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A note on Galois representations with big image

Nicholas M. Karz

Abstract. Given an integer N > 3, we will first construct motivic representations (i.e.,
built out of pieces of the cohomology of projective smooth varieties, in fact curves)

p: Gal(Q/Q(¢N)) — GL(n, Q)

with open image, for any £ which is 1 mod N and for certain n. We will do this in three
different ways. The third of them has a descent to @ when N is 3 or 4. This provides us
with motivic Galois representations of Gal(Q/Q) with open image in GL(n,Q¢) for any
even n > 6 and any £ which is =1 mod 3 or mod 4.
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Historical overview

We begin with a projective smooth curve C/Z[1/N] with geometrically

connected fibres, of genus > 1. For example, we might take C to be the
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hyperelliptic curve (whose affine points, in addition to which there is one point
at oo, are) defined by the equation

Y2 = h(X)

with A(X) € Z[X] a monic polynomial of degree 2g + 1 whose discriminant
A € 7 is nonzero. This is such a C over Z[1/(2A)]. By the end of the 1940’s,
Weil had proven the “Riemann Hypothesis” for curves over finite fields. This is
the statement that for any prime p not dividing N, when we count the IF, -points
on the curve and define the integer a, by

then we have the estimate
lap| < 2g./p.

More generally, for F,/F, a finite extension, and a, defined by
#H(Fy) =qg+1—ay,

then we have the estimate
|aq\ <2g \/‘7 .

One of Weil’s proofs goes via the Jacobian 7, of C, := C ®zpi/n) Fp. For a
given p not dividing N, choose a prime ¢ # p and consider (what came to be
called) the Tate module 7¢(7,), formed out of the points of ¢ power order on
J»(F,). This is a free Zg-module of rank 2g on which the arithmetic Frobenius
Frob, (x + x?) acts. The connection to the a, is given by the identities in Z;

Trace(Frob,|Ty(Jp)) = ap,Trace(Fme|Tg(jp)) =apn for all n > 1.

These identities imply that the reversed characteristic polynomial det(1 —
X Frob,|T¢(Jp)) lies in Z[X], and is independent of the auxiliary choice of
¢ # p. The Riemann Hypothesis then becomes the statement that when we factor
this Z-polynomial over C, say

2g
det(1 — X Frob,|Ty(J,)) = [ [(1 — i X),
i=1

then each «; has
loi| = /p.

By 1957, Taniyama [Tan] knew that if we look instead at the Jacobian Jg of
Cg = C®z/n1 Q. and view Ty(Jg) as a representation of Gal(Q/Q), then this
representation is unramified outside N¢, so defines a representation of (what came
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to be called) the fundamental group m;(Spec(Z[1/N{])). Moreover, he knew that
for p not dividing N, the action of the arithmetic Frobenius conjugacy class
Frobp orin in this 7; is related to the situation in characteristic p by

det(1 — X Frobp arinn|Te(Tg)) = det(1 — X Froby|T¢(Jp))-

Thus was born the notion of a compatible system of £-adic representations. In the
same paper, Taniyama also initiates the study of abelian ¢-adic representations,
a theme later taken up by Serre [Ser5].

By the mid-1960’s, Grothendieck and his school had developed ¢-adic
cohomology (see [KS, 9.0, 9.1] for a quick review). One of its consequences
is this. For a projective smooth X/Z[1/N] with geometrically connected fibres
of dimension d, and a prime ¢, we have ¢-adic representations H'(X,Qg) of
m(Spec(Z[1/N£])). These H*(X,Qg) vanish for i > 2d, and their dimensions
are the usual Betti numbers of the complex variety Xc. For each prime p not
dividing N¢, we have

#X(Fp) = ) _(—1) Trace(Frobp geom| H' (X, Qy)),

1

#X(Fpn) = Y (=1)'Trace(Frob}y ,..,,|H (X, Qy)) for all n > 1,
1
with Frob, geom the inverse of Froby 4im. In 1973, Deligne proved that the
individual traces Trace(Frob;‘,,gwm\H '(X,Q¢)) are integers independent of the
auxiliary choice of ¢ # p, and that the eigenvalues of Froby geom|H' (X, Qy) all
have complex absolute value ,/p.

To my knowledge, it is Serre who first considers the question of determining
the image of these ¢-adic representations, cf. [Serl] and [Ser5, Chapter 4, 2.2].
Consider an elliptic curve E, whose H! is the dual of its T, ® Q. Serre proves
that if Ec does not have complex multiplication, then for every £, the image
is an open subgroup of GL(2,Qy). In [Ser3] he proves that with finitely many
exceptions, the image is the largest possible, GL(2,7Zy).

One key application of knowing the Galois image for non-CM elliptic curves
is to clarify the Sato-Tate conjecture in this case (see [Tat, top of p. 107] for
the first written mention of this conjecture, and see [Nam] for the history, in
Japanese, of its 1963 discovery by Sato), and act as a harbinger of a conceptual
understanding of what the conjecture says in general (cf. [Ser7, p. 6]). In the
elliptic curve case, if instead of looking at the reversed characteristic polynomials

det(l — XFrobp,an'tMTg(E@))
we “unitarize” them, and look at

det(] = XFrObp,arith/\/ﬁlTE(E@))
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then these are characteristic polynomials of elements of the compact group SU(2),
and as such determine conjugacy classes in that group. Equivalently, the space
of conjugacy classes in SU(2) may be seen as the closed interval [-2,2], by the
map

Trace : SU(2) — [-2,2].

Then each p not dividing N gives us an integer a, with |ap| <2./p, and we
view the real number

ap//p € [-2,2]

as being a conjugacy class in SU(2). Via the isomorphism
2cos : [0, 7] = [-2,2]

we view [0,7] as the space of conjugacy classes. In this “angle” picture, the
conjugacy class attached to p is the unique angle 6, € [0, 7] such that

ap = 2./pcos(6p).

The Sato-Tate conjecture then asserts that these conjugacy classes {6,},;n are
equidistributed in the space of conjugacy classes of SU(2) for its “Haar measure”,
which, in the [0, 7] picture, is the measure

(2/7) sin*(6)d6.

Let us return to the case of a projective smooth X/Z[1/N] with geometrically
connected fibres. Then each H' is selfdual, with a duality pairing

HY (X, Qq) x H (X, Qg) — Qq(—i),

where Qg(—i) is the one-dimensional representation on which Frobp eom acts
as p'. This pairing is alternating when i is odd, and symmetric when i is even.

In the case when i is even, we can replace H’(X,Q,) by its Tate twist
H'(X,Qy)(i/2). This space is orthogonally self dual in the usual sense, and
so for H'(X,Qg)(i/2) the image of the (-adic representation lies in the
orthogonal group O(h',Qy), with h' = dimH’. If we combine the result
of Beauville [Beau, Section 2, Thm. 2] with the trick of Terasoma |[Ter,
Thm. 2] we find that, for each £, there exist smooth surfaces X c P3
over Q of any fixed degree d > 4 for which the £-adic image on the
quotient Prim?(X,Qy) := H?*(X,Q)(1)/( the hyperplane class L) is open in
O(h* —1,Qy) (and Zariski dense in O(h*> —1)).

When i is odd, no such Tate twisting trick is available, and the image for
H' lies in the group of symplectic similitudes GSp(H?, Q). [In the case of the
two-dimensional H! of an elliptic curve, this group of symplectic similitudes is
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just GL(2,Qyg).] In contrast to the even dimensional case, where we know the
existence of X/QQ with suitable open image but do not know how to write down
particular examples, Serre’s theorem gives us open image for every E/Q without
complex multiplication. In higher genus, we have Zarhin’s result, who has shown
that for hyperelliptic curves over @ (or indeed over any field K which is finitely
generated over Q) of the form Y2 = h(X), with & a polynomial of degree
n=2g+1 or 2¢g + 2, various explicit conditions on n and on the Galois group
of h over K guarantee that the ¢-adic representation on H! has image which is
open in the group of symplectic similitudes GSp(2¢, Q). For example, if 4 has
degree n > 5 and has Galois group over QQ either S, or A,, then this holds,
cf. [Zarl]. See the papers |Zar2, Zar3, Zar4] for more such spectacular results.

We cannot hope to attain an open subgroup of GL(n,Q,) for n > 3 just
from looking at the cohomology of projective smooth varieties. What we can
hope to do is find a suitable X and an automorphism ¢ of finite order of X,
such that when we break its H’ into eigenspaces for the induced action of ¢,
then for a well chosen /i and a well chosen eigenspace, the ¢-adic image of the
representation on this piece of this H? will be an open subgroup of GL(n,Qy)
for n the dimension of this piece. This is the theme we will pursue here.

Introduction

Given an integer N > 3, we will first construct motivic representations (i.e.,
built out of pieces of the cohomology of projective smooth varieties, in fact
curves)

p:Gal(Q/Q(¢N)) = GL(n,Qy)

with open image, for any £ which is 1 mod N and for certain n. We will do
this in three different ways. The third of them has a descent to @ when N is
3 or 4. This provides us with motivic Galois representations of Gal(Q/Q) with
open image in GL(n,Qg) for any even n > 6 and any ¢ which is =1 mod 3
or mod 4.

'The underlying idea in all the cases considered is this. First, we find families
of (projective, smooth, geometrically connected) curves over open sets of P!
over suitable rings of S-integers together with an action of a finite cyclic group
G such that suitable G -isotypical components of the H! along the fibres have
complex monodromy groups which are Zariski dense in SL(n,C) (for n the
rank of the isotypical component in question). The Zariski density is proven by
specializing into finite characteristic, where on the one hand old results of the
author (especially [Kat3] and [Kat4]) give such Zariski density results for the
geometric monodromy groups in characteristic p, and where on the other hand



276 N. M. Katz

a fundamental semicontinuity theorem of Pink, [Kat3, 8.18.2] or [Kat7, 2.1], tells
us that knowing this Zariski density in any single characteristic p forces its truth
in characteristic zero. The second step is to apply a form of Hilbert irreducibility,
along the lines of Serre [Ser6, Theorem, p. 149] or Terasoma [Ter, Thm. 2].
This shows the existences of infinitely many rational points in the parameter
space such the isotypical component of the H! at that rational point is a Galois
representation with the desired large image. We should point out that our method
does not give explicit rational points with this property.

The descents from Q({n) to Q in the cases N =3 and N =4 are in some
sense tricks. They make explicit use of well-chosen elements of PGL(2,Q) of
orders 3 and 4 respectively, namely W — 1T1W and W Lv{,/jr—ll We do not
understand the general setting, if there is one, to which these tricks should belong.
With the exception of these tricks, whose “discovery" we stumbled up in 2001,
there is virtually nothing in this article that could not have been written 25 years
ago.

The problem of constructing Galois representations with large image has also
been considered by Upton [Upt] in the case GL3, by Greenberg |Gre] for GL,,
and by Cornut-Ray [CR] for more general groups. The construction of Upton
is motivic, those of Greenberg and Cornut-Ray are spectacularly non-motivic
(in the sense of making no appeal or reference to cohomology). Motivic Galois
representations with images which are Zariski dense in exceptional groups have
been constructed by Dettweiler—Reiter [DR3] (for G,, by local system methods),
by Yun [Yun] (for G,, E7, Eg, by automorphic methods), and by Boxer-Celegari-
Emerton—Levin—-Madapusi Pera—Patrikis [BCE+] (for E¢, also by automorphic
methods).

It is a pleasure to thank Peter Sarnak and Laurent Clozel, who awakened in
2001, respectively reawakened in 2016, my interest in this question.

1. The case N >3

In this section, we fix an integer N > 3, an integer n > 5 such that n + 1 is
nonzero mod N, a prime number £ which is 1 mod N, and an embedding of
Q(¢y) into Q. We also fix a monic polynomial

f = fr(X) € Z[X]

of degree n+1, which, over C, is a Morse polynomial, meaning that the derivative
f(X) has n distinct zeroes, say «p,...,q,, and f separates these zeroes:

Jloq) # floy) if i # J.
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The values f(«;) are called the critical values of f. The critical values are
integral over Z[1/(n + 1)]. We define a polynomial Fi i va.(T) € Z[1/(n + 1)][T]
by

Ferigyar (T) = l_[ (T - f(az))

roots oy of f’

and denote by
Amorse(f) := Discriminant (Feyir.var.)-

For any ¢t € C which is not a critical value of f, the polynomial ¢ — f(X) has
all distinct roots. For any prime p which is prime to » + 1 and to the numerator
of Aporse(f), the coeflicient-wise reduction mod p of f is a Morse polynomial
in characteristic p.

For example, the polynomial X"*! — (n 4+ 1)X is a Morse polynomial. The
zeroes of its derivative are the »’th roots of unity. Its critical values are {—n{}zc,, ,
and Fj 0. (T) = T"—(—n)". Its reduction mod any prime p not dividing n(n-+1)
is a Morse polynomial in characteristic p.

Over the parameter space

8= Spec(Z[g“N, l/N, 1/(” + ])» 1/AMorse(f)][T][1/Fcrit.va[.(T)])

we have the one parameter family of curves = : C — S given by
E: PN =T — f(X).

The group un := un(Z[¢n,1/N]) acts on this family, by (X,Y) > (X,{Y).
The sheaf Fy r := R'mQ, is lisse on S[1/¢], and carries the action of py.
For a character y of uy of full order N, the x-isotypical component Fy r, of
Fe 5 is lisse on S[1/€] of rank n and pure of weight one. [It is to insure the
purity that we need n + 1 to be nonzero mod N, otherwise the rank of Fy 7,
remains n but its quotient of (highest) weight one has rank n— 1, cf. [Kat4, 5.16
and 5.18].] We denote by

pe, £y - T1(S[1/€]) — GL(n,Qy)

(134l

the ¢-adic representation which “is” Fy r,.

Theorem 1.1. The image of m(S[1/¢]) in GL(n,Qg) is open. Moreover, if we
embed Z[CN] into C, the image of

wg " (S[1/€]) = m1(S ®zpep1 C)

contains an open subgroup of SL(n,Qy).
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Proof. It suffices to prove the “moreover”, as the determinant, being pure of
weight n # 0, certainly has open image in Z;. Let us denote by I' the image
of #f°°™(S[1/£]) in GL(n, Q). Fix a prime p not dividing either n + 1 or the
numerator of Apsorse(f), and a p-adic place of Z[{n,1/N] with residue field
some F, with ¢ = 1 mod N . We denote by I'(p) the image of #{“""(S[1/{]®F,)
in GL(n,Qy). By Pink’s specialization theorem, cf. [Kat3, 8.18.2] or [Kat7, 2.1],
[" contains (a conjugate of) I'(p). So it suffices to show that I'(p) contains an
open subgroup of SL(n, Q). For this, we argue as follows. It is proven in [Kat4,

5.13] that the Zariski closure Ggeom,p of I'(p) sits in
SL(n) C Ggeom,p C GL(n)
and has determinant of finite order. Let us denote by

['(p)r C T'(p)

the subgroup of elements of determinant one. This is a subgroup of finite index,
so its Zariski closure contains the identity component G[?eom,p = SL(n). Hence

['(p); is Zariski dense in SL(n). We then conclude by the following well-known
lemma, cf. [Ser2, Cor, p. 120], which we record for ease of reference.

Lemma 1.2. Over Qy, let G C SL(n) be an irreducible connected (and hence
semisimple) algebraic group. Suppose I" C G(Qy) is a closed subgroup which is
Zariski dense in G. Then T" contains an open subgroup of G(Qy).

Proof. The group I' is an {-adic Lie group. Every open subgroup I'y of I
is also Zariski dense in G (because G is connected, and replacing I' by
I’y does not change the identity component of the Zariski closure). Its Lie
algebra Lie(I") = Lie(I';) is reductive, because I'; has, via G, an irreducible
representation, cf. [Bou, p. 78, Prop. 5, a <= e]|. Because this irreducible
representation has trivial determinant, Lie(I") has no nonzero abelian factor.
Thus Lie(I") is semisimple. One knows [Bor, 7.9] that a semisimple Lie algebra
is algebraic. Visibly we have the inclusion Lie(I") C Lie(G). Thus Lie(I") is
Lie(H) for some connected semisimple group H C G, and for a small enough
['y, I'y is open in H(Qg) (because they have the same Lie algebra) and hence
is Zariski dense in H . Therefore H = G. (|

This concludes the proof of the theorem. L]

Remark 1.3. In fact, for any £ which is 1 mod N, the image of p; r, contains
SL(n,Zy) (via some Zjg-lattice in Fy r,). [See [HL] for another approach to
this sort of question.] To see this, we use the theory of middle convolution
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with mod £ coefficients (written in a different language by Dettweiler—Reiter in
[DR1] and [DR2], and also by Stambach—Voklein in [SV]), applied in any good
characteristic p. The sheaf Fg r, is the middle additive convolution

Ly *mid+ (fxQ¢/Qp).

Its reduction mod ¢ is the middle additive convolution

Ly *mid+ (fxFe/Fg).

Because f is Morse, the second factor is irreducible, tame at oo, and all of its
local monodromies at finite distance are reflections, cf. [Kat5, 3.3.6]. Therefore the
middle convolution is irreducible, tame at oo, and all of its local monodromies
at finite distance are pseudoreflections with determinant x y4u.q, Which is always
of order > 3 because N > 3. Thus the mod £ image of I'(p) is an irreducible
subgroup of GL(n,Fg) which is generated by pseudoreflections of order > 3. By
a theorem of Wagner [Wag, Thm. 1.2 and following paragraph], an irreducible
subgroup of GL(n,F;) generated by pseudoreflections of order > 3 necessarily
contains SL(n,IF,) provided that n > 5.

The inverse image, call it T'(p);, in ['(p) of SL(n,Fy) lies in SL(n,Zy)
(because the determinants of elements of I'(p) are roots of unity of order dividing
£—1). Then I'(p); is a closed subgroup of SL(n,7Z¢) which maps onto SL(n,Fy).
One knows [Ser5, Exc. 1, p. IV-27] that if n > 2 and ¢ > 5, the only closed
subgroup of SL(n,Z;) which maps onto SL(n,IF;) is SL(n,Zg) itself. Thus
I'(p), is SL(n,Zs). Hence T'(p) contains SL(n,Z¢). As ' contains I'(p), we
are done.

Here is another approach to this question, which gives the result for all but
a finite set of £ which are 1 mod N and does not use the theory of mod ¢
middle convolution. Over the Riemann surface S¢" := (S ®z[¢,) C)¢", with

K :=Q(%)

we have the K -local system
Fk. 5= R(x*"nK

and its y component Fg r,. We know that each of its local monodromies at finite
distance is a pseudoreflection of known order > 3, and that (correctly chosen
conjugates of each of) these elements generate the entire image of m;(S?") in
GL(n,K). So if we invert some highly divisible integer M, we can find an
Ok[1/M]-lattice Fo,[1/m],5,x iN Fk, s, Whose monodromy representation lands
in GL(n,Ok[1/M]). Because our K -representation was absolutely irreducible,
the entire matrix ring Mat,(K) is spanned over K by the the image of the
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K -groupring of m;1(59"). At the expense of increasing M, we may assume that
Mat,(Ok[1/M])) is spanned by the image of the Ok[1/M]-groupring. Once we
are in this situation, then the reduction mod any prime P of Og[l/M] of this
Ok|[1/M]-form of our monodromy representation will be absolutely irreducible.
Take a P whose residue field is a prime field F;, and at which the completion
of K is Q. We apply Wagner’s theorem to conclude that the monodromy
representation of Fori/m], £y ® Z¢ on S has image containing SL(n,Zg).
On the scheme
Sc = 5 ®zy) €,

we have our Qg local system Fy ,, which is the “partner” (in the sense of [AGV,
XI, 4.4] via [AGV, XVI, 4.1]) of the transcendental local system Fo . [1/m], 1,5 @ Q¢
on $?". So the image of the monodromy representation of 7, , on the scheme
Sc contains SL(n,Zy).

Remark 1.4. The description of the local system F; r, as the middle additive
convolution

Ly *mid+ (fxQ¢/Q¢)

tells us what its local monodromies are in terms of those of f,Qg/Qy, cf. [Kat5,
3.3.6]. According to [Kat5, 3.3.3, 3)], this local system will be rigid if and only
it f.Qg/Q is rigid. But only for a Morse polynomial f of degree < 3 will
f+Q¢/Qg be rigid. This lack of rigidity means that we can’t have an a priori
description, in terms of local monodromies alone, of the local system on S%”
which is its “partner”.

Corollary 1.5. There exist infinitely many t € Q({n) with Fepypvar () # 0 for
which the representation of Gal(Q/Q(Cn) given by specializing T to t (i.e., by
composing the maps

Gal(Q/Q(w)) = m1(Spec(Q(N)) — 1 (S ®z Q) — w1 (S[1/€]) = GL(n,Qy),

the last map being the representation pg r,) has open image, indeed the same
open image as the representation pg fy.

Proof. This follows from Theorem 1.1 by the form of Hilbert Irreducibility given
in [Ter, Thm. 2] or in [Ser6, Theorem, p. 149]. ]

Remark 1.6. When we specialize T to t € Q({y), the £-adic representation we
get is the y-component of

for C; the curve
Cen Y = — F(X)
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over Q(¢y). It would be interesting to exhibit specific values of ¢ for which the
image is open.

2. An alternate approach to the case N >3, N #4

Fix an integer n > 1 such that n+1 is nonzero mod N . Fix f = f,(X) € Z[X]
a monic polynomial of degree n whose discriminant A(f,) is nonzero. [For
example, we might take H;’zl(X —1i), whose discriminant is nonzero mod every
prime p > n.] Over the parameter space

S := Spec(Z[¢n, 1/NITI/ fu (DI / ACH)])
we have the family of affine curves
n:C—> S

of equation
C: YN = fL,(XNT - X).

The group un(Q(¢n)) has an obvious action on this family, namely (x,y) —
(x,¢y). For any £, the relevant H! along the fibres,

Fo:= R'm(Qy),

is lisse on S[1/£], and carries an action of uy(Q(¢{wN)).

Suppose now that £ is 1 mod N. Then we can choose an embedding of
Q(¢y) into Q¢, and diagonalize the action. For a character y of uny(Q(¢n))
of full order N, the y isotypical component Fp, of F; is lisse of rank n and
pure of weight one.

Theorem 2.1. Fix an integer n > 5 such that n + 1 is nonzero mod N . Suppose
that £ is 1 mod N. Let y be a character of order N. Then the local system
Fo,y on S[1/L], viewed as a representation

Py 1 (S[1/4]) — GL(n,Qy)

has open image. Moreover, after extension of scalars from Q({n) to C (e.g., by
mapping {y to exp(2mi/N)), the image of =" (S[1/€]) := m1(S ®z(ey.1/N1C)
contains an open subgroup of SL(n,Qyg), and for all but at most finitely many ¢
the image contains SL(n,Zy).

Proof. The overall structure of the proof is the same as that of Theorem 1.1.
It suffices to prove the “moreover” statement, and for this it is enough to
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specialize to a good characteristic p # £ (one not dividing A(f;)) and a residue
field F, at a p-adic place of Q({n). Then our local system, pulled back to
Spec(F4[T1[1/f.(T)], is tame at oo (as it comes from characteristic zero, cf.
[Katl, 4.7.1]). Its trace function is as follows: for k/F, a finite extension, and y
extended to k* by composition with the norm,

Trace(Frob, x| Fe.y) = — Z x(fux)(r — x)).
xek

This is the trace function of the middle additive convolution [Kat5]

Ly *mid,+ Ly(f(x))-

Thus our local system is geometrically irreducible [Kat5, 2.9.6 and 2.9.8], and
its local monodromies at finite distance (i.e., at the zeroes of f,(¢)) are all
pseudoreflections of determinant y2, cf. [Kat5, 3.3.6]. Because N > 3 but
N # 4, y* has order > 3. It then follows from [Kat4, 5.11] that in our chosen

characteristic p, the image I'(p) of 7{“"(S ® F,;) has Zariski closure G geom,p
with Gg,,, , = SL(n). Exactly as in the proof of Theorem LI, we infer that

I'(p) contains an open subgroup of SL(n,Q¢). To show that, for all but at most
finitely many £, it contains all of SL(n,Z,) for a suitable Z,-lattice in Fy ,,
we repeat that Wagner argument of Remark 1.3. |

Remark 2.2. On Sg", the (“partner” of the) y component

Ly *mid,+ Ly(fn(x))

of the local system F¢ := Rln!""C is rigid (by [Kat5, 3.3.3, 3)]. It is the sheaf of
germs of local holomorphic solutions of a Pochhammer hypergeometric equation,
cf. [DM, bottom of p. 6] and [Poc, pp. 322-325]. This situation is in stark contrast
with that of Remark 1.4, where we in general lack such rigidity.

Remark 2.3. Exactly as in the previous section, Hilbert Irreducibility ensures
that there are infinitely many ¢ € Q(¢n) with f,(t) # 0 for which the ¢-adic
representation given by the y component of the H}! of the curve

YV = f,(X)(¢ - X)

over Q(¢n) has open image in GL(n,Qy).

3. Yet another variant, for N > 3

In this section, we fix an integer N > 3, a nonzero element A € Z[{y], an
integer n > 2, a prime number £ which is 1 mod N, an embedding of Q(¢y)
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into Qg, and a monic polynomial [ = f,(X) € Z[{n][X] of degree n which,
over C (by any choice of embedding) is a Morse polynomial. For any ¢ € C
which is not a critical value of either f or of f 4 A, the rational function

t— f(X)— A
t— f(X)

has n simple zeroes and n simple poles at finite distance, no other zeroes or
poles, and takes the value 1 at co. We denote by

F = FagulT)

the monic polynomial whose roots are the n — 1 distinct critical values of f.
We make the additional hypothesis

(CritDifts) The polynomial F(T)F(T — A) has 2n —2 i.e., all distinct, roots.

Equivalently, the condition on f is that A is not the difference of two distinct
critical values of f. We denote by Agira € Z[En,1/(2n)] the discriminant of
F(TYF(T — A).

Notice that if f is a Morse polynomial satisfying (CritDifty), then for any
constant a € Z[{n], the polynomial f(X) + a is also a Morse polynomial
satisfying (CritDiffp).

Here is an example, to show that for any A # 0, we can find a Morse f = f,
which satisfies (CritDiffs). For an integer M # 0, consider the polynomial

X" —aM" X
Its critical values are {M"(1 —n){}¢ey, - Using the archimedean inequality
e — 1| > 2a/7 for 0 <« < 7,

we see that for every complex embedding of Q(¢,—1), and any two distinct # — 1
roots of unity ¢ and (', we have

[(n=D(E =) =4

So taking M large enough that 4M" exceeds every archimedean absolute value
of A provides a suitable f,.

More generally, if f = f, is a Morse polynomial, then for any integer M , the
polynomial M” f(X/M) has critical values M”" times those of f (and critical
points M times those of f). So if we take M sufficiently large, M" f(X/M)
will satisty (CritDiffy).

Fix now a Morse function f and an A # 0 in Z[{y], such that (CritDiffy)
holds for f. Over the parameter space
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§ := Spec(ZIen s 1/N. 1/ @n) /A AcrAlITI[1/ (F(TYF(T = 4)])
we have the complete nonsingular model (add N sections along oco)
7w € — 8
of the family of smooth affine curves
y_T—-fX)—-4
T — f(X)

The sheaf F; := R'mQy is lisse on S[1/£] of rank (N —1)(2n —2) and pure of
weight one. For any character y of uy of full order N, the y component ]—"é‘
is lisse of rank 2n —2 and pure of weight one. [In fact, this is true for every
nontrivial y of order dividing N .]

We denote by

C:y

pe.f,A,x - T1(S[1/£]) > GL(2n —2.Qy)

the £-adic representation which “is” Fg , .

Theorem 3.1. Suppose we are in one of the two following situations.

() n >4, f satisfies (CritDiffy) and is of the form X" — M" 'nX + a for
some a € Z[Cn].

(2) n =6, f satisfies (CritDiffa) and is of the form M"h(X/M) + a for some
a € Z[tN] and some monic h = h, € Z[X] whose derivative h' has Galois
group over Q the full symmetric group S,_;.

Then the image of m1(S[1/€]) in GL(2n—2,Qy) is open. Moreover, if we embed
ZtN] into C, the image of

a{"(S[1/€]) := m1(S ®zjzy1 C)

contains an open subgroup of SL(2n —2,Qy).

Proof. Exactly as in the proof of Theorem 1.1, it suffices to prove the
“moreover”. And for this it suffices to pass to an [F,-valued point of
ZEN,1/N,1/(2n),1/Acrita, 1/€], and show that over § ® [, the image of
78" (S ® F,;) contains an open subgroup of SL(2n —2,Qy). We will choose
such a point whose characteristic p is sufficiently large so that, in case (1), [Kat3,
7.10.5] applies, and in case (2) [Kat3, 7.10.6] applies. What this choice of p
ensures is that in our characteristic p situation, when we consider the Fourier
Transform

FT(f«Q¢/Qe)
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its geometric monodromy group Ggeon Sits in

Sp(n —1) C Ggeom C ppSp(n —1), in case (1), n odd,
SL(n —1) C Ggeom C £1upSL(n — 1), in case (1), n even,
SL(n—1) C Ggeom C £1upSL(n —1), in case (2), any n.

[The references cited apply to an f to which a suitable constant has been added.
The effect of such an addition is to perform an additive translation on f,Qg/Qy,
which in turn has the effect of tensoring its Fourier Transform by a character of
order p, hence the u, factor in the above statement.]

Using Lemma 1.2, it suffices to show that GJ,,,
characteristic p situation.

Henceforth we work in characteristic p. The trace function of our sheaf Fy ,
at points ¢ of a finite field extension k/F, with F(¢)F(t—A) # 0 is the character

— SL(2n —2) in this

o f— f(0)— A
=] = g(x o Normk/]pq)(w),
with the usual convention that y(0) = y(oc) = 0.
Write
F—J—A o 4
t— f(x) t — f(x)

Then we see that this character sum is the additive convolution

— > (xoNormy,)(1— A/(t — u))(#x € k| f(x) = u} —1).

uck

of the trace functions of L,(1 — A/x) and f,Q,/Q,. In other words, F;, has
the same trace function on S ® [, as the ! additive convolution

Ly(1—A/x) %1+ [2Qe/Qq.

Let us admit for a moment the following key lemma.

Lemma 3.2. The canonical surjection of perverse sheaves is an isomorphism

Ly(1=Afx) *14 [uQu/Qe = Ly (1 — A/x) *mid,+ [+ Qe/Q¢.

This middle convolution is geometrically irreducible, and all its monodromies at
finite distance are pseudoreflections of determinant ¥ ¥quad-

Then F; , has the same trace function on S ® [, as the geometrically,
and hence arithmetically, irreducible perverse middle convolution above. By
Chebotareyv, it follows that F; , is isomorphic to this middle convolution. Thus
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Fe,x is lisse on S ® F; of rank 2n —2 > 6, geometrically irreducible, with
all finite monodromies pseudoreflections of order > 3. That F; , is tame at oo
results from its “coming from characteristic zero”, cf. [Katl, 4.7.1 (i)]. The result
then follows from [Kat4, 5.11]. ]

It remains to give the proof of the key lemma.

Proof. To show that the ! convolution is equal to the middle convolution, it is
equivalent to show that its Fourier Transform FT is a middle extension, and that
its Fourier Transform is geometrically irreducible. Now FT turns ! convolution
into ®, so the FT of the ! convolution is

FT(Le(1—A/%)) ® FT(£.Q¢/Qp).

Both factors are lisse on G, . At 0, the first factor has unipotent local monodromy
Unip(2), cf. [Kat3, 7.12, SL-Example(3)], and the second factor has local
monodromy @,.,n=1 y#1Ly, cf. [Kat3, 7.10.4 (1)], so their tensor product correctly
vanishes at 0.

It remains to show that this tensor product is geometrically irreducible. The first
factor, being pure, has Ggeop a (not necessarily connected) semisimple subgroup
of GL(2). So its identity component is either trivial or SL(2). It is not trivial,
because it contains Unip(2).

As recalled above, by [Kat3, 7.10.5 and 7.10.6], the second factor has G;?eom
either SL(n — 1) or, if n is odd, possibly Sp(n —1). As n > 4 in all cases,
its Lie algebra is a simple Lie algebra which is not that of SL(2). So by the
Goursat—Kolchin—Ribet theorem [Kat3, 1.8.2], the direct sum object

FT(Ly(1— A/x)) ® FT(f2Qe/Qq)

has
Geom = SL(2) x (either SL(n — 1) or, if n is odd, possibly Sp(n — 1)).

Consequently, the tensor product is irreducible.

That its local monodromies at finite distance are pseudoreflections of deter-
minant x x4ue¢ i proven in [Kat6, 6.1.18].

This concludes the proof of the key lemma, and with it the proof of the
theorem. U

Remark 3.3. Exactly as in the previous sections, Hilbert Irreducibility ensures
that there are infinitely many ¢ € Q(¢{n) with F(t)F(t — A) # 0 for which the
¢-adic representation given by the y component of the H! of the complete
nonsingular model (add puxy at oo) of the curve

N _ 1= f(X)— 4
(— J(X)
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over Q({n) has open image in GL(2n —2,Qy).

4. Working over Q, when N =3 and £ =1 mod 3

Consider the automorphism of the rational function field Q(W) given by the
fractional linear transformation

1
oW —.
1-W

One checks easily that o3 is the identity. We define the trace rational function

1 W3 —3W + 1
_I_l-—_: )

SW):i=W +o(W)+a*(W) =W + — W wWW -1

which is, of course, o -invariant.
On the other hand, after we extend scalars to Q({)(W), for { = {3 a primitive
cube root of unity, the rational function

W + &2

R(W) = Wre

is easily checked to satisfy
a(R(W)) = {R(W),

and hence R(W)3 is o-invariant.
We have the following miraculous identity, whose verification is left to the
reader.

W2\ S(W) + 382

W+g“) SW)+3t

With these preliminaries out of the way, we fix an integer n > 4, an integer
M > 2, and take

R(W)? := (

f(X):=X"—nM""'X.
Consider the one parameter family of curves in (X, W) space over Q(T)
T — f(X)=SW).

This family has an automorphism of order three, which we will denote o, given
by
(X, W) (X,0(W)) = (X.1/(1 = W)).

If we extend scalars to Q(¢)(T), we can write this curve as

T — f(X)+3:% (W+§2)3
T—f(X)+3¢ \W+¢ )~
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Now define
_w+e
W+
Then in (X, Y) space, we have the curve
o T—fO+3¢ _ 3=30
T — f(X)+3¢ T — f(X)+3

on which the automorphism of order three has become the obvious automorphism
(X,Y)— (X, CY).

For F(T) := F_.itya.(T) the critical value polynomial for f(X)— 3{3, and
for A := 3¢ — 3%, we saw in Section 3 that this last family has a projective
smooth model over

8 = Spec(Z[éa, 1/3,1/@2n), 1/A, 1/ Acrig AllT1[ 1/ (F(T) F(T — A))]).
So if we replace each of the quantities
1A Aeriea. (F(T)F(T — 4))
by its Norm from Q(¢) down to Q, we find that our family
T—f(X)=S8W)
has a projective smooth model
7:C— Sy
over Sy, the Spec of the ring
Z[1/3,1/(2n),1/Norm(A), 1/Norm(A i 4) |[T][1/Norm(F(T)F(T — A))].

For any £, we have the lisse Q; sheaf Fy := R'mQ, on Sp[1/£]. When £ = 1
mod 3, and y is a character of full order three, we can extract the y-component
Fi,x» which is lisse of rank 2n —2 and pure of weight one. View it as an {-adic
representation

Pro + 1 (So[l1/€]) = GL(2n —2,Qy).

Theorem 4.1. The image of w1(So[l/€]) in GL(2n —2,Qy) is open. Moreover
the image of
w {7 (So[1/4]) := 71(So ®z C)

contains an open subgroup of SL(2n —2,Qy).
Proof. As always, the key statement is the “moreover”. But Sy ®z C with its

Fu,y is just the same as the S ®z¢;) C with its Fy , in Theorem 3.1, applied
with f(X) —3¢. [
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Remark 4.2. Exactly as in the previous sections, Hilbert Irreducibility ensures
that there are infinitely many ¢ € Q with Norm(F(¢t)F(t) — A)) # 0 for which
the ¢-adic representation given by the y component of the H! of the complete
nonsingular model of the curve

t— f(X)=SW)

over Q has open image in GL(2n —2,Qy).

5. Working over Q, when N =4 and ¢ =1 mod 4

This section is almost identical in idea and structure to the previous section,
so we simply explain the relevant miraculous identity and leave the rest to the
reader.

We have the automorphism of the rational function field Q(W) given by the
fractional linear transformation

W —1
o: Wi )
W +1
The trace rational function
W4 —6W?2+1
S(W):=W w 2(w 3wy =
W)= W +o) +0*N) +0* W) = — 5

is o-invariant. After extending scalars from Q(W) to Q@ )(W), i being a
primitive fourth root of unity, the quantity

W+
W —i

RW) =

transforms under o by
o(R(W)) =iR(W).

The miraculous identity is

W+i)4_ S(W) + 4i

4 .
k(W) '_(W—i - S(W) —4i’

With these preliminaries out of the way, we fix an integer n > 4, an integer
M > 2, and take
FX) = X" —aM*1X.

Consider the one parameter family of curves in (X, W) space over Q(T)

T — f(X) = S(W).
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This family has an automorphism of order four, which we will denote o if no
confusion can occur, given by

(X, W) > (X,0(W)) = (X, (W — 1)/ (W +1)).
If we extend scalars to Q(i)(7"), we can write our curve as

T—fX)+4i (W+i)4

T—f(X)—4i \W—i
Now define
W +i
Y i= ~s
W —i
Then in (X,Y) space, we have the curve
Y4_T—f(X)+4i_1 —8i
T T — FfX)—44 T — F(X)—di’

on which the automorphism of order four has become the obvious automorphism
(X,Y)— (X,iY).
So if we replace each of the quantities

1/A,1/Acriga, (F(T)F(T — A))
by its Norm from Q(i) down to Q, we find that our family
T—f(X)=S(W)
has a projective smooth model
m:C— Sy
over Sy, the Spec of the ring
Z[1/(2n),1/Norm(A), 1/Norm(A it 4) |[T1[1/Norm(F(T)F(T — A))].

For any £, we have the lisse Qg sheaf Fy:= R'mQ; on So[1/£]. When £ =1
mod 4, and y is a character of full order four, we can extract the y-component
Fi,x» which is lisse of rank 2n —2 and pure of weight one. View it as an {-adic
representation

o m1(So[1€]) = GL(2n —2,Qy).

Theorem 5.1. The image of m1(So[1/£]) in GL(2n —2,Qy) is open. Moreover
the image of
i " (So[1/4]) := m1(So ®z C)

contains an open subgroup of SL(2n —2,Qy).
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Proof. As always, the key statement is the “moreover”. But Sy ®z C with its
Fi,y is just the same as the S ®z¢,; C with its Fy , in Theorem 3.1, applied
with f(X) + 4i. ]

Remark 5.2. Exactly as in the previous sections, Hilbert Irreducibility ensures
that there are infinitely many ¢ € Q with Norm(F(¢)F(t) — A)) # 0 for which
the ¢-adic representation given by the y component of the H'! of the complete
nonsingular model of the curve

t— f(X)=S(W)
over Q has open image in GL(2n —2,Qy).

6. Independence of ¢

In each of the previous sections, we began with a cyclotomic field K := Q(¢n),
N > 3, a number field E, a proper smooth one-parameter family

n:C—> 8

of curves over a dense open set S of Spec(Og[T]), a character y of either
Z/NZ or of uny(Q(ly)) with values in uy(Q(¢y)) of full order N, and an
action of either Z/NZ or of uny(Q(¢y)) on the family.

Over C, F%" := R'(n%"),K is a K -local system on $%" whose y component
(F¥)x, under the action of either Z/NZ or of ux(Q({n)), has rank

d = rank(F*")X.

For each finite place A of K, with completion K;, we have the K -local
system R'mK; on S[1/£], whose y component has the same rank d . For each
t € S(E), the y-component H'(C;®f E, K;3)* is a representation of Gal(E/E),
and for variable A these form a compatible system of A-adic representations

prs: Gal(EJE) — GL(d, K,).

For each A, we denote by G, , the algebraic group over K, which is the Zariski
closure in GL(d) of the image of p; ;.

When we fix a place A of K of residue characteristic £ =1 mod N, then
K; is Q. For a fixed such A, we showed the existence of infinitely many ¢ € £
for which the image of p, ; is open in GL(d,Qy).

Theorem 6.1. Suppose that A, is a place of K of residue characteristic £1 = 1
mod N, and t € S(E) is such that the image of p;,. is open in GL(d,Qy,).
Then for every place A, of residue characteristic {» =1 mod N, the image of
Py s open in GL(d,Qy,).
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Proof. For any such A, of K, HY(C; ®g E,Qg,)* is a direct factor of
HYC, ®F E, Q¢,). By Faltings[Fal, &5, Satz 4], p,,, is completely reducible,
and hence G,,, is reductive . Denote by I'), ; the image of p,,,. By Bogomolov
[Bog, Thm. 1], I'y,, is open in Gy,,;(Q;,). So it suffices to show that G,,,
is GL(d). According to Hui [Hui, 3.22 and 3.19], the rank of the derived group
(Gg,t)d‘” is independent of the auxiliary choice of A. For A;, we know that
Gy, = GL(d), so its derived group is SL(d), of rank d —1. Therefore (ng,t)d"”
is a connected semisimple subgroup of SL(d) of rank d — 1. The only such
subgroup is SL(d) itself. The determinant of p;,, is of infinite order, being
pure of weight d # 0. Therefore G,,, must be GL(d). ]

Remark 6.2. See [HL, Thm. 1] and [CHT, Thm. 1.2] for other results, in slightly
different contexts, of the same type.

7. Examples in higher dimension

In this section, we give examples built with higher dimensional varieties. For
given integers n > 2 and d > 3, and k a field in which d is invertible, a
polynomial f(Xy,...,X,) € k[X1,..., X,] is a “strong Deligne polynomial” if it
satisfies the following two conditions.

(1) The affine hypersurface of equation f/ = 0 in A" is smooth of dimension n—
L.

(2) Write f as the sum of homogeneous forms f = f; + fa—1+ ...+ fo.
The projective hypersurface of equation f; = 0 in P"! is smooth of
dimension n — 2.

Here is another way to think of these conditions. Pass to the homogeneous form
F(X1,....Xn, Z) €k[X1,....Xn, Z)i= fa+ Zfyr +Z*fya+ ...+ Z%fo.

The conditions on F are that F = 0 defines a smooth hypersurface Hp of
dimension n—1 in P" and that the intersection Hr N (Z = 0) defines a smooth
hypersurface of dimension n —2 in P*72,

This point of view makes clear that in the affine space Poly(n,d ) over Z[1/d]
of all degree d polynomials in »n variables (the coefficients being the coordinate
functions), the special Deligne polynomials form a dense (over any field k in
which d is invertible, the polynomial [ := 1+ Y 7_, Xid is a strong Deligne
polynomial) open set SD(n,d).

Now fix an integer N > 3, and write K := Q({xy). Over the parameter space

S = SD(n,d) ®Z[1/d} OK[I/N, ]/d]
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of strong Deligne polynomials f, we have the family = : X — S of smooth
affine hypersurfaces of dimension n of equation

YN = f(X1,....Xn)

and the obvious action on it of the group uny(K). We fix a character y of
un(K) of full.order N.

Theorem 7.1. Suppose n > 2, d >3, N > 3, and d is nonzero mod N (ie.,
x% # 1). For each finite place ) of K, denote by { its residue characteristic.
Then we have the following results.

(1) The sheaves (R'mK;)* on S[1/{] vanish for i # n.
(2) The sheaf Fy , = (R"mKy)* on S[1/L] is pure of weight n and lisse of

rank (d — 1)". Its trace function is given by

Trace(Frobg, r|Fa,y) = (—1)" Z xi(f(x)).

xekn

(3) Over any field k in which d{ is invertible, the geometric monodromy group
of Fjx|S ®k contains SL((d —1)").

Proof. 'This is proven in [Kat6, 5.1.9, 5.1.14, and 5.2.2 1)]. ]

Exactly as in the first section, we get the following corollary.

Corollary 7.2. Under the hypotheses of the theorem, for any A of residue
characteristic £ =1 mod N, the image of the representation

Pax s T (S[1/4]) > GL((d — 1)",Qq)
which “is” the sheaf F)_, is open in GL((d —1)",Qy).

Because the parameter space S is rational, Hilbert irreducibility and the
independence of ¢ results give us

Theorem 7.3. Fix a place A, of residue characteristic £ = 1 mod N. There
exist infinitely many strong Deligne polynomials f € K[X1,...,Xn] of degree d
for which the action of Gal(K/K) on

HA((VY = f0) 8x K. Ky, = Q)|

has open image in GL((d —1)", K,,) = GL((d —1)*,Qg,). Moreover, given such
an f, then for any other place A, of residue characteristic £, =1 mod N, the
action of Gal(K/K) on

H2(rY = f0) @k K. Ky, = Qp, )|
has open image in GL((d —1)",K;,) = GL((d — 1)",Qy,).
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8. Explicit one parameter families in higher dimension

Thus far, we have worked over the entire parameter space of all strong Deligne
polynomials of given degree d in a given number n > 2 of variables. Over a field
in which d is invertible, suppose we have a polynomial f(X):= f(Xy,...,X,)
of degree d whose leading form f; defines a smooth hypersurface in P*~! (a
“Deligne polynomial”) and which has only finitely many critical points (points
where all the df/df X; vanish). For any ¢ which is not a critical value (the value
of f at a critical point), t — f(X) is a strong Deligne polynomial.

As before, we put K := Q(n), N > 3. Fix a degree d > 3 which is
nonzero mod N, and a number n > 2 of variables. Given a Deligne polynomial
f € OklXy,...,X,] of degree d, with only finitely many critical points (in C"),
denote by

Fcrit(T) € OK[T]

a choice of (not necessarily monic) polynomial whose roots are the distinct critical
values of f, and by

Acrit € OK

its discriminant. We will exhibit such an f such that for any y of full order
N, the local system whose trace function is given by the one parameter (“t" the
parameter) family of character sums

D" > x(t = fx)

xekn

is lisse of rank (d —1)", pure of weight n, and its Ggem contains SL((d —1)").
More precisely, over

S 1= Spec(Ok[1/d, 1/ Acyie, 1/ N, TI[1/ Ferie(T))),
we have 7 : H — S, the family of varieties of equation
YV =t — f(X1,..., Xn).
The (R'mK;)X will vanish for i # n, and
Fry = (R*m K) )X

will be lisse of rank (d — 1)", pure of weight n, and its Ggy will contain
SL((d —1").

Once we have such an [, then there are infinitely many ¢ € K such that for
every place A; of K with residue characteristic £; = 1 mod N, the action of
Gal(K/K) on
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HE((rY == f(X) @k K. Ky, = Q)

has open image in GL((d —1)",K;,) = GL((d —1)",Qy,).
Here is our f(Xy,...,X,), for given n and . It is a variation on the idea
behind [Kat6, 6.7]. Define

g(X):= X% —dx,

Choose a prime p which is 1 mod d — 1 and take

fXr. X)) =) ple(Xo).

i=1

The critical points of this f are the points (ai,...,a,) where each a; isa d — 1
root of unity. The critical values are the sums

d.riga) =) p'(l—da.
i=1

i=l1

We first show that these (d — 1)” sums are all distinct. Because p = 1 mod
d — 1, the a; are Teichmiiller points in Z,. After dividing by 1 —d, we are
looking at the expression of (d — 1)* distinct elements of Z, expanded in the
base p, using 0 and Teichmiiller points as “digits”.

The vanishing of the (RimK;)X on S[1/€] for i # n results by proper base
change from the universal assertion (I) of Theorem 7.1, as does the fact that our
Fix on S[1/€] is lisse of rank (d —1)" and pure of weight n. What must be
proven is that itS Ggep, contains SL((d — 1)").

For i = 1,...,n, and fixed A, define

Li == ((p'£)+Q¢/Q¢) ® K.

Exactly as in [Kat6, 6.7.9-11], the purity of our F, , shows that is the iterated
middle convolution of the Kummer sheaf £, with the L;:

«7:/1,;( = E)( *mid,+ Ly *mid,+ i i *mid,+ Ly.

This sheaf is tame at oo, lisse outside the (d — 1)" critical values, and at each
critical value its local monodromy is a pseudoreflection of determinant y qu il

There is a further property, nonpunctuality, our argument requires of the
multiple middle convolution L *pig+ L2... *mia+ Ln, namely that it is the
direct sum of irreducible middle extension sheaves. To see that this holds, we
work successively from the right. Applying [Kat6, 6.1.12] successively, it suffices
to verify that for each m=1,...,n—1,
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Z:n=1 Pi (ai — b;)

(**) all ratios
do — b()

# 1,

for all choices of d — 1 roots of unity ag # by,d1,...,am,b1,...,by. To see
that this holds, simply cross multiply and rewrite this as

m m
ho+ Y plai #ao+ Z p'b;.

i=1 i=1

Viewed in 7Z,, this inequality is obvious, already the first digits are different.
If in addition we knew that 7, , was geometrically irreducible, then by [Kat4,
5.11], we would know that its Ggeosm contains SL((d —1)") provided that n > 2
and either
(d-—1">4

or
d=3,n=2, and  y does not have order 3.

[When d =3 and n = 2 the requirement that N be nonzero mod d = 3 forces
our y to have order prime to 3.] To show the geometric irreducibility, it is enough
to work in some large characteristic P which is 1 mod d —1 (not to be confused
with p used in defining f as the sum of pig(X;)), with P > p?rd-1 _|
(to be sure that none of p, p2,..., p" is a 2d —2 root of unity mod P), with
P > 2d —2, and such that (**) above holds in Fp, and to show there that

Ly *mid+ L2« *mid + Ln

is geometrically irreducible (because middle convolution with L, preserves
geometric irreducibility). For this, it suffices to show that on G,,, the tensor
product of the (lisse on G,,) Fourier Transforms

FT(L))® FT(L3)...® FT(Ly)

is geometrically irreducible (its extension by direct image across 0 is the Fourier
Transform of Ly x4+ La ... *mig+ Ln, by the nonpunctuality of the latter).

From [Kat3, 7.10.4], we know that, in our sufficiently large characteristic P,
each individual FT(L;) has Ggem either Sp(d —1), if d is odd, or £SL(d —1),
if d is even. So it suffices to show that the Ggem of the direct sum is the n-fold
self product (Sp(d —1))* in the d odd case, and contains the n-fold self product
(SL(d —1))" in the d even case. For then the tensor product is the product of
irreducible representations of the factors, so is an irreducible representation of
that product.

By Goursat—Kolchin—Ribet, cf. [Kat3, 1.8.2], it suffices to show that for i # j,
there is no lisse rank one £ on G, for which FT(L;) =~ L ® FT(L;) or for
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which FT(L;)V =2 L® FT(L;). In the d odd case, £ must have order dividing
2, as the only scalars in Sp(d —1) are +1. The /(oco) representation of FT(L;)
is, by [7.9.4, line 4 of proof, or 7.10.4, line 12 of proof]Ka-ESDE, the direct sum

Btepg—1Lrgua @ Lypi 1-dyex)-

The only £ of order dividing 2 is either Q; or £, ... The second is not
allowed, because it “removes” the factor L, ., from each piece of the /(co)-
representation. The first is not allowed, because the [(co)-representation of
F T(L J‘) is

Dtepy— ['Xquad ® Ly (pJ (1-d)tx)s

and for i # j, no p'¢ is any p/{’, for ¢, ¢ any d — 1 roots of unity.

In the d even case, where each factor’s Ggepm is £SL(d —1), £ must have
order dividing 2(d — 1). As P > 2d — 2, such an £ is necessarily tame, so
of the form £, for a character y of order dividing 2d —2. If y is nontrivial,
we multiply the EXqua , factors in the /(oc) summands by x, not allowed. So
it remains only to rule out both FT(L;) =~ FT(Lj) and FT(L;)¥ = FT(L;)
Again we compare [(oo) summands. The first case cannot happen, for the same
reason as above: no p‘l is any p’/¢’. The second case cannot happen because
no —p'¢ is any p’/¢’. This concludes the proof that our F,, on S[1/4] is
geometrically irreducible.

9. Some open questions

As already noted in the “Historical Overview” section, Zarhin has shown that
for hyperelliptic curves over Q (or indeed over any field K which is finitely
generated over Q) of the form Y2 = h(X), with A a polynomial of degree
n=2g¢g+1 or 2g + 2, various explicit conditions on n and on the Galois group
of h over K guarantee that the £-adic representation on H! has image which is
open in the group of symplectic similitudes GSp(2g, Q). For example, if & has
degree n > 5 and has Galois group over QQ either S, or A,, then this holds,
cf. [Zarl]. What if any are the analogues of Zarhin’s results for y components
of Hc1 of superelliptic! curves over cyclotomic fields, and their descents to Q,
when they exist?

1See |AP, Thm. 3.8] for the monodromy of the universal family of tri-elliptic curves.
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