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A note on Galois representations with big image

Nicholas M. Katz

Abstract. Given an integer N >3, we will first construct motivic representations (i.e.,
built out of pieces of the cohomology of projective smooth varieties, in fact curves)

p:Ga/(Q/Q(^))^GL(«,Q)
with open image, for any I which is 1 mod N and for certain n. We will do this in three

different ways. The third of them has a descent to Q when N is 3 or 4. This provides us

with motivic Galois representations of Ga/(Q/Q) with open image in GL(n, Qg) for any
even n > 6 and any I which is m, 1 mod 3 or mod 4.
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Historical overview

We begin with a projective smooth curve C/Z[\/N] with geometrically
connected fibres, of genus > 1. For example, we might take C to be the
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hyperelliptic curve (whose affine points, in addition to which there is one point
at oo, are) defined by the equation

Y2 h(X)

with h{X) G Z[X] a monic polynomial of degree 2g + 1 whose discriminant

A G Z is nonzero. This is such a C over Z[1/(2A)]. By the end of the 1940's,

Weil had proven the "Riemann Hypothesis" for curves over finite fields. This is

the statement that for any prime p not dividing N, when we count the lF/; -points

on the curve and define the integer ap by

#C(¥P) p + 1 -ap,

then we have the estimate

M < 2gjp.
More generally, for ¥(,/¥p a finite extension, and aq defined by

^C(Wq) — q + 1 — aq,

then we have the estimate

\aq I < 2gjq.
One of Weil's proofs goes via the Jacobian Jp of Cp := C <8>z[i/tv] Fp- For a

given p not dividing N, choose a prime I ^ p and consider (what came to be

called) the Tate module Ti(Jp), formed out of the points of i power order on

Jp(¥p). This is a free Z^-module of rank 2g on which the arithmetic Frobenius

Frobp (x i-^ xp) acts. The connection to the ap is given by the identities in TLi

'Vrdce(Frobp\ T((Jp)) ap. 'frace(Froh", \ 7)(Jp apn for all n > 1.

These identities imply that the reversed characteristic polynomial det(l -
XFrobp\Ti(Jp)) lies in Z[X\, and is independent of the auxiliary choice of

I 7^ p. The Riemann Hypothesis then becomes the statement that when we factor
this Z-polynomial over C, say

det(l - XFrobp\Ti(Jp)) ]~[(1 - atX),
i 1

then each at has

kl sfp-

By 1957, Taniyama [Tan] knew that if we look instead at the Jacobian Jq of
Cq := C®z[i/iv]Q, and view Tt(Jq) as a representation of Gal(Q/Q), then this

representation is unramified outside Ni, so defines a representation of (what came
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to be called) the fundamental group n\(Spec{Ij[\/Ni])). Moreover, he knew that

tor p not dividing Ni, the action of the arithmetic Frobenius conjugacy class

Frobp^anth in this it\ is related to the situation in characteristic p by

det(l - XFrobp<arith|7i(*%)) det(l - XFrobp\Tt(Jp)).

Thus was born the notion of a compatible system of I -adic representations. In the

same paper, Taniyama also initiates the study of abelian I-adic representations,
a theme later taken up by Serre [Ser5j.

By the mid-1960's, Grothendieck and his school had developed I-adic
cohomology (see [KS, 9.0, 9.1] for a quick review). One of its consequences
is this. For a projective smooth X/X[\/N] with geometrically connected fibres

of dimension d, and a prime I, we have £-adic representations Hl(X,Qi) of
jt\(Spec{T,[\/Nt])). These Hl(X,Qc) vanish for i >2d, and their dimensions

are the usual Betti numbers of the complex variety Xc For each prime p not

dividing Ni, we have

#X(FP) T> 1 )' Trace(Frobp ,geom

i

#XÇFpn) ^(—l)iTrace(Froè^SÉ,om\H' (X, Qe)) for all n > 1,

i

with FrobPtgeom the inverse of FrobpAnth. In 1973, Deligne proved that the

individual traces Trace(Frobnp Keom
| // ' Jf, Q ^ are integers independent of the

auxiliary choice of i ^ p, and that the eigenvalues of FrobPtgeom\Hl(X, Q^) all
have complex absolute value ^fp.

To my knowledge, it is Serre who first considers the question of determining
the image of these £-adic representations, cf. [Serl] and [Ser5, Chapter 4, 2.2].
Consider an elliptic curve E, whose H1 is the dual of its 7) (g) Serre proves
that if Ec does not have complex multiplication, then for every I, the image
is an open subgroup of GL(2, Qi). In [Ser3] he proves that with finitely many
exceptions, the image is the largest possible, GL(2,Z^).

One key application of knowing the Galois image for non-CM elliptic curves
is to clarify the Sato-Tate conjecture in this case (see [Tat, top of p. 107] for
the first written mention of this conjecture, and see [Nam] for the history, in

Japanese, of its 1963 discovery by Sato), and act as a harbinger of a conceptual

understanding of what the conjecture says in general (cf. [Ser7, p. 6]). In the

elliptic curve case, if instead of looking at the reversed characteristic polynomials

det(l - XFrobPtarith\Tt(EQ))

we "unitarize" them, and look at

det(l — XFrobp^anth! 4])\Tt (%))
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then these are characteristic polynomials of elements of the compact group SU(2),
and as such determine conjugacy classes in that group. Equivalently, the space
of conjugacy classes in SU(2) may be seen as the closed interval [-2,2], by the

map
Trace : SU(2) [-2,2],

Then each p not dividing N gives us an integer ap with \ap\ <2 J~p, and we

view the real number

"p/Vp e h2-2!

as being a conjugacy class in SU(2). Via the isomorphism

2 cos : [0,7i] ^ [—2,2]

we view [0, it] as the space of conjugacy classes. In this "angle" picture, the

conjugacy class attached to p is the unique angle 9P [0, n] such that

ap 2.v/pcos(0/,).

The Sato-Tate conjecture then asserts that these conjugacy classes {0p}p\n are

equidistributed in the space of conjugacy classes of St/(2) for its "Haar measure",

which, in the [0, ti] picture, is the measure

(2/7r) sin2(6)d6.

Let us return to the case of a projective smooth X/Z[\/N] with geometrically
connected fibres. Then each Hl is selfdual, with a duality pairing

Hi(X,Qc) x Hi(X,Qe)^Qe(-i),

where Qe(—i) is the one-dimensional representation on which FrobP:geom acts

as p'. This pairing is alternating when i is odd, and symmetric when i is even.

In the case when i is even, we can replace H'(X,Qi) by its Tate twist
Hl (X,Qt)(i/2). This space is orthogonally self dual in the usual sense, and

so for Hl (X,Qt)(i/2) the image of the f-adic representation lies in the

orthogonal group 0{h',Qe), with h' dimH'. If we combine the result

of Beauville [Beau, Section 2, Thm. 2J with the trick of Terasoma [Ter,
Thm. 2] we find that, for each £, there exist smooth surfaces X c F3

over <Q of any fixed degree d > 4 for which the f-adic image on the

quotient Prim2(X,Qi) H2{X,Qi)(\)/( the hyperplane class L) is open in

0(h2 — l,Qt) (and Zariski dense in 0(h2 — 1)).
When i is odd, no such Tate twisting trick is available, and the image for

Hl lies in the group of symplectic similitudes GSp{Hl ,Qi). [In the case of the

two-dimensional H1 of an elliptic curve, this group of symplectic similitudes is
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just GL(2,Q^).j In contrast to the even dimensional case, where we know the

existence of X/Q with suitable open image but do not know how to write down

particular examples, Serre's theorem gives us open image for every E/Q without
complex multiplication. In higher genus, we have Zarhin's result, who has shown

that for hyperelliptic curves over Q (or indeed over any field K which is finitely
generated over Q) of the form Y2 h(X), with h a polynomial of degree

n 2g + 1 or 2g + 2, various explicit conditions on n and on the Galois group
of h over K guarantee that the t-adic representation on H1 has image which is

open in the group of symplectic similitudes GSp(2g,Qz). For example, if h has

degree n > 5 and has Galois group over Q either Sn or An, then this holds,
cf. [Zarl]. See the papers [Zar2, Zar3, Zar4] for more such spectacular results.

We cannot hope to attain an open subgroup of GL(n,Q^) for n > 3 just
from looking at the cohomology of projective smooth varieties. What we can

hope to do is find a suitable X and an automorphism 0 of finite order of X,
such that when we break its Hl into eigenspaces for the induced action of 0,
then for a well chosen i and a well chosen eigenspace, the f-adic image of the

representation on this piece of this Hl will be an open subgroup of GL(n,Q^)
for n the dimension of this piece. This is the theme we will pursue here.

Introduction

Given an integer N > 3, we will first construct motivic representations (i.e.,
built out of pieces of the cohomology of projective smooth varieties, in fact

curves)

p : Ga/(Q/Q(fr)) -+ GL(n,Qe)

with open image, for any i which is 1 mod N and for certain n. We will do

this in three different ways. The third of them has a descent to Q when N is

3 or 4. This provides us with motivic Galois representations of Gal(Q/Q) with

open image in GL(n,Q(.) for any even n > 6 and any i which is 1 mod 3

or mod 4.

The underlying idea in all the cases considered is this. First, we find families
of (projective, smooth, geometrically connected) curves over open sets of P1

over suitable rings of S -integers together with an action of a finite cyclic group
G such that suitable G-isotypical components of the H1 along the fibres have

complex monodromy groups which are Zariski dense in SL(n, C) (for n the

rank of the isotypical component in question). The Zariski density is proven by

specializing into finite characteristic, where on the one hand old results of the

author (especially [Kat3] and [Kat4]) give such Zariski density results for the

geometric monodromy groups in characteristic p, and where on the other hand
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a fundamental semicontinuity theorem of Pink, [Kat3, 8.18.2] or [Kat7, 2.1], tells

us that knowing this Zariski density in any single characteristic p forces its truth
in characteristic zero. The second step is to apply a form of Hilbert irreducibility,
along the lines of Serre [Ser6, Theorem, p. 149] or Terasoma [Ter, Thm. 2],
This shows the existences of infinitely many rational points in the parameter

space such the isotypical component of the H1 at that rational point is a Galois

representation with the desired large image. We should point out that our method
does not give explicit rational points with this property.

The descents from Q(£jv) to <Q in the cases N — 3 and /V 4 are in some

sense tricks. They make explicit use of well-chosen elements of PGL(2,Q) of
orders 3 and 4 respectively, namely W and W i-» -jp+y. We do not
understand the general setting, if there is one, to which these tricks should belong.
With the exception of these tricks, whose "discovery" we stumbled up in 2001,

there is virtually nothing in this article that could not have been written 25 years

ago.
The problem of constructing Galois representations with large image has also

been considered by Upton [Upt] in the case GL3, by Greenberg [Gre] for GLn,
and by Cornut-Ray [CR] for more general groups. The construction of Upton
is motivic, those of Greenberg and Cornut-Ray are spectacularly non-motivic
(in the sense of making no appeal or reference to cohomology). Motivic Galois

representations with images which are Zariski dense in exceptional groups have

been constructed by Dettweiler-Reiter [DR3] (for G2, by local system methods),

by Yun [Yun] (for G2, E-j, E&, by automorphic methods), and by Boxer-Celegari-
Emerton-Levin-Madapusi Pera-Patrikis [BCE+] (for E(y, also by automorphic
methods).

It is a pleasure to thank Peter Sarnak and Laurent Clozel, who awakened in
2001, respectively reawakened in 2016, my interest in this question.

1. The case N > 3

In this section, we fix an integer N > 3, an integer n > 5 such that n + 1 is

nonzero mod N, a prime number I which is 1 mod N, and an embedding of
Q((jv) into <Q^. We also fix a monic polynomial

f fn+l(X)e Z[X]

of degree n +1, which, over C, is a Morse polynomial, meaning that the derivative

f'(X) has n distinct zeroes, say and / separates these zeroes:

f(a{) £ fioij) if i ± j.
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The values /(a,) are called the critical values of /. The critical values are

integral over Z[l/(n + 1)]. We define a polynomial Fcrit.vai.(T) e Z[l/(n + 1)][T]
by

Fcrit.val.iT) := n (T-f(at))
/UOtt CT/ 0/ //

and denote by

AMorseif) '= Discriminant {Fcrit.vai).

For any t e C which is not a critical value of /, the polynomial t — /(X) has

all distinct roots. For any prime p which is prime to n + 1 and to the numerator
of AMorseif the coefficient-wise reduction mod p of / is a Morse polynomial
in characteristic p.

For example, the polynomial Xn+l — (n + \)X is a Morse polynomial. The

zeroes of its derivative are the n 'th roots of unity. Its critical values are {—«£}çe/J,„

and FcriLvai(T) Tn-(-n)n Its reduction mod any prime p not dividing n(n +1)
is a Morse polynomial in characteristic p.

Over the parameter space

S := Spec(Z[ÇN, l/N, \/(n + 1), I/AMorSe(f)][T][\/Fcrit.vaiiT)])

we have the one parameter family of curves n : C -* S given by

C : Yn T- f(X).

The group /x/v := iin(Z[Çn,1/N]) acts on this family, by (X, Y) \-> (X,i;Y).
The sheaf Ttj := is lisse on S[\/i\, and carries the action of
For a character / of /x,v of full order N, the /-isotypical component °f
Tlj is lisse on S[\/t] of rank n and pure of weight one. [It is to insure the

purity that we need n + 1 to be nonzero mod N, otherwise the rank of 7^,/,x
remains n but its quotient of (highest) weight one has rank n — 1, cf. [Kat4, 5.16

and 5.18].] We denote by

Pi,f,x ' ^tOSD/^D GL(n,Qe)

the f-adic representation which "is"

Theorem 1.1. The image of n\(.S'[l/£]) in GL(n,Qi) is open. Moreover, if we

embed Z [£w] hito C, the image of

nfeom(S[\/i]):=7tl{S ®Z[^]C)

contains an open subgroup of SL(n,Qf).
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Proof. It suffices to prove the "moreover", as the determinant, being pure of
weight d / 0, certainly has open image in Let us denote by F the image
of Tïf60"1 (S[\/1]) in GL(n,Qi). Fix a prime p not dividing either n + 1 or the

numerator of AMorseif), and a /?-adic place of Z[Çn,\/N] with residue field

some with q 1 mod N We denote by r(/?) the image of jif"m(S[\/1]®¥q)
in GL(n,Qi). By Pink's specialization theorem, cf. [Kat3, 8.18.2] or [Kat7, 2.1],

r contains (a conjugate of) T(p). So it suffices to show that Y(p) contains an

open subgroup of SL(n,Qi). For this, we argue as follows. It is proven in [Kat4,
5.13] that the Zariski closure Ggeom,p of F(/?) sits in

SL(n) G Ggeom,p G GL(n)

and has determinant of finite order. Let us denote by

r(p)i c r(p)

the subgroup of elements of determinant one. This is a subgroup of finite index,

so its Zariski closure contains the identity component G®eom
p ~ SL(n). Hence

r(/?)i is Zariski dense in SL(n). We then conclude by the following well-known
lemma, cf. [Ser2, Cor, p. 120], which we record for ease of reference.

Lemma 1.2. Over Ot, let G G SL(n) be an irreducible connected (and hence

semisimple) algebraic group. Suppose F C G (Of) is a closed subgroup which is

Zariski dense in G. Then V contains an open subgroup of G (Off.

Proof. The group F is an f-adic Lie group. Every open subgroup Fj of F

is also Zariski dense in G (because G is connected, and replacing T by

T! does not change the identity component of the Zariski closure). Its Lie

algebra Lie(T) Lie(Fx) is reductive, because Ti has, via G, an irreducible

representation, cf. [Bou, p. 78, Prop. 5, a <=^ e]. Because this irreducible

representation has trivial determinant, Lief F) has no nonzero abelian factor.

Thus Lie(T) is semisimple. One knows [Bor, 7.9] that a semisimple Lie algebra
is algebraic. Visibly we have the inclusion Lie(F) c Lie(G). Thus Lie(F) is

LiefH) for some connected semisimple group H G G, and for a small enough

Ti, IT is open in H(Oi) (because they have the same Lie algebra) and hence

is Zariski dense in H. Therefore H — G.

This concludes the proof of the theorem.

Remark 1.3. In fact, for any t which is 1 mod N, the image of ptja contains

SL(n,Ze) (via some -lattice in YFfj\x [See [HL] for another approach to

this sort of question.] To see this, we use the theory of middle convolution
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with mod i coefficients (written in a different language by Dettweiler-Reiter in

[DR1J and [DR2], and also by Stambach-Vöklein in [SV]), applied in any good
characteristic p. The sheaf is the middle additive convolution

*mid,+

Its reduction mod I is the middle additive convolution

C-X *mid,+ (/*Ff/Ff).

Because f is Morse, the second factor is irreducible, tame at oo, and all of its

local monodromies at finite distance are reflections, cf. [Kat5, 3.3.6]. Therefore the

middle convolution is irreducible, tame at oo, and all of its local monodromies

at finite distance are pseudoreflections with determinant xXquad, which is always
of order > 3 because N > 3. Thus the mod I image of T(p) is an irreducible

subgroup of GL(n,¥c) which is generated by pseudoreflections of order > 3. By
a theorem of Wagner [Wag, Thm. 1.2 and following paragraph], an irreducible

subgroup of GL(n,¥i) generated by pseudoreflections of order > 3 necessarily
contains SL(n,¥i) provided that n >5.

The inverse image, call it r(/?)i, in F(/?) of SL(n, F^) lies in SL(n,Zi)
(because the determinants of elements of r(p) are roots of unity of order dividing
I— 1). Then F(/>)i is a closed subgroup of SL(n,Zi) which maps onto SL(n, F^).
One knows [Ser5, Exc. 1, p. IV-27] that if n > 2 and t > 5, the only closed

subgroup of SL(n,Zf) which maps onto SL{n,¥i) is SL(n,Ze) itself. Thus

F(/?)i is SL{n, Zf). Hence F(/?) contains SL(n, Z^). As F contains F(p), we

are done.

Here is another approach to this question, which gives the result for all but

a finite set of I which are 1 mod N and does not use the theory of mod I
middle convolution. Over the Riemann surface San := (S <8>z[Gvl with

K := Q(£„)

we have the K -local system

TKj := R(itan)\K

and its x component J~kj\x ^e know that each of its local monodromies at finite
distance is a pseudoreflection of known order > 3, and that (correctly chosen

conjugates of each of) these elements generate the entire image of ji\(San in

GL{n,K). So if we invert some highly divisible integer M, we can find an

Ok[\/M]-lattice ToK\\fM\j,x in ^KJ\x whose monodromy representation lands

in GL(n,öfc[\/M]). Because our Ai-representation was absolutely irreducible,
the entire matrix ring Matn(K) is spanned over K by the the image of the
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X-groupring of rt\ (San). At the expense of increasing M, we may assume that

Matn(ÖK[\/M])) is spanned by the image of the ö^[l/M]-groupring. Once we
are in this situation, then the reduction mod any prime V of Ok\1/ M] of this

öfc[\/M]-form of our monodromy representation will be absolutely irreducible.
Take a V whose residue field is a prime field and at which the completion
of K is (Q>£. We apply Wagner's theorem to conclude that the monodromy

representation of Fok\\im\j,x <8> on San has image containing SL(n,Zi).
On the scheme

Se S <8>Z[Çjv]

we have our Qi local system which is the "partner" (in the sense of [AGV,
XI, 4.4J via [AGV, XVI, 4.1]) of the transcendental local system

on San. So the image of the monodromy representation of Tij on the scheme

Sc contains SL{n, Z^).

Remark 1.4. The description of the local system as the middle additive

convolution

£-X *mid,+ (/*Qe/Qi)
tells us what its local monodromies are in terms of those of cf. [Kat5,
3.3.6]. According to [Kat5, 3.3.3, 3)], this local system will be rigid if and only
if f*Qt/Qe is rigid. But only for a Morse polynomial / of degree < 3 will
f*Qe/Qe be rigid. This lack of rigidity means that we can't have an a priori
description, in terms of local monodromies alone, of the local system on San

which is its "partner".

Corollary 1.5. There exist infinitely many t e Q((jv) with h'crit.val. (0 0 for
which the representation of Gal(<-Q/Q((jv) given hy specializing T to t {i.e., by

composing the maps

Gal(Q/Q(£aO) 7ti{Spec(Q{l;N)) -* nfiS Q) -> 7n(S[l/f]) ^ GL{n,Qe),

the last map being the representation has open image, indeed the same

open image as the representation Pt,f\x

Proof. This follows from Theorem 1.1 by the form of Hilbert Irreducibility given
in [Ter, Thm. 2] or in [Ser6, Theorem, p. 149],

Remark 1.6. When we specialize T to t e Q(Çn), the f-adic representation we

get is the /-component of

for Ct the curve
Ct:YN t- f(X)
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over Q(£iv). It would be interesting to exhibit specific values of t for which the

image is open.

2. An alternate approach to the case N > 3, N ^ 4

Fix an integer n > 1 such that n + \ is nonzero mod N. Fix / fn(X) e Z[X]
a monic polynomial of degree n whose discriminant A(/„) is nonzero. [For
example, we might take Y[1=\{X —i), whose discriminant is nonzero mod every
prime p > n.] Over the parameter space

5 := Spec(Z[ÇN, l/N][T][l/fn{T)][\/A{fn)])

we have the family of affine curves

it : C —> S

of equation
C: Yn fn{X){T-X).

The group Hn(Q(Çn)) has an obvious action on this family, namely (x,y)
(x,Çy). For any I, the relevant H1 along the fibres,

Tt := R'n^Qe),

is lisse on S[\/l], and carries an action of jinCQ>('Çn))
Suppose now that I is 1 mod N. Then we can choose an embedding of

Q('Çn) into Qi, and diagonalize the action. For a character y of Pn(Q(^nÏ)
of full order N, the y isotypical component of Ti is lisse of rank n and

pure of weight one.

Theorem 2.1. Fix an integer n > 5 such that n + 1 is nonzero mod N. Suppose
that i is 1 mod N. Let y be a character of order N. Then the local system

on S[\/l\, viewed as a representation

px:^(S[l/f])-^GL(n,Q£)

has open image. Moreover, after extension of scalars from Q(£at) to C {e.g., by

mapping Çn to exp(27r//A)), the image of 7tfeom{S[\/{]) := Jti{S<S>tz[^N,i/N]^)
contains an open subgroup of SL{n,Qi), and for all but at most finitely many I
the image contains SL(n, Zf).

Proof. The overall structure of the proof is the same as that of Theorem 1.1.

It suffices to prove the "moreover" statement, and for this it is enough to
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specialize to a good characteristic p ^ I (one not dividing A(/«)) and a residue

field Fq at a p-adic place of Q(£jv)- Then our local system, pulled back to

Spec(¥q[T][\/fn(T)], is tame at oo (as it comes from characteristic zero, cf.

[Katl, 4.7.1]). Its trace function is as follows: for k/¥q a finite extension, and y
extended to kx by composition with the norm,

Trace(Frofi;^ | J),*) -^ x(Mx)(t ~ *))•
xek

This is the trace function of the middle additive convolution [Kat5]

£-X *mid,+ £-x(fn(x))-

Thus our local system is geometrically irreducible [Kat5, 2.9.6 and 2.9.8], and

its local monodromies at finite distance (i.e., at the zeroes of fn(t)) are all

pseudoreflections of determinant y2, cf. [Kat5, 3.3.6]. Because N > 3 but

N 7^ 4, y2 has order > 3. It then follows from |Kat4, 5.11] that in our chosen

characteristic p, the image P(/>) of nfeom(S <8>F9) has Zariski closure GgeomiP

with Ggeomp SL(n). Exactly as in the proof of Theorem 1.1, we infer that

T(p) contains an open subgroup of SL(n, Qe). To show that, for all but at most

finitely many t, it contains all of SL(n,Zt) for a suitable Z^-lattice in T(,a,
we repeat that Wagner argument of Remark 1.3.

Remark 2.2. On S"n, the ("partner" of the) y component

G-X *mid,+ £-x(fn(x))

of the local system Tc Rlit"nC is rigid (by [Kat5, 3.3.3, 3)]. It is the sheaf of

germs of local holomorphic solutions of a Pochhammer hypergeometric equation,
cf. [DM, bottom of p. 6] and [Poc, pp. 322-325], This situation is in stark contrast
with that of Remark 1.4, where we in general lack such rigidity.

Remark 2.3. Exactly as in the previous section, Hilbert Irreducibility ensures
that there are infinitely many t e QCÇn) with f„(t) / 0 for which the I -adic

representation given by the y component of the H] of the curve

YN fn(X)(t-X)
over Q(£jv) has open image in GL(n,Qi).

3. Yet another variant, for N >3

In this section, we fix an integer N > 3, a nonzero element A Z[£jv], an

integer n > 2, a prime number I which is 1 mod N, an embedding of Q((jv)
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into Qt, and a monic polynomial / fn(X) e Z[fjv][AC] of degree n which,
over C (by any choice of embedding) is a Morse polynomial. For any t C

which is not a critical value of either / or of / + A, the rational function

t ~ /(*) - A

t ~ f(X)
has n simple zeroes and « simple poles at finite distance, no other zeroes or
poles, and takes the value 1 at oo. We denote by

F Fcrit.m,.(T)

the monic polynomial whose roots are the n — 1 distinct critical values of /.
We make the additional hypothesis

(CritDiffA) The polynomial F(T)F{T - A) has 2« - 2 i.e., all distinct, roots.

Equivalently, the condition on / is that A is not the difference of two distinct
critical values of /. We denote by Acrit,A Z[£#, 1/(2«)] the discriminant of
F{T)F(T - A).

Notice that if / is a Morse polynomial satisfying (CritDiffA), then for any
constant a e Z[£jy]> the polynomial f(X) + a is also a Morse polynomial
satisfying (CritDiffA)

Here is an example, to show that for any A ^ 0, we can find a Morse / fn
which satisfies (CritDiffA). For an integer Af / 0, consider the polynomial

X" — nM"~1X.

Its critical values are {Mn(\ -«)t}çe/t„_, • Using the archimedean inequality

\e,a — 1| > 2a/n for 0 < a < ji,

we see that for every complex embedding of Q(Çn-i), and any two distinct n — 1

roots of unity / and /', we have

!(/, - l)(Ç-(r')l >4.

So taking M large enough that 4M" exceeds every archimedean absolute value

of A provides a suitable /„.
More generally, if / /„ is a Morse polynomial, then for any integer M, the

polynomial Mn f(X/M) has critical values M" times those of / (and critical
points M times those of /). So if we take M sufficiently large, Mnf(X/M)
will satisfy (CritDiffA).

Fix now a Morse function / and an A ^ 0 in Z[£jy], such that (CritDiffX)
holds for /. Over the parameter space
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S := Spec(z[ÇN, l/N, 1/(2n), 1/4,\/AcritA)[T][\/(F(T)F(T - 4))])

we have the complete nonsingular model (add N sections along oo)

ix : C —> S

of the family of smooth affine curves

N _
T — f(X) — A

T- f(X)
•

The sheaf Tt := is lisse on 5[\/t\ of rank (N -l)(2«-2) and pure of
weight one. For any character y of ol' full order N, the y component Tf
is lisse of rank 2« — 2 and pure of weight one. [In fact, this is true for every
nontrivial y of order dividing N.]

We denote by

Pl,f,A,x *i(S[l/^D GL(2n - 2,Qi)

the f-adic representation which "is" Ti,x.

Theorem 3.1. Suppose we are in one of the two following situations.

0) n > 4, / satisfies (CritDiffA) and is of the form X" — Mn 1nX + a far
some a 6

(2) n >6, f satisfies (CritDiffX) and is of the form Mnh(X/M) + a for some

a e Z[(jv] and some monic h hn e Z[2f] whose derivative h' has Galois

group over Q ///c full symmetric group S„_i.

77zen foe image of jt\(,S"[I /£]) fo GL(2n — 2, Q() is open. Moreover, if we embed

Z[(jv] into C, foe image of

7tleom{S[\/l]) :=7n(S ®Z[U]C)

contains an open subgroup of SL(2n — 2,Qi).

Proof. Exactly as in the proof of Theorem 1.1, it suffices to prove the

"moreover". And for this it suffices to pass to an F9-valued point of
Z[(jv, 1/2V, 1/(2h), 1/Acritji, 1/f], and show that over 5 <g> the image of
7rj'ra'"(N (g) F?) contains an open subgroup of SL(2n — 2,Qt). We will choose

such a point whose characteristic p is sufficiently large so that, in case (1), [Kat3,
7.10.5] applies, and in case (2) [Kat3, 7.10.6] applies. What this choice of p
ensures is that in our characteristic p situation, when we consider the Fourier
Transform

FT(ftQi/Qi)
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its geometric monodromy group Ggeom sits in

Spin — 1) C Ggeom c /ipSpin — 1), in case (1), n odd,

SL{n — 1) C Ggeom C ±1 \ipSL{n — 1), in case (1), n even,

SL(n — 1) C Ggeom C ±1 i±pSL{n — 1), in case (2), any n.

[The references cited apply to an / to which a suitable constant has been added.

The effect of such an addition is to perform an additive translation on f*Qe/Qe,
which in turn has the effect of tensoring its Fourier Transform by a character of
order p, hence the \ip factor in the above statement.]

Using Lemma 1.2, it suffices to show that Ggeom SL(2n — 2) in this
characteristic p situation.

Henceforth we work in characteristic p. The trace function of our sheaf Tt.x
at points t of a finite field extension k/¥q with F(f)F(f — A) 0 is the character

sum

~1 ~ X> ° N°nnt;f,)('
~ -).with the usual convention that /(O) /(oo) 0.

Write
t ~ /(*) ~ A

_
A

t-fix) t - fix) '

Then we see that this character sum is the additive convolution

-EC^Norm/fc/F^O - A/it -u))(#{x e k\fix) u) - l).
Uk

of the trace functions of £xil — A/x) and f+Qi/Qi. In other words, has

the same trace function on S <g> F9 as the additive convolution

Cxi 1 - A/x) *!i+ f*Qi/Qe.

Let us admit for a moment the following key lemma.

Lemma 3.2. The canonical surjection of perverse sheaves is an isomorphism

Cxi 1 - A/x) *!,+ f*Qt/Qi Cxi\ - A/x) *mid,+ f*Qi/Qe-

This middle convolution is geometrically irreducible, and all its monodromies at
finite distance are pseudoreflections of determinant XXquad-

Then has the same trace function on S <g> F9 as the geometrically,
and hence arithmetically, irreducible perverse middle convolution above. By
Chebotarev, it follows that is isomorphic to this middle convolution. Thus
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Tla is lisse on S 0 F9 of rank 2n — 2 > 6, geometrically irreducible, with
all finite monodromies pseudoreflections of order > 3. That Tia is tame at oo

results from its "coming from characteristic zero", cf. [Katl, 4.7.1 (i)]. The result
then follows from [Kat4, 5.11].

It remains to give the proof of the key lemma.

Proof. To show that the convolution is equal to the middle convolution, it is

equivalent to show that its Fourier Transform FT is a middle extension, and that
its Fourier Transform is geometrically irreducible. Now FT turns convolution
into ®, so the FT of the convolution is

FT(CX(\ - A/x)) <g> FTif^Qt/Qi).
Both factors are lisse on Gm. At 0, the first factor has unipotent local monodromy

Unip(2), cf. [Kat3, 7.12, SL-Example(3)], and the second factor has local

monodromy ®x_xn=\,x^t£x, cf. [Kat3, 7.10.4 (1)], so their tensor product correctly
vanishes at 0.

It remains to show that this tensor product is geometrically irreducible. The first

factor, being pure, has Ggeom a (not necessarily connected) semisimple subgroup
of GL(2). So its identity component is either trivial or SL(2). It is not trivial,
because it contains Unip(2).

As recalled above, by [Kat3, 7.10.5 and 7.10.6], the second factor has G®
m

either SL(n — 1) or, if n is odd, possibly Sp(n — 1). As n > 4 in all cases,

its Lie algebra is a simple Lie algebra which is not that of SL(2). So by the

Goursat-Kolchin-Ribet theorem [Kat3, 1.8.2], the direct sum object

FT(CX( 1 - A/x)) ® FTifMQe)
has

Ggeom — SL(2) x (either SL(n — 1) or, if n is odd, possibly Sp(n — 1)).

Consequently, the tensor product is irreducible.
That its local monodromies at finite distance are pseudoreflections of

determinant XXquad is proven in [Kat6, 6.1.18],

This concludes the proof of the key lemma, and with it the proof of the

theorem.

Remark 3.3. Exactly as in the previous sections, Hilbert Irreducibility ensures
that there are infinitely many t Q(Çn) with F(t)F(t — A) 0 for which the

f-adic representation given by the y component of the H] of the complete

nonsingular model (add pjq at oo) of the curve

t _ f(X) - A
v —J t - f{X)
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over Q{Çn) has open image in GL(2n — 2,Qt).

287

4. Working over Q, when N 3 and I 1 mod 3

Consider the automorphism of the rational function field Q(W) given by the

fractional linear transformation
1

a : W i->
1 - W

One checks easily that a3 is the identity. We define the trace rational function

1 1 W3-3W+\
S(W):=W + a(W) + a*m W + — + l--= W{W I)

which is, of course, a -invariant.
On the other hand, after we extend scalars to Q(£)(WO, for £ — £3 a primitive

cube root of unity, the rational function

W + Ç2
R(W) := V

w + ç

is easily checked to satisfy

ct(/?(HO) ÇR(W),

and hence /?(W)3 is a -invariant.
We have the following miraculous identity, whose verification is left to the

reader.
S(W) + 3i;2

S(W) +
With these preliminaries out of the way, we fix an integer n >4, an integer
M > 2, and take

f(X) := X" — nMn~1X.

Consider the one parameter family of curves in (A7 W) space over Q (T)

T-f(X) S(W).

This family has an automorphism of order three, which we will denote a, given
by

(X, W) h» (X,<j(W)) (X, 1/(1 - W)).

If we extend scalars to Q(£)(T), we can write this curve as

T-f(X) + 3Ç2 {W + Ç2^3

R(Wy := (W + fY
\w + U

T - f(X) + 3£ V W + Ç
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Now define

y.= K±Il
w + r

Then in (X, Y) space, we have the curve

y3
T - f(X) + 3/2

_
3£ - 3Ç2

T-f(X) + 3iT-f(X) + 3Ç'

on which the automorphism of order three has become the obvious automorphism

(X,Y)»(X,ÇY).
For F(T) := Fcrit vai (T) the critical value polynomial for f(X) — 3£3, and

for A := 3£ - 3£2, we saw in Section 3 that this last family has a projective
smooth model over

S := Spec(z[b, 1/3,1/(2«), 1 /A, 1/Acrit>A][T}[l/(F(T)F(T - d))]).

So if we replace each of the quantities

1/d, l/AcrM, (F(T)F(T - A))

by its Norm from Q(Ç) down to Q, we find that our family

T - f(X) S(1F)

has a projective smooth model

7T : C —> So

over So, the Spec of the ring

Z[l/3,1/(2«), l/Norm(d), l/Norm(Ac„v)][r][l/Norm(F(r)F(7 - A))].

For any t, we have the lisse (QT sheaf Ti := on S0[l/f]. When I 1

mod 3, and x is a character of full order three, we can extract the / -component

Tia, which is lisse of rank 2« — 2 and pure of weight one. View it as an I -adic

representation

Pf,c :jri(S0[l/£])->GL(2«-2,Q).

Theorem 4.1. The image of it\(S0[l /l\) in GL(2n — 2,Qf) is open. Moreover
the image of

7rrm(S0[l/f]):=«r1(S0 C)

contains an open subgroup of SL(2n — 2, Off.

Proof. As always, the key statement is the "moreover". But So ®z C with its

is just the same as the S <8>z[?3] C with its in Theorem 3.1, applied
with f(X) — 3/.
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Remark 4.2. Exactly as in the previous sections, Hilbert Irreducibility ensures

that there are infinitely many te Q with Norm(E(r)E(r) — A)) ^ 0 for which
the £-adic representation given by the / component of the Z/1 of the complete

nonsingular model of the curve

t-f(X) S{W)

over Q has open image in GL(2n -2,Qi).

5. Working over Q, when N 4 and i 1 mod 4

This section is almost identical in idea and structure to the previous section,

so we simply explain the relevant miraculous identity and leave the rest to the

reader.

We have the automorphism of the rational function field Q(TK) given by the

fractional linear transformation

W - 1

a : W i->
W + 1

The trace rational function

2 3 W4-6W2 + 1

S(1T) := W + a(W) + cr2(W) + cr4(W)
X{X2 — 1)

is a -invariant. After extending scalars from Q(IT) to Q(/)(W), i being a

primitive fourth root of unity, the quantity

W + i
R(W) := —-W — i

transforms under a by

o(R{W)) iR(W).

The miraculous identity is

/ rv -+- i i
4

R(W) :=4 / rr T i \ 5,(IT) + 4i(W +i\- { W - i J S(W) - M

With these preliminaries out of the way, we fix an integer n > 4, an integer
M >2, and take

f(X) := Xn — nMn~lX.

Consider the one parameter family of curves in (A, W) space over Q(T)

T-f(X) S(HO.
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This family has an automorphism of order four, which we will denote a if no

confusion can occur, given by

(X, W) h* (X,a(W)) {X, (W - 1 )/{W + 1)).

If we extend scalars to Q(/)(F), we can write our curve as

T - f(X) +4 i (W + iN 4

T-f(X)- 4/

Now define

i_ _ fW + i y
i ~ \ W -i j

Y._W+i' IF
Then in (X, T space, we have the curve

y4
T - f(X) + 4j

i _
-8/

T - f(X) -Ai T - /(X) - Ai '

on which the automorphism of order four has become the obvious automorphism
(X, Y) (X,iY).

So if we replace each of the quantities

\/A,\/AcritA,(F(T)F(T-A))

by its Norm from Q(i) down to Q, we find that our family

T-f(X) S(W)

has a projective smooth model

7t C —> Sq

over So, the Spec of the ring

Z[l/(2n), l/Norm(T), t/Norm(AcnM)][r][t/Norm(F(r)F(r - A))].

For any i, we have the lisse Qe sheaf Tt Rln\Qz on S0[l/f]. When I 1

mod 4, and / is a character of full order four, we can extract the /-component
Ff,*, which is lisse of rank 2n —2 and pure of weight one. View it as an f-adic
representation

pLo : nx(S0[U}) ^ GL(2n - 2,qt)-

Theorem 5.1. The image of ttj (S0[l//']) in GL(2n — 2,Qi) is open. Moreover
the image of

7tfeom(S0[l/l]) :=7n(S0®zC)

contains an open subgroup of SL(2n — 2,
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Proof. As always, the key statement is the "moreover". But S0 <%>z C with its

is just the same as the S ®z[ç3] C with its in Theorem 3.1, applied
with f(X) + 4i.

Remark 5.2. Exactly as in the previous sections, Hilbert Irreducibility ensures

that there are infinitely many t e <Q with Norm(F(t)F(t) - A)) 7^ 0 for which
the t -adic representation given by the y component of the H1 of the complete

nonsingular model of the curve

t-f(X) S(W)

over Q has open image in GL(2n—

6. Independence of i
In each of the previous sections, we began with a cyclotomic field K := Q(£jv),

N > 3, a number field E, a proper smooth one-parameter family

TT : C -* S

of curves over a dense open set S of Spec (Of,; [T]), a character y of either

Z//VZ or of Pn(QCÇn)) with values in /Gv(Q(£at)) of full order N, and an

action of either Z//VZ or of pn(Q(Çn)) on the family.
Over C, Ean Rl(jvan)\K is a AT-local system on San whose y component

(jany., under the action of either Z/AZ or of pn (QCÇn)) has rank

cl := rank(Jra")x.

For each finite place A of AT, with completion KA, we have the K; -local

system Rlji\Kx on S[\/i], whose y component has the same rank d. For each

t e S(E), the y-component Hl(Ct®E E, K^)x is a representation of Gal(E/E),
and for variable A these form a compatible system of A-adic representations

pKt : Gal(Ë/E) -* GL(d, Kf).

For each A, we denote by G\,t the algebraic group over Kk which is the Zariski
closure in GL(d) of the image of p\j.

When we fix a place A of AT of residue characteristic t 1 mod N, then

Ka is Qf. For a fixed such A, we showed the existence of infinitely many t e E
for which the image of px,t is open in GL(d,Qi).

Theorem 6.1. Suppose that A1 is a place of K of residue characteristic t\ 1

mod N, and t e S(E) is such that the image of pxut is open in GL(d,Qil).
Then for every place A2 of residue characteristic 12 1 mod N, the image of
px2,t is open in GL(d,Qi2).
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Proof. For any such A2 of K, Hx(Ct ®e E,Qi2)x is a direct factor of
Hx(Ct <8>e E,Qt2). By Faltings[Fal, &5, Satz 4], px^.t is completely reducible,
and hence GA2.t is reductive Denote by Fx2,t the image of px2d By Bogomolov
[Bog, Thm. 1], Tx2,t is open in Gx2,t(Qx2)- So it suffices to show that Gx2,t
is GL(d). According to Hui [Flui, 3.22 and 3.19], the rank of the derived group
(Gl t)der is independent of the auxiliary choice of A. For A1; we know that

Gx\,t GL(d), so its derived group is SL(d), of rank d — 1. Therefore (G®2 t)der
is a connected semisimple subgroup of SL(d) of rank d — 1. The only such

subgroup is SL(d) itself. The determinant of p\2d is of infinite order, being

pure of weight d 0. Therefore Gx2,t must be GL(d).

Remark 6.2. See [HL, Thm. 1] and [CHT, Thm. 1.2] for other results, in slightly
different contexts, of the same type.

7. Examples in higher dimension

In this section, we give examples built with higher dimensional varieties. For

given integers n > 2 and d > 3, and k a field in which d is invertible, a

polynomial f(Xi,...,Xn)ek[Xi,..., Xn\ is a "strong Deligne polynomial" if it
satisfies the following two conditions.

(1) The affine hypersurface of equation f 0 in A" is smooth of dimension n —

1.

(2) Write / as the sum of homogeneous forms / fd + fd~\ + + fo-
The projective hypersurface of equation fd — 0 in P"_I is smooth of
dimension n — 2.

Here is another way to think of these conditions. Pass to the homogeneous form

F(X\,. ..,Xn,Z)e k[Xu. ..,Xn,Z}:= fd + Zfd_x + Z2 fd_2 + + Zd f0.

The conditions on F are that F 0 defines a smooth hypersurface Hp of
dimension n — 1 in P" and that the intersection Hp D (Z 0) defines a smooth

hypersurface of dimension n —2 in P"~2.
This point of view makes clear that in the affine space Poly(n,J) over Z[l/c/]

of all degree d polynomials in n variables (the coefficients being the coordinate

functions), the special Deligne polynomials form a dense (over any field k in
which d is invertible, the polynomial / := 1 + X? is a strong Deligne
polynomial) open set SD(n.d).

Now fix an integer N > 3, and write K := Q( 'Çn Over the parameter space

S := SD(n,d) ®m,d]0K[\/N,l/d]
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of strong Deligne polynomials /, we have the family it : T-L —» S of smooth

affine hypersurfaces of dimension n of equation

YN f(X! XN)

and the obvious action on it of the group pm (K). We fix a character / of
Pn(K) of full order N.

Theorem 7.1. Suppose n > 2, J >3, N > 3, and d is nonzero mod N {i.e.,

yd / If For each finite place A of K, denote hy t its residue characteristic.
Then we have the following results.

(1) The sheaves {Rljt\Kx)x on S[\/T\ vanish for i f n.

(2) The sheaf := (R"jt\ Ki)x on S[\ /I] is pure of weight n and lisse of
rank (d — 1 )". Its trace function is given by

Trace(FrobkJ\Fx,x) (-1)" Xk(fM).
xek"

(3) Over any field k in which d I is invertible, the geometric monodromy group
of Fx,x\^ 8> k contains SL{{d — 1)").

Proof. This is proven in [Kat6, 5.1.9, 5.1.14, and 5.2.2 1)].

Exactly as in the first section, we get the following corollary.

Corollary 7.2. Under the hypotheses of the theorem, for any A of residue

characteristic I 1 mod N, the image of the representation

Pk,x:nl{S[\IV\)-*GL{{d-\)H,th)
which "is" the sheaf J~x,x IS open in GL((d — 1 )",

Because the parameter space S is rational, Hilbert irreducibility and the

independence of t results give us

Theorem 7.3. Fix a place Ai of residue characteristic l\ 1 mod N. There

exist infinitely many strong Deligne polynomials f 6 K[X\,..., Xn\ of degree d

for which the action of GaI{K/K) on

Hc((YN fix)) ®K~K, KXl =Q£l)X

has open image in GL({d — 1)", KX] GL((d — I)", Or, Moreover, given such

an f, then for any other place A2 of residue characteristic 1 mod N, the

action of Gal(K/K) on

Hf({YN f{x)) ®K K, KXl =Qe2y
has open image in GL((d — \ )n, KX2) GL{(d — 1)",Q^2)-
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8. Explicit one parameter families in higher dimension

Thus far, we have worked over the entire parameter space of all strong Deligne
polynomials of given degree d in a given number n > 2 of variables. Over a field
in which d is invertible, suppose we have a polynomial /(X) := f(X\,..., X„)
of degree d whose leading form defines a smooth hypersurface in P"_1 (a

"Deligne polynomial") and which has only finitely many critical points (points
where all the df/dfXi vanish). For any t which is not a critical value (the value

of / at a critical point), t — f(X) is a strong Deligne polynomial.
As before, we put K Q(Xn), N > 3. Fix a degree d > 3 which is

nonzero mod N, and a number n > 2 of variables. Given a Deligne polynomial

/ Ok[X\,..., Xn] of degree d, with only finitely many critical points (in C
denote by

FcritiT) e Ok[T]

a choice of (not necessarily monic) polynomial whose roots are the distinct critical
values of /, and by

Acrit £ Ok

its discriminant. We will exhibit such an / such that for any x of full order

N, the local system whose trace function is given by the one parameter ("t " the

parameter) family of character sums

(-D" E *('-/w)
x&k"

is lisse of rank (d — 1)", pure of weight n, and its Ggeom contains SL((d — 1)").
More precisely, over

5 := Spec(0K[\/d,\/Acrit, l/N, T][\/Fcrit{T)]),

we have n : H S, the family of varieties of equation

YN t — f(X\,..., Xn).

The (R'n\Kx)x will vanish for i /«, and

?x.x := (R'niKx)*

will be lisse of rank (d - 1)", pure of weight n, and its Ggeom will contain

SL((d - 1)").
Once we have such an /, then there are infinitely many t e K such that for

every place A,- of K with residue characteristic £, 1 mod N, the action of
Gal(K/K) on
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H" ((YN t - /(*)) ®K K, KXi Qt.y

has open image in GL((cl — 1 )n,Kx.) GL((d - l)",Qf,-)-
Here is our f(X\,...,Xn), for given n and d. It is a variation on the idea

behind [Kat6, 6.7]. Define

g (A) := Xd - dX,

Choose a prime p which is 1 mod d — 1 and take

n

f(X1,...,Xn):=J2pig(^i)-
i 1

The critical points of this / are the points (a\.... ,an) where each a, is a d — 1

root of unity. The critical values are the sums

n n

J2plg(at) J2p'( 1 -d)cii.
1=1 i=i

We first show that these (d — 1)" sums are all distinct. Because p 1 mod
d — 1, the ai are Teichmüller points in Zp. After dividing by 1 — d, we are

looking at the expression of {d — 1)" distinct elements of Zp expanded in the

base p, using 0 and Teichmüller points as "digits".
The vanishing of the (Rljt\Kx)x on S[\/i] for i ^ n results by proper base

change from the universal assertion (1) of Theorem 7.1, as does the fact that our

Fx.x on S[\/l] is lisse of rank {d — \)n and pure of weight n. What must be

proven is that its Ggeom contains SL((d — 1)").
For i 1 n, and fixed A, define

L, := ((/>'g)*Qi/Qi) ® Kx.

Exactly as in [Kat6, 6.7.9-11], the purity of our Fx,x shows that is the iterated

middle convolution of the Kummer sheaf Cx with the Li :

d~X,x d^x *mid,+ *mi, I, \ L2 *mid,+ A n

This sheaf is tame at oo, lisse outside the (d — \)n critical values, and at each

critical value its local monodromy is a pseudoreflection of determinant XXnquad

There is a further property, nonpunctuality, our argument requires of the

multiple middle convolution L\ *m(y,+ L2 *mid,+ Ln, namely that it is the

direct sum of irreducible middle extension sheaves. To see that this holds, we
work successively from the right. Applying [Kat6, 6.1.12] successively, it suffices

to verify that for each m 1 n — 1,
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r**\ ii Ef=i P'(ai -hi)(**) all ratios ——!f 1,
«o - »0

for all choices of d — 1 roots of unity a0 / bo,a\,... ,am,b\ bm. To see

that this holds, simply cross multiply and rewrite this as

m m

b0 + J2plai 7^ "o + ^JPlbi.
i=i i=i

Viewed in %p, this inequality is obvious, already the first digits are different.

If in addition we knew that T\,x was geometrically irreducible, then by [Kat4,
5.11], we would know that its Ggeom contains SL((d — 1)") provided that n > 2

and either

(d -\)n >4

or
d 3,« 2, and x does not have order 3.

[When d 3 and n 2 the requirement that N be nonzero mod d 3 forces

our x to have order prime to 3.] To show the geometric irreducibility, it is enough
to work in some large characteristic P which is 1 mod d — 1 (not to be confused

with p used in defining / as the sum of plg(Xj)), with P > p2n(d~G — \

(to be sure that none of p,p2 p" is a 2d -2 root of unity mod P), with
P > 2d — 2, and such that (**) above holds in F/>, and to show there that

*mid,+ ^2 • • *mid,+ dn

is geometrically irreducible (because middle convolution with Cx preserves
geometric irreducibility). For this, it suffices to show that on Gm, the tensor

product of the (lisse on Gm Fourier Transforms

FT(L\) <g> FT(L2)... (8) FT(Ln)

is geometrically irreducible (its extension by direct image across 0 is the Fourier
Transform of L\ *mid,+ L2... *mid,+ Ln, by the nonpunctuality of the latter).

From [Kat3, 7.10.4], we know that, in our sufficiently large characteristic P,
each individual FT (Li) has Ggeom either Sp(d — \), if d is odd, or ±SL(d — 1),

if d is even. So it suffices to show that the Ggeom of the direct sum is the n -fold
self product (Sp(d — 1))" in the d odd case, and contains the «-fold self product
(.SL(d - \))n in the d even case. For then the tensor product is the product of
irreducible representations of the factors, so is an irreducible representation of
that product.

By Goursat-Kolchin-Ribet, cf. [Kat3, 1.8.2], it suffices to show that for / f j,
there is no lisse rank one £ on Gm for which FT(Li) ^ £ (8) FT (Lj or for
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which FT(Li)v s £<8> FT(Lj). In the d odd case, £ must have order dividing
2, as the only scalars in Sp(d — 1) are ±1. The /(oo) representation of FT(Li)
is, by [7.9.4, line 4 of proof, or 7.10.4, line 12 of proof] Ka-ESDE, the direct sum

®K<=ßd-\^'Xqiiad ® (l—d)Çx)-

The only C of order dividing 2 is either or CXquad. The second is not

allowed, because it "removes" the factor CXquad from each piece of the /(oo)-
representation. The first is not allowed, because the /(oo)-representation of
FT(Lj) is

©feßd-l^Xquad © ^llr(pj(l-d)Çx)'

and for i / j, no pl 'Ç is any p ' Ç', for Ç, t/ any d — 1 roots of unity.
In the d even case, where each factor's Ggeom is ±SL(d - 1), £ must have

order dividing 2(d - 1). As P > 2d - 2, such an £ is necessarily tame, so

of the form Cx for a character y of order dividing 2d —2. If y is nontrivial,
we multiply the CXquad factors in the /(oo) summands by y, not allowed. So

it remains only to rule out both FT(Li) FT(Lj) and FT(Li)v ^ FT(Lj)
Again we compare /(oo) summands. The first case cannot happen, for the same

reason as above: no p' ÎÇ is any p* The second case cannot happen because

no — p'Ç is any /££'. This concludes the proof that our T\,x on S[l/f] is

geometrically irreducible.

9. Some open questions

As already noted in the "Historical Overview" section, Zarhin has shown that

for hyperelliptic curves over <Q> (or indeed over any field K which is finitely
generated over <Q>) of the form Y2 h(X), with h a polynomial of degree

n 2g + 1 or 2g + 2, various explicit conditions on n and on the Galois group
of h over K guarantee that the f-adic representation on //1 has image which is

open in the group of symplectic similitudes GSp(2g,Qt). For example, if h has

degree n > 5 and has Galois group over Q either Sn or An, then this holds,
cf. [Zarl]. What if any are the analogues of Zarhin's results for y components
of Hd of superelliptic1 curves over cyclotomic fields, and their descents to Q,
when they exist?

'See [AP, Thm. 3.8] for the monodromy of the universal family of tri-elliptic curves.
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