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On extensions of algebraic groups

Mathieu FLorRENCE and Giancarlo LuccHINI ARTECHE

Abstract. We extend to the context of algebraic groups a classical result on extensions of
abstract groups relating the set of isomorphism classes of extensions of G by H with
that of extensions of G by the center Z of H. The proof should be easily generalizable
to other contexts. We also study the subset of classes of split extensions and give a quick

application by proving a finiteness result on these sets over a finite field.

Mathematics Subject Classification (2010). Primary: 14L.99, 20G15; Secondary: 18D35.
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1. Introduction

Let G, H be abstract groups and let
|l H—F—G—1,

be a group extension of G by H. It is well known that the action of £ on H
by conjugation induces a morphism « : G — Out(H) = Aut(H)/Int(H) that is
called an outer action of G on H . One can then consider the set Ext(G, H,x) of
isomorphism classes of extensions inducing the outer action «. In the particular
case where H = A is an abelian group, an outer action becomes an action
(since Int(A) is trivial) and Ext(G, A, «) gets a natural group structure by means
of the Baer sum. Another way of seeing this group structure is by noting that
Ext(G, A, k) is naturally isomorphic to the cohomology group H?(G, A) (cf., for
instance, [NSW, Thm. 1.2.4]).

In the case of a general group H ., another classical result from group theory
(but arguably less known) is the following: If Z denotes the center of H,
then an outer action « of G on H induces an action xkz of G on Z and
the group Ext(G,Z,kz) ~ H?(G.Z) acts simply transitively on Ext(G, H, k)
(cf., for instance, [Mac, IV, Thm. 8.8]). Such a result can be easily generalized
to a profinite group setting (for instance, in nonabelian Galois cohomology, cf.
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[Spr] or [Bor]), or even to a group-scheme setting by means of (nonabelian)
Hochschild cohomology (ctf. [Dem]). However, this last case follows the explicit
cocycle approach from group cohomology and thus it can only take into account
extensions that admit a scheme-theoretic section G — E.

Thus, if one wants to study general extensions of, say, algebraic groups or
group schemes, one is bound to use a different approach. An attempt to do this
for algebraic groups was done by the second author in [LA] when the group G
is finite, but he used an ad-hoc cocycle approach that cannot be generalized to
arbitrary algebraic groups.

In this paper, we study this situation for algebraic groups (that is, group
schemes of finite type over a base field) with a point of view as general as
possible. In particular, our proof should be applicable to group objects in other
categories (for instance, group functors) without too much work. It is in this
context that we (re)prove the classical result from group theory (for the notations,
see section 2.2):

Theorem 1.1. Letr G, H be algebraic groups over a field k, let Z denote the
center of H and let
1l H-—-F—-G—=>1,

be an extension. Then G acts naturally on Z and the group Ext(G,Z, E) acts
simply transitively on the set Ext(G, H, E).

By center, we mean the schematic center all throughout the article. The group
Ext(G, Z, E) is simply the set of extensions of G by Z inducing the same
G -action as the extension E by conjugation (we will recall its group structure
in Section 2.2). The set Ext(G, H, E) is the set of extensions “inducing the
same outer action” as E. However, the classical definition of outer actions is not
practical for generalizations and we want to avoid any ad-hoc definitions.

A natural consequence of our main theorem is that we may reduce the study of
extensions of algebraic groups to that of extensions by abelian algebraic groups,
which are much easier to work with. As an example of this, we prove the finiteness
of the sets Ext(G, H, E) for algebraic groups over a finite field in Section 5.

2. Preliminaries

We recall here some basics on group extensions and fiber products that will be
necessary in order to state and prove our main theorem. Our philosophy here is to
manipulate extensions of nonabelian groups using mainly the following notions:
fiber products, and taking quotients by normal subgroups.
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Throughout this article, we will say that a morphism ¢ : G — H of algebraic
groups is surjective if it is an epimorphism for the faithfully flat topology. In that
case ¢ is faithfully flat and we have an exact sequence of algebraic groups

1 - Ker(¢) - G — H — 1.

As a general reference on algebraic groups, the reader may consult Milne’s
book [Mil2].

2.1. Fiber products. Let us recall a basic result on fiber products that will
be useful later. Let G, G,, H be algebraic groups over a field k and consider
morphisms ¢; : G; — H for i = 1,2. Then we have the following result on the
corresponding fiber product (which is defined via the classical universal property).

Proposition 2.1. The fiber product Gy xg G, is the subgroup of G x G, given
by (¢1 x ¢2) N (A(H)), where A : H — H x H is the diagonal morphism. In
particular, if ¢; is surjective for i = 1,2, there is an exact sequence

1 — Ker(¢) x Ker(¢2) > Gy xg G, > H — 1.
The proof is an easy exercise left to the reader.
2.2. Extensions. Let G, H be algebraic groups over a field k.

Definition 2.2. An extension £ of G by H is an exact sequence
l-H—-FE—>G—1.

A morphism of extensions is an isomorphism ¢ : E — E’ that fits into a
commutative diagram

E

" 5
|l
H G

E!

1 1.

An extension E is said to be split if there exists a morphism of algebraic groups
s :G — E that splits £ - G.

Extensions are functorial in the following sense. Let
1 H—>FE—->G—>1

be an extension, and let f : G’ — G be a morphism. We can then form the
pullback diagram
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1 H f*(E) G 1
)
1 H E G 1,

where f*(FE) is defined as the fiber product F xg G’.

Consider now a morphism f : H — H’. One would like to define the
pushforward f,(E). This is not well defined in general. However, when the
morphism f is surjective and Ker(f) is normal in E, one can define f.(E) as

f«(E) =[1 - H — E/Ker(f) - G — 1].

Note that Ker(f) is always normal in E if it is characteristic in H .

Recall that if A = H is abelian, we may consider the set Ext(G, A) of
isomorphism classes of extensions of G by A inducing the same action of G
on A (cf. [SGA3, Exp. 17, App. A]). It is an abelian group for the Baer sum.
Let us recall its construction. Let

1 A—->FE -G —1,

be extensions of G by A for i = 1,2 inducing the same G -action on A. We
may then consider the fiber product £ := E| xg E», which fits naturally into an
exact sequence (cf. Proposition 2.1)

l>AxA—- FEF—-G—1.

Since the action of G on A induced by E; and E, is the same, it is easy to
see that the sum and difference morphisms

+:AxA—> A and —1AxA—> A,

are G -equivariant and thus their respective kernels are normal in E. This means
that we may consider the pushforwards +.(£) and —.(E), which we denote by
E1 + E, and E; — E,. The classes of these extensions correspond respectively
to the (Baer) sum [E{] + [E>] and the difference [E{] —[E>] in Ext(G, A).

2.3. Automorphisms of extensions. Let G, H be algebraic groups over a field
k and denote by Z the (schematic) center of H . Since Z is characteristic in
H, it is normal in E. In particular, £ acts naturally on Z by conjugation and
this action clearly factors through G.

Proposition 2.3. Consider an extension

Lo H e Fos G I,
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and the natural G -action on Z induced by E. Denote by Zé (G, Z) the group of
Hochschild I-cocycles (cf. [DG, 11, §3.1]). We have a canonical group isomorphism

Zy(G,Z) — Au(E),
¢ > po(¢pom,id),

where 1. E x E — E denotes the group multiplication. In particular, if E is a
central extension, we get Hom(G, H) — Aut(E).

Proof. Let f : E — E be an automorphism of the extension E. Since f
induces the identity on both H and G, it can be written as f(x) = ¢(xX)x,
where x +— X denotes the projection = : £ — G, for a certain morphism of
k -schemes ¢ : G — H such that ¢(e) = e. We see then that f = po(¢om,id).

We only have left to prove that ¢ is a Hochschild I-cocycle with values in
Z. For x,y € E, we compute:

pxy)xy = f(xy) = [(0) f(y) = ¢(X)x¢(F)y,

whence
p(xy)x = ¢(X)xp(y).

Taking x in H, we see that ¢(y) commutes with x and hence ¢ takes values
in Z. This last relation also shows that ¢ : G — Z is a 1-cocycle for the
action by conjugation. On the other hand, one easily checks that any 1-cocycle
defines an automorphism of E via the formula above and, by associativity of
i, that the sum of two cocycles maps to the composition of the corresponding
automorphisms. The proposition is proved. []

Remark. This proof can of course be rewritten without the use of points, but it
rapidly becomes cumbersome and it does not help its understanding. Moreover,
this result is not used in the proof of our main theorem.

2.4. Outer actions. We will now define the notion of outer action (in a relative
way) in terms of extensions. Let G, H be algebraic groups, let Z be the center
of H and let Eq, E; be extensions of G by H. Since Z is characteristic in
H , it is normal in both E;’s. We can thus consider, for i = 1,2, the extensions

1> H/Z > Ej/Z -G — 1.

Note that E; acts on H by conjugation and that this action factors through
E;/Z, so that E;/Z acts naturally on H, hence on Z as well.



446 M. FrLorenci and G. LuccHINT ARTECHE

Definition 2.4. We say that Ey and E» induce the same outer action of G on
H if there exists an isomorphism ¢ between E;/Z and E,/Z as extensions of
G by H/Z, compatible with the natural actions on H .

We define Ext(G, H, E;) as the set of isomorphism classes of extensions of G
by H inducing the same outer action as £;. Note that when H = A is abelian,
we recover the group Ext(G, A) for the G -action obtained by conjugation in E;.

The advantage of this point of view is that it avoids the use of automorphism
groups and replaces it with the notion of action, which is easier to define in a
general setting (in particular in the context of algebraic groups). Indeed, in general
automorphism groups are not group objects in the category one is working with
and thus one has to give ad-hoc definitions of outer actions in order to define
the sets of extensions.

Remark. We have just replaced automorphisms by actions. If needed, these can
be replaced by the notion of normal subgroups as follows. Fixing an isomorphism
of extensions E|/Z ~ E,/Z amounts to giving a certain extension Ey of G by
H/Z and morphisms of extensions

1 H E, G 1
-

1 H/Z Eo G 1
¥

1 H E, G 1,

where m : H — H/Z is the natural projection (in particular, Eq is unique
up to isomorphism of extensions). Then we may consider the fiber product
E := Eq\ xg, E>, which fits into an exact sequence

1> HxpgzH - E—-G -1,

as can be easily proved using Proposition 2.1. If we consider the subgroup A(H)
corresponding to the image of the diagonal embedding A : H — H xg;7z H,
then we see the following.

Lemma 2.5. E, and E, induce the same action if and only if A(H) is normal
in £

Once again, this is an easy exercise using Proposition 2.1. We leave the details
to the reader.
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In the classical setting of abstract groups, an outer action is defined as a
morphism « : G — Out(/) and an extension £ of G by H defines naturally
an outer action via the commutative diagram

1 H E G 1

| —— Int(H) — Aut(H) —= Out(H) — 1,

where ¢ denotes conjugation in E. One can prove that in this context E/Z
corresponds to the fiber product Aut(/) xous) G and hence the image of E/Z
in Aut(f) is completely determined by the datum of « : G — Out(H). We
deduce that two extensions having the same outer action in the classical setting
will have the same image in Aut(H), giving us an isomorphism E;/Z ~ E,/Z
which evidently induces the same action.

On the other hand, if two extensions E;, E» have isomorphic quotients by Z
and induce the same action on H, then clearly they both have the same image
in Aut(H) and thus induce the same morphism « : G — Out(G) in the context
of abstract groups.

2.5. The action of Ext(G,Z,E) on the set Ext(G,H,E). Let G,H be
algebraic groups and let Z be the center of H as above. Starting from an
extension £ of G by H, we get an action of E/Z on Z as we saw before,
which factors through an action of G on Z. Define Ext(G, Z, E) to be the group
of extensions of G by Z corresponding to this G -action. The purpose of this
section is to define an action of Ext(G, Z, E) on Ext(G, H, E).

Let us consider then an extension

l 7= B -sG-s1,

representing a class in Ext(G, Z, E), i.e., inducing the same G -action on Z as
E . Consider the fiber product E x¢g E’. By Proposition 2.1, this fits into an exact
sequence

(2.1) 1l > HxZ > ExgE -G —1.

If we consider then the multiplication morphism u : H x Z — H, which is
surjective and whose kernel is easily seen to be normal in E xg E’ (use for
instance Proposition 2.1), we get by pushforward an extension

1l > H — u(Exg E') > G — 1,

which induces the same outer action than E. Indeed, consider the extension
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| > H/Z > Ey—>G—1,

obtained by pushing extension (2.1) via the natural arrow H xZ — H/Z. It is
easy to see that there is a commutative diagram of extensions (where we omit
the morphisms induced on the subgroups and quotients)

E xg E' —"> 1 (E xg E)

E Ep,

where . denotes the pushforward via 7 : H — H/Z . Note that H = H x {1} is
normal in E xg E’ (use for instance Proposition 2.1) and that the action induced
on H by conjugation factors through E — E, since the kernel of this morphism
is Z x Z, which clearly commutes with H x {1}. We see then that the arrows
E — Ey and u«(E xg E’) — Ey from the diagram above define an isomorphism
inducing the same action on /H as needed.

One can check of course that this construction gives isomorphic extensions if
we start with isomorphic extensions. We have thus defined a map

Ext(G, H, E) x Ext(G, Z,E) — Ext(G, H, E),
(LE].[E) = [E]-[E"] := [u«(E x¢ E)],

which, when taking H = Z, recovers the classical group law on Ext(G, Z, E),
whose trivial element corresponds to the split extension Z x G . In general, we
get an action of the group Ext(G, Z, E) on the set Ext(G, H, E). Checking this
is an easy exercise using fiber products with three factors (and pushing forward
via multiplication). We give some details in the proof of Theorem 3.1 here below.

3. Main result

We keep notations as in last section. In order to prove Theorem 1.1, we are
only left to prove the following:

Theorem 3.1. Let G, H be algebraic groups over a field k, let Z denote the
center of G and let
l—s+H 3% E—+G—+1,

be an extension. Then Ext(G, Z, E) acts simply transitively on the set Ext(G, H, E).
Proof. Let Eq, E; be extensions of G by H inducing the same outer action as

E. We need to find an extension E’ of G by Z inducing the same action as E
and such that [Eq]-[E] = [E,].
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By definition, both extensions come with a natural arrow E; — E,, where E
is the extension of G by H/Z obtained by quotienting Z C H C E;. Recalling
Lemma 2.5, we can consider the fiber product Ei, := E; xg, E2, which fits into
an exact sequence

1 == H gz H = Eyg—> G- 1,

and see that A(H) C H xp/z H is normal in E;». In particular, A(H) is normal
in H xgjz H C H x H and thus the composition
id
VIHXH/ZHﬂHXHﬁ)Z,
where ¢ denotes the inversion morphism, is a well-defined surjective morphism
with kernel A(H). And knowing that A(H) is normal in E;5, we may consider
the pushforward extension

| > Z — Vi(Epn) — G — 1.

Note that the action of G on Z induced by V.(E;2) is the same as the one
induced by E; and E, since the restriction V : Z x Z — Z is clearly G-
equivariant.

We claim now that E’ := V,(E|») is the extension we are looking for. Indeed,
by construction, E’ fits in the commutative diagram:

Ein, —=E = E12/A(H)

| |

By ———= G,

where the natural projection E;» — E; also corresponds to the pushforward via
the projection py : H xpg;z H — H on the first factor. Thus, we get a canonical
morphism ¢ : E1» — E; xXg E’. Using Proposition 2.1 once again one checks
that v is in fact an isomorphism fitting in the following commutative diagram

l—H XH|Z H Elz G 1
(m,V)l dfl H
1 H xZ Ey xg E’ G 1.

In particular, since E’ and E; induce the same action on Z, the pushforward
of Ei, via the multiplication morphism p : H x Z — Z is well defined, as we
saw in Section 2.5. Moreover, by construction we can see that mo (p;,V) = p,.
This tells us that w«(p1, V)«(E12) = u«(E1 Xg E’) is canonically isomorphic
to E» = (p2)«(E12) as an extension of G by H, which means precisely that
[E1] - [E'] = [E2], as claimed. This proves the transitivity of the action.
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Let us prove now the simple transitivity. In order to do this, we will simply
show that, given an extension E’ of G by Z representing an element in
Ext(G, Z, E), the construction above applied to E; and E; := u.«(E; xg E') for
w: HxZ — Z gives back an extension isomorphic to E’.

Let us start then by noting that there is a natural map E; xg E' — Eq, which
factors both through the projection p; : Eyxg E’ — E1 and p« : Eyxg E' — E;.
It is easy to see that there is a canonical isomorphism

Ey xg, (E1 %G E") ~ (E; xXE, E1) XG E’.

Indeed, by Proposition 2.1 both groups can be seen as the same subgroup of
E1x Eyx E’.

Since E; xg E' — Ey factors through ., there is a natural pushforward
morphism

| —— H xgyz H X Z —— E1 xg, E1 xg E’ G 1

(id,u)i (id,u»*)J H

1—>H><H/ZH E1 XEq Ez G 1.

And thus the construction from the first part of the proof corresponds to the
pushforward of this extension via V : H xg/z H — Z, which is surjective and
has kernel A(H) as we saw before.

On the other hand, it is easy to see (as we saw in the first part of the proof)
that A(H) is normal in E; xg, E;. This means that we may pushforward

1 > Hxgyjz H—> Eyxg, E1 > G — 1,

via V in order to induce a pushforward morphism

1—>HXH/ZHXZ———>E1XEOE1XGE, G 1
(V,id) J (Vi,id) l H
1 H x Z ———— V.(E,| xg, E1) x¢ E’ G 1.

The key fact now is that we can pushforward this last extension via u : HxZ — H
(the reader can easily check that the kernel of p is indeed normal in this last
extension) and that the morphisms Vo (id, ) and p o (V,id) are the same. In
particular, this pushforward is once again the one from the construction on the
first part of the proof, but it represents at the same time the class

[Vi(E1 xE, E1)]+[E'] € Ext(G, Z, E).

However, it is easy to see that
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Eyxgy Ey = (Z x{1}) X A(E1) = Z 1 Ey,

where A denotes the diagonal embedding. Indeed, one can verify using Proposi-
tion 2.1 that A(E;) N (Z x {1}) = {1}, that A(£;) normalizes (Z x {1}) and that
both generate E; xg, E1. Thus, the kernel of V, is identified with the subgroup
{1} xH C ZxE; and hence V.(E; xg, E1) is simply the split extension Z xG .
We deduce that [V.(E; xg, E1)] + [E'] = [E'] and we get then an extension
isomorphic to E’, which concludes the proof. [

4. The set of split extensions

Let 1 > H - E — G — 1| be an extension. Besides the structure of a
principal homogeneous space under Ext(G, Z, E), the set Ext(G, H, E) has a
distinguished subset corresponding to the classes of split extensions. We briefly
study this set in this section.

Note that split extensions have by definition a scheme-theoretic section. Such
extensions can be studied by using cocycles, so we use the cocyclic definition of
nonabelian cohomology given by Demarche in [Dem, §2]. Define then, for H
an algebraic group over a field k with a G-group structure, the set HL (G, Z)
as the quotient of the set of crossed morphisms

{a:G — H|a(gh) =a(g)-%a(h)},

by the action of H(k) sending a to (g+> h-a(g)-8h™1) for h € H(k).

Let us start with the existence of a (class of) split extensions in Ext(G, H, FE).
Since all such extensions have the same quotient Fy := E/Z, we immediately
see that in order to have split extensions, we must have FEy to be split as an
extension of G by H/Z. On the other hand, if we assume FEy to be split, we
may choose a section s : G — E,. Seeing E as an extension of Ey by Z and
pullbacking via s, we get the following commutative diagram

4.1 1 Z E; & 1
]

1 z E Eo 1

1 H E G 1,

which tells us that we can see E as a subgroup of E. One easily checks that if
we change s by a conjugate section (over the base field), then we get an extension
isomorphic to E;. Now, if we fix a particular section s¢ : G — Ejp, it induces a



452 M. Frorence and G. LuccHINI ARTECHE

natural G -group structure on H/Z and we know that sections G — Ey up to
conjugacy are classified by H! .(G, H/Z) for this G -group structure (cf. [Dem,
Prop. 2.2.2]). We have thus defined a map

§:H).(G,H/Z)— Ext(G,Z,E)

o = [s] — [E],
with which we may define a second map via the action on Ext(G, H, E)

8g : HL.(G,H/Z) — Ext(G, H,E)
a > (—8(w)) - [E].

Note that if we change the choice of the section sy for some s; : G — Ej, then
we would get a twisted set Hl .(G,s,(H/Z)), where 5 (H/Z) is simply H/Z
with the “twisted” G -group structure obtained by conjugation via 5,(G) C Ej.
We leave to the reader to check that the twisting bijection H (G, s, (H/Z)) =
H}) (G, H/Z), which is defined analogously to the classical group cohomology
twist (cf. [Ser, 1.5.3]), commutes with the construction of the § morphism. This
implies in particular that the images of § and §g are independent of the choice of
the fixed section so. Moreover, if we change E by another extension E’ inducing
the same outer action, then we get a map g/, which we claim coincides with &g .
Indeed, we may write [E'] = ¢-[E] for some class ¢ € Ext(G, Z, E), meaning
that E’ can be obtained by fiber products and quotients from E. Applying this
construction simultaneously to the upper and lower lines of diagram (4.1), which
preserves commutativity, we see that the corresponding map dg/ sends o = [s]

to
(6@ + ) - [E] = (=8(@) - (=0) - [E] = (=6()) - [E] = 8 ().

We have then the following result, which describes the set of (classes of) split
extensions.

Proposition 4.1. An extension in Ext(G, H, E) is split if and only if it lies in the
image of 0g . In particular, the set of split extensions is non-empty if and only if
Eo = E/Z is split as an extension of G by H/Z.

Proof. We already noticed that if the set of split extensions is non-empty, then
Ey is split. Assume then that FEy is split and let us prove that there are split
extensions in Ext(G, H, E). Consider a section s and the corresponding extension
E . Applying simultaneously the action of —8([s]) = —[E;] to the upper and lower
lines of diagram (4.1), we get the same diagram for an extension E’ such that
[E'] = (=6([s])) - [E], but in which E] is clearly split. If we denote by s’ the
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section G — E’, since the composite G 2 Eo — G is the identity, we have that

/

G 2> E! — E' is a section of E’ and hence E’ is a split extension.

Note that this construction proves by the way that every class in the image of
8 is split. Indeed, the extension E’ represents precisely (—38([s]))-[E] = S ([s]).
Consider now a split extension in Ext(G, H, E). Since the definition of &g
does not depend on E, we may assume that our split extension is precisely
E . Moreover, since the image of §g does not depend on the choice of the
section s : G — Ey, we may assume that this section comes from a section
G — E. We immediately see then that &([s]) is nothing but the trivial class
[Z % G] € Ext(G, Z, E) and hence [E] = (=§([s])) - [E] = Se([s]).- []

Remark. Assuming the existence of a split extension E, the arguments that
precede can be summarized as the existence of an exact sequence of pointed sets

&
Hcloc(G’ H) — H; c(G’ H/Z)— Ex\(G, Z, E) — BExt(G, H, E),

CO

where the last map is defined as ¢ v+ (=) - [E] and the distinguished subset in
Ext(G, H, E) is precisely the set of split extensions. Details are left to the reader.

S. Application: A finiteness result

We can now consider the special situation of algebraic groups over a finite
field . In this context one could expect finiteness results such as the following
one:

Theorem 5.1. Let G, H be algebraic groups over F and let
1 H—>E—>G—1,

be an extension. Assume that G is finite and étale. Then Ext(G, H, E) is finite.

Proof. Thanks to Theorem 3.1, we may immediately assume that H is abelian,
hence it has a natural G -action and the set Ext(G, H, E) is simply Ext(G, H)
for this particular action. We argue then as in [Bri, Lem. 3.1]; since G is étale,
we can consider the exact sequence (cf. [SGA3, XVII, App. L.3.1])

0 — HZ(G,H) — Ext(G, H) - H4(G, H),

where HZ(G, H) denotes the Hochschild cohomology group (defined in loc. cit.).
Again, since G is €tale, as a scheme it is just a finite union of spectra of finite
fields. By [Mill, III, Ex. 1.7 and Ex. 2.24], the finiteness of Hélt(G, H) follows then
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from the finiteness of H 1(]F’ , H) for any finite field F’, and this is well-known
(cf. [Ser, 111,§4.3, Thm. 4] and [Lan]). We are reduced then to the finiteness of
HZ(G, H). Assume for now that G is constant (i.e. all of its points are defined
over ). Then by [DG, IIL.6, Prop. 4.2] we know that H&(G, H) is isomorphic
to H?(G(F), H(F)) in classic group cohomology. And since both G(F) and
H(IF) are finite groups, we get the finiteness in this case. If G is not constant,
there exists a finite extension F’/IF such that Ggs is constant and hence the set
Ext(Gy, Hp’) is finite by the argument above. It suffices to prove then that there
are finitely many F’'/F -forms of a given extension of Gp- by Hp/. Now these
forms are in bijective correspondence with the cohomology group H!(F'/IF, A)
for the group A := Z}(Gg’, Hy/) by [Ser, IIL1] and Proposition 2.3. But since
Gy is constant, A is a subgroup of the group of functions G(F’) — H(F’), which
is clearly finite. Since F’/IF is also finite, we get the finiteness of H!(F’/FF, A),
which concludes the proof. ]
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