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Stabilization distance between surfaces

Allison N. MiLLer and Mark PowgLL

Abstract. Define the I-handle stabilization distance between two surfaces properly embedded
in a fixed 4-dimensional manifold to be the minimal number of 1-handle stabilizations
necessary for the surfaces to become ambiently isotopic. For every nonnegative integer m
we find a pair of 2-knots in the 4-sphere whose stabilization distance equals m.

Next, using a generalized stabilization distance that counts connected sum with arbitrary
2-knots as distance zero, for every nonnegative integer m we exhibit a knot J,, in the 3-
sphere with two slice discs in the 4-ball whose generalized stabilization distance equals m.
We show this using homology of cyclic covers.

Finally, we use metabelian twisted homology to show that for each m there exists a
knot and pair of slice discs with generalized stabilization distance at least m, with the
additional property that abelian invariants associated to cyclic covering spaces coincide.
This detects different choices of slicing discs corresponding to a fixed metabolising link on
a Seifert surface.

Mathematics Subject Classification (2010). Primary: 57NI13, 57N65.

Keywords. 2-knots, slice discs, stabilization distance, twisted homology.

1. Introduction

Given a compact, smooth, oriented 4-manifold W, every second homology
class can be represented by some embedded surface [GS, Prop. 1.2.3]. A simple
operation called I-handle stabilization, illustrated in 3-dimensional space in
Figure 1, preserves the homology class represented by a surface while increasing
the genus by one. Roughly, a 1-handle stabilization removes D? x §° from X
and glues in S' x D', with some conditions that allow this to occur ambiently
in W in a controlled way (see Section 2 for formal definitions). A result of
Baykur—Sunukjian [BS] states that any two embedded surfaces in W representing
the same second homology class become isotopic after finitely many 1-handle
stabilizations.
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U

FiGure 1
An embedded surface X (left) is stabilized by
addition of a l-handle, resulting in X’ (right)

In this paper, we analyze the minimal number of 1-handle additions required
to make two surfaces with the same genera isotopic. We call this the I-handle
stabilization distance, and show that it induces a metric on the collection of
ambient isotopy classes of surfaces of a fixed genus representing a given second
homology class. There are many invariants capable of distinguishing two surfaces
up to ambient isotopy, thereby showing that at least one 1-handle addition is
required, but it is more challenging to find more substantial lower bounds on the
number of 1-handles needed.

Our first result shows that, even in the simplest possible setting of necessarily
null-homologous 2-spheres in S*, the 1-handle stabilization distance can be
arbitrarily large.

Theorem A. For every nonnegative integer m, there exists a pair of embedded
2-spheres K, and K, in S* with I-handle stabilization distance m.

We prove Theorem A by analyzing the effect of I-handle stabilization on the
Alexander module of a surface in S*. Recall that the first Alexander module
H(§"+t2\ vK;Q[t*!]) is a classical invariant of an embedded n-sphere K in
S"*2 that measures the homology of the infinite cyclic cover of the exterior
of K, considered as a Q[¢t*!]-module. In the case of n = 1, the order of this
Q[t*']-module is exactly the classical Alexander polynomial Ag(z).

In addition to I-handle stabilization, one might also wish to allow connected
sum with arbitrary knotted 2-spheres, also called 2-knots. In the context of
Theorem A this is uninteresting: any two 2-knots become isotopic with zero
I-handle additions and a single 2-sphere addition to each. However, when
considering properly embedded discs in D* with fixed boundary we show that
the resulting generalized stabilization distance, in which 1-handle addition counts
as 1 and 2-sphere addition counts as 0, has similarly interesting properties. In
particular, the generalized stabilization distance between properly embedded discs
in D* with fixed boundary can be arbitrarily large. More precisely, a slice disc
for a 1-knot J C S? is a smoothly properly embedded disc D? C D* with
boundary the knot J, and we prove the following.
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Theorem B. For every nonnegative integer m, there exists a knot J C S* and a
pair of slice discs Dy and D, for J with generalized stabilization distance m.

To prove Theorem B we again rely on the Alexander module, comparing for
i =1 and 2 the kernels of the inclusion-induced maps

Hi(S*\ v/J;Q[t*']) — Hi(D*\ vD;:; Q[t*"]).

Given any embedded surface X with boundary J, we then analyze how the
kernel of the inclusion induced map

Hi(S*\v/;Q[t="]) — Hy(D*\ vE; QrF"))

can change under 1-handle and 2-sphere addition.

One common way to produce a slice disc for a knot is to surger a spanning
surface for the knot along a collection of curves as follows. Given an embedded
oriented surface F in S3 with boundary J, suppose we can find a set of 0-
framed curves y; C F that form a half-basis for H;(F;Z) and which themselves
bound disjoint discs A; in D*. Then the surface

Fp = (F\U(y,- x (0, 1))) U (UA,- x {0, 1}) c D%,

1

is a slice disc for J, after a minor isotopy to smooth corners and make the
embedding proper. The methods of Theorem B can often distinguish slice discs
which arise from surgering a Seifert surface along two different collections of
{yi} curves. However, while fixing the {y;} there can still be multiple choices
for the slice discs A;, and Alexander module techniques cannot distinguish the
resulting slice discs for J.

For our last main result we detect these second order differences between slice
discs, and again show that the distance can be arbitrarily large.

Theorem C. For every nonnegative integer m, there exists a knot J C S* and
a pair of slice discs Dy and D, for J with generalized stabilization distance
at least m, such that the kernels

ker (H1 (S3\ v Q[*"]) — Hy(D*\ vD,-;Q[til]))
coincide for i = 1,2.

Our primary tool in the proof of Theorem C is metabelian twisted homology,
or twisted homology coming from maps to metabelian groups, i.e., groups G
with



400 A.N. MiLLer and M. PowEgLL

G? :=[[G.G],[G,G]] = 0.

These sorts of representations were notably used by Casson—Gordon [CG1, CG2]
to give the first examples of algebraically slice knots in S* which are not
actually slice. The corresponding twisted homology theories have the nice feature
of being relatively computable while still being powerful enough to obtain strong
conclusions, for example distinguishing mutant knots up to concordance [KL2].
In our case, we take G to be the dihedral group D,, = Z, x Z, and construct
our representations using maps from the first homology of the double cover of
the relevant space to Z, .

We remark that Theorem B is not a corollary of Theorem C, since the former
gives us distance exactly m. Theorem B is also easier to prove, and the method
extends straightforwardly to distinguish choices of slice discs for many knots
beyond the explicit examples we give, while Theorem C requires more involved
arguments and more specialized constructions.

A slightly different analysis of stabilization distance between surfaces was
undertaken by [JZ2], who rather than minimizing the number of 1-handle
stabilizations necessary to make two surfaces isotopic instead minimized the
largest genus of any surface appearing in a sequence of stabilizations and de-
stabilizations connecting the two surfaces.

We also wish to advertise the following problem, which relates to recent
work by [JZI1] and [CP]. For a slice knot R, let ng(R) denote the number
of equivalence classes of slice discs for R, where the equivalence relation is
generated by connected sum with knotted 2-spheres and ambient isotopy rel.
boundary. Note that ng(U) = 1.

Our examples of Theorem B show that for every integer k there is a knot
Ry with ng(Ry) > k. In fact, the knot #59,¢ has 2% natural slice discs obtained
by choosing ‘left band” or ‘right band’ slice discs for each i = 1,...,k; see
Figure 3. By considering the kernels of the inclusion induced maps on Alexander
modules as we do in the proof of Theorem B, one can see they are all mutually
not ambiently isotopic rel. boundary and so ny(#%94¢) > 2% .

Problem 1.1. Determine the value of ng(R) for some nontrivial knot R, or at
least whether ng(R) < 00.

Organization of the paper. In Section 2 we give precise definitions for our
notions of stabilization distance. Section 3 constructs a cobordism between surface
exteriors corresponding to a stabilization. Our results will follow from analyzing
the effects on homology of these cobordisms. Section 4 recalls the notion of
generating rank of a module over a commutative PID, records the facts about
generating rank that we shall use, and establishes our conventions around twisted
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homology. Then Section 5 proves Theorem A, Section 6 proves Theorem B, and
Section 7 proves Theorem C.

Conventions. All manifolds, unless otherwise stated, are compact, smooth,
and oriented. When N is a properly embedded submanifold of M, we write
Xy := M ~v(N). In our context, we will frequently have a canonical isomorphism
e: H(Xy) — 7Z and in this case we let X}, denote the corresponding n-fold
cyclic cover, for n € N U {oco}. For n € N, we use Z, to denote the finite cyclic
group Z /nZ. Given a surface F, we let g(F) denote its genus.

Immediately before the publication of this paper, the authors learned that
original credit for Theorem A belongs to Miyazaki [Miy].

2. Stabilization distances

Fix a compact, oriented, smooth 4-manifold W. The following definition is
motivated by that of Juhdsz and Zemke [JZ2].

Definition 2.1. Let X be an oriented surface with boundary, smoothly and properly
embedded in W . Let B be an embedding of D* into W such that dB intersects
Y. transversely in a 2-component unlink /. and B intersects X in two discs Ag
and A, which can be simultaneously isotoped within B to lie in dB. Suppose
that a 3-dimensional 1-handle D? x [ is embedded into the interior of W such
that D2 x {i} = A; for i =0,1. Then &' := (EN(W~B)Ug (S' x1I) is a
I-handle stabilization of . If S! x I can be isotoped into dB relative to L,
we call the stabilization rrivial.

FIGURE 2
A surface ¥ with ball B as in Definition 2.1, pre-stabilization

A trivial 1-handle stabilization does not change the fundamental group of
the complement of the surface, so frequently there will be no sequence of trivial
stabilizations relating two given surfaces. On the other hand, any two homologous
surfaces become isotopic after adding finitely many 1-handles [BS].
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Definition 2.2. Define the [-handle stabilization distance in N U{0, oo} between
smoothly and properly embedded surfaces (F,d0F) C (W,dW) and (F’,0F') C
(W,0W) with dF = 9F’, homologous in H,(W,dW;Z), to be the minimal k € N
such that F and F’ become ambiently isotopic rel. boundary after each has been
stabilized at most k times. We denote this by d,(F, F’). If F and F’ are not
homologous or have different boundaries then we say that d;(F, F’) = co.

In particular for any two 2-knots K and J, d;(K,J) < oco. For distances
between slice discs, we obtain stronger results by defining a coarser notion that
permits connected sum with locally knotted 2-spheres. By adding a locally knotted
2-sphere to a properly embedded surface (X,0X) C (W,d) we mean taking a
2-knot S in S* and forming the connected sum of pairs

(W, D)#(S*, §) = (W, #S).

Definition 2.3. Let (F,dF) Cc (W,0W) and (F’,dF’) C (W,dW) be smoothly
and properly embedded surfaces. If dF = oF' and [F] = [F'] € Hy(W,0W; Z),
we define the generalized stabilization distance dy(F, F') in N U{0,00} to be
the minimal £ € N such that F and F’ become ambiently isotopic rel. boundary
after each has been stabilized at most & times and had arbitrarily many locally
knotted 2-spheres added. If F and F’ are not homologous or have different
boundaries then we say that d»(F, F’) = oo.

Note that for any two slice discs Dy, D, in D* for a fixed knot in S>, we
have that d,(Dq, D) < co. It is immediate from the definitions that

d2(F, F') < dy(F, F').

We also remark that dyz(F, F') < dy(F, F'), where djz denotes the Juhdsz—
Zemke stabilization distance [JZ2] between surfaces.

3. Cobordisms corresponding to handle additions

Now we construct cobordisms corresponding to handle additions. The following
construction will be used in our proofs of all three main theorems.

Construction 3.1. [A cobordism between surface exteriors.] Let W be a compact,
oriented, smooth 4-manifold. Suppose that F; is a smoothly and properly
embedded surface in W with 0F; = K C dW and that F, has been obtained
from F; by a l-handle addition such that g(F,) = g(F;) + 1. We define an
ambient cobordism 7 C W x I as follows:

T:= (Fix[0,1/2) U((D' x D) x {1/2}) U (F2 x [1/2,1]),
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where D!x D? < W is an embedding with D' x D? C Fy and D!'xdD? C F,.
(That is, D! x D? is the 3-dimensional 1-handle 4 in the definition of I-handle
stabilization.) Observe that

AT = (F1 x {0}) Ugxqop (K x [0,1]) Uiy Fo x {1}

and so X7: = (W xI)~v(T) is a cobordism rel. Xg from Xg to Xp,.

Since T is obtained from F; x [0,1/2] by attaching a single 3-dimensional
I-handle to F;x{1/2} (and then flowing upwards), it follows from the rising water
principle [GS, Section 6.2] that X7 has a handle decomposition relative to X g,
obtained by attaching a single 5-dimensional 2-handle to Xp, x /. Notice that
the attaching sphere of this 2-handle determines an element of 7;(Xf,) of the
form y = w1 Bp, 18=1 where u; and p, are meridians to F; near the attaching
spheres of 4 and B is a parallel push-off of the core of A. In particular, y is
null-homologous in H;(XF,). Taking the dual decomposition, we see that X7
also has a handle decomposition relative to Xr, obtained by attaching a single
5-dimensional 3-handle. By excision, we therefore have that

Z k=3

0 else.

Z k=2
Hyp (X1, XF)) = 5

and Hy(X7,XF,) = {
else

In particular, the inclusion maps Xp, — Xr induce isomorphisms on first
homology. It will be useful for us later on to know that the inclusion induced
map 71(Xr,) = mi1(X7) is surjective, as follows immediately from applying the
Seifert-van Kampen theorem to X1 = (Xg, x /) U (2-handle).

We now comment on basepoints for the fundamental group in this context.
Let xo € Xk € Xr x {0}, let ¢ = {xo} x I C Xy x [, and let x; = {xo} x 1.
We will always let m1(Xk) = mi(Xk,X0), m1(XF,) = m1(XF,,X0), m1(X1) =
m1(X7,x0), and m1(XF,) = m1(XF,,x1). There are natural inclusion induced
maps ¢: 71 (Xk,x0) = mi (X7, x0) and t1: m1(XF,, x0) = m1 (X7, X0). Moreover,
we use the arc « to define

t2: M (XF,,x1) > mi (X1, x1) = 71 (X1, X0)-

Later on, we will often omit basepoints from our notation, always using the above
arcs and corresponding inclusion maps. This completes Construction 3.1.

Proposition 3.2. Fix a compact, oriented, smooth 4-manifold W, a (possibly
empty) link L in 0W, a nonnegative number g, and a homology class
A€ Hy(W,0W;7Z) with dA = [L]. The distance function d, defines a metric on
the set of ambient isotopy classes rel. boundary of embedded oriented surfaces
of genus g in W with boundary L that represent the class A € Hy(W,0W ;7).
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Proof. We use that the distance is finite within the sets considered [BS]. If
di(2,Y) =0, then £ and X’ are ambiently isotopic. The distance function is
flagrantly symmetric.

To see the triangle inequality, suppose F and F’ are homologous rel. boundary
surfaces which stabilize via k& 1-handle additions to a surface S and F’ and F”
are homologous rel. boundary surfaces which stabilize via 2 1-handle additions
to S’. Now consider the sequence of stabilizations and destabilizations from F
to S to F/ to S’ to F” as a 3-dimensional cobordism 7 embedded in W x I.
We may perturb the embedding of 7" so that F: W x I — [ restricts to a Morse
function on 7', where stabilizations correspond to index one critical points, and
destabilizations correspond to index two critical points. First we argue that we
can rearrange this sequence of stabilizations and destabilizations so that all the
stabilizations come first, followed by destabilizations. Our desired result will then
follow immediately from letting S” be the pre-image of a regular value taken
after all index one critical points and before all index two critical points, and
observing that both F and F” stabilize via (k + &) 1-handle additions to S”.

In codimension at least two, critical points of an embedded cobordism can
be arranged, by ambient isotopy, to appear in order of increasing index [Per],
[BP, Theorem 4.1], by the following standard argument, which we include for
completeness. Choose a gradient-like embedded vector field subordinate to F [BP,
Definition 3.1]. Rearrangement of critical points is possible in general if the
ascending manifold of the lower critical point is disjoint from the descending
manifold of the higher critical point. Suppose that an index one critical point of
T has critical value #; higher than critical value #, of an index two critical point,
and suppose that there are no critical values between #, and ¢,. The descending
manifold of the index 1 critical point of a 3-dimensional cobordism intersects a
generic level set W x{t}, with £, <t < f; in a I-dimensional disc. The descending
manifold of the index 2 critical point intersects W x {¢} also in a I-dimensional
disc. By general position, we can perturb the gradient-like vector field to make the
ascending and descending manifolds disjoint, and we may do so simultaneously
for all such ¢. It follows that the critical points can be rearranged by an ambient
isotopy, as desired. 0

We remark that we do not claim d, gives rise to a metric. The next proposition
tells us that 2-spheres can be reordered so they come before 1-handle additions.

Proposition 3.3. Suppose that an embedded surface %, is obtained from a
connected surface X, by some number m of I-handle additions, followed by
connect summing with a local 2-knot. Then there is an embedded surface ¥' that
is obtained from %, by adding a local 2-knot, and such that %, is obtained
from X' by m I-handle additions.
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Proof. Let X denote X; with the 1-handles attached, so X, is obtained from
Y| by connected sum with a local 2-knot S. The isotopy class of X#S is
unchanged by where on Z’l we take the connected sum, so we can assume that
our connected sum takes place far away from the attached 1-handles. But then it
is clear that we can attach S first and our 1-handles second. 0

4. Generating ranks and twisted homology

4.1. Generating rank of modules over a commutative PID. We recall some
facts about generating ranks of finitely generated modules over commutative PIDs.

Let A be a finitely generated module over a commutative PID §. We say
that A has generating rank k over S if A is generated as an §-module by &
elements but not by £ — 1 elements and write g-tk¢ A = k. When § is clear
from context, we often abbreviate g-rkg A by g-rk 4.

Lemma 4.1. Let A, B, and C be finitely generated modules over a commutative
PID §.

() If A surjects onto B then g-tkg B < g-rkg A.
(2) If B < A then g-rkg B < g-tkg A.

(3) Let 0> A i> B2 C = 0 be a short exact sequence of S-modules. Then
g1k, C > g-tkg(B) — g-tkg(A).

Proof. The first part follows immediately from the definition of generating
rank. The second part is easy to check using the classification of finitely
generated modules over a commutative PID. The third property follows from

taking minimal S -generating sets {ai,...,a,} and {ci,...,cm} for A and C
respectively, picking b; € g7 '(¢;) for each 1 < i < m, and observing that
{f(ar),..., f(an),b1,...,bm} is an §-generating set for B. U

Remark 4.2. Only (2) uses that S is a PID.

We will also make arguments involving the order of a finitely generated
module A over a commutative PID §. The classification of finitely generated
modules over a PID states that there exist j,k € N and elements sy,...,5, € S
such that there is a (non-canonical) isomorphism

k
A=S/ @TA=S & @ S/(s).

i=1



406 A.N. MiLLer and M. PowEgLL

When j > 0 we say that the order of A is |A| = 0 and when j =0 we say
that the order of A is |A| = ]_[f-‘=1 s;. This is well-defined up to multiplication
by units in S. The key property of order we use is that if f: A — B is a map
of S-modules with ker( f) torsion, then |Im(f)| = |A|/|ker(f)|.

4.2. Twisted homology. Let X be a CW complex with universal cover X .
The cellular chain complex C,(X) is a chain complex of right Z[z;(X)]-
modules. If X is a finite complex then C*(Y) is finitely generated as a
Z[m(X)]-module. Let R be a commutative ring with involution and with unit.
Let «: m1(X) — Uy,(R) be a unitary representation i.e. a(g™!) = E(?)T. This
extends to a homomorphism of rings with involution Z[x(X)] — GL,(R), and
makes R™ into a (Z[r,(M)], R)-bimodule.

Definition 4.3. The kth twisted homology of X with respect to « is
HE(X; R) := H(Cu( X ) ®zpr, (x)) R™).

When the ring R is clearly understood, and we are short of space, we shall
sometimes omit R from the notation and write H}(X) for H}(X:R).

If X is a finite complex and R is Noetherian then H(X;R) is finitely
generated as an R-module. If ¥ C X is a subcomplex and we choose a path
y: I — X from the basepoint then « determines a representation m1(Y) — Uy, (R)
and we write H)(Y; R) for the resulting twisted homology. The inclusion induced
map H(Y;R) — HZ(X;R) depends on the choice of y, but nonetheless we
omit y from the notation.

Remark 4.4. Given X and «: 7;(X) — U,(R) as above, let X* — X be the
cover corresponding to ker(a). Then Z[m(X)] acts on C«(X*) and it follows
immediately from our definitions that

HE(X; R) = Hp(Co(XY) ®@zx,(x)) R™).

It is sometimes more convenient to compute with this smaller covering space.

4.3. Rational Alexander modules. For any knot or slice disc L, let A(L)
denote the Alexander module of L with integral coefficients and let Ag(L)
denote the Alexander module of L with rational coefficients. That is, let X,
be the exterior of L and as usual let ¢: 71(Xz) — Z denote the abelianization
map. Then A(L) := Hy(Xr,Z[t*']) and Ag(L) := H{(Xr;Q[t*]), where for
R = 7Z,Q the ring R[tT!] has a Z[x;(XL)]-structure determined by &. We
remark that Q@ is flat as a Z-module, and so Ag(L) = A(L) ®z Q.
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5. Pairs of 2-knots with arbitrary 1-handle distance

In this section, we prove that for every nonnegative integer m, there exists a
pair of 2-knots K and J in the 4-sphere with 1-handle stabilization distance m,
which is an immediate consequence of the following proposition.

Proposition 5.1. For each m € N, there exists a knotted 2-sphere K in S*
such that the minimal number of I-handle stabilizations needed to make K an
unknotted surface is exactly m.

Proof of Theorem A. Let m € N, let K be as in Proposition 5.1, and let J be
an unknotted 2-sphere. Since every stabilization of an unknotted 2-sphere is an
unknotted surface, we obtain immediately that d,(K,J) = m. [

The next proposition is the key algebraic input into the proof of Proposition 5.1.

Proposition 5.2. Let F; C S* be a smoothly embedded oriented surface and
suppose that F, is obtained from Fy by a I-handle stabilization. Then there is
a polynomial p € Q[t*'] and a short exact sequence

0 — Q[*!/(p) — Hi(S*~vF;Q[t*]) — Hi(S* ~vF; QIr*!]) — 0.

Proof. We consider the relative cobordism X7 between Xp, and Xpg, from
Construction 3.1, with W = §*. We will consider the infinite cyclic cover X T.
Recall that X7 is obtained from Xp, x I by attaching a single 5-dimensional
2-handle along y x {1} for y = puiBu;'p~", where 1, and p, are meridians of
Fi in S* near the attaching spheres of the 1-handle and B is a parallel push-off
of the core of this 1-handle. Since H,(F;;Z) = Z, and the attaching sphere of the
2-handle is null homologous, the abelianization homomorphism 7;(XF,) — Z
extends to a homomorphism 1 (X7) — Z. From now on in this proof we consider
homology with Q[r*!]-coefficients induced by this homomorphism. We also note
that the handle decomposition lifts to a relative handle decomposition of X T
with one orbit of 2-handles under the deck transformation action of Z.

Using this relative handle decomposition we obtain that Hy (X1, XF,; QUF) =
0 for k # 2 and Ho(X7,Xp;Qt*!]) = Q[r*!]. Since dually X7 is ob-
tained from Xpg, x [ by attaching a single 5-dimensional 3-handle, we have that
He(X7,XFp, Q[t*']) = 0 for k # 3. Now consider the long exact sequence of
the pair (X7, Xr,) with Q[t¥1]-coefficients.

o= Hy(XT) = Ho(X7, XF)) — Hi(XF)) > Hi(X7) - H{(X7, XF)).

Since H1(XT,XF,) =0 and Hx(X7, XF,) = Q[t*'], and since Q[t*!] is a PID,
this yields a short exact sequence
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0= QIr*'1/{p) » Hi(Xp,) - Hi(XT) =0
for some p € Q[¢r*!]. Now the long exact sequence of the pair (X7, Xf,) yields
0= Hz(XT,XFZ) — HI(XFZ) — H](XT) i H](XT, XFQ) =0,

from which it follows that the inclusion induced map H;(Xf,) — Hi(Xr) is an
isomorphism, and so we obtain the desired short exact sequence

0 — Q*1/(p) - H\(XF,) — Hi(XF,) — 0. O

For the reader’s convenience, we now describe two common constructions of
slice discs.

Construction 5.3. Given a subset ¥ C §3 and J C [ that is either an interval
[a,b] or a point {a}, write Y; for ¥ xJ C S x I. We think of D* as
D* = S \1/57 -

The banding construction. Let K be a knot with disjointly embedded bands
B1,...,Bn in S? such that the result of banding K via {g;}'_, is the (n + 1)-
component unlink U,4;, which could be capped off via (n + 1) discs in S>.

Then, up to smoothing corners,

. 112
D := Ko,1/31 U (Uj=18i) /3 U Was sz zsa U (VI D?),

is a ribbon disc for K.

The surgery construction. Let K be a knot with a genus g Seifert surface
F and a collection of g disjoint curves «y,...,ag C F which are 0-framed by
F and which generate a Z® summand of H;(F). Suppose also that the link
U%_,a; € §7 is an unlink. Then, up to smoothing corners,

D= K[0,1/3] U (F ~ U(Ulea,-)) U Uizl(af L 0-’;-_)[1/3,2/3] U U?ZI(DZ L D2)2/3

1/3

is a ribbon disc for K. We note that this construction is easily adapted to build
a slice disc for K under the weaker assumption that U_,e; is merely strongly
slice.

Example 5.4 (The knot 946 and its two standard slice discs.). Let R := 946,
and let D; for j = 1,2 be the slice discs indicated by the left and right bands,
respectively, of the left part of Figure 3. Observe that R has a genus 1 Seifert
surface F (illustrated on the right of Figure 3), and for j = 1,2 let DJ’- be the
slice disc obtained by surgery of F along «;. Referring back to Construction 5.3
for our explicit description of D; and D’, we can recognize these as isotopic
discs in D*, since

Rii/6,1/3 Y (B3 U (Uzj)[l/3,2/3] C Dy
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LR

The knot R = 94¢ has slice discs D; (left band) and D> (right band)

and
£ _
R[1/6’1/3] U (F ~ V(aj))1/3 U (O{j IJoej )[1/3’2/3] C DJ,

are isotopic rel. boundary as subsets of §3 x [1/6,2/3].
The oriented curves oy, a, represent a basis for H;(F) with respect to which

the Seifert pairing is given by
0 2
A= .

The Alexander module is therefore presented by

0 9r—1
tA— AT = ,
[r—z 0 ]

and hence is isomorphic to Z[t*!]/(t —2) ® Z[t*']/(2t — 1), where @, and @,
represent the generators of each summand.

Moreover, the inclusion induced maps ¢;: Ag@(R) — Aqg(D;) are given by
projection onto summands:

Ag(R) = Q[r¥Y/(2t — 1) ® QIr¥/(t — 2) = Q[tE!]/ (2t — 1) = Ag(D1)
(x,y) > x
Ag(R) = Qr')/(2t — 1) ® QIrE1/(r — 2) > QIrF1)/{r — 2) = Ag(D2)
(x,y) = y.
Note that ker(¢1) Nker(tz) = {0} € Ag(R).
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A detailed computation with these slice discs can be found in [CP, Section 5.1].
To see that the induced maps are as claimed, we argue by the rising water
principle [GS, Section 6.2]. There is a handle decomposition of Xp. relative to
XR consisting of one 2-handle attached along @ ; (corresponding to the band),
followed by two 3-handles corresponding to the maxima, and a 4-handle. Only
the 2-handle affects first homology, by killing the class represented by @ ;.

Proof of Proposition 5.1. Let D := D, C D* be the “right band” slice disc for
the 94¢ knot shown via a blue band on the left of Figure 3. Let K, be the 2-knot
obtained from doubling this disc, that is Ko = D Ug,, D C D*U D* = §*. Let
K = #lm=}K0.

First we use Proposition 5.2 to show that if K stabilizes to an unknotted
surface by n 1-handle additions then » > m. We know that

Hi (S ~v(%6): QI F']) = QrF'/(2t — 1) @ Q[rF']/(r — 2)

where the inclusion induced map to H;(D*~v(D);Q[t*']) = Q[t*1]/(t —2) is
given by projection onto the second factor. By using the Mayer—Vietoris sequence
corresponding to the decomposition

S4 By 'l)K() = (D4 s I)(D)) US3\V(946) (D4 = U(D)) 5
we can compute that

Hy(S*~vKo; Q[t*']) = Q[t*']/(t —2).

Since Alexander modules are additive under connected sum of 2-knots we therefore
have that

m
Hi(S*~vK; Q™)) = D (QIr*')/(r - 2) -
i=1
We therefore need to show that one requires at least m stabilizations to trivialize
the Alexander module of K . Note that the generating rank of H,(S*~vK:;Q[t*1])
is m. We claim that the result of stabilizing an embedded surface whose Alexander
module has generating rank k is an embedded surface with generating rank at
least k—1. To see the claim, we use Proposition 5.2 and the fact that if a Q[t*!]-
module M has generating rank k& and a submodule N has generating rank I,
then the quotient M/N has generating rank at least k — 1, by Lemma 4.1 (3). By
the claim and the fact that the generating rank of H,(S*~vK;Q[t*!]) is m, it
follows by induction that dy(K,J) >m.
It remains to show that we can make K unknotted via m I-handle attachments.
Recall that the slice disc D is constructed by a band move “cutting” one of the
bands of the obvious Seifert surface ¥ for 94¢ in Figure 3, and then capping
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FiGUure 4
A ‘band-swim’ move preserves the isotopy class
of a surface presented by a banded knot diagram

off the resulting 2-component unlink with disjoint discs. A single stabilization,
tubing these two discs together, results in an embedded genus one surface. This
surface could also be obtained by capping off the 2-component unlink with an
annulus instead of two discs, and hence is isotopic to the result of pushing
the aforementioned Seifert surface into D*. We assert that D U X C S* is an
unknotted genus one surface, and prove this by direct manipulation of handle
diagrams for the embedding of the surface in D#, using the banded knot diagram
moves of Swenton [Swe].!

The data of an unlink and bands attached to it with the property that the
result of performing the corresponding band moves is also an unlink provides
instructions for embedding a surface in S*: the unlink’s components correspond
to 0-handles, the bands to 1-handles, and the unlink obtained by banding can be
capped off with 2-handles in an essentially unique way, in the sense that any two
choices of discs in §3 capping off the unlink yield isotopic surfaces in S*. This
uses the main result of [Liv], that any two sets of embedded discs in S3 are
isotopic rel. boundary in D*. We remark that isotopy of banded knot diagrams
in 3 together with cancellation/creation of band-unknot pairs, sliding of bands
across each other, and the ‘band-swim move’ illustrated in Figure 4 preserve the
isotopy class of the presented surface (see Swenton [Swe] for more details).

The banded diagram on the far left of Figure 5 gives D U 2. The top two
bands correspond to the Seifert surface, and the green band is the band of the
disc D.

The center left of Figure 5 gives the ‘dual’ band description corresponding to
turning our handle diagram upside down. The center right figure is obtained by
an isotopy of the banded diagram in S3, and we perform a ‘band-swim’ move
of the green band through the red band to obtain the diagram on the far right of
Figure 5.

1'The reader who is familiar with doubly slice knots may instead observe that DUX is a stabilization
of the unknotted 2-knot obtained by gluing the ‘left band’ and ‘right band’ discs together, and hence is
itself unknotted. We give the longer argument here to be self-contained.
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<

FiGuRe 5
Simplifying a banded knot diagram for D U X

Now obtain the diagram on the left of Figure 6 by an isotopy of the diagram in
S3, before sliding the green band across the red band to obtain the central diagram.
We can then cancel the right-hand unknot with the red band, corresponding to
canceling a pair of 0- and 1-handles, in order to obtain the standard diagram for
an unknotted torus seen on the right of Figure 6. ]

FiGure 6
Further simplifications of the banded knot diagram for DUX,
resulting in the standard diagram for an unknotted torus (right)

6. Pairs of slice discs with large generalized stabilization distance

In this section we prove Theorem B. We use the classical Alexander module
to show that for every nonnegative integer m there is a knot K with slice discs
D and D’ such that d>(D, D’) equals m. To do this, we investigate the kernel
of the induced map on fundamental groups from the knot exterior to the slice
disc exteriors by using the homology of cyclic covering spaces.

First, we note that connected sum with a knotted 2-sphere has no effect on
the kernel of the map on fundamental groups.

Proposition 6.1. Suppose that F, has been obtained from Fy by connected sum
with a knotted 2-sphere S. Then

ker(iy: 1 (Xgx) — m1(XF,)) = ker(iz: 71(Xg) = 71(XF,)).
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Proof. Let Xs := S*\vS be the exterior of S in $*. Construct Xz, from Xg,
and Xg by identifying thickened meridians S'x D? C dXF, and S'x D? C dXs
in the boundaries and smoothing corners. By the Seifert-van Kampen theorem
we have that

mi(XF,) = mi(XF) *xz m1(Xs).

So m(XF,) is isomorphic to a subgroup of m(XF,) in such a way that the
inclusion-induced maps factor as

1 (X)) = m(Xp,) *z m(Xs) = 71(XF,).
It follows that ker(iy) = ker(iz). L]

The following proposition is central to the rest of the paper, and so we state
it in some generality. In particular, in later sections we will want to apply this
result with twisted coefficients, so in the name of efficiency we state and prove
the full version here.

Proposition 6.2. Let Fy and F, be properly embedded surfaces in D* with
0F;, = K, where F, has been obtained from Fy by g I-handle additions
such that g(F>) = g(F\) +g. Let T € D* x 1 be the 3manifold built as
in Construction 3.1. Suppose that ¢: m1(Xg) — GL,,(R) extends over m(XT)
to a map ®: m1(X7) —> GL,(R). For j = 1,2 define

Pra= ker(Hf&(XK; R) — H¥(XF,; R)).

Then Py C P> and, assuming in addition that R is a PID, P, is generated as
an R-module by Py U {x;)i"| for some choice of x; € P5.

Proof. The case of general g follows immediately from repeated application of
the g =1 case, which we now prove.

Recall that X7 is obtained from Xp, x/ by attaching a single 5-dimensional
2-handle along yx{1} for y a simple closed curve representing [y] = u1fu; !
in m1(XF,), where p; and p, are meridians of F; in D* near the attaching
spheres of the 1-handle, and B is a parallel push-off of the core of this I-handle.

There is a CW pair (X?W,Xpl) ~ (X7, XF,) where X?W is a CW complex
obtained by attaching a single 2-cell to Xp, along y. The universal cover
X EW — XE£W induces a pull-back covering X F, — XF,, with relative cellular
chain complex

C*(ng, yﬂ) — C*(YT, YFI)

with Co(X W, X f) = Zlni(Xr)] and Ci(X $%, X g,) = 0 for k # 2. By
tensoring with R™ we have that
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CI?(XTCWvXFl;R) = Ck(Y %‘W, X Fl) S Z71 (X7)] R™

is isomorphic to R™ for k = 2 and is zero otherwise. Since C2(X7, Xp; R)
C,?(ng, XF,; R), we therefore obtain that H,?(XT, XF; R) =0 for k # 2 and
HE (X1, XF; R) = R™.

Since dually X7 is obtained from X g, x I by attaching a single 5-dimensional
3-handle, we have that H,?(XT,XFZ;R) =0 for k #3. For j = 1,2 the long
exact sequence in twisted homology with R-coefficients corresponding to the
triple (X7, XFj , Xg) is

(1
& hj
o= HY (X1, XF,) = HY (XF,. Xg) —> HY (X1, XK) —> HY (X7, XF,) = ...

and so we see that g, is surjective.

Now consider the following diagram, which is commutative since all maps are
induced by various inclusions and natural long exact sequences. The horizontal
sequences come from long exact sequences of various pairs and all homology is
appropriately twisted with coefficients in R.

HY(Xp) — HP(Xp. Xk) HP(XF,)

l e L 27

) |
HP(X7) —— HP(X7,Xg) —— HP?(Xg) > HP(X7)

T o] 27 N ]

Since g, is surjective, we have that P, = ker(j,) = Im(d;) = Im(d7). Also,
Py =ker(j1) = Im(d;) = Im(dr o g1) S Im(dr) = P,.

So we have established the first conclusion of this proposition.

To establish the second conclusion, we recall from above that Hy (X7, Xp,; R)
>~ R™ has R-generating rank m. Considering the long exact sequence of
Equation (1), we see that

coker(g1) = Hy (X7, Xk)/Im(g1) = HY (X7, Xk)/ ker(h;)
~ Im(h1) € Hy (X7, XF,)

and so coker(g;) has generating rank no more than m as an R-module, by
Lemma 4.1 (2). We can therefore let {a;}"., be elements of H,(Xr, Xk)

i=1

which represent generators of coker(g;). Hence together with Im(gy) the {a;}7.,
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generate H,(X7, Xk) as an R-module. Therefore dr(Im(g;)U{a;}/. ) generates
Imor = P,. It follows that

Py U {7 (ai)};—, = Im(d1) U {7 (i)},
=Im(dr o gq) U {BT(ai)}:il
= dr(Im(g1) U {a;:}7%y)

generates Im(d7) = P, as an R-module, and so we can let x; = dr(q;) for
i=1,...,m. L]

Proposition 6.3. Let Ay, and A, be slice discs for a knot K. Let Pj :=
ker(Ag(K) — Ag(A;)) for j = 1,2. Suppose that g-tk(P1) = grk(P2) = n
and that g-tk(Py N Py) = k. Then dr(Ay, Ap) >n—k.

Proof. Suppose that F is a genus g surface to which both A; and A, stabilize
by g l-handle additions and some number of 2-knot additions. We will show that
g > n—k. By Proposition 3.3, for j = 1,2 there exist a disc A} obtained from
A; by connected sum with some number of knotted 2-spheres such that F is
obtained from A} by g l-handle additions. It follows from Proposition 6.1 that
for j = 1,2 we have

P; = ker(A@(K) — AQ(A;)) = P

Let P := ker(Ag(K) — Aqg(F)). By Proposition 6.2, we see that both P
and P, are submodules of P. We now argue that the generating rank of P,
considered as a Q[t*']-module, is at least 2n — k. To see this we show that
Im(P{ @ P; — P) has generating rank at least 2n —k and apply Lemma 4.1 (2).
Let i;: P{ — P and i;: P, — P be the inclusion maps. Both P/ and P; are
submodules of P, so

ker(iy @ —iz: P{ @ P3 — P) = {(p1.p2) € P{® P3| irn(p1) = i2(p2) € P}
& Py P

We obtain a short exact sequence
0— PN P,— P& P, — Imis & —iz) > 0,

and conclude by Lemma 4.1 (3) that g-rk(Im(iy & —i2)) = 2n — k. Therefore by
Lemma 4.1 (2), g-tk(P) > 2n — k. Note that this uses that Q[t*!] is a PID.
However, Proposition 6.2 applied with m = 1 also tells us that there exist some
X1,...,Xg in P such that P is generated by P; U {xy,...,xg}. Therefore the
generating rank of P is at most n + g, and so we have n+g > g-rk(P) > 2n—k,
from which it follows as desired that ¢ >n — k. (]
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The next proposition completes the proof of Theorem B.

Proposition 6.4. Let Ko be the knot 946 and let K = #7_, Ko. Let Ay =1]_, D,
and let Ay :=1'_ Dy be the ‘left band only’ and ‘right band only’ slice discs.
Then

dr(Aq, Ap) = n.

Proof. First, note that we can obtain both A; and A, from surgery on a genus
n Seifert surface for K and so d>(A1,Az) <n.
There is an identification
n n
Ag(K) = P Ao(Ko) = €D (QEF'1/ (2 — 1) @ QLr™'/ (¢ —2))

i=1 i=1

such that
Py := ker(Ag(K) — Ag(A1)) = é@[x*‘]/(z - 2)
and .
Py = ker(Ag(K) — Ag(Az)) = é@[xil]/(zz ~ 1%
i=1

In particular, P;N P, = {0}. Now, g-rk(P;) = g-tk(P2) = n, and g-tk(P1NP,) =
0. It follows from Proposition 6.3 that d>(A1, Ay) > n as required. 0

7. Secondary lower bounds using metabelian twisted homology

We now construct subtler examples of pairs of slice discs with high stabilization
distance.

7.1. Satellite knots and satellite slice discs. Our examples come from the
satellite construction. Let R and J be knots and let n C S®~ R be an unknotted
simple closed curve in the complement of R. Recall that S*~v(n) U Xy = §3,
where the meridian of 7 is identified with the longitude of J, and vice versa. The
image of R C S3~v(n) under this homeomorphism is by definition the satellite
knot Ry(J).

It is a well known fact that if R and J are slice knots and 7 is any unknot
in the complement of R, then the satellite knot R,(J) is also slice. It will be
useful to have an explicit construction of a slice disc Ap for R,(J) coming
from a choice of slice discs Ay for R and D for J, together with compatible
degree 1 maps f: Xg, () — Xg and g: Xa, — Xa,-
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Construction 7.1 (Satellite slice discs and degree 1 maps). Let R be a knot with
slice disc Ao and let n be an unknotted curve in S~ v(R). Identify D* D A, as
D?x D? in such a way that when we consider d(D?x D?) = (S!'xD?)U(D?xS1)
we have D? x S' =v(n) and so R = dAy C S! x D?.

Now let J be a knot with slice disc D. We obtain a slice disc denoted Ap
for R,(J) by considering

Ap C D x D? = v(D) c D*.

Note that Xa, = Xa, Ugixp2 Xp, where S' x D? is identified with
v(n) € Xgr C 3Xa, and with S!' x D C dXp, and that this identification is
evidently compatible with the decomposition Xg, (7) = (Xgr~v(n)) Ur2 X;.

For every knot J there is a standard degree 1 map fo: X; — Xy which
sends uy to wy and Ay to Ay, and for any slice disc D there is a similar
degree one map go: Xp — Xg, where E denotes the standard slice disc for
the unknot. For the sake of completeness, we give this construction, emphasizing
that one can choose g to be an extension of fj.

Parametrize
v(0Xy) =0Xy x[0,8] = {(p,s,t) e §lx ([0,27]/ ~) x [0,8]},

where {(p,0,0)} = A; and {(1,s5,0)} = uy. Now let FF C Xy be a (truncated)
Seifert surface for J with tubular neighborhood v(F) = F x][0, ¢]. We can assume
that

v(F) Nv@dXy) = {(p,s.t) € ST x[0,¢] x [0, 8]},

as illustrated in Figure 7.

X x[0,6] /

FIGURE 7
A cross section of X near its boundary. Note that the cross-
hatched region represents v(J) and is therefore not part of X .



418 A.N. MiLLEr and M. PowELL

We write Xy =8 x D for S = ([0,¢]/ ~) = S and D = (S!x[0,8])/(S! x
8) = D?. Define fy on v(dXy) by

(s, (p, t)) if0<s<e
Jo(p,s,t) =
(e.(p, 1)) ife<s,
and then extend over the rest of v(F) = F x [0,¢] by fo(y,s) = (5,(0,6)).
Finally, for any x in neither v(F) nor v(dXg), we define fo(x) = (&,(0,48)).
The construction of go is very similar, only with a compact orientable 3-
manifold G with boundary dG = F U; D playing the role of the Seifert surface:
we extend fy as defined above on Xy over X; x I, then over the rest of v(dXp),
then over v(G) = G x I and then send the entirety of Xp \ (v(dXp)Uv(G)) to
a single point in Xg.
Here are the details, which closely parallel the construction of fy, though
with extra care taken to ensure that golx, = fo:
First parametrize a neighborhood of the slice disc D as D? x D?, naturally
a manifold with corners, such that S! x D? is a tubular neighborhood of J and
S! x §' = 39X, . Consider a collar on this part of dXp as follows. We think
of Xp as a manifold with corners, with dX; the corner set, dividing dXp as
X7 Usx, D*x S'. Then we consider a collar on the D?x S! part of the boundary
that restricts on X; to a collar for dX; in Xj;. Parametrize this collar as

v(D*x 8" = D*x 8" x[0,8] = {(p.s,1) € D* x ([0,2x]/ ~) x [0, 6]},

where {(p,0,0)} is a push-off of the slice disc with boundary A; and {(1,s,0)} =
K -

Now let G C Xp be a (truncated) 3-manifold with G = F U {(p,0,0)},
with tubular neighborhood v(G) = G x [0, ¢]. We note that the existence of such
a 3-manifold follows from a standard obstruction theoretic argument, see, e.g.,
[Lic, Lemma 8.14]. We can assume this restricts to the tubular neighborhood of
F used above in the definition of fq, and that

v(G)Nv(D? x SY) = {(p.s.1) € D? x [0, ¢] x [0, 8]}.

We write Xg = SxB for § = ([0,8]/ ~) = S! and B = (D?x[0,8])/(D?x8) =
D3 . Note that we have a natural inclusion D C B corresponding to Xy = SxD C
S x B = Xg . Define gy on v(D? x S!) by

(s, (p,t)) if0<s<e¢
go(p,s.1) =
(8, (p,t)) if £ < s,
and then extend over the rest of v(G) = G x[0, €] by go(¥,s) = (5,(0,8)). Finally,
for any x in neither v(G) nor v(D? x S1), we define go(x) = (g, (0, 8)).
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By using the above decompositions Xg,;y = (Xg~v(n)) Ur2 X; and
Xap, = XAy Ugixp2 Xp, we obtain compatible degree 1 maps

fZIde()IXRn(J)—>XR and gZIdUgQZXAD—»XA().

This completes Construction 7.1.

Recall that for a connected space X equipped with a surjective map
e:m(X) — Z, we let A(X) denote the induced Z[r*!]-twisted first homology,
and for a knot or disc L we often let A(L) denote A(Xy).

Proposition 7.2. Let R, Ay, n, J, and D be as above. Suppose that the linking
number of n and R in S3 is 0. Letting | and g be the degree 1 maps discussed
above, the following diagram commutes, where the horizontal maps are the usual
inclusion induced maps:

A(Ry(J)) —— A(Ap)

I+ |+

A(R) ——— A(Ay).
Moreover, f, and g, are isomorphisms and so
ker(A(Ry (1)) = A(Ap)) = £ (ker(A(R) — A(Ao)) ) = ker(A(R) - A(Ao))

is independent of the choice of slice disc D for J.

Proof. The fact that the diagram commutes follows immediately from the
compatibility of f and g as defined in Construction 7.1. Since the linking
number of R and 75 is 0, the fact that f. is an isomorphism is a standard fact
(one can also imitate the proof of Proposition 7.8 in a simpler setting). Briefly,
one compares the Mayer-Vietoris sequences for Xg, ) = Xruy Ugixs1 Xy and
Xr = XR,w) = Xrup Ugixs1 Xu. The fact that the winding number of 7 is
zero implies that the induced representations 7;(Xy) — 7Z and m;(Xy) — Z are
trivial, so Hy(Xy; Z[tT']) = H{(Xy; Z[t*']) = Z[t*1].

To see that g, induces an isomorphism consider the following diagram, where
the rows are the Mayer—Vietoris sequences in Z[t*!]-coefficients corresponding
to the decompositions Xa,, = Xa,Ugixp2 Xp and Xa, = Xa,Ugixp2 Xg. We
have replaced the H, terms with zeroes, since the maps from Hy(S'x D?; Z[t*!])
are injective.

Hi(S' x DXL Z[tEY) — Hy(Xag: Z[E')) @ Hi(Xp: Z[tY]) — Hi(Xap: Z[1E']) — 0

l lld D(g0)* J’g*

Hi(S"x D% Z[tEY)) — Hi(Xao: Z[A")) @ Hi(XE; Z[tEY]) — Hi(Xag: Z[tE']) — 0



420 A.N. MiLLEr and M. PowEgLL

Since the linking number of n and R is 0, the cores of the copies of
S1 x D? along which the spaces are glued, when thought of as fundamental
group elements, map trivially to Z via the appropriate version of e. Therefore
Hi(S' x D% Z[t*1) =~ Hy(S! x D% Z) ® Z[t*!] =~ Z[t*!]. Similarly, since
S1'x D? - Xp and S! x D? — X are Z-homology equivalences, the
maps m1(Xp) — Z and m(Xg) — Z are likewise trivial, and so the
maps H,(S! x D% Z[t*]) — H(Xp:Z[t*']) and H (S! x D% Z[tF]) —
Hy{(Xg;Z[t*']) are isomorphisms. It follows that the diagram above reduces
to the diagram:

Hi(Xa; Z[t*']) —— Hi(Xap; Z[t*']) = A(Ap)

s -

Hi(Xpg; ZEEY) —=— H1(Xay; Z[tE]) = A(Ao).

Therefore the right hand vertical map is an isomorphism induced by g, as
required. O

Example 7.3. Let R be the slice knot 6;, with unknotted curve n € S~ v(R)
as shown on the left of Figure 8. We will be interested in the satellite knot
Ry(J), depicted on the right of Figure 8, for certain choices of J. Note that 5
does not intersect F and so Ry,(J) has a genus 1 Seifert surface F; as shown
on the right of Figure 8. The illustrated homologically essential O-framed curve
on Fj (that, in a mild abuse of notation, we also call y) is isotopic to the knot
J when thought as a curve in S3.

FiGure 8
The knot R = 6; with a genus 1 Seifert surface F, a O-framed curve y
on F, and an infection curve n (left) and the satellite knot Rj(J) (right)



Stabilization distance between surfaces 421

Let Ao denote the standard slice disc for R, obtained by surgering F along
y. Given a slice disc D for J, in Construction 7.1 we built a slice disc Ap for
Ry,(J). In this context, one can interpret this construction as follows. Push the
interior of Fy into the interior of D*, then remove a small neighborhood of y
in Fj;. This creates two new boundary components, which may be capped oft
with parallel copies of D to yield Ap. We note that a single 1-handle attachment
to Ap that connects the two parallel copies of D returns the (pushed in) Seifert
surface Fj, and so if D and D’ are two different slice discs for J we always
have that do(Ap,Ap/) <1, even if da(D, D’) is large.

As in Example 5.4, we can pick a basis for the first homology of the Seifert
surface F for which the Seifert matrix is given by

=l

and manipulate ¢4 — A7 to see that A(R) = Z[t*!]/((2t — 1)(t — 2)). We have
that A(Ag) = Z[t*!]/(2t — 1), and that the kernel of the inclusion induced map
A(R) — A(Ag) is exactly (¢ —2) A(R). Details can be found in, e.g., [CP,
Section 5.2]. Additionally, by substituting + = —1 into the above computations
we discover the homology of the 2-fold branched covers: H;(Z,(R)) = Zo and
ker(H1(Z2(R); Z) — H1(Z2(D*, Ao); Z)) =3 Zs.

7.2. Metabelian twisted homology. We will use twisted homology coming from
metabelian representations that factor through the dihedral group D, =~ 7Z, x Z,, .
As noted in the introduction, these representations originate in the work of Casson—
Gordon [CGl, CG2]. Our perspective on these representations is particularly
indebted to the work of [HKL], as well as [KLI, Let, Fri].

Construction 7.4. Consider a knot K with preferred meridian g, an abelian-
ization map &: w1(Xg) > Z, and a map y: H{(X%) — Z, for some prime n,
where X12< is the 2-fold cyclic cover of Xk . Assume that the map i factors as

v Hi(XE) > Hi(Ey(K)) > Z,,

where the first map is induced by the inclusion X,z( C E,(K), so that ¥ is
determined by y. Define

dy: T1(Xk) = Zaw Zn by ¢x(y) = (W), ¥ (")),

noting that ,uo_e(y)y € ker(r1(Xk) — Z») and so represents an element in 71 (X2).
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Letting &, = 2™/ we have a standard map

o Zo X Zn — GLz(Z[En])

o 11°[e2 o
e e

In particular, we obtain a representation o, = ao¢, of m(Xg) into GLL(Z[£,]).
We will be interested in the corresponding twisted homology Hy* (Xg,Z[£4]),
especially when Z[§,] is a PID, e.g., when n = 3 and Z[&;] is the ring of
Eisenstein integers. For a connected space X together with a map ¢: m;(X) —
Zo % Zn, we will sometimes let HE(X:Z[£,]) be shorthand for HX?(X: Z[En]).
When the coeflicients are clearly understood and we are short of space, we shall
abbreviate this still further to Hff (X).

Remark 7.5. We will often have two compact connected spaces X C Y and a
map oy = ooy mi(Y) - GL,(Z[§,]) arising as above from e: m(Y) — Z
and y: Y% — Z,. We wish to consider the inclusion induced maps

s HY O (X, ZIE]) — HY (Y, Z[EA]).

To understand this map when k = 0, pick a CW structure on X with a single
O-cell x and l-cells g;,...,gx and extend it to a CW structure on Y by first
adding 1-cells gm+1,-. -, &m+m - Of course, there may be many additional n-cells
for n > 2, but these will not impact H, computations. The relevant twisted
cellular chain complexes are

Co¥™ " (X) = Co¥ (V) = Z[E 2 €™ (X) = Z[Ea|*",  and
CyY(Y) = Z[g, 20+

with differential maps given by the matrices

d¥ =[ oy (g1) —1d] [ay(g2) —1d] ... [oy(gm)—1d] ]
dlY =[[a¢(g1)—ld] [y (g2) —Id] ... [oy(gm)—1d] ... [a¢(gm+m’)—1d]]‘

It follows that the map iy is always a surjection, and is an isomorphism if and
only if

Span{Imlary (¢;) — Id};_, = Span{imfery (g;) — 1d]}7"

In order to ensure that iy is an isomorphism, it therefore suffices to check that
the two maps ¢y oix and ¢y have the same image in Z, x Z,. In the rest of
this section, whenever we claim that iy is an isomorphism it will be because
these two images agree, though in the interest of brevity we will often leave that
verification to the reader.
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We will need a computation of the twisted homology of a knot complement
with respect to certain abelian representations into GL,(Z[§,]). It will be
convenient to have the following notation.

Notation 7.6. Let X be a connected space equipped with a surjection &: 7;(X) —»
Z, and let £ be a root of unity. Define Ag(X) := A(X) ®,+1; Z[§], where Z[§]
has the Z[t*']-module structure induced by ¢ -a := £a.

Also, for any Z[£]-module M, let M denote the module with conjugate
Z[€] -structure and let M1®1 .= M @ M.

Lemma 7.7. Let X be a connected space with a surjection ¢: m1(X) = Z, and
define ¢: m(X) — GLa(Z[§x]) by

»
& 0
Y = |: 0 'g)_-n—S(J’) )

Then HY(X:Z[En]) = Ae(X) @ Ag(X) = Ae(X)'®1.

Proof. First, note that HP(X:;Z[g,]) =~ HO(X;Z[E,])'®, where 6: m(X) —
Z[E.]* is given by 0(y) = &% So it suffices to show that HY(X;Z[E,)]) =
Ae(X).

Let X* — X be the g-induced Z-cover of X . Note that 8(y) = 0 if and
only if &(y) =0 mod n, and so the #-induced cover of X is the n-fold cyclic
cover X". We can compute H{(X;Z[&,]) as

Hf(X§Z[é§n]) = Hj (C*(Xn) QZ(Zn] Z[‘i"n]) = H, (C*(Xoo) ®Z[ri1] Z[En])

The Kiinneth spectral sequence [Wei, Theorem 5.6.4, p. 143] tells us that since
C.(Xo) is a bounded below complex of flat (in fact free) Z[¢=']-modules, there
is a boundedly converging upper right quadrant spectral sequence:

E2, = TorZ ™ (Hy(X%), Z[6]) = Hptq (Cx(X™) @211 ZIEn])-

The only Engq which could potentially contribute to Hy(Cyx(X*)®y,+1,Z[§n]) are
(p.q) € {(1,0),(0,1)}. The only relevant differential could be dioz E%,o — B¢, .

However.
E2 o = TorZ ™ (Hy (X0, Z[£,]) = TorZl™ N Z[=1/ (¢ — 1), Z[E,)
= Tor2 (2, Z[E,]) = 0,

since as a Z[t*T!]-module 7 has a length 1 projective resolution. Therefore the
spectral sequence collapses on the 1-line at the E? page, and it suffices to compute
E&l and E%,o- We have that
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E2, = Tor™ (Ho(X*°), Z[£4])
= Tor2 Nz 1)/ — 1), Z[&A))
~{xeZ[&]|@—-1)-x=0}
e {x € Z&] | En— Dx = 0} = (.

Finally, since

E2, = TorP ™V (Hy(X%0), Z[£a]) = Hy(X%) ® 5001 Zla] = Ae(X)

we obtain our desired result. I

Recall that given a slice knot R with slice disc Ag, a slice knot J with
slice disc D, and an unknot 7n in the complement of R, in Construction 7.1 we
built degree one maps f: Xg, ) — Xr and g: Xa, — Xa,. The following
proposition analyzes the f - and g-induced maps on certain twisted first homology
modules under some additional conditions.

Proposition 7.8. Let R be a slice knot with slice disc Ay and J be a slice knot
with slice disc D. Let n be an unknot in the complement of R which generates
A(R). Suppose that n is prime and y: H\(E,(R)) — Z, is a nontrivial map
such that ¢, extends to ®: w(Xa,) — Za X Zy. There are identifications

HY (X gy, ZlEa]) = HY* (X ZlEnl) @ Ag, (1)

HP (Xap. ZlEn]) = HY (Xao. Z[En]) ® Ag, (D)'®.

Moreover, these are natural with respect to inclusion maps; in particular
. dyxo S« dog,
Pi=ker( H{*"" (X, Z[En]) — Hy ™" (Xap, Z[En])
splits as the direct sum of the corresponding kernels Pgr & P}ei, where

Pr = ker( H* (Xa, Za) — H{ (Xao. ZId)) )

PIOT = Ker(Ag, ()'®1 — Ag, (D)'®7) = ker(Ag, (1) > Ag, (D))",

The proof of Proposition 7.8, while somewhat long and notation heavy,
essentially follows from careful consideration of the relationship between four
Mayer—Vietoris long exact sequences. These sequences are related by the maps
induced from the following commutative diagram, where we remind the reader that
horizontal maps are inclusions and vertical maps are defined as in Construction 7.1:
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:Uj
XRVI(J) = XR\V(’?)U XJ u XA() U XD - XAD

f=Id Uf()l lld Ugo=g
XRr = XR\U(U)UXU an—IU> XA() U XE = XA()'

Proof We abbreviate Xz ~v(n) by Xg~n and let § = §, = ¢27i/n,
Since n € w1 (Xg), when we restrict (@ o ¢y) o fi to m(Xy) we see that
every element of my(X;) is sent to a matrix of the form

g0
0 g

for some b € Z,. In particular, this restriction factors through H{(X;;7Z) = 7.
The fact that n generates A(R) implies that the lifts of n to X 122 generate
TH((X3}), since TH{(X%) =~ A(R)/{t* — 1) [Fri, Lemma 2.2]. However, the
longitudes of 7 are identified with the meridians of J in Xg (), and so since
x is a nontrivial (hence surjective) character, the map m1(Xy) — Z, given by
y > b(y) € Z, is surjective. Henceforth, unless otherwise specified, all homology
in this proof is taken to be twisted with Z[&]-coeflicients induced by (restrictions
of) the maps ¢, and P, composed with fi or g. as appropriate.

We are in the setting of Lemma 7.7 and therefore H;(X;) = Ag(J )1®L and
H{(Xp) =~ A‘;(D)leBi . The decompositions outlined in Construction 7.1 are related
by inclusion and degree one maps in such a way that, when we take homology with
twisted Z[£]-coefficients, we obtain a commutative diagram. Note that the twisted
homology H1(Xy) = H1(Xg) = H;(S!x D?) =0, by Lemma 7.7, since each of
these spaces have trivial Alexander module. Also, the maps Ho(T?) — Ho(X4)
for * = U,J and Hy(S! x D?) — Hy(Xx) for * = E, D are isomorphisms, as
follows from an analysis as in Remark 7.5. All horizontal sequences are exact,
since they arise from Mayer—Vietoris sequences. We have simplified the following
diagram using these observations:
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Hl(XA()) BrA )
0 ® —— Hi(Xpp) = 0
H1(Xp)
(iniV i
(in i) (X1 (mnmy)
Hi(T?) —5 ® 7 Hy(X R, 1)) 0
Hi (X))
(Id 0) g+
Id .
0 Hi(Xa) H{(Xp) — 0
/ (1d 0) y 1 y
Hy(T?) —25Z2 iy (Xg~1) i Hy(Xg) — .

For reasons of concision, in the above diagram we use (f; f2) to variously refer

to any of the maps
f 1 f 1 0
) > or '
[fz /1 ) 5 %
as appropriate.
We immediately obtain that

[ma 7p]: Hi(XA,) ® Hi(Xp) — Hi(XAp)

is an isomorphism, which is the second identification of the proposition. We also
see that

HI(XR) = Im(JTR) = HI(XR\U)/kCI'(HR) = Hl(XR\n)/Im(jR)

and similarly that

Hi(XR,)) = Im([my ns]) = (Hi(Xr~n) & H1(Xs))/Im [;I;] :
We can directly compute that

H\(T?) = Hy (Co(T?) ®gpn 2y ZIER) = (ZIEY/ € — 1)

is generated as a Z[¢]-module by @ ® [0, 1] and @ ® [1,0], where « is the curve
on T? identified with p, in Xg~n and A; in X;. Since [A;]=0¢€ H(X5),
we see that
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Jrle®[0,1]) = js(@®[1,0]) =0 in Hi(X,)

and hence that j; = 0.
It follows that the map induced by [m, m;] from H(Xg~n)/Im(j,) &
Hy(Xy) to Hi(Xg,(s)) is an isomorphism, and that our desired isomorphism is

given by the composition?
g O
0 1Id

(2) @: Hi(XR) @ Hi(Xy) ——— Hi(Xg~n)/Im(j,;) ® Hi(X)

[y 7]
5 Hi(XR,()-

It remains to show that ® !(ker(i)) = ker(ig) @ ker(iy), which will follow from
some diagram chasing,

Claim 7.9. & !(ker(i)) C ker(ig) ® ker(iy).

Let x € ker(i). Since (m, @ my) is onto, there exists a € H{(Xg~n) and
b € Hi(Xy) such that (7, & ;)(a,b) = x. Moreover, (wg(a),h) = 7 1(x), so
it suffices to show that
iR(Jl'R(a)) =0¢€ H{(Xa,) and iy(h) =0€ H{(XDp).

Observe that by the commutativity of our large diagram,
nr(@) = (wr o [Id 0])(a,b) = (fx o [y msl)(a,b) = fu(x).
Therefore
(iromr)(a) = (ir © fx)(x) = (g+ 0 i)(x) = g«(0) = 0.
In order to show that ij(h) = 0, observe that

([HA mp| o [lg 3:') (a.h) = (i o[y ns])(a,b) =i(x) =0.

But [ma mp] is an isomorphism, and so it follows that

|:f(;)7 l(‘)]i| (a,b) = (in(a),i_](b)) =i

So iy (h) = 0 as desired. This completes the proof of the claim that ®~!(ker(i)) C
ker(ir) @ ker(iy).

2The labels of the maps in Equation (2) are mild abuses of notation. In particular,
nr: Hy(Xr~n) - H;(Xg) is not itself an isomorphism and hence does not have an inverse un-
til we mod out by Im(j,), and [n, ms] actually has domain H(Xg~n) ® Hi(X;), though it of
course induces a well-defined map on H1(Xr ~n)/Im(j,)® H,(X ;). Nevertheless, we hope the reader
finds the reminder of how these maps are induced sufficiently helpful so as to outweigh the indignity
of slightly misleading labels.
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Claim 7.10. &~ '(ker(i)) 2 ker(ig) & ker(iy).

It suffices to show that both ker(ig) and ker(iy) are contained in ®~!(ker(i)).
Observe that if b € ker(iy) then

i(®(h)) =i(my(b)) =np(is(h)) = 7p(0) =0,

so b € & !(ker(i)). Now let « € ker(ig) to show that ®(x) € ker(i). Let
a € Hi(Xgr~n) be such that wr(a) = o, and observe that ®(a) = m,(a). We
have that

(moiy)(a) = (iromr)(a) = ir(a) = 0.

Since m is an isomorphism, this implies that i;(a) = 0 and hence that

i (P(a)) = i(my(a)) = wa(in(a)) = 7a(0) =0,
as desired. This completes the proof of the claim that ®~!(ker(i)) 2 ker(ig) ®
ker(iy).
The last two claims combine to show that ® !(ker(i)) = ker(ig) @ ker(iy),
which completes the proof of Proposition 7.8. L]

Note that given a properly embedded disc D in D* and a knotted 2-sphere S
in S*, we can decompose Xp#s = XpUgi,p2 Xs. It follows that the double cover
is decomposed analogously; gluing in the branch set and applying a straightforward
Mayer—Vietoris argument tells us that

Hy(Z2(D*, D#S)) = H1(22(D*%, D)) & H1(22(5%,5)).
Given yx: Hi(22(K)) — Z, that extends to xp: Hy(Z2(D*, D)) — Zj,, define

xpxs . Hy (22(D4,D#S)) o~ Hl(Ez(D4,D)) ® H1(22(54,S)) XD ®0 Z,.

We can now show an analogue of Proposition 6.1 in the context of twisted
homology.

Proposition 7.11. Let D be a properly embedded disc in D* with boundary K,
and let S be a knotted 2-sphere in S*. Let x: H\(22(K)) — Z, be a map that
extends to yp: H\(X2(D*, D)) — Z,, and let ypss be as above. Then

ker(H;”X(XK) — HPr (XD)) — ker (Hf”‘(XK) — [Pres (XD#S)).

Proof. For a submanifold ¥ C Xpss we can restrict ¢y, to 71(Y) and, by a

mild abuse of notation we let Hf *D#S (Y) denote the resulting twisted homology
with Z[&,]-coefficients.
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We shall use the decomposition Xpss = XpUg14p2 X5 . First we compute the
homology of S'xD? and Xg. Letting ¢ denote the generator of 7,(S?xD?) =~ Z,
we can pick a cell structure for (a space homotopy equivalent to) S! x D?
consisting of a single 0-cell and a single 1-cell and use this to compute

H1¢"D#5 (S! x D?) =~ ker(dy pys (1) — 1d)

o 1]fer o 1 o]
*ker(l 0}[0 S_b}_lio I:I-Z[En]zﬁz[fnr),

_—l 3
= ker(_gb E—l})

Claim 7.12. We have that

for some b € Z

lle

{(x,y) € Z[E,)? | €°x = y} = Z[E4].

HP*P¥ (X5) = Z[E,] @ (A(S) ®ggpi1 ZIE),

where on the right we have the action of Z[t*!] on Z[£,]? given by ¢-[x, y] =

[y, x].

To see this, use the Kiinneth spectral sequence [Wei, Theorem 5.6.4] as in the
proof of Lemma 7.7. Since Ho(X°) =~ Z, we obtain

E(%,l = A(S) ®Z[,:i:1] Z[En]z
a o | ®

E}o = Tort N(Ho(X§), Z[E) = H{*P* (S') = Z[E,]
2 o

E%,O = Torg[t ll(H()(Xgo), Z[En]z) ~ H2¢XD#S (Sl) = 1.

Since E3, = 0 it follows that Ej, =~ E§9. We also have E7, =~ E5. The

spectral sequence therefore gives rise to a short exact sequence of Z[§,]-modules
0 — A(S) ® a1y ZET2 — HPP'S (Xg) — L[] — O,

which splits since the last module is free. This completes the proof of the claim.
Moreover, comparing the spectral sequences for S' x D? and Xg using
naturality, it follows that the map Z[£,] =~ HbeD#S ($1x D?) - HfSXD#S (Xg) is
injective and maps onto Z[£,].
Since the restriction of

Dxpss - T1(Xp#s) = Lo X Ly,
to m1(Xs) is the map y — ([es(y)],0) we have that

H(?XIJ#S(SI % DZ) i Hg)XD#S (Xs)
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is an isomorphism, see Remark 7.5. The Mayer—Vietoris sequence for Xpus =
Xp Ugixp2 Xs with Z[§,]-coefficients therefore gives us that

HTXD#S (XD#S) ~ H?XD (XD) & (A(S) ®Z[l‘i‘] Z[éﬂ]z)a

since Hf’XD#S (S!x D?) =~ Z[t,] maps onto the Z[£,]-summand of Hf&xD#S (Xs).

Since Xx C Xp, the inclusion induced map Hfbx(XK) — Hf’””s (Xp#s)
factors as

HY* (X) = HP® (Xp) — HP*® (Xp)@(A(S) @z ZIEP) = HY*S (Xpys).

We saw that the central map is a split injection, the inclusion of the H ?"D (Xp)
direct summand. It follows that

ker(H?* (Xx) — H™P¥S (Xpys)) = ker(HP* (Xk) — HP? (Xp))
as desired. ]

7.3. Construction of examples and proof- of Theorem C. Recall from Nota-
tion 7.6 that for a space X and a root of unity &, we define

Ag(X) = AX) ®zp,+17 Z[§].
Now let Jy be a ribbon knot with preferred ribbon disc D¢ such that
Ag, (Jo)/ ker(A;.-3 (Jo) — A§3(D0))

is nonzero. The knot J := Jo# — Jy has two preferred slice (in fact ribbon)
discs: D; consists of Dgfi— Dy and D, is the standard ribbon disc for any knot
of the form K# — K obtained by spinning. Note that A(J) =~ A(Jy) @ A(Jy),
A(D1) = A(Dy) @ A(Dy), and by the next lemma A(D7) = A(Jy).

Lemma 7.13. The spun slice disc satisfies A(D3) = A(Jy).

Proof. Let JJ be a tangle D' C D3 arising from removing a trivial ball-arc pair
(D3, DY) from (S3,Jy). Note that

A(JS) = H{(D?\vI]) = A(Jo)
and
D*\vDy = (D3 \vJj)x I ~ D3\ vJ].
It follows that A(D;) =~ A(Jy) as claimed. (]

Moreover, the map iy: A(J) — A(D;) is given by (x,y) — (io(x),io(y))
and the map i,: A(J) — A(D7) is given by (x,y)—> x4+ y.
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Example 7.14. One example of such a knot is Jo = 6;. As noted in Example 7.3,
A(Jo) = Z[tEN/(2t — D)t — 2)), A(Dg) = Z[t*'/{t — 2) and the map
io: A(Jo) — A(Dy) is given by multiplication by 2¢ — 1. In particular, we
have that

Ag;(Jo)/ ker (Ag; (Jo) — Ag;(Do)) = Z[E3]/ (283 — 1)(§3 — 2). 63— 2)
= Zq[x]/{x —2) # 0.

Here the Z; comes from &5 + & + 1 = 0, combined with & —2 = 0.
Now we prove the following more explicit version of Theorem C.

Theorem 7.15. Let (R,n, Agy) be as in Example 7.3 and let Jy be a ribbon knot
with preferred ribbon disc Dg such that Ag,(Jo)/ ker (Ag, (Jo) — Ag, (D)) is
nonzero. Let J = Jo# — Jy, Dy, and D, be defined as above. Then for any
g >0, the knot K := #;’i 1Ry (J) has ribbon discs Ay, the boundary connected
sum of 4g copies of Ap,, and A,, the boundary connected sum of 4g copies
of Ap,, such that

ker(Ag(K) — Ag(A1)) = ker(Ag(K) — Ag(A2)).

and yet
dy(A1,Az) > g.

As discussed in Example 7.3, since both Ap, and Ap, are obtained from
surgery on a genus | Seifert surface for R,(J), we know that d2(Ap,, Ap,) < 1.
It follows that d>(A;, A,) < 4g, though we are not able to determine d(A;, Aj)
precisely.

Remark 7.16. The proof that d;(Aq, Ay) > g is somewhat long and involved, so
for the reader’s convenience we outline the key points in advance:

We suppose that F is a genus h < g surface to which both A; and A,
stabilize by addition of /# 1-handles and some number of local 2-knots, in order
to show h = g.

For j = 1,2 let A; be a disc obtained from A; by 2-knot addition which
stabilizes to F via h 1-handle additions. Let 7" = T3 U —7, denote the standard
cobordism built as in Construction 3.1, so X7 is a cobordism from X A through
Xr to X A, - Our first main argument proving Claim 7.17 below shows that there
exists a highly nontrivial character on H;(Z,(K)) giving rise to a representation
m1(Xk) — Z, x Z3 that extends over X7 to a map & with certain nice properties.
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Just as in the proof of Theorem B, we compare ker(H®(Xk) — HZ(Xa,))
and ker(H®(Xkx) — H®(Xa,)). Essentially by Proposition 7.11 and the careful

construction of @, we are able to work with ker(HF(Xx) L qu’(XAr]))

and ker(H®(Xk) 2 HP(X a,)) instead. By the construction of our examples,
work before the statement of Theorem 7.15, and Proposition 7.8, we can
show that ker(iz)/(ker(ty) N ker(¢z)) has generating rank x at least 2g. We
then use Proposition 6.2 to show that ker(tg) both contains ker(:;) and is
generated by ker(:;) together with some other 24 elements. It follows that
ker(t2)/(ker(¢y) Nker(tz)) has generating rank x no more than 2k, and hence
20 <x <2h so g <h.We assumed h < g so g = h as desired.

Proof of Theorem 7.15. Fix ¢ € N, and let K, A;, and A, be as above.
Define N = 4g, & := &3, and recall that for any knot or slice disc L we
have Ag(L) := A(L) ®p,+1) Z[£]. By Proposition 7.2 we have identifications

N N
A(K) = B A(Ry (1)) = D AR)
i=l1 i=1
and

N N
A(Aj) = P AlAp,) = D A(Ag) for j =1,2
i=1 i=1
in such a way that ker(A(K) — A(A;)) and ker(A(K) — A(A,)) are both
identified with a sum GB,‘N:lker(.A(R) — A(Ayp)), and in particular are equal.
Since Ag(L) =~ A(L) ® Q for any knot or slice disc L, our first conclusion
follows.

Now suppose that F is a genus h < g surface to which both A; and A,
stabilize by addition of 2 1-handles and some number of local 2-knots. We shall
show under these assumptions that & > g. As in the proof of Proposition 6.3, for
j = 1,2 there exist discs A} obtained from A; by connected sum with local
2-knots such that F is obtained from Aj. by h 1-handle additions. For j = 1,2
we write A’ = A;#S; for some local 2-knot S;.

Note that f: Xg, ;) — Xr lifts to give a degree one map X??n(J) - X3,

which extends to give f: Z,(R,(J)) — Z2(R). Moreover, Proposition 7.2 implies
that f induces an isomorphism on first homology. So we obtain an isomorphism

P
f: Hy(Z2(K)) = @fvzlﬂl(zz(Rn(J))) Sicule &N Hi(Z2(R)) = H (Z2(Rn))

where we let Ry denote the connected sum of N copies of R.
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Let 77 and T, be appropriate unions of the simple cobordisms built in
Construction 3.1, such that X7, is a cobordism from X A, o Xp rel. Xg and
X, is a cobordism from Xa; to Xp rel. Xx. We let X7 := X7, Ux, —Xr,.

Claim 7.17. There exists a map
x= 0 e Hi(22(R) > Zs

with at least 2g of the x; nonzero such that ¢,.;: m1(Xg) — Zo x Z3 extends
over my(X7) to a map ®: n(X7) > Z, x Z3 and for j = 1,2 the composition

@
m(Xs;) = mi(Xa;) %z m(Xs;) = mi(Xar) = m(X7) = Zox L3
is given by y — ([e(¥)],0).
We will always construct our extensions in stages, first extending over
Y :XA’l U()(KXI)U)(A’2

and then extending over the rest of X7.
Note that H;(X2(R)) =~ Z¢ and that it follows from Proposition 7.2 that

(3) ker(Hl(Ez(K)) — Hy(Z2(D*, Aj)))

N N
~ Kker (@ H,(Z2(R)) — @ HI(EZ(D”', AO)))

i=1 =1

N
(4) ;@329.
=1

It follows that for j = 1,2 and for any character y: H,(X2(Ry)) — Z3 we have
that y of extends to a map y; on Hi(Z2(D* A;)), up to a priori extending
its range to Zsa for some a > 1. However, since our slice discs A; are in fact
ribbon discs, the inclusion induced map m1(Xkx) — m1(Xa;) is surjective for
j =1,2. So we can take a = 1.

Note that any map yof: H{(Z»(K)) — Z3 induces y o f: Hl(XI%) — Z3 by
precomposition with the natural inclusion induced map H;(X 12{) — H{(Z,(K)).
Since inclusion induces isomorphisms of H;(Xg) with H{(Xr), in order to show
that a given ¢,.; extends over m(Xr) it suffices to extend the corresponding
xof first over m(Xz,1 UXExIU Xzé) and then over m;(X7).

Now, consider the Mayer-Vietoris sequence for X2, U(XZ xI)U X2
1

Ay which

we note is diffeomorphic to X g, UX;2< X2 , :
1

'/@'/ 5 @
Hi(XE) > Hi(X3) @ Hi(X3,) 255 Hi(X3, Uya X2,) =0,
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For j = 1,2 we have that Hl(Xz,) = Hl(XZ Y® H1(Z2(S*, S;)) in such a way
that it: Hi(Xg) — HI(XZ,) is glven by i; @ 0, where i;: Hi(Xz) — HI(X2 )

is the inclusion-induced map We therefore obtain, recalling that the map
Hl(XK) — H, (Xgi) is surjective since A; is a ribbon disc, that

Hi(X4 Uyz X ,) Hi(XX,) ® Hi(Z2(5% 81)) & H1(Z2(8%, 82)).
Therefore any y of can be extended over
X3 U(Xg x ) UXZ, = (X3, UX§) U (Xg xT)U (X3, UX§,) C aX7

so that the extension is trivial on the H,(Z2(S*, $1))® H,(Z2(S*, S5))-summand.
Moreover, such a map extends over H; (X%) if and only if it vanishes on

H = ker(Hl (X2 u(Exnuxi)- H](X%)).

Note that our maps yof have been chosen to vanish on H{(Z,(S% S1)) ®
H{(Z,(S*, S,)), and hence vanish on H if and only if they vanish on

H 0 H(X3,) = ker(H1 (X3,) = Hi(X3)).

Moreover, ker (H P X ;) — i T)) is isomorphic to a quotient of ker(H;(X2) —
Hi(X7)).
For a space X with surjection &: H;(X) — Z, we consider the map

e =ex: m(X)— GLy(Z)

|_>Ol£(y)
Yool

Note that the ex maps for X = Xg, X A XF, Xt are compatible, since inclusion
Xk < X, induces an isomorphism on first homology. The proof of Proposition 6.2
implies that

ker(HY{(Xk) — HY(Xr,)) = ker(H{(Xg) — H{(XF))
=~ ker(H{ (Xx) — H{(X1,)).

Proposition 6.2 also tells us that this kernel is generated by ker(H{(Xkx) —
Hf(XA/l )) along with some 2k elements {xk}i”:l C H{(Xk).
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By the topologists’ Shapiro lemma [DK, p. 100], there is a canonical
identification H¢(X) = Hi(X?) for all X, and so

ker(H, (X2) > Hl(X%l )) e ker(Hl(Xlz() — HI(X%))
=~ ker(H(Xg) — Hi(X7,))

and this kernel is generated by ker(H,(X%)— Hi(X%,)) along with some 2h
elements {x;}2" . C Hi(X%). 1
. 2
Therefore, since every map HI(X,%) — 73 extends over H; (Xi,l UX12< XA,z)

in our prescribed fashion, in order to ensure that y of extends over H;(X %) it is
enough to have (y o f)(xg) =0 forall k = 1,...,2k. It follows from Equation (3)
that Hom(H,(22(K)), Z3) = ZQ’. Using our assumption that 2 < g, we have

N —2h = (4g) —2h > (4g) — 2g = 2g.

A linear algebraic argument as in the proof of [KiL, Theorem 6.1] shows that
if A is an abelian group with Hom(A,F) = F¥ then, given any m elements
di,...,am € A there exists a character y = (Xi)LN=1 € Hom(A,F) such that
x(aj) =0 forall j =1,...,m and such that at least N —m of the y; maps are
nonzero. It therefore follows that there exists some y = (x;);—; such that yof
vanishes on {x;,...,xp,} and at least N —2h > 2g of the y; are nonzero. This
completes the proof of Claim 7.17.

Let y = ()(i){vzl be such a map. By reordering the summands, without loss
of generality we may assume that yi,..., y,» are nonzero for some m > 2g and
that ym+1,..., xn are zero. Let ¢ := ¢yo; and let ®: m(X7) — Zox Z3 be
the corresponding extension of ¢ over m;(X7).

Observe that Xg is the union of N copies of Xg, (), glued along (N —1)
copies of S!x /7, and that, for j = 1,2, XA} is the union of N copies of XAD’, 5
glued along (N —1) copies of S!x /7 x I, along with a single copy of Xs; gluéd
along S!x D? away from all the other identifications. These decompositions are
compatible.

Let ¢; denote the restriction of ¢ to the fundamental group of the ith copy
of Xg,) and respectively let ®; denote the restriction of ® to the ith copy of
m1(Xa D,)- Recall that there are some choices of basepoints and paths implicit
here — see the note at the end of Construction 3.1. It is then straightforward to
argue that our maps are related by the following commutative diagram, where
unlabeled arrows are induced by inclusion and ®,, denotes the unique extension

of ¢y, to m(Xa,):
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@i

/_\)

T1(XR, ) = T (XR) ——— ZaXx 13

[ .

HI(XADJ.) L JTI(XA()) i) ZzD(Z_O,.

\_/

D;

For 1 <i <m, the map y; is nontrivial and so Proposition 7.8 implies that
; bx; -
HY (X)) = H (XR) ® Ag(J)'®!
and
H® (Xp )= H ¥ (X Ae(D;) @1
1 ( ADj)z 1 ( Ao)@ E( J)
in such a way that ker(Hf"'(XRn(J)) — H{pi (XADj )) is identified with

ker(HP (XR) — H{ ¥ (Xa,)) @ ker(Ag(J) — Ag(D})) .

Now consider a portion of the Mayer—Vietoris sequences in twisted homology for
Xk = UL Xr,) and Xa, = UYL, Xy, for j=1,2:

SN HP (S x 1) —2— @) HY (Xp, ) —— HP(Xk)

| N

1 Uj N Y ®
@;—1H IS xIxI)———>€B H (XAD)—>H(XA)

In the above diagram, by a mild abuse of notation we refer to the restriction of
¢i to m(S' xI) as just ¢;, and similarly for ®; |, (s1xrxr)-

We wish to show that ker(t,)/(ker(t;)Nker(t)) has generating rank at least 2¢ .
In order to do this, we focus on a submodule Q of &Y Hf" (XR,(s)) and analyze
how v(Q) intersects ker(ty) and ker(:p).

Claim 7.18. The module Q := @7 Ag(])lﬂ31 c o, Hd” (Xr,(s)) is carried
isomorphically by v to a Subgroup of H ¢(X k) such that for ¢ € Q0 we have
that v(g) € ker(t;) if and only if ¢ € ker (®N_, J)

First, use Proposition 6.2 to decompose

m N

N =
D HE Xryo) = D (H (Xp) @ 4()'®) @ @) HY (Xr,0)-

i=1 i=1 i=m+1
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We can then observe that since

(S'x 1)i C(XR)i N(XR)i4+1 C (Xr, )i N (XR,())i+1

we have

m N
bx; i
ker(v) = Imu) C P H " (Xp) & €D HY' (Xr,0))-
i=1 i=m—+1

Similarly, we have that

m N
ker(V;) = Im(U;) € @ H; ™ (Xa)) & €D HY (Xap)).
i=1 i=m+1
That is, ker(v) and ker(V;) respectively intersect the Ag(J yiel and AS(DJ,-)IEBi
summands trivially.

In order to show that L; (x) =0 if and only if ¢;(v(x)) = 0, suppose that x
is an element of the ith copy of Ag(J)'®! for some 1 <i < m. One direction
follows immediately from the commutativity of our diagram: if L§ ) = 0,
then ¢;(v(x)) = VJ-(L;(x)) = V;(0) = 0. So suppose now that ¢;(v(x)) = 0.
It follows that ¢ (x) € ker(V;) = Im(U;), and so there exists y € @/ H;(S")
such that U;(y) = ¢;(x). Observe that i (x —u(y)) = ¢;(x) —U;(y) = 0, so
x —u(y) € ker(;). However, since

i(x) € @D Ag(D)'®!
i=1
and
‘ m & N
Eu) = Ui € ImU) S P H, “(Xap) & P HY (Xa,))
i=1 i=m+1

we must have tj-(x) = 0 = U;(y), as desired. This completes the proof of
Claim 7.18.

For j = 1,2 we have by Claim 7.18 that
m .
(5) P; :=v(Q) Nker(y;) = Q@ Nv ™ (ker()) = @ N EP ker(t)).
i=1

We now argue that the subset P,/(ker(t1) N Py) of ker(ip)/(ker(¢q) Nker(tz)) has
generating rank at least 2g, noting that by Lemma 4.1 (2) this implies as desired
that ker(t2)/(ker(c;) Nker(t2)) has generating rank at least 2g.
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By the splitting of the kernel from Proposition 7.8 we have that
m ) m ~ m .
(6) 0 N Prkerth) = P A(N'® N P ker(t))
i=1 i=1 i=1

= Prer(As())'®! - As(D;)'®1).
i=1

From our computations of the maps Ag(J) — Ag(D;) before the statement of
Theorem 7.15, we also have

ker(tf): Ag(Jo) — AE(DO))IGB1 j=1
{(x,=x) | x € Ag(Jo)} j =2
Observe that by Claim 7.18 together with Equations (5) and (7) we have

Pz/(ker(tl) N Pz) = P2/(ker(tl) Nv(Q)N ker(tz))
= P2/ (P2N P1)

(7) ker(Ag(J)'® - Ag(D;)'®1) =

By @{(x, —x)|x € AS(JO)}/@ {(x,—x)|x € ker(tg)}

i=1 f=L

~ (D) Ag(Jo)/ ker(:5).
1

Since Ag(Jo)/ ker(tf’;) is nonzero, the classification theorem of finitely gen-
erated modules over commutative PIDs implies that the generating rank of
Py/ (ker(ty) N Py) is m>n = 2g.

Now we finish the proof that A > g by showing that the generating rank
of Kker(tp)/(ker(t1) N ker(t2)) is no more than 2h. Let Pp = ker(Hf’(XK) o
HX(XF)). By Proposition 6.2 applied to A} and F, we have that Pp is
generated as a Z[£]-module by ker(Hf’ (Xg) - HE(X a,)) together with some
2h elements xi,...,xp,. Here we use that the ring of Eisenstein integers Z[£]
is a Euclidean domain and is therefore a PID. However, by Proposition 7.11 we
have that

ker (HY (Xk) — H(Xa1)) = ker (H} (Xx) — H{(Xa,)) = ker(1).

So for any submodule P of Pg, the quotient module P/(P N ker(t;)) is
isomorphic to a submodule of Pg/ker(s;) and hence, by Lemma 4.1 (2), has
generating rank at most 24. But Proposition 6.2 applied to A} and F together
with the fact that by Proposition 7.11

ker (H{ (Xx) = H?(Xp;)) = ker (HY (Xk) > H(Xa,)) = ker(ta)



Stabilization distance between surfaces 439

implies that ker(t;) is contained in Pr. We can therefore conclude as desired

that

2h > g—rk(ker(tg)/(ker(Lg) N ker(Ll))) > 2g. ]
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