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Spines for amoebas of rational curves

Grigory MikHALKIN and Johannes Rau

Abstract. To every rational complex curve C C (C*)" we associate a rational tropical
curve I' C R” so that the amoeba A(C) C R" of C is within a bounded distance from
I". In accordance with the terminology introduced in [PR], we call ' the spine of A(C).

We use spines to describe tropical limits of sequences of rational complex curves.

Mathematics Subject Classification (2010). Primary: 14H50, 14T0S, 30FI15.
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1. Introduction

As suggested by Gelfand, Kapranov and Zelevinsky [GKZ], an algebraic variety
V in the complex torus (C*)* = (C\ {0})" can be visualized through its amoeba.
Namely, consider the map Log : (C*)" — R”" defined by Log(zy,...,z,) =
(log|z1],...,log|z,|). The image Log(V') is called the amoeba of V. It possesses
many geometric properties reflecting those of V. Furthermore, amoebas can be
used as intermediate geometric objects between complex and tropical varieties,
cf. [Mikl]. Passare and Rullgird [PR] have identified a tropical variety (called
the Passare—Rullgdrd spine) inside Log(V) in the case when V C (C*)" is a
hypersurface, i.e., dimV =n —1.

In the paper we focus on the case when V is a rational curve. In this case
we associate to V' a tropical rational curve in R”", called spine, whose distance
to Log(V) (in Hausdorff metric on sets in R”) is universally bounded in terms
of the degree of V. Our spine is not necessarily contained in Log(V').

In the case n = 2 arational curve V C (C*)? is a hypersurface, so the Passare—
Rullgérd spine of V is also defined as a tropical curve in R?. Nevertheless this
tropical curve does not have to be a rational curve (see Remark 2.3).

We are freely using some basic notions from tropical geometry here. For
details, we refer the reader to [MR, MS].
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2. The main statements

A complex rational curve in (C*)" is a holomorphic map f : § — (C*)”
from a Riemann sphere with k labelled punctures § = CP'\ {a1,..., )
to (C*)". To each puncture «; we associate the integer vector §(a;) € Z"
whose j -th coordinate is given by the order of vanishing —ordg, (z; o f). The
sequence of vectors A(f) = (8(a1),...,8(cx)) € Z¥*" is called the toric degree
of f:8 — (C*)". Note that Y¥_, 8(a;) = 0.

A tropical rational curve in R" is a tropical morphism A : I' — R", where
T is a compact smooth rational tropical curve with k labelled ends ay,...,ax
and I' =T \ {a1,...,a;). This amounts to the following list of properties:

e the graph T is a tree with k labelled ends ay,...,ax;

e the open subset I' carries a complete inner metric such that each leaf and
bounded edge is isometric to [0, 00) and [0,/(e)], respectively. In the second
case, /(e) € R. is called the length of e;

e the map % is affine on each edge;

e for each oriented edge e, the vector of derivatives dh(e) with respect to
travelling along e with unit speed is integer, dh(e) € Z";

e ateach vertex v e I'°, if ey,...,ex denote the adjacent outgoing edges, the
balancing condition

> oh(e) =0
i=1

is satisfied.

Let [y,...,l; denote the leaves adjacent to the ends ay,...,ax, oriented towards
the ends, and set &(a;) := oh(l;), i = 1,...,k. The sequence of vectors
A(h) = (8(ay),....8(ax)) € ZFK*™ is called the toric degree of h : T — R”".
The balancing condition implies 25';1 8(a;) = 0.

We consider the coordinate-wise logarithm map

Log: (C*)" — R”,

(z1y...,2n) > (loglz1], ..., log|zx])-
The image of a complex curve X under this map is called the amoeba of X .
Tropical spines. Our first main theorem states that the amoeba of a complex
rational curve of given toric degree can be approximated by a tropical rational

curve of the same degree up to a constant which only depends A, but not on
the specific curve.
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Let us fix a collection of integer vectors A = (§;,...,8¢), 6; € Z" such that
Zle d; = 0, called a toric degree in the following.
Theorem 2.1. For any toric degree A, there exists a positive constant € = €(A) >
0 having the following property. For any complex rational curve f :S — (C*)"
of toric degree A, there exists a tropical rational curve h : I' — R" of toric
degree A such that

(1 Log(f(S)) C Uc(h(T"))  and h(I‘)CUe(Log(f(S))).

Here, U(X) denotes the €-neighbourhood of a set X in R".

Remark 2.2. Since all norms on R” are equivalent, the statement of the theorem
does not depend on the choice of norm. In practice, we will work with the
maximum norm || . |/eo-

Remark 2.3. In [PR], the authors associate to any complex hypersurface
Ve C (C*)" a tropical hypersurface Sy C Log(Vy) C R”, called the spine of Vy,
and show that S, is a deformation retract of Log(Vy). The construction overlaps
with ours in the case n = 2, i.e.,, when C = V; is a planar curve. However, note
that in general Sy can be of too large genus. In particular, assuming that C is
rational (as considered in this paper), the spine Sy is not necessarily rational (i.e.
parametrised by a tropical rational curve 4 : T' — R2). A counterexample can be
constructed from a counterexample to the similar statement that reducibility of
C does not imply reducibility of S,. To find such an example, we may arrange
a generic line L; C (C*)? and the Cremona transform of a second line Cr(L»)
such that the union of their amoebas forms a contractible domain in R? while the
two spines S; and S intersect transversally (in two points). In this case, among
the tropical curves contained in Log(L; U Cr(L;)) and of correct degree, there
is a unique reducible curve (namely S; U S>) as well as a unique curve being
a deformation retract of Log(L; UCr(L;)) (namely the spine of L U Cr(Ly)).
Since these two curves are not equal the claim follows. As mentioned above,
the example can be modified to the case of an irreducible rational curve by
completing the picture as indicated by the dashed lines. The related question to
which extent Sy displays the singularities of V; has been studied in [Lan] in
the case of generalized simple Harnack curves.

Despite this behaviour of Passare—Rullgird spines, one may proceed in spirit
of Theorem 2.1 and try to find universal bounds € = ¢(NP(f)), only depending
on the Newton polytope of f, such that

(2) Log(Vy) C Ucs(Sy) and Sy C Ue(Log(Vy)).
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Ficure 1

The union of two amoebas coming from a line L; and the Cre-
mona transform Cr(L») of a second line L». In red, we depict the
union of the Passare—Rullgird spines of the individual curves. The
Passare—Rullgird spine of the the union L; U Cr(L,) differs from this
reducible tropical curve by the green edges. It gives an irreducible
tropical curve which is a deformation retract of Log(L; U Cr(L2)).

To our knowledge such bounds are currently not known. If instead of the Passare—
Rullgard spine the naive tropicalization of f (replacing all coefficients a; by
log |a;|) is used, such bounds have been established (at least for the first inclusion
of Equation 2) in [Mik2, EPR, For].

Tropical limits. Using Theorem 2.1 we can describe all possible tropical limits
of families of rational complex curves of toric degree A. Such a description
is important in the context of correspondence theorems between complex and
tropical curves.

Let A = (61,...,6r) be a toric degree. Let D be a tree with k labelled

leaves. We can uniquely decorate the oriented edges of D with integer vectors
8(e) such that

e the leaf labelled by i (oriented outwards) is decorated by §;,
e an oppositely oriented edge —e carries the vector §(—e) = —d(e),

e around each vertex v, the vectors §(e) of adjacent edges, oriented outwards,
sum up to zero and hence form a toric degree denoted A, .

A subset of vertices S is called allowable if there exists an assignment of non-
negative non-all-zero numbers (a(e) : e non-leaf) such that for any v,w € S we
have

> a(e)s(e) = 0.

eClv,w]
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Here, [v,w] denotes the oriented simple path from v to w. A collection of
toric degrees obtained as (A,)yes for an allowable vertex set S is called a
degeneration of A. An example is given in Figure 2.

Let (tm)ken be a sequence of positive real numbers converging to +oo.
Let fn : Sm — (C*)" be a sequence of complex rational curves of fixed toric
degree A. We set

A = LOgtm (fm(Sm)) = Log(fm(Sm))‘

log(tm)

Our result describes the possible limits of such sets in the Hausdorff sense. For
precise definitions, we refer to Section 3.

Theorem 2.4.

(a) Any sequence of complex rational curves fp, 1 Sym — (C*)" of toric degree
A contains a subsequence such that the sets A,, converge to a Hausdorff
limit A C R" (including A = @).

(b) [In this case, the Hausdorff limit A is of the form
A=hi(T)U---Uhg(y)

for tropical rational curves h; : Ty — R" of toric degree A; such that
(Ay,...,As) is a degeneration of A.

(¢) If s > 1, the tropical curves (hy,...,hs) can be chosen from a sublocus of
dimension strictly less than n + k —3 in the parameter spaces of all tuples
of curves of degree (Aq,...,A;).

Note that n + k — 3 is the dimension of the parameter space of rational
complex/tropical curves of toric degree A.

The toric degree A also defines a homology class Ay € H,(X) in any
compact toric variety X . This class can be obtained as the homology class of the
closure of a complex curve of toric degree A in (C*)” C X . The group H,(X)
also contains elements representable by curves contained in the toric boundary
0X = X\ (C*)". The element Ax € H,(X) can be represented by reducible
(stable) rational curves with some components in dX . Theorem 2.4 can be used
to produce examples of tropical curves that cannot appear as tropical limits of
complex curves of degree Ay without components in dX .

Example 2.5. Consider the second Hirzebruch surface ¥, and the class 2F +
4F € Hy(X,), where E and F denote the class of the —2-curve and a fibre,
respectively. The discriminant D C |2E + 4F| consists of two components: The
closure of the locus of irreducible rational curves, and the locus of reducible
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Al A
A

FiGure 2
Three tropical curves of type |E + 4F| in X». Since (0, =%, (1,2), (0, )2, (—1,0))
is not a degeneration of A = ((0,—1)%,(1,2)2,(=1,0)?), C; cannot occur as limit of
(irreducible) complex rational curves in |2E + 4F|. Conversely, C» and C3 occur as
limits of tropical curves of toric degree A as shown on their right hand side. The
degree of C> is ((0,—1)*,(1,2),(0,2),(=1,0)) and may be written as a degeneration
of A using a single allowable vertex S. The pair of degrees of the reducible curve Cs
is ((0,1),(0,—1)) and ((0,—1)3,(1,2),(0,1),(—1,0)). It is a degeneration of A induced
by the tree D and allowable vertices S (in black) displayed on the bottom left hand
side. The path connecting the two vertices in S consists of two edges of direction
(0,+1), and we can choose a(e) = 1 for these two edges and a(e) = 0 for all others.

curves E + |E + 4F|. Both components have dimension 7. Tropical curves of
degree E + |E + 4F| (actually, since we restrict to R?, in |E + 4F|) also
form a 7-dimensional family. By Theorem 2.4, the ones that appear as limits of
irreducible complex curves form a subfamily of dimension at most 6. Figure 2
shows examples of curves which appear or do not appear as such limits.

3. Spines of lines

For every n € N, we set

Ay = (—ep,—€1,...,—¢€p),
where e¢q,...,¢e, denotes the standard basis of R" and —eg = ¢; + ...e, =
(1,...,1). Complex and tropical curves of degree A, are called (non-degenerate)

lines. For lines, we number the punctures, ends, and leaves, respectively, from 0
to n.
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Complex lines. By choosing a coordinate z for CP' such that oy = oo, we
can parametrize any complex line L C (C*)" by a map

(3) f:CP'\{oo0,aq,....00) — (C)", 2> (k1(z — 1), .. kn(Z — o).

We call L calibrated if k1 =---=«k,.

Tropical lines. Let us recall the basic properties of tropical lines:

e If h:T' — R”" is a tropical line, then A is injective. Indeed, the balancing
condition implies that, as we follow the path from a; to ay with unit speed,
the function x; oA has constant derivative 1. Since any point p € I' lies on
at least one such path, the injectivity follows.

e ‘Throughout the following, we will identify I" with its image and use the
notation I' C R" (suppressing ).

e Given p = (p1,...,pn) € I', let e denote the oriented edge pointing
from p towards aqo. Then the direction vector dh(e) € Z" has only 0
and 1 as entries. A coordinate x; corresponding to an entry 1 is called a
local coordinate for T' at p. Given k € R, the linear tropical polynomials
u(x) = k + max{x; — p;, 0}, for any local coordinate x;, restrict to the same
function on I'. The linear modification of T' at p (of height k) is the
unique line T < R™t! which contains the graph of . More concretely, T'
is the union of the graph of p with the ray in direction —e,4+; emanating
from (p,k).

e The inverse operation to modification is called contraction. Let = : R" —
R”~! be the projection forgetting x, . Then the image I'" = =(I") of any line
I' c R” is aline in R"™!, called the contraction of T' (along x,). Let p € I'’
be the image of the contracted leaf /,. Then I' is the linear modification
of TV at p (for a suitable height k). In particular, the contraction map
m:I'— I is a bijection when restricted to I"\ /.

e A tropical line I' is calibrated if the leaf /; is contained in the (usual) line
Rep (emanating from the origin). Given p € I', note that T' is calibrated
if and only if p; = p; for any two local coordinates x; and x; at p.
Moreover, the modification of a calibrated line is calibrated if and only, in
the notation from above, k = p; and hence p(x) = max{x;, pi}.

Spines for amoebas of lines. We consider the (shifted) geometric series

n—2

en = 2log(2) Y "3 =1log()3" " 1)
i=0

with initial value ¢; = 0. Note that ¢, = 3¢,-; + 2log(2) for all n € N.
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Theorem 3.1. Let L. C (C*)" be a complex line. Then there exists a tropical line
I'CR"” and a map ¢ : L — " such that

| Log(q) — ¢(q)|lco < €n

for all g € L. Moreover, if L is calibrated, there exists a calibrated T" such that
the statement holds.

Ficure 3

The amoeba of a complex line L C (C*)? together with an approx-
imating tropical line T' € R®. The line L is parametrised by z
(z,z+1,z-2i). The vertices of I" are (0,0,0) and (log(2), log(2),0).

Proof. We prove the statement for calibrated lines by induction on n. The general
statement obviously follows from the calibrated case after applying translations
in (C*)" and R”.

For n =1, we have L = C* and hence ' = R and ¢ = Log: C* — R
satisfy the requirements.

For the induction step n —1 — n, let us start with a given calibrated complex
line L C (C*)". We denote by L' C (C*)""! the calibrated complex line
obtained as the closure of the image of L under the projection forgetting the last
coordinate z,. The closure contains the point w = (wy, ..., w,—1) corresponding
to the puncture «,. Since L is calibrated, the coordinates on L are related by
Zn=zi—w; fori=1,...,n—1.

By the induction assumption, there exists a calibrated tropical line IV ¢ R*!
and amap ¢’ : L’ — I' such that | Log’ (¢)—¢'(q)|lec < €n—1 forall g € L’. Here,
we use Log and Log’ to denote the log map on n and n—1 variables, respectively.
We set p = (p1,..., pn—1) := ¢'(w). We define the tropical line I' C R" as the
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modification of I at p corresponding to the function wu(x) = max{x;, p;} for a
local coordinate x; at p. By the remarks on page 383, I' is calibrated and does
not depend on the choice of local coordinate x;. For now, let us fix such x;.

In the next step, we define the map ¢ : L — I'. We distinguish two cases
depending on whether ¢’(q) is close to p or not. For ¢ = (q1,....qn) € L. we
set

(p.min{log|gal. pi}) if [¢'(g) = Plloc < 2€n—1 + log(2),
(¢’(q), u(qﬁ’(q))) otherwise.

Note that ¢(g) € [' by construction. It remains to prove that || Log(q) —¢(q)|leo <
€, for all ¢ € L. Before continuing, let us collect two consequences of the

¢(q) :=

induction assumption for reference:
(4) | log |gi| — ¢'(q)i| < €n—1,
4) | Tog [wi| — pi| < €n—1.

We proceed in several cases.

Case 1. Assume that ||¢'(q) — plleo < 2€,—1 + log(2). Since this implies

| Log'(g) — Plls < | Log'(q) — &' (@)oo + I10'(q) — Plloc < 3€n—1 + 10g(2) < €p,

by the definition of ¢(q) it suffices to show log|g,| < p;i + €,. To do so, we
apply the case assumption again to the i -th coordinates, providing

(6) #"(9)i — pil < 2€n—1 +1log(2).

Combining Equation 4 and Equation 6, we get

(7) | log |gi| — pi| < 3en—1 + log(2)
and hence
®) lanl = Igi — wil < |gs| + |wi] < 2e¥n~1 4 e1=1)ePi < 3301l < eneli,

Here, the second inequality uses Equation 5 and Equation 7 and the third inequality
follows from e3€n—1 > ¢€n—1 gince €,_; > 0. Finally, this implies

) log |gn| = log|g; — wi| < pi + €n,
as required.
Case 2. Let us now assume [¢'(g) — plleo > 2€x—1 + log(2). By definition of

¢(gq), we need to show that |log|g.| — u(@'(g))| < €n. We subdivide this case
further as follows (see Figure 4).
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FiGure 4
The three subcases 2.1-3 in the proof of Theorem 3.1 with § = 2¢,—1 + log(2)

Subcase 2.1. There exists i € {1,...,n—1} such that ¢'(q); —p; > 2€,—1 +10g(2).
Note that when following the path in L’ from p to ¢'(q), any coordinate increases
at most as much as the local coordinates at p. Thus we may assume without loss
of generality that x; is a local coordinate at p and hence w(¢'(q)) = ¢'(q)i.
Using Equations 4 and 5, we obtain

log |gi| — log |w;| > log(2)

or, equivalently, |g;| > 2|w;|. The triangle inequalities for ¢, = ¢; — w; give
|
lan| = lail + lwil <lqil + Slai| < 2lq:l.

1 1
9al = lail = il > lgs] = 51a:1 > 3lail,

and hence
| log|gn| — log g || < log(2).
Together with Equation 4, we get |log|gn| — @'(q)i| < €n—1 + 10g(2) < €,.

Subcase 2.2. There exists a local coordinate x; at p such that p; — ¢'(g); >
2e,—1 + log(2). The reciprocal previous argument implies

| log |gn| — log |w;l| < log(2)

and hence |log|gs| — pi| < €n—1 +10g(2) < €,, and we are done.

Subcase 2.3. We have p; — ¢'(g9);i > 2¢,—1 + log(2) for some i and none
of the previous subcases occurs. In this case, the subtree of I spanned by
p, ¢'(q) and [y (the leaf corresponding to e,) contains a unique three-valent
vertex r = (ry,...,r,) € I''. Alternatively, r can be described as the point on
the path from p to ¢’(¢) at which the coordinate x; starts to decrease. In
particular, r; = p;. Note that ||r — pllec < 2€,—1 + l0g(2), since otherwise this

would imply the existence of a coordinate satisfying the conditions of the first
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subcase. Let x; be a local coordinate at p. Then wu(¢'(q)) = ¢’(q); = r; by
construction of r. Moreover, both x; and x; are local coordinates at r. Since
I'" is calibrated, this implies r; = r;. The estimate |log|q,|— pi| < €n—1 +10g(2)
from the second subcase is still valid, so we can combine these equations
o

(10) |loglgn] — (¢’ (@))| = |10g |gn| — ri|
< [loggn| — pi| + |pi — ri| < 3€n—1 + 210g(2) = €,.

This finishes the third subcase and hence completes the proof. L]

Remark 3.2. We made no serious attempt to reach optimality of €, in any
sense. For example, ¢, = 2log(2) can obviously be improved to log(2) (even
with respect to the Euclidean metric). Note also that except for the trivial case
n =1 the proof in fact yields the strict inequality | Log(q) — ¢(q)|lcc < €n-

Theorem 3.1 clearly implies Log(L) C U, (I'). To prove I' C Ug,(Log(L)),
we upgrade the statement to show surjectivity of ¢ up to small neighbourhoods
around the vertices of T'.

Theorem 3.3. The map ¢ : L — T in Theorem 3.1 can be chosen such that

'\ |J U, co).

v vertex

Proof. As before, we may restrict to the calibrated case. We use the same induction
as in Theorem 3.1. For n = 1, the ¢ = Log : C* — R is obviously surjective.
For the induction step n — 1 — n, we use the same notation as before and
set R =T\U,Ue, () and R" =T\ |, Ue,_, (v'). The additional induction
assumption is R’ C (¢'(L)).

Clearly w(R \ l,) C R’. Moreover, for any g with ¢'(q) € n(S \ [,), the
“otherwise”-case in the definition of ¢ is used. By the induction assumption, we
conclude R\ [/, C ¢(L).

It remains to show that a point in /, with last coordinate lower or equal
than p; — ¢, lies in ¢(L). Here x; is a local coordinate for p. In fact, we
will prove the stronger statement that for any g € L with log|q,| < p;i — €. the
“if’-case in the definition of ¢ takes effect. First, note that p; < p; for all j
since I is calibrated. It follows that log|g,| < log|w;| + €4—1 — €, for all j.
Since €, —e,—1 > log(2), we get |gn| < |wj|/2. As in previous arguments, this
implies |log|q;| —log|w;|| < log(2) and hence [¢(q); — pj| < 2en—1 + log(2).
This shows ||¢'(¢) — plleo < 2€n—1 + log(2) and finishes the proof. L
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Remark 3.4. With little extra effort, the induction argument can be modified to
construct a map ¢ : L — I' with the following properties.

(a) The map ¢ is continuous, proper and surjective.
(b) For all ¢ € L we have ||Log(q) —¢(q)]lec < €),.

(c) For any p € I' in the interior of an edge e, the preimage ¢~ '(p) is
a smoothly embedded circle in L and the homology class [¢p~!(p)] €
H((C",Z) = Z" is equal to the direction vector of e (for compatible
orientations of ¢~!(p) and e).

(d) For any vertex v € I', the preimage ¢~ !(v) C L is a compact surface with
boundary. The boundary components are in bijection (given by homology
classes) with the edges adjacent to v.

Here, the value €, can be defined by the recursion €, = 5¢,_; + log(5). The
induction step can then be modified as follows: Choose 2e,_; +log(2) < § <
2¢/_, + log(5)/2 such that dUs(p) does not contain vertices of I and set

([), log IQnD if log|gn| < pi — 6,
$(q) =
(¢'@.1(¢'@)) if $'@) ¢ Us(p).

It remains to extend ¢ to

B={geL:¢'(q) €Us(p) and loglgs| = pi — 6},

which is a connected surface with boundary in L whose boundary components are
in bijection with T'NAUs((p, p;)). It is clear that a map ¢p : B — I'NUs((p, p;))
satisfying properties (a), (c) and (d) exists. Property (b) then follows from previous
arguments and

|7 (#(q) —Log(@) |, < [|7(¢@)) = Pl + I = ¢'@)] . + 1¢'(@) —Log (@)l
<8+8+e€,_; <5€,_, +log(5) =¢,.

Using ¢p to extend ¢ to L, we obtain a function which satisfies (a)—(d).

4. Spines of rational curves

Let A = (8p,...,0;) be a toric degree in dimension n. We denote by
VA : R*¥ — R” the linear map which sends the standard basis vector e; to —§;
for all i = 1,...,k (this implies ey — —§y). In this section, we assume that A

is non-degenerate, that is to say, the map ¥ is surjective.



Spines for amoebas of rational curves 389

Let Wp : (C)% — (C*)" denote the torus homomorphism which is the
exponential of ¢ (hence also surjective). In other words, the diagram

(CX)k Ya s (CX)n

( 11 ) L()gl ngg

;Rn

commutes.
The following lemmas state that complex and tropical rational curves of toric
degree A can be represented as images of lines under W5 and ¥4, respectively.

Lemma 4.1. Given a complex line L C (C)*, the map
J =WValL: L — (CY)"

is a complex rational curve of toric degree A. Any complex rational curve of
toric degree A can be represented in such a way. Two lines L, L' provide the
same rational curve if and only if L. = wlL' for some w € ker Wx.

Proof. The uniqueness up to ker W, is obvious. Using coordinates §; =
(8},...,8"), the map W, is given by

;8 ~8{

Z;=2z) gy .
This implies —ordy, (z; o f) = Sl.j , as required.

Let f:8 — (C*)" be a complex rational curve of toric degree A. Up to

isomorphism, we may assume S = CP! \ {oc0,a1,...,a,}, with affine coordinate
z. By definition of toric degree, we have

; .
zjo f =ukj(z—ay) 8 oo (z — o)

for some constant «; € C*. Pick a preimage (A;,...,Ax) of (x1,...,k,) under
Wpa. Then f factors through W by the line
(12) S — (C*),
(13) z> Az =), ... Ak(z —ag)).
]

Lemma 4.2. Given a tropical line T' C R¥, the map
h=yalr:T - R"

is a tropical rational curve of toric degree A. Up to isomorphism, any tropical
rational curve of toric degree A can be represented in such a way. Two lines T, I
provide the same rational curve if and only if T = xI"" for some x € kerya.
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Proof. Let I" C R¥ be a tropical line. Since ¥ is linear, Yalr : ' = R" is
clearly a tropical morphism. Moreover, the degree requirements are satisfied since
YA maps —e; — 6; for i =0,...,k.

Given a tree ' with complete inner metric and k£ + 1 leaves [ly,...,[r, an
arbitrary base point py € I' and toric degree A, the set of tropical rational curves
h:T' — R” of toric degree A is in bijection to R" via & +— h(po). Indeed, since
I" is a tree and since the direction vectors 0h(l;) are fixed by A, the balancing
condition recursively prescribes all direction vectors dk(e). To fix h: " — R%,
it hence suffices to fix the image of a single point.

Let 4 : I' — R” be a tropical rational curve of toric degree A with base point
po. Choose a point x € R* such that ¥a(x) = h(po). Applying the previous
discussion to Ay, there exists a unique tropical line g : I' — R* such that
g(po) = x. Moreover, by construction we have ya(dg(e)) = dh(e) for any edge
e of I'. Hence, f = ¥a o g, as required. The uniqueness property also follows
easily from the previous discussion. L1

We are now ready to prove the main theorem.

Theorem 2.1 Given a toric degree A consisting of k + 1 vectors, we set
€ = ¢, - N(A), where

[¥a ()]0

N(A) = [¥allos = max{
% s

0#£x € Rk} ;

Let f:S — (C*)" be a complex rational curve of toric degree A. By Lemma 4.1,
we may assume that S = L C (C*)* is a complex line and f = ¥a(x)|s. By
Theorem 3.1, there exists a tropical line ' € R¥ and a map ¢ : L — I' such that
| Log(q) — ¢(q)]loc < €x for all ¢ € L. By Lemma 4.2, h = Ya|lr : ' — R" is
a tropical rational curve of toric degree A. The situation can be summarized in
the following diagram (whose left hand side is only commutative up to € ):

T
L C (C) —— (€

A

(14) ¢l =€k lLog lLog

r ¢ Rk Y2 | Rn

Hence, for all g € L,

(15) | Log(f(@) — h(¢@)| ., = |¥aLog@) — (@), = N(A)ex =€,
which implies Log(f(L)) C U (h(T)).



Spines for amoebas of rational curves 391

Set R =T\ U,U(v). By Theorem 3.3, we have h(R) C h(¢(L)) C
Us(Log(f(L))). Finally, for p € ' \ R, there exists p’ € R such that
lp— Plleo < (k— 1), since T" has k — 1 vertices. Choose ¢’ € L with

¢(q") = p'. Then
|7(p) — Log(f(g") |, < Ih(p) —h(p)lleo + ||2(p") —Log(f(g")|,, < ke’

Hence, for € = ¢(A) = k - € we proved A(I") C Uc(Log(f(L))), which finishes
the proof. ]

Remark 4.3. Clearly, Remark 3.4 can be extended to the general case in the
sense that for any complex rational curve f : § — (C*)" of toric degree
A, there exists a tropical rational curve i : I' — R" of toric degree A
and a map ¢ : S — [' which satisfies properties (a)—(d) (after substituting
| Log( f(g)) — h(¢(9))]loo < €'(A) and fi[¢p~(p)] at the obvious places). Here,
€'(A) = N(A)e, .

5. Tropical limits of amoebas

Given two subsets A, B C R", we set the Hausdorff distance of A and B to
d(A,B) = inf{§ : A C Us(B), B C Us(A)}.

Note that d(A, B) can be infinite in general. If we restrict to non-empty closed
subsets of a compact set K C R”, then d(A, B) € R> and the Hausdorff distance
defines a metric. A sequence of subsets A,;, C R" converges to the Hausdorff
limit A C R" if A is closed and for any compact set K C R” the sequence
d(Am N K, AN K) converges to 0. In this case A = lim 4,, is unique, since it
is unique on each compact K. Note that we include the case A = @, which is
to say, for any compact K C R”, there exists ko9 € N such that 4, N K = & for
all k > ky.

Let fn : S — (C*)" be a sequence of rational complex curves as in the
assumptions of Theorem 2.4. By Theorem 2.1, there exists a sequence of tropical
rational curves h,, : I, — R" of toric degree A such that

(16) Am C Ue/ log(tm)(hm(rm)) and hm(rm) < Ue/]og(zm)(-Am)-

This implies that the sequence of Hausdorft distances d(A,,hm(I'n)) converges
to zero. Obviously, this is still true after restricting to compact subsets K. We
get the following corollary.

Corollary 5.1. The sequence A, converges to the Hausdorff limit A if and only
if hm(I'y) converges to the Hausdorff limit A.
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In other words, Theorem 2.1 reduces the proof of Theorem 2.4 to the study
of Hausdorff limits of tropical curves.

Fix a toric degree A = (81,...,8;) in R”", an (abstract) tree G with m leaves
labelled by {1,...,m} and a marked vertex vy € G.

In analogy to our conventions for I', the leaves are considered to be half-
edges without one-valent end vertices. Let us furthermore assume that G does
not contain two-valent vertices except for the case — e —. Then the space
M(A, G) of isomorphism classes of rational tropical curves of toric degree A and
combinatorial type G (allowing edge lengths O for convenience) is parametrised
by

M(A,G) = R" x (R)*73.
Here, the factor R"” parametrizes the position of the marked vertex #h(vg), and

the second factor encodes the lengths of the non-leaf edges of G. Again, there
is one exception, namely

M((8,~8),— ¢ —) = R"/RS.

Lemma 5.2. Let h,, : T);, — R" be a sequence of rational tropical curves of
toric degree A and combinatorial type G converging in M(A,G) to a tropical
curve h: T — R". Then the sets hy,(T'y,) converge to the Hausdorff limit h(T").

Proof. This follows immediately from the fact that the positions of all vertices
and edges of h,,(I,) depend linearly (hence continuously) on the parameters in

R” x (Rx)*—3. O
Consider the following construction.
(a) Mark some of the edges of G, including all leaves, by the symbol oco.

(b) Insert a two-valent vertex in some of the oco-marked edges. If so, mark both
new edges by oo again.

(¢) Decompose G into pieces Gi,...,Gs by cutting each interior oo-marked
edge into two halves. The ends of the pieces G; can by canonically labelled
by toric degrees A;.

(d) Mark a vertex v, € G; for i =1,...,s.

() Pickaset S C {1,...,s} such that there exists an assignment of non-negative
non-all-zero numbers (a(e) : e oo-marked non-leaf) such that for i,j € §
we have

> ale)s(e) =0.

eClv;,vj]
co-marked

Here, [v;,v;] denotes the oriented simple path from v; to v;.
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We call such a construction (and the result ((A;,Gj)ies)) a degeneration of
(A,G). Clearly, (A;j)ies is a degeneration of A in the sense of the definition
given before Theorem 2.4 (set D to be the contraction of G along all non-
oo-edges). There is an associated linear map of parameter spaces (defined
over 7))

(17) L: M(A,G) - [ [ M(A;. Gy,
ies
(18) (O h) = (T, hidies,

given by h;(v;) = h(v;) (identifying v; € G; with v; € G) and keeping
the edge lengths for all edges which are still present. Clearly, the definition
extends in the obvious way to the case when some G; are — e —. The image
L(M(A,G)) is a rational subcone of RY x (R-)M (for suitable N, M) of
dimension less than or equal to dim(M(A, G)) < n + k — 3. Moreover, assuming
there exist co-marked non-leaves, the vector (a(e) : ¢ co-marked non-leaf) gives
rise to a non-trivial kernel element for L, hence dim L(M(A,G)) < M(A,G).
We can summarize the discussion so far by concluding that in order to
prove Theorem 2.4, using Corollary 5.1 it suffices to show the following
statement.

Theorem 5.3. Any sequence of tropical rational curves h,, : ', - R" of toric
degree A contains a subsequence converging to a Hausdorff limit A (including
A = @). The limit A is of the form

A= hl(rl) Ll s i hs(rs)

Jor a combinatorial type G, a degeneration ((Ay,Gy),...,(As,Gs)) of (A,G)
and a tuple of tropical rational curves (hy,..., hs) € L(M(A,G)).

Proof. Since the number of trees with k£ labelled leaves is finite, we can assume
that (4,) has constant combinatorial type G . Throughout the following, we will
identify the vertices and edges of G with the corresponding vertices and edges
of 'y, . In particular, given an non-leaf edge ¢ or vertex v of G, we write [, (e)
and h,,(v) for the length and position of the corresponding edge and vertex in
[, , respectively. We denote by R” U {oco} the one-point compactification of R”.
By compactness, we may assume that

e for any vertex v € G, hy,(v) converges in R" U {oc0},
e for any non-leaf edge ¢ C G, [/,,(e) converges in [0, +oc].

We now describe an explicit degeneration of (A, G) (see Figure 5). We mark
all leaves and all edges with lim/,,(e) = 400 by oo (step (a)). For any such edge
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FIGURE 5
The Hausdorff limit of a sequence of tropical rational curves in RZ.
On the right hand side, the combinatorial type and its degenera-
tion are depicted. The gray parts are the ones we forget in step (e).

e, we insert a two-valent vertex if and only if all adjacent vertices diverge and
there exists a sequence Xx,, € ¢° Ce I, such that h,,(x,) is bounded (step (b)).
Passing to a subsequence, we may assume that A, (x,) converges in R”. For
each two-valent vertex v we fix such a sequence and set h,(v) = hpm(xy).
Let Gy,...,G; denote the pieces after cutting all interior co-edges into halves
(step (c)). We mark a vertex v; € G; for all i =1,...,s (step (d)). Finally, we
set § = {i:limh,(v;) € R"} (step (e)). In other words, we forget all the pieces
G; for which limhA,,(v;) = co.

Note that since vertices in the same piece G; are connected via edges with
finite limit length, S does not depend on the choice of marked vertices v;.
Setting ((him)ies) = L(hm), we obtain a sequence of tuples of rational tropical
curves of toric degrees ((Aj)ies) contained in L(M(A,G)). By construction,
the limit lim L(hn,) in [];cg M(A;, G;) exists. We denote it by ((h;)ies)-
Since L(M(A, G)) is closed, it also lies in L(M(A,G)).

Let us prove that S is allowable. Note that the constructed degeneration is
non-trivial if and only if it produces at least one interior co-edge. This, in turn,
holds true if and only if the sequence r, = max{/,(e) : e non-leaf} diverges.
Then the sequence (I,,(e)/rm : e non-leaf) is bounded. Let (a(e) : e non-leaf)
denote an accumulation point. Note that a(e) = 1 # 0 for at least one co-edge
¢, and that a(e) = 0 for any edge not marked by oco. For any pair i # j € §,
we have

hm(v;) = hm(vi) = Y In(e)8(e).

eClv;,v;]

Dividing by r,, and taking limits, we obtain Zec[vi,vj] a(e)d(e) = 0, as required.
To finish the proof, it remains to show that the sets 4, (I',) converge in the
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Hausdorfl sense to

A= (@)

ieS

By Lemma 5.2, we have lim,; o0 him(I'im) = h;i(I';) in the Hausdorfl sense. It
follows that lim A, = A with A, = (J;c5 hi (). Let K C R" be a compact set.
For any vertex v € G which is forgotten during the degeneration construction, we
have h,,(v) = oo and hence h,,(v) ¢ K for sufficiently large m. Let ¢ C G be
an edge which is forgotten during the degeneration. Then e is not subdivided in
step (b) and both vertices of e converge to co. If lim/, (e) # +o0, this implies
hm(e)N K = & for large m by the vertex argument. If lim/,,(e) = +o0o, the same
is true since by assumption that there does not exist a sequence of points Xx,,
on ¢ with bounded #,,(x,,). For any other edge e, at least one of the adjacent
vertices v (possibly after subdividing e into two edges in step (b)) satisfies
lim#A,,(v) # oco. Then v € G; for some i € § and h,(e) N K = him(e) N K for
large m. It follows that 4,,(I") N K = A,, N K for sufficiently large m, and the

claim follows. []
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