¥kT* € 6c, [T (resp. x = Ypen P¥Ixk] € Aine). le polygone
de Newton NP, de x est la plus grande fonction convexe f : Ry — R U {400}
telle que f(k) < inf;<g v,(x;) (resp. f(k) < infi< v°(x;)), pour tout k € N.
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Dans les deux cas, NP, est une fonction convexe décroissante, linéaire par
morceaux, et A < 0 est une pente de NP, s’il existe un intervalle sur lequel
la dérivée de NP, est A; la multiplicité de A est la longueur de cet intervalle
(c’est un entier = 1).

Théoreme 3.9. Soit x un élément de Oc,([T]] ou de Ay, et soit A une pente
de NPy, de multiplicité d.

o Si x € 0c,llT], il existe ay,...,aq € mc,, uniques a permutation pres,
vérifiant vp(a;) = —A, et tels que x = (T —ay)---(T —ag)y avec
y € O¢c,[[T]].

e Si x € Apng, il existe ay,...,aq € mep vérifiant v (a;) = —A, et tels que

x = (p—la])---(p—laal)y avec y € Aint.

Dans les deux cas, NP, est obtenu en enlevant de NPy le segment de pente

A.

Le cas de €, [[T]] est parfaitement classique, et on en déduit que I’ensemble
des idéaux maximaux fermés de ﬁcp[[T]][%] est en bijection naturelle avec mc,
(la bijection envoie ¢ € mg, sur I'idéal (T —a)).

Dans le cas de Ajus, on en déduit que ¢ — (p — [¢]) induit une surjection
de My Sur I’ensemble des idéaux premiers fermés non nuls (qui sont aussi les

maximaux fermés) de Ainf[%] et donc que cet ensemble est le quotient de mey
par une certaine relation d’équivalence. Cette relation d’équivalence est difficile
a décrire mais on dispose d’une autre paramétrisation (th. 3.10), plus directe, des
idéaux maximaux fermés de Ainf[%]‘ L’énoncé du résultat va demander un peu
de préparation.
Si x € mey, posons £x = LIRS € At on a £ = [<'7%] + pu,, ol
u, est une unité de Aj,r; le th. 3.9 permet d’en déduire que (£;) est un idéal
premier de Ajys.

On fait agir Z, sur meh  par 0g(x) = (1 4+x)*—=1.Si y = a,(x) avec
a € Zy, les idéaux (&) et (§)) de Ay sont égaux (car u — 1 divise u® —1 et
u? — 1 divise (u®)/% —1=u—-1).

Théoréme 3.10. x — (&) induit une bijection de M, /2y, sur 'ensemble des

idéaux maximaux fermés de Ainf[%].

Remarque 3.11. (i) mc, est aussi un quotient de meb c’est le quotient par
Z, si on fait agir a € Z, par a-x = ¢&%x (eZr est I’ensemble des z € CE,
vérifiant z# = 1, et ’application My —> MW, est simplement a > a").
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(ii) Dans les deux cas, O joue un role particulier vu qu’il est fixe par les actions
de Z7 et Z, et c’est le seul point ayant un stabilisateur non trivial. Il est
donc raisonnable de le supprimer et donc de considérer les ensembles |D*|
et |Y| des idéaux maximaux fermés de &, [[T]l[5, 7] et Ainf[;l)','[pl—bjl au
lieu de ﬁcp[[T]][%] et Ainf[%]. Alors |D*| et |Y| sont les points classiques
d’espaces analytiques D™ (qui n’est autre que la boule unité ouverte épointée,
i.e. privée de 0) et Y (qui est un objet plus exotique). Les isomorphismes
ensemblistes

DX| = (mey \{0})/Z, et |Y] = (mg, \{0})/Z}

sont la trace sur les points classiques d’isomorphismes d’espaces « analy-
tiques » mais pour donner un sens aux quotients correspondants, il faut sortir
du cadre des espaces analytiques (ou méme adiques) et passer dans le monde
des diamants [85].

Epilogue

Il y aurait encore beaucoup a dire sur le devenir des constructions de
Fontaine et le lecteur est invité a consulter [58] pour un éclairage différent,
les exposés Bourbaki de la bibliographie pour des développements de certains
des points mentionnés dans le texte, et les documents regroupés sur https://
webusers.imj-prg. fr/~pierre.colmez/FW.html pour des photos instantanées

de mathématiques en train de se faire.
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