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A simple construction of an action selector
on aspherical symplectic manifolds

Alberto ABBonDANDOLO, Carsten HAauc and Felix ScHLENK

Abstract. We construct an action selector on aspherical symplectic manifolds that are
closed or convex. Such selectors have been constructed by Matthias Schwarz using Floer
homology. The construction we present here is simpler and uses only Gromov compactness.
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1. Introduction

Hamiltonian systems on symplectic manifolds tend to have many periodic
orbits. The “actions” of these orbits form an invariant for the Hamiltonian system.
The set of actions can be very large, however. To get useful invariants, one selects
for each Hamiltonian function just one action value by some minimax procedure: A
so-called action selector associates to every time-periodic Hamiltonian function on
a symplectic manifold the action of a periodic orbit of its flow in a continuous way.
For this one needs compactness assumptions on either the symplectic manifold
or the support of the Hamiltonian vector field. The mere existence of an action
selector has many applications to Hamiltonian dynamics and symplectic topology:
It readily yields a symplectic capacity and thus implies Gromov’s non-squeezing
theorem, implies the almost existence of closed characteristics on displaceable
hypersurfaces and in particular the Weinstein conjecture for displaceable energy
surfaces of contact type, often proves the non-degeneracy of Hofer’s metric and
its unboundedness, etc., see, for instance, [FGS, FS, HZ, Ost, Schw, Vit] and
Section 6 below.

Action selectors were first constructed for the standard symplectic vector
space (R?", wqy) by Viterbo [Vit], and by Hofer—Zehnder [HZ] who built on earlier
work by Ekeland—Hofer [EH]. For more general symplectic manifolds (M, w),
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action selectors were obtained, up until now, only by means of Floer homology:
For symplectically aspherical symplectic manifolds (namely those for which
[@]|z, My = 0), Schwarz [Schw] constructed the so-called PSS selector when
M is closed, and his construction was adapted to convex symplectic manifolds
in [FS]. We refer to Appendix A of [FGS] for a short description of these selectors.
For some further classes of symplectic manifolds and Hamiltonian functions, the
PSS selector was constructed in [Lan, Oh2, Ush].

In this paper we give a more elementary construction of an action selector for
closed or convex symplectically aspherical manifolds. Our construction uses only
results from Section 6.4 of the text book [HZ] by Hofer and Zehnder, that rely
on Gromov compactness and rudimentary Fredholm theory, but on none of the
more advanced tools in the construction of Floer homology (such as exponential
decay, the spectral flow, unique continuation, gluing, or transversality). In this
way, the three basic properties of an action selector (spectrality, continuity and
local non-triviality) are readily established by rather straightforward proofs, since
the only tool at our hands is the compactness property of certain spaces of
holomorphic cylinders.

After recollecting known results in Section 2, we give the construction of
our action selector for closed symplectically aspherical manifolds in Section 3. In
Section 4 we adapt this construction to convex symplectically aspherical manifolds.
Examples are cotangent bundles and their fiberwise starshaped subdomains, on
which most of classical mechanics takes place. In Section 5 we show that the
three basic properties of the action selector imply many further properties, and in
Section 6 we illustrate by three examples how any action selector yields simple
proofs of results in symplectic geometry and Hamiltonian dynamics. In Section 7
we sketch some variations of our construction and address open problems.

Idea of the construction. In the rest of this introduction we outline the construc-
tion of our action selector on a closed symplectically aspherical manifold (M, w).
Denote by T = R/Z the circle of length 1. Recall that the Hamiltonian ac-
tion functional on the space of contractible loops CZ, (T, M) associated to a
Hamiltonian function H € C*°(T x M,R) =: #(M) is given by

Ag(x) ::[DJ_C*((;))+[EH(t,x(t))dr,

where x € C®(ID, M) is such that x|sp = x. The critical points of Ay are the
contractible 1-periodic solutions of the Hamiltonian equation

X(6) = Xu(t,x@),

where the vector field Xy is defined by w(Xpg,-) = dH, and the set of critical
values of Apg is called the action spectrum of H and denoted by spec (H).
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An action selector should select an element of spec (H) in a monotone and
continuous way, with respect to the usual order relation and to some reasonable
topology on the space of Hamiltonians.

A first idea for defining an action selector is to boldly take the smallest action
value of a 1-periodic orbit,

o(H) := minspec (H).

Since spec (H) is a compact subset of R, this definition makes sense, and
yields an invariant with the spectral property. However, this invariant is not very
useful, since it fails to be continuous and monotone, two crucial properties for
applications. To see why, consider radial functions

He(2) = f(n|z|2) on R*",

where f:[0,400) — R is a smooth function with compact support. For an
arbitrary symplectic manifold, such functions can be constructed in a Darboux
chart and then be extended by zero to the whole manifold. The critical points
of Ay are the origin and the (Hopf-)circles on those spheres that have radius r
with s = 7r? and f’(s) € Z; at such a critical point x the value of the action

is
(D Ap,(x) = f(s)=s f'(s),

see the left drawing in Figure 1. Now take the profile functions f, fi, f— as in the
right drawing: f’ €[0,1] and f’(s) =1 for a unique s, while f_, f, are C*-
close to f and satisfy f_ < f < f, and f’, f €[0,1). Then the formula (1)
shows that o(Hy) is much smaller than o(Hy_) ~ o(Hy,_), whence o is neither
continuous nor monotone. Or take g with |g| very small and very steep. Then
o(Hg) is much smaller than o(Hy), whence monotonicity fails drastically.

s =mr? K
U(Hf+ I
o(He )l
NOBHON iy 2
o(Hg) T
Figure 1

Radial functions and their minimal spectral values
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The above discussion shows that the continuous, or monotone, selection of
an action from spec (H) must be done by some kind of minimax procedure
involving more information on the action functional than the mere knowledge of
its critical values. This was done for the Hofer—Zehnder selector by minimax over
a uniform minimax family, and for the Viterbo selector and the PSS selector by
a homological minimax. Our minimax will be over certain spaces of perturbed
holomorphic cylinders.

To introduce our construction, we first look at a toy model: Consider the
quadratic form ¢(x,y) = x2 — y? on R? and its perturbations

gh=q+h

where h is a compactly supported function on R?. Here, the indefinite quadratic
form g models the symplectic action and the compactly supported function h
models the Hamiltonian term in Ay, cf. [HZ, § 3.3]. If 2 = 0, the only critical
point of g is the origin, with critical value 0. If & consists, for instance, of
two little positive bumps, one centered at (1,0) and one at (0, 1), then the graph
of qp looks as in Figure 2. A continuous selection of critical values & +— o(h)
should, in our example, choose again 0, by somehow discarding the four new
critical values.

F1GURE 2
A perturbed quadratic form gy,

In this finite dimensional example, one could define an action selector by the
minimax formula
o(h) = inf m;tx qh,

where the infimum is over the space of all images Y of continuous maps
R — R? that are compactly supported perturbations of the embedding y — (0, y).
Monotonicity in A is clear from the definition, and spectrality can be proved by
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standard deformation arguments using the negative gradient flow of gj;. The
definition of the Hofer—Zehnder action selector (see [HZ, Section 5.3]) is based
on a similar idea and uses the fact that the Hamiltonian action functional for
loops in R?" has a nice negative gradient flow.

Alternatively, one can fix a very large number ¢ such that the sublevel
{gn < —c} coincides with the sublevel {¢ < —c} and define the same critical
value o(h) as

inf {a € R | the image of i{: Hi({gn < a},{g < —c})
— H{(R? {g < —c}) is non—zero},
where the map i“ is the inclusion
i%: ({gn < a).{qg < —c}) < (Rz,{q < —c})
and we are using the fact that
Hi(R* {q < —c}) = Z.

Viterbo’s definition of an action selector for compactly supported Hamiltonians
on R2?" uses a similar construction, which is applied to suitable generating
functions, see [Vit]. The Floer homological translation of this second definition
is, in turn, at the basis of Schwarz’s construction of an action selector for
symplectically aspherical manifolds, see [Schw], and of all its subsequent
generalizations.

Here, we would like to define an action selector o(h) using only spaces
of bounded negative gradient flow lines: In the case of the Hamiltonian action
functional Ay, these will correspond to finite energy solutions of the Floer
equation, which have good compactness properties. A first observation is that the
knowledge of the space of all bounded negative gradient flow lines of gj is not
enough for defining an action selector. Indeed, it is easy to perturb ¢ on a small
disc disjoint from the origin in such a way that the negative gradient flow lines
of g, look like in Figure 3: A new degenerate critical point z is created, and
the constant orbits at (0,0) and at z are the only bounded negative gradient
flow lines. But since ¢j,(z) could be either positive or negative, the set {(0,0), z}
contains too little information for us to conclude that the value of the action
selector should be g,(0,0) = 0.

If, however, we are allowed to deform the function g5, we can use bounded
gradient flow lines to define an action selector that identifies the lowest critical
value that “cannot be shaken off”. More precisely, take a family {h%}segr of
compactly supported functions such that 4% = h for s small and #* = 0 for s
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FIGURE 3
The only bounded gradient flow lines are the constant orbits at (0,0) and z.

large, and look at the space U(A®) of bounded solutions of the non-autonomous
gradient equation
u(s) = —Vgps (u(s)), s € R.

The boundedness of u is equivalent to bounded energy

E(u) ::[I‘&,thx(u(s))|2 ds

. . ' oh .
— sllr—noo qns (u(s)) — Si}l}}w qns (u(s)) + fR g(u(a)) ds < oo,

or, since A% = h in the first limit and #* = 0 in the second limit, to the fact that
u(s) is asymptotic for s — —oco to the following critical level of gy

qp (u) == lim gy (u(s))

and for all s large lies on the x-axis and converges for s — +oo to the origin
(the only critical point of g). The number
min q, (4
ue‘u(hS)q"( )
is the lowest critical value of g5 from which a bounded A°-negative gradient
flow line starts.
In our example from Figure 2, if we take #* = f(s) h with a cut-off function S,
then U(h*) contains no flow line u emanating from the two low critical points

p1 or pp near (0,1). On the other hand, it is easy to construct a family A* that
has a negative gradient line u(s) that converges to p; for s — —o0 and to the
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origin for s — +o00. To be sure that we discard all inessential critical values, we
therefore set

o(h) :=sup min g, (u).
() :=sup min_ ;0

In the example, it is quite clear that for every deformation #A° there exists a flow
line in U(h®) emanating from the critical point (0,0), that is, o(h) = 0 as it
should be. In general, it is not hard to see that o(k) is a critical value of gy
that depends continuously and in a monotone way on /.

The number o (k) is the lowest critical value ¢ of g, such that for every
deformation h* of h there exists a bounded flow line u € U(h*) starting at a
critical level not exceeding c. Equivalently, o(h) is the highest critical value ¢
of gp such that for every critical level ¢’ < ¢ there exists a deformation #° of h
such that all flow lines of g;s starting at level ¢’ are unbounded. That is: the
whole critical set strictly below ¢ can be shaken off.

Imitating the above construction, and inspired by the proof of the degenerate
Arnol’d conjecture in [HZ, § 6.4], we can define an action selector for 1-
periodic Hamiltonians on a closed symplectically aspherical manifold (M, ®) in
the following way. Given H € C*°(T x M) we consider s-dependent Hamiltonians
K in C*(RxT x M) such that K(s,-,-) = H for s small and K(s,-,-) =0 for
s large. Following Floer’s interpretation of the L2-gradient flow of the action
functional, we consider the space U(K) of solutions u € C®(R x T, M) of
Floer’s equation

(2) dsu + J(u)(d:u — Xk (s,1,u)) =0
that have finite energy
E(w) = / |85u|5 < oo.
RxT

Here, J is a fixed w-compatible almost complex structure on 7M and |-|; is
the induced Riemannian norm. The space U(K) is C2°-compact by Gromov’s

compactness theorem. Now define the function
ag: UK) — R, dz () = sgr_nooAH(u(s))
and finally define the action selector of H by
Aj(H):=sup min apg(u),
J(H) Kpue‘U.(K)aH(u)

where the supremum is taken over all deformations K of H as above. The
number Aj(H) is the smallest essential action of H in the following sense: It
is the lowest critical value ¢ of Agy (that is, the lowest action of a contractible
I-periodic orbit of H) such that for every deformation K of H there exists a
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finite energy solution of Floer’s equation for K and J that starts at a critical
level < c¢. For another characterization of A;(H), see Section 3.3.

In our finite dimensional model, we could have allowed for a larger class of
deformations of the gradient flow of g, by looking at families 4° that for s
large do not depend on s but are not necessarily zero, and by taking the gradient
with respect to any family g; of Riemannian metrics that depend on s on a
compact interval. In the symplectic setting, the role of Riemannian metrics is
played by w-compatible almost complex structures. We may thus modify the above
definition by looking at functions K with K(s,-,-) = H for s small and K(s,,")
independent of s for s large, and at families J* of w-compatible almost complex
structures that depend on s on a compact interval. In Sections 24, we shall
construct an action selector A(H) by using these larger families of deformations.
This has the advantage that A(H) is manifestly independent of the choice of J.
It will be clear from the analysis of A(H) that A;(H) is also an action selector,
cf. Section 7.1.

There are also action selectors relative to closed Lagrangian submanifolds,
that have many applications in the study of these important submanifolds. Such
selectors were first constructed by Viterbo [Vit] and Oh [Ohl] for Hamiltonian
deformations of the zero-section of cotangent bundles, and then in more general
settings by Leclercq [Lec] and Leclercq—Zapolsky [LZ]. Except for Viterbo’s
generating function approach, all these constructions are based on Lagrangian
Floer homology. Our elementary construction of an action selector can also be
carried out for closed Lagrangian submanifolds L under the assumption that [w]
vanishes on w,(M, L). We shall focus on the absolute case, however, leaving the
necessary adaptations to the interested reader.

2. Notations, conventions and known results

Let (M,w) be a closed symplectic manifold such that [w]|,r) = 0. We
assume throughout that M is connected. We denote by Xy the Hamiltonian
vector field associated to a Hamiltonian H € C*°(M), that is

o(Xy,) =dH.

Let T = R/Z be the circle of length 1. The Hamiltonian action functional
on the space of contractible loops C35, (T, M) associated to a time-periodic
Hamiltonian H € C°°(T x M) has the form

Ag(x) ::[D)E*(a))—i—fTH(t,x(t))dt,
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where x € C>®(D, M) is an extension of the loop x to the closed disk D,
that is X|sp = x; here we are identifying 0D and T in the standard way. The
first integral does not depend on the choice of the extension x of x because
[w] vanishes on m(M). The critical points of Ay are precisely the elements
of P(H), the set of contractible 1-periodic orbits of Xy . By the Ascoli-Arzela
theorem, P (H) is a compact subset of CZ (T, M).

The space C*°(RxT, M) is endowed with the C;5°-topology, which is metriz-
able and complete. We shall identify C*°(R x T, M) with C*®(R,C*(T, M)),
and we use the notation

u(s) = u(s,") e C®°(T, M), Vs €R.
The additive group R acts on C°(R x T, M) by translations
(o,u) — 15U, where (t5u)(s) := u(o + s).
Let J be a smooth w-compatible almost complex structure on M , meaning that
gs (€. n) =w(J§n), VEneTyM, Vx e M,

is a Riemannian metric on M. The associated norm is denoted by |- |;. The
L? -negative gradient equation for the functional Ay is the Floer equation

3) dsu + J(u)(9;u — Xp(2,u)) = 0.

If u is a solution of (3), then the function s + A g (u(s,-)) is non-increasing and

4) lim AH(u(s,-))— liT AH(u(S,-)) = E(u) :zf |3su|§ dsdt.
§—=>T00 RxT

§—=>—00

The quantity E(u) defined above is called energy of the cylinder u. Any
x € P(H) defines a stationary solution u(s,t) := x(¢) of (3), which has zero
energy and is called a trivial cylinder.

Now let H € C®(R x T x M,R) be such that d;H, the partial derivative
of H with respect to the first variable, has compact support and set

H™(t,x):= H(—s,t,x) and H7T(t,x):= H(s,t,x) for s large.

Further, let J = {J*} be a smooth s-dependent family of w-compatible almost
complex structures such that d;J has compact support, and set

J (x):=J%(x) and JT(x):=J%x) for s large.
If u solves the s-dependent Floer equation

) 8Su+Js(u)(3,u—XH(s,t,u)) =i
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then the energy identity reads:

(6)  AmH(sg,) U(50) — Apsy - (1(s1))

- f |85u5, ds dt —f ds H (s,t,u(s, 1)) ds dt,
[s0,51]xT

[s0,51]xT

for every so < s1. It follows that the function s — Apgs,..)(#(s)) is non-increasing
on a neighborhood of —co and on a neighborhood of +oc, and that

Slir_noo Apg—(u(s,) —S_l>i5_noo Ap+(uls,”) = E(m) — foT dsH (s,t,u(s, 1)) ds dt

where the energy E(u) is defined as in (4), but with an s-dependent J :

E(u) = Ey(u) :=f |85, ds dt.
RxT
Set
U(H,J) :={ue C®RxT,M)|uis a solution of (5) with E(u) < co}.

We recall that a subset U of C*®(R x T, M) is said to be bounded if for every
multi-index o € N2, |a| > 1, there holds

sup sup  |09197%u(s,1)|; < oo.
ueU (s,t)eRxT

Bounded subsets are relatively compact in the C2-topology. The next result is
a special instance of Gromov compactness.

Proposition 2.1. Let H = {H*} and J = {J*} be as above.
(i) The set U(H,J) is a compact subset of C*(R x T, M).
(ii) For u € U(H,J) the set

a-lim(u) = { lim ©,,u | s, — —o00 is such that ts,u converges}
n—>00

is a non-empty subset of U(H~,J~) and consists of trivial cylinders of the
Jorm v(s,t) := x(t), for some x € P(H~) with action

Apg-(x)= lim Ap- (u(s)).

Outline of the proof. Statement (i) is proved in Corollary 1 and Proposition 11 in
Section 6.4 of [HZ] for the case that H and J do not depend on s. That proof
readily generalizes to our situation. Statement (ii) can be obtained by adapting
Propositions 8 and 9 in [HZ, § 6.3] and by using Lemma 2 in [HZ, § 6.4]. We
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nevertheless sketch the main steps of the proof of both statements, since we wish
to make clear which tools are actually used. See [Hau, § 3] for more details.
One starts by proving that for every ¢ > 0 the set

Uc(H,J):={ueUHJ)| E@u)<c}

is compact. The uniform boundedness of the first derivatives requires a bubbling-
off analysis, that uses the assumption that [w] vanishes on (M) and the
uniform bound on the energy. Once uniform bounds on the first derivatives
have been established, the bounds on all higher derivatives follow from elliptic
bootstrapping. This shows that U.(H,J) is bounded in C*°(R x T, M). By the
lower semicontinuity of the energy, that is

Uy, >u in C°RxT,M) — E(u) <liminf E(uy,),
n—00

the set U.(H,J) is also closed in C*°(R x T, M), and hence compact.
Statement (i) will thus follow from the fact that U(H,J) = U.(H,J) when ¢
is large enough. In order to prove the latter fact, we need to address statement (ii).
Let u € U(H, J). That the set «-lim(u) is not empty follows from the fact that
the set
{tsu | s € ]R}

is relatively compact in C*°(R x T', M), by the same argument sketched above.
Now assume that v = lim,_, 75,u with s, — —o0. Since v, := 75, u solves the
equation

dsvp + (s, J)(Un)(arvn - er,,H(S»t, vn)) =0,

and since 75, converges to H~ and 74,/ converges to J, the limit v is a
solution of the s-independent Floer equation defined by H~ and J~. Moreover,
since

|85v|§_ dsdt = lim |asv,,|§ gdsdt <liminf E;_ j(v,)
[T, T]xT n—>00 J_T,T)xT Sn n—00 s

for every T > 0 and since E, j(v,) = Ej(u) for all n, we have
E;—(v) < liminf E; j(vy) = Ej(u).
n—>o0

Hence v € U(H™,J7), and it remains to show that v is a trivial cylinder
for H~. Consider the function

ag-: C®R xT,M) - R, ag—(w) :AH—(w(O)).

Since H(s,-,-) = H™ for s < —S§, where § is a sufficiently large number, the
function
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s ag—(tsu) = AH—(u(s))

is non-increasing on the interval (—oco, —S]. Since u has finite energy, this function
is also bounded, and hence converges to some real number a for s — —oo. From
the continuity of ay- we deduce that ag—(v) = a for all v € a-lim(u). The
latter set is clearly invariant under the action of 7y, so we have that

an—(tv) = ag-(W) =a = sEr_noo Ag-(u(s))

for all s € R. The energy identity for v then forces v to be a trivial cylinder
v(s,t) = x(t) of action Agz-(x) = a. This concludes the proof of (ii).

By the energy identity (6), each u € U(H,J) has then the uniform energy
bound

@) E(u) < max Ag-(x)— min Ag+(x)+ L|0sH | cos

xeP(H™) xeP(HT)
where L is the length of an interval outside of which dyH(-,¢) vanishes for all
t € T. This shows that if ¢ is at least the quantity on the right-hand side of
inequality (7), then U(H,J) = U.(H,J), and concludes the proof of (i). O

The other crucial fact that we need is the following result, which implies in
particular that U(H, J) is not empty.

Proposition 2.2. Let H = {H*} and J = {J*} be as above. For every z € RxT
and every m € M there is at least one u € U(H,J) such that u(z) = m.

Outline of the proof. The proof uses arguments from [HZ, § 6.4]. Given a large
positive number 7 > 0, we can glue two disks to the cylinder [-7,7] x T and
obtain a sphere S7. The Floer equation for the pair (H,J) on [-7,T]x T can
be extended to the two capping disks by homotoping the Hamiltonian to zero and
by extending J by J~ respectively JT (see [HZ, p. 231]). This leads to spaces
Ur(H,J,z,m) of solutions u of this Floer equation on Sr with the property
that u(z) = m. By the same argument sketched in the proof of Proposition 2.1,
this space is compact in C*°(S7, M). It suffices to show that Ur(H,J,z,m)
is not empty for all large 7', since then any sequence u, € Ur,(H,J,z,m)
with 7, — oo has a subsequence which converges on compact sets to some
u € U(H,J) such that u(z) = m, again by the usual compactness argument.
The space of solutions Ur(H,J,z,m) can be seen as the set of zeroes of
a smooth section of a suitable smooth Banach bundle n: £ — B. Here, B is
the Banach manifold of W%? maps from S7 to M mapping z to m, where
2 < p < o0, and the fiber of E at u € B is a Banach space of L” sections.
By homotoping the Hamiltonian H to zero and the St -dependent w-compatible
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almost complex structure J to an S7-independent one Jj, we obtain a smooth
I-parameter family of smooth sections

S:[0,1]x B — E

such that Ur(H, J,z,m) is the set of zeros of S(1,-), while the zeros of S(0,-)
are Jo-holomorphic spheres u: S7 — M such that u(z) = m. The assumption
that [w] vanishes on m,(M) guarantees that the only zero of S(0,-) is the map
that is constantly equal to m. The usual compactness argument implies that the
inverse image S™'(0g) of the zero-section Og of E under § is compact in
[0, 1] X B. Moreover, the Fredholm results from [HZ, Appendix 4] imply that for
each (t,u) in S~!(0g) the fiberwise differential of S(z,-) at u is a Fredholm
operator of index 0. Finally, the fiberwise differential of S(0,-) at the unique
zero u = m is an isomorphism (see [HZ, Appendix 4, Theorem 8]). Therefore,
the section S satisfies all the assumptions of Theorem A.l in the appendix, from
which we conclude that S(1,:) has at least one zero. ]

Remark 2.3. Note that Propositions 2.1 and 2.2 imply that for any H €
C®(T x M) the Hamiltonian vector field Xgz has l-periodic orbits. Indeed,
Proposition 2.2 implies that U(H, J) is not empty and Proposition 2.1 (ii) then
gives the existence of a 1-periodic orbit.

Remark 2.4. By arguing as in [HZ, § 6.4] more can be proved: Given z € Rx T,
denote by
ev;: C*°RxT,M) > M, evz(u) ;= u(z)

the evaluation map at z. Denote by H* the Alexander—Spanier cohomology
functor with 7, -coefficients. Then the restriction of ev, to U(H,J) induces an
injective homomorphism in cohomology:

(8) (evz lum,n) s H*(M) = H*(M) — H*(U(H, J)).

See [Hau, § 3.3]. This fact in particular implies that the restriction of ev, to
U(H, J) is surjective, i.e., Proposition 2.2 holds. In the case of an s-independent
Hamiltonian, the injectivity of the map (8) leads to the proof of the degenerate
Arnol’d conjecture for closed symplectically aspherical manifolds, see [HZ,
Chapter 6].

3. Construction of an action selector

Let H € C*°(T x M) be a Hamiltonian. We would like to define an action
selector for H .



234 A. ABBonDANDOLO, C. HauG and F. ScHLENK

3.1. The definition. Denote by K (M) the set of functions K € C*(RxT x M)
such that d;K has compact support and by ¢,(M) the set of smooth families
J = {J*} of w-compatible almost complex structures on M such that d;J
has compact support. Let J(H) be the subset of those K € K (M) for which
K~ = H, and abbreviate D(H) = K(H) x $o(M). For (K,J) € D(H) let
U(K, J) be the space of finite energy solutions of Floer’s equation (5) defined by
K and J. Let (K,J) € D(H) and assume that d;K and dgJ are supported in
[s7,sT]xT xM.If ue UK, J), then on (—co,s”| the function s > Ay (u(s))
is non-increasing and bounded. Therefore, the function
ag: UK,J) - R, agW):= lim Ag(u(s)) = sup Ag(u(s)),
Fr—en S€(—00,5]
is well-defined. Being the supremum of a family of continuous functions, the

function ajy; is lower semi-continuous. As such, it has a minimum on the compact
space U(K,J).

Definition 3.1. Let H € C>*°(T x M) and (K,J) € D(H). We set

AT(K,J):= min ay(u), A(H) = sup A (K,J).
ueU(K,J) o (K,J))eD(H)

It follows from Proposition 3.2 below that A(H) is finite.

K~ =H

FiGure 4
A function K deforming H, for (z,x) fixed

3.2. First properties. Denote by
spec(H) = {Ag(x) | x € P(H)}

the set of critical values of Agy. This set is compact, since #P(H) is compact
in C®°(T,M) and Ag is continuous on C*(T, M).

Note that the number A~ (K, J) belongs to spec (H). Indeed, take u € U(K, J)
such that ay(u) = A7(K,J). By Proposition 2.1 (i), we find v in «-lim(u),
and v is of the form v(s,#) = x(¢) with x € P(H) and Ap(x) = ap(u). Hence
A—(K,J) is a critical value of Agy.

Since spec (H) is compact, the supremum A(H) is also a critical value
of Ay . Therefore, we have proved the following result.
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Proposition 3.2 (Spectrality). A(H) belongs to spec(H).

Two very simple properties of the action selector A are:
9 A(H)=0 if H=0,
(10) A(H +r)=A(H) + [y r(t) dt Vr e C®(T), He C®(T x M).

Indeed, the first property follows from the fact that for the Hamiltonian H = 0,
the set P (H) consists of all the constant loops, which have action zero.
The second property follows from the identities K(H +r) = K(H) + r and
ap., =agy + [pr(t)dt. Less trivial is the following crucial result:

Proposition 3.3 (Monotonicity). If Hy, Hy € C*®(T x M) are such that

[ max (H;(t, x) — Ho(t,x)) dt <0,
T xeM

X€

then A(Hp) < A(Hy).

Proof. Fix & > 0. We shall prove that

(11) sup min  ag > sup min  ay —é,
(Ko,Jo)eD(Ho) UKo, Jo) 7 ™ (k| 1)ep(ry) UKD

and the claim will follow from the arbitrariness of e. Proving (11) is equivalent
to showing that for every (Ki,J;) in D(H;) there exists (Ky, o) in D(Hy)
such that

(12) min ag > min ag —eé.
U(Ko,Jo) Y 7 UKy, T1)

Up to a translation, we may assume that
(13) Ki(s,t,x) = Hy(t,x) and Ji(s,t,x)=J;(t, x), Vs <0.

Let ¢ € C*°(R) be a real function such that ¢’ > 0, ¢(s) = 0 for s < 0 and
o(s)=1 for s > 1. For A € R we define K(’} € K(Hy) by

(14) Kg(s,t,x) == @(s — MK1(s,£,x) + (1 — @(s — 1)) Ho(t, x).

We claim that there exists A < —1 such that (12) holds with (Kg, Jo) = (K2, J;).
Arguing by contradiction, we assume that for every A < —1 there is a u,
in U(K},Jy) such that

15 o < min dy, — €.
(15) aH(,(“l) UELT) H,
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FiGuRrE 5
The function K(J)‘, for (¢, x) fixed

Let (A,) C (—o0,—1] be such that A, — —oco. By Proposition 2.1 (i), U(Ky, J1)
is compact. Arguing by a diagonal sequence argument, we see that after replacing
(An) by a subsequence, (u;,) converges to some u in U(Ky,Jy).

We fix a number s < 0. If 4, <s—1, then by (13) and the action-energy
identity (6),

ag,Wa,) = Apy(ua, (An))

= An, (u,\n (S)) + /

U"ﬂ 9S] x

|dgtr, |5 do dt

_f QDI(U—I‘L”)(HI—Ho)(l‘,ukn)dddl.
[An,s]xT

By the hypothesis of the proposition and the fact that ¢’ is non-negative we
obtain the inequality

f @' (0 — An)(Hy — Hy)(t,u,,)do dt
[An,s]xT

< f @'(0 — Ay) max(Hy — Hy)(t,x)do dt <0,
[An,s]xT xeM
and hence the previous inequality gives us

ag,Wa,) > A, (up,(5))-
By taking the limit for » — oo, we deduce that
lLrE)ioréfaI}O(u,ln) > Ag, (u(s)),
and by taking the supremum over all s <0,
linrgioréfal}o(u,\n) > ay, (u).

Together with (15), this implies the chain of inequalities

ay (u) <liminfa, (u < min dg —&,
@) < lmifag,(u,) < | Jin, @,

which is the desired contradiction because u € U(Ky, Jy). O
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Monotonicity and property (10) imply the following form of continuity.

Proposition 3.4 (Lipschitz continuity). For all Hy, Hy € C°(T x M) we have

f min (HI(I,X) = H()(I,X)) dt < A(Hy) — A(Hy)
T X€M

5/ ma}i}l( (Hl(r,x)— Ho(t,x)) dt.

T X€

In particular, the action selector A is I-Lipschitz with respect to the sup-norm
on C®(T x M):
|A(H1) — A(Ho)| < ||H1 — Holoo-

Proof. Set
e [r)= ;Iélﬂr}(Hl(t’x) — Ho(t,x)), gpdl) = Q%{(Hl(t,x) — Hg(t,x)).
Then
Ho(t,x) +c—(t) < Hi(t,x) < Ho(t,x) + c+(2), VieT, xeM.

Applying Proposition 3.3 and (10) we obtain

At + [ e dr < A < AHo) + [ e0)dr
T T
as we wished to prove. [

3.3. An equivalent definition. By now, we know that our action selector A4 is
spectral, monotone, and continuous. These properties already imply many further
properties, see Proposition 5.4 below, and results like the unboundedness of
Hofer’s metric, see Section 6.3. For most applications of an action selector, such
as the non-squeezing theorem or the (almost) existence of closed characteristics,
one also needs that the selector is negative on functions that are non-positive
and somewhere negative. To prove this property for our selector A we shall
describe A by a minimax in which the space U(K, J) is replaced by a certain
space of solutions of the Floer equation for H .
Recall that (t5u)(s) := u(o + s). Given (K,J) € D(H), consider the set

Ues(K; J) = {u eC®RxT,M)|u= lim z5,u, where s, > —0co
n—>00
and (u,) C U(K, J)}.

Example 3.5. If neither H# nor J depend on s, then Ue(H,J) = U(H,J).
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Proof. The inclusion Uess(H,J) C U(H,J) holds because if u, belongs to
U(H,J) then also (t5,u,) does, and hence also u = lim,_, T5,u, is in
the same space, since U(H,J) is closed. Moreover, the inclusion U(H,J) C
Uess(H, J) holds because for u € U(H,J) we have u, := t,u € U(H,J) and
Jitkisys o0 Tsilitn } = % L]

As we shall see in Proposition 3.6, U (K, J) is a compact t-invariant
subspace of U(H,J ). The space Ues (K, J) is therefore the space of those
cylinders in U(H,J~) which are essential with respect to K, in the sense that
they survive through the homotopy K. We shall prove that the action selector

A(H) = sup min dag
(K,J)eD(H) WK, JT)

can be expressed as

(16) A(H) = Sup min aHv
(K, J)eD(H) Uess(K,J)

where ay is the continuous function
ag: C®R xT,M)— R, ag ) := Ag (u(0)).
We begin with the following result.
Proposition 3.6. The set Uess(K,J) is a compact t-invariant subspace of

U(H,J7). For every z € Rx T and m € M there exists u € Ues(K, J)
such that u(z) = m.

Proof. The inclusion Uegs(K,J) C U(H,J7) is shown in the same way as the
inclusion «-lim(u) C U(H,J™) in Proposition 2.1 (ii): Let u = lim z,,u, be an
element of Ueg(K,J). Since v = 15,u, solves the equation

dsv + (5, J) () (00 — X, k (5,1,0)) =0,

and since 75, K converges to K~ = H and 15,/ converges to J—, the map u is
a solution of the s-independent Floer equation defined by H and J~. Moreover,

Ej-(u) < liminf E; j(t5,un) = liminf Ej(u,) < sup Ej(v) < +o0,
n—oQ n—>00 Ueu(K,J)

where the finiteness of the last supremum follows from (7). Therefore, U.(K, J) C
U(H,J 7). If 0 €R, then

ToU = lim 1,5, foUy
H—>00

is in Uess(K, J), which is therefore t-invariant. If
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v = lim ¢ huz, where  lim s = —00, VheN,

n—oo n n—oo

and (v") converges to v € C®(R x T, M), then a standard diagonal argument
implies the existence of a diverging sequence (n) C N such that

lim dist (t., u” ,vh =0, lim s = —00,
h—>00 (th np ) B 5 np

where dist is a distance on the metrizable space C*°(R x T, M). Therefore,

Toh uﬁh converges to v, which hence belongs to Ues (K, J). This shows that
np

Uess(K, J) is a closed subspace of U(H,J™). Since U(H,J ) is compact, so
is Uess(K, J).

Finally, given z = (s,1) e Rx T, m € M and n € N, by Proposition 2.2
we can find u, € U(K,J) such that u,(s —n,t) = m. By compactness, a
subsequence of t_,(u,) converges to some u € Uess(K, J). Since

Ton(Un)(2) = un(s —n,t) =m,

we conclude that u(z) = m. O

Remark 3.7. Actually, one can show that the space U,y (K, J) satisfies the
property of Remark 2.4: The restriction of ev, to U (K, J) induces an injective
homomorphism in cohomology:

(ev: |ses(®,y) 2 H*(M) = H*(M) — H*(Uess(K, J)).

See [Hau, Proposition 4.3.4].
Formula (16) is an immediate consequence of the following result.

Proposition 3.8. min ay = min apy.
U(K,JT) Uess(K,J)

Proof. Let u € U(K,J) be a minimizer of ap . By Proposition 2.1 (ii) there
exists v € a-lim(u) with v(s,t) = x(¢t) for some x € P(H), and

apg(v) = Ag(x) = agu).
Since v € a-lim(u) C Uee(K, J), we conclude

min ayg <ag(v) =ay(u) = min ay.
Uess(K.J) " uk.y

Conversely, let v € Ueg (K, J) be a minimizer of agy . Then

v = lim 7, u,, where s, — —oco0 and (u,) C U(K, J).
n—c0
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Up to a subsequence, we may assume that (u,) converges to some u € U(K, J).
For every fixed s belonging to a half-line (—oco,s™] on which d;K vanishes, we
have

Ag(u(s)) = lim Ag(un(s)) < lim Ag(u,(sp)) = lim ag(ts,un) = ag(v).
n—o0 n—oo n—>00
By taking the limit for s — —oo, we find

agw) <ag (),
which implies that

min ay <ay(u) <ag(v) = min agy.
uk,y 21— H ) Uess (K, )

O

3.4. Autonomous Hamiltonians. Let H € C°*°(M) be an autonomous Hamil-
tonian. In this case, the critical points of H are the constant orbits of Xz, and
in particular they are elements of #(H). In general, the vector field Xy can
have other non-constant contractible orbits, but if this does not happen we can
often calculate the value of the action selector A.

Proposition 3.9. Let H € C>°(M) be an autonomous Hamiltonian with exactly
two critical values. Assume also that P(H) consists only of constant orbits. Then

A(H) = min H.
()rr]gn

Proof. In this case, Ay has exactly two critical values, min H and max H .
Hence A(H) is one of these two numbers. For every (K, J) € D(H),

(17) min ag < max ag < max ay = max Ay = max H
Uess (K,J) Uess(K,J) U(H,J ™) P(H) M

and, by Proposition 3.8, the number

min ag = A (K, J)
uCSS(K:J)

belongs to spec(H) = {min H,max H}. Assume by contradiction that

A(H)= sup A (K,J)
(K,J)eDH)

has the value max H . Then we can find (K, J) € D(H) such that all inequalities
in (17) are equalities, and in particular

min ay = max H.
Uess(K,J) M
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This identity implies that Ues(K, J) consists only of constant cylinders defined
by the maximum points of H. Indeed, for every u € Uew(K,J) we can then
find a periodic orbit x € P(H) in the set «-lim(u) with

max H <apg(u) < Ag(x).

Since Agy(x) < max H by the assumption, this yields apy(u) = max H.
By Proposition 3.6, the translates t;u also belong to U, (K,J), whence
ag(tsu) = max H for all s € R. Since we also know that t,u € U(H,J7), it
follows that u is a trivial cylinder u(s,t) = m with H(m) = max H .

What we have just proved violates the surjectivity of the evaluation map
ev; |ueSS(K,_]) from PI’OpOSitiOH 3.6. )

Remark 3.10. It is easy to construct autonomous Hamiltonians which satisfy
the assumptions of the above proposition. For instance, take a symplectically
embedded ball B C M of radius 3¢ and a Hamiltonian H on M with support
in B that on B is a radial function H = f(r|z|?), where f: Rso — R is
negative constant on {r < ¢}, vanishes on {r > 2¢}, and has positive derivative
on {¢ < r < 2¢}. Then the minimum f(0) and the maximum O are the only
critical values of H, and if we further impose that f’/ < 1, we see as in the
introduction that all non-constant periodic orbits of Xy have period larger than 1.
Hence Proposition 3.9 implies that A(H) < 0.

By using Hamiltonians of this sort, together with the monotonicity property
of A, one can easily show that A(H) < 0 for every non-positive Hamiltonian
H € C*(T x M) which is not identically zero. This is proved in Section 5, in
which we investigate the properties of action selectors axiomatically.

Remark 3.11. In Remark 7.6 we give an explicit formula for A(H) for a class
of Hamiltonians different from the one in Proposition 3.9.

4. An action selector on convex symplectic manifolds

A compact symplectic manifold (M, w) is called convex if it has non-empty
boundary and if near the boundary one can find a Liouville vector field Y, namely
such that £yw = w, which is transverse to the boundary and points outwards.
We shall also assume that [w] vanishes on 7(M).

Since the boundary is compact, we can find & > 0 such that the flow ¢}
of Y defines an embedding

(1—¢ 1] xoM — M, (r,x)|—>¢§;)gr(x)
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onto an open neighborhood U of dM . This embedding defines a smooth positive
function
r:U —-R

such that »~1({1}) = M and r (1 —¢1)) =U \ M.

We consider the set # (M) of smooth functions H: TxM — R such that Xy
has compact support in T x (M \ dM). In other words, for every component C;
of the boundary dM there exists an open neighborhood U; of C; in M and a
function h; € C*°(T) such that H(¢,x) = h;(t) for all (¢£,x) € T xU;.

The symbol K (M) now denotes the space of functions K € C®(R xT x M)
such that Xg is supported in Rx T x (M \ dM) and K(s,?,x) does not depend
on s for s <s and for s > sT, for some numbers s—,s™ depending on K.

The set (M) now consists of all smooth families J = {J*} of w-compatible
almost complex structures on M such that d;J is compactly supported, J(s,x)
does not depend on s for all x in a neighborhood of dM, and the equation

(18) drolJ =1yw

holds on this neighborhood, where r is the function which is induced by the
Liouville vector field Y as above.

For K € X(M) and J € ,(M), let U(K,J) be the set of finite energy
solutions of the Floer equation (5) on M . Being smooth maps defined on an open
manifold (namely the cylinder R x T ), the elements u € U(K, J) are tangent to
the boundary of M where they touch it. The next result implies, in particular,
that the only elements u € U(K, J) that touch the boundary are constant maps.

Lemma 4.1. Let V' C U be an open neighborhood of M on which the vector
field Xk (s,t,-) vanishes for every (s,t) € RxT and the almost complex structure
Jo := J(s,-) is independent of s and satisfies (18). Let § > 0 be so small that
the closure of the open set

Vi={xelU|r(x)>1-8§}

is contained in V'. Then the image of any u € U(K,J) that is not constant is
contained in M \'V.

Proof. The argument is well known, but we reproduce it here for the sake of
completeness. Let u be an element of U(K,J) and set @' := u~!(V'). The
conditions on V' imply that u|g is a Jy-holomorphic map and p := rou: Q' — R
is a subharmonic function. The open set Q := u~!(V) satisfies Q@ C Q'. We
wish to prove that if the open set €2 is not empty, then u is a constant map.

The subharmonic function p takes the value 1 —§ on 92, and it is strictly
larger than this value on 2. By the maximum principle, 2 cannot have bounded
components.
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Without loss of generality, we may assume that s is unbounded from below
on €. We claim that in this case ' contains a subset of the form (—o0,S)x T,
for some S € R. If this is not the case, we can find a sequence (s,,7,) € R xT
such that s, - —oc and u(s,,t,) €e M\ V'.

As in the proof of Proposition 2.1, one shows that {z5,u | n € N} is relatively
C22-compact in C*°(R x T, M). Up to replacing (sn.?,) by a subsequence, we
can therefore assume that 7y, u converges in C22 to a finite energy solution v
of Floer’s equation for /= and K—, and as in the proof of Proposition 2.1, we
see that v is a trivial cylinder for K—, that is v(s,7) = x(¢) is a l-periodic
orbit of Xg-. In particular, the sequence of curves u(s,) = 75,u(0) converges to
x € £(K7). Since all the solutions of Xg— through points in V'’ are constant,
x(T) is disjoint from V’. For n large enough the set u({s,}xT) is then contained
in M \ V. This implies that {s,} x T is disjoint from €2. Then the facts that
sn — —oo and that s is unbounded from below on 2 force £ to have bounded
components. Since we have excluded this possibility, we reach a contradiction and
conclude that €’ contains a subset of the form (—o00,S) x T, for some S € R.

Therefore, the biholomorphic map

p: RxT — C\ {0}, o(s, 1) = X6+,

maps €’ onto an open set of the form €'\ {0}, where €’ is an open
neighborhood of the origin in C. Having finite energy, the Jy-holomorphic
map i := uog@ ! extends holomorphically to Q' by the removal of singularity
theorem, see [McDSI, Theorem 4.1.2]. Therefore, p := r o u is a subharmonic
function on Q. The fact that s is unbounded from below on  implies that
p(0) > 1-38.

We now define the open subset @ of C to be ¢() U {0} if 5(0) > 1—§
and Q = ¢(2) if p(0) = 1— 4. The subharmonic function p is strictly larger
than 1 —§ on & and equal to 1 —§ on its boundary. Hence the maximum
principle implies that € is unbounded, and so is a fortiori Q. By arguing as
above and applying the removal of singularity theorem also at oo, we can extend
the Jo-holomorphic map u to a Jy-holomorphic map # which is defined on
the open subset Q' := £'U {o0} of the Riemann sphere C U {oo} such that
p :=rou satisfies p(oco) >1—36.

As before, we set Q to be Q U{oo} if p(co) > 1—8 and Q if p(oco0) = 1—86.
Then  is an open subset of the Riemann sphere, and the subharmonic function
p is strictly larger than 1 —§ on it and equal to 1 — 4§ on its boundary. The
maximum principle now forces Q to be the whole Riemann sphere and p to
be constant on it. In particular, # is a Jp-holomorphic sphere taking its values
in V C U. The fact that w = d(1yw) is exact on U implies that # is constant,
and so is u. O
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Proposition 4.2. The set U(K,J) is compact in C®°(R x T,M). For every
ze€R XxT and m € M there exists u € U(K,J) such that u(z) = m.

Proof. Compactness is proved as in Proposition 2.1. Let V' be an open neighbor-
hood of dM satisfying the condition of Lemma 4.1 for the pair (K, J) and for
all elements of a smooth homotopy joining (K, J) to (0, Jy), where the almost
complex structure Jy does not depend on ¢ and satisfies (18) on U. If me V',
then the constant map taking the value m belongs to U(K,J). f me M\ V,
then we can find a map u € U(K, J) such that u(z) = m arguing as in the proof
of Proposition 2.2. Indeed, in this proof we may replace the closed manifold M
by the open manifold M \ dM because the necessary compactness for the spaces
of solutions u of the various Floer equations involved satisfying u(z) = m is
guaranteed by Lemma 4.1. O

Thanks to the above result, the action selector
A: H(M) - R
can be defined as in the closed case:

A(H) = sup min  az(u),
(K,J)eD(H) 4EU(K.J) 2
where D(H) := K(H)x g,(M), with X (H) denoting the set of all K € KX (M)
such that K~ = H . The same properties that we have proved in the closed case
hold also in the present setting.

Remark 4.3 (Exhaustions). Consider a symplectic manifold (M,w) that can
be exhausted by compact convex symplectic manifolds: M = | J;o, M; where
M, C M, C ... are compact convex submanifolds of M. Also assume that
[@]|zymy = 0. Examples are (R?",wp), cotangent bundles with their usual
symplectic form and, more generally, Weinstein manifolds.

Given a function H: T x M — R with compactly supported Hamiltonian
vector field Xpg, choose i so large that the support of Xy is contained in
the interior of M;. Then A(H;M;) is well-defined for j > i. These action
selectors are sufficient for proving several results on exhaustions (M,w), like
Gromov’s non-squeezing theorem or the Weinstein conjecture for displaceable
energy surfaces of contact type.

Alternatively, one can define one single action selector for (M,w) as follows.
While in general it is not clear whether the sequence (A(H;M;)) stabilizes, or
whether it is monotone, it is certainly bounded, as it takes values in the spectrum
of H. Hence we can define

A(H) := liminf A(H; M;) € R.
j—oo
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One readily checks that A(H) is a minimal action selector on the space of
functions H: T x M — R with Xy of compact support in the sense of
Definition 5.2 below.

5. Axiomatization and formal consequences

It is useful to define an action selector by a few properties (“axioms”) and
to formally derive other properties from these axioms. In this way, it becomes
clearer which properties of an action selector are fundamental and which other
properties are just formal consequences of these fundamental ones. The axiomatic
approach also makes clear that properties that hold for some action selectors, but
do not follow from the axioms, rely on the specific construction of the selectors
for which they hold. For example, the “triangle inequality”

O'(Hl#HQ) > O(HI) + O(Hz)
and the minimum formula
o(Hy + Hy) = min{o(H;),0(H>2)}

for functions supported in disjoint incompressible Liouville domains, both hold
for the Viterbo selector and the PSS selector, but are unknown for general minimal
selectors.

5.1. Axiomatization. An attempt to axiomatize action selectors was made
in [FGS], and a very nice and slender set of four axioms was given in [HRS].
We here give an even smaller list of axioms, that retains the first two axioms
in [HRS], but alters their non-triviality axiom and discards the minimum formula
axiom.

Throughout this section we assume that (M, w) is connected and symplectically
aspherical (i.e., [@]|z,) = 0). If M is closed, set #H (M) = C>(T x M,R),
and if M is open (i.e., not closed), let #(M) as in Section 4 be the set of
functions in C°°(T x M,R) such that Xy has compact support in the interior
of T x M. The spectrum spec (H) of H € #(M) is again the set of critical
values of the action functional Ag.

Lemma 5.1. The spectrum spec (H) is a compact subset of R with empty interior.

Proof. Since the support S of Xy is compact in Int(T x M) = T xInt(M), we
find a compact submanifold with boundary K C Int(M) such that

ScTxInt(K) C TxK c T xInt(M).
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It is well known that spec (H|rxx) is compact and has empty interior.
It therefore suffices to show that spec (H) = spec (H|rxx). The inclusion
spec(H) D spec(H |Txk) is clear. So assume that x is a 1-periodic orbit of Xy
that is not contained in K. Since H is locally a function of time on T x (M \ K),
the orbit x is constant. Since M is connected, there exists y € dK such that
H(y,t) = H(x,t) = h(t) forall r € T. Hence Ay (y) = Ag(x) = [p h(r)dr. O

Definition 5.2. An action selector for a connected symplectically aspherical
manifold (M,w) is a map o: #(M) — R that satisfies the following two
axioms.

Al (Spectrality). o(H) € spec(H) for all H € H(M).
A2 (C®°-continuity). o is continuous with respect to the C°°-topology on J#(M).
An action selector is called minimal if, in addition,

A3 (Local non-triviality). There exists a function H € #(M) with H <0 and
support in a symplectically embedded ball in M such that o(H) < 0.

Remark 5.3. Assume that o: #(M) — R satisfies the spectrality axiom Al.
Then C -continuity of o is equivalent to C?-continuity of o, and continuity
of o implies its monotonicity, see Assertions 5 and 4 of Proposition 5.4 below.
On the other hand, it is not clear if monotonicity of o, together with spectrality,
implies its continuity, but this is so if o in addition has the shift property
o(H+c)=0(H)+c for all H and ¢ € R, cf. the proof of Proposition 3.4.

Our selector A on closed or convex symplectically aspherical manifolds is
indeed a minimal action selector, since it is spectral by Proposition 3.2, C*°-
continuous since even Lipschitz continuous with respect to the C°-norm by
Proposition 3.4, and non-trivial by Proposition 3.9 and Remark 3.10. We note
that the proof of monotonicity of A can be readily altered near the end to show
directly that A is C°°-continuous. In Proposition 5.4 below we list many other
properties of (minimal) action selectors, some of which we have already verified
for A.

5.2. Formal consequences. For H € (M) we abbreviate
EY(H) = f max H (¢, x) dt, E~(H) = f min H (¢, x) dt.
T xeM T XM
The Hofer norm of H is defined as

(19 |H| =EY(H)-E(H) = [T ()rcré%( H(t.x) — min H(t,x)) dr.



A simple construction of an action selector 247
We also recall that the function
(Hr\#H>)(1,x) == Hy (1, x) + Ha (1, (¢f7,) " (x))

generates the isotopy ¢y o ¢ .

A compact submanifold U of (M,w) is called a Liouville domain if (U, w)
is convex (see Section 4 for the definition) and if the corresponding Liouville
vector field is defined on all of U, not just near the boundary oU. Examples
are starshaped domains in R2” or fiberwise starshaped neighborhoods of the zero
section of a cotangent bundle 7*Q . The domain U is incompressible if the map
t«: T (U) — m1(M) induced by inclusion is injective. The above examples are
incompressible Liouville domains.

Following [Vit] and [HRS] we have

Proposition 5.4. Assume that (M,w) is connected and symplectically aspherical.

Then every action selector o on JH (M) has the following properties.

1. Zero: o(H)=01if H=0.

2. Shift: o(H +r)=0(H) + fT r(t)dt if r: T — R is a function of time.

3.  Coordinate change: If ¥ is a symplectomorphism of (M, ®) that is isotopic
to the identity through symplectomorphisms, then o(H) = o(H o ).

4.  Monotonicity: o(Hy) <o(Hy) if Hy < H,.
Lipschitz continuity: E~(Hy — Hy) < o(Hy) —o(Hy) < EY(H, — H,). In
particular, E-(H) <o(H) < ET(H).

6. Energy-Capacity inequality: |o(Hy)| < |H2| if ¢u, displaces an open set
U C M such that Hy is supported in T x U.

7.  Composition: o(Hy) + E~(H,) <o (Hi#H3) < o(Hy) + ET(H3).

If, in addition, o is a minimal action selector, then:

8. Non-degeneracy: If H <0 and H # 0, then o(H) < 0.

9. Non-positivity: If H has support in an incompressible Liouville domain, then
o(H) < 0. In particular, 6 (H) = 0 for all non-negative Hamiltonians which
are supported in an incompressible Liouville domain.

Outline of the proof. Most properties are proved in [HRS, § 3.1]. We focus on
the new parts. The first seven properties follow from the spectrality and the
continuity axiom, together with the fact that the spectrum has empty interior.
This is immediate for Properties 1, 2, 3. Properties 4, 5, 6 are proved in [HRS]
for closed M. Their proof goes through for open M if one imposes the
admissibility condition in Lemma 21 of [HRS] only on a compact submanifold
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with boundary K C Int(M) that contains the support of all the vector fields Xg, .
For Property 7 we compute, using Lipschitz continuity,

o(Hi#H,) — o(Hy) < EY(H#H, — Hy) = ET(Hy 0 (¢y,) ") = ET(Hy)
and similarly
o(H1#H,) —o(Hy) > E™(H #Hy — Hy) = E~(H>).

For the proof of Properties 8 and 9 we need two lemmas. Let U C M be
a Liouville domain (the case U = M is not excluded) and let Y be the
corresponding Liouville vector field. Since U is compact and Y points outwards
along the boundary, the flow ¢} : U — U of Y exists for all # < 0. The property
f£yw = o of Y integrates to the conformality condition (¢%)*w = e'w for
t <0. For each t <0 define the Liouville subdomain U; = ¢y (U), and for a
Hamiltonian H: T x M — R with support in U define the Hamiltonian

e'H(t, ¢y (x)) if x €Uy,

H(t,x) := { 0 it x ¢ U,

Then the support of H; lies in U, . The following lemma, that goes back to [Pol2,
proof of Prop. 5.4], is taken from [HRS, § 3.2].

Lemma 5.5. Let H: T x M — R be a Hamiltonian with support contained in
a disjoint union of incompressible Liouville domains. Then o(H;) = e*o(H) for
all 7 <0.

For the proof one shows that spec (H;) = e"spec (H), and so the claim
follows from the spectrality and continuity axioms of o.

Lemma 5.6. If G is autonomous with G <0 and G # 0, then o(G) < 0.

Proof. Choose a non-empty open set U C M such that G|z < 0. Let H and
B C M be a function and a symplectically embedded ball as in Axiom A3, and
let 0 € B be the center of B. Take x € U, and choose a Hamiltonian isotopy
of M with ¢¥(0) = x. Then we find t < 0 such that ¥ (B;) C U. Choosing
v smaller if necessary, we have G < H, o y~!. Using Properties 3 and 4 and
Lemma 5.5 we obtain

0(G) <o(Hyoy™ V) =o(H,) =e*c(H) < 0. O

Property 8 now readily follows: Given H <0 with H # 0 we find ¢y € (0, 1)
and xo € M with H(ty,x9) < 0. We can thus construct a function of the
form «(f) G(x) with a a non-negative bump function around 7y and G as in
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Lemma 5.6 such that H < aG. Then o(H) < o(a¢G) = o(cG) < 0, where
¢ = fol a(t)dt > 0. Indeed, the first inequality holds by monotonicity, and the
last inequality by Lemma 5.6. To see the equality o(aG) = o(cG), choose a
smooth family of functions (), s € [0, 1], such that ap(z) = a(t), a;(t) =c¢
is constant, and fol as(t)dt = ¢ for all s. Then the Hamiltonian functions
H(t,x) := oyx(t) G(x) all generate the same time-1 map. Lemma 5.7 below
combined with the shift property 2 now yield o(a¢G) = o(Hp) = o(H;) = o(cG).
Let us give a direct and more elementary proof of o(Hy) = o(H;): Since
XH, = a5(t) X, the time-1 orbits of H, are reparametrisations of each other.
Let xo be a l-periodic orbit of Hy, and denote by x; the l-periodic orbit of Hj
with the same trace. Then the area term [ XFw of the action Ag,(x;) does not
depend on s, since we can take the same disc for each s, and the same holds
for the Hamiltonian term

f Hy (1, x(6)) dit = ] 0s(1) G (x5 (1)) di = G (x,(0)) f o5(1) di = G (x1(0)) ¢
T T T

since the autonomous Hamiltonian ¢G is constant along its orbit x;. It follows
that spec(H;) does not depend on s. Since this set has empty interior and o is
continuous, o(Hj) neither depends on s.

We now prove Property 9. Let U C M be a Liouville domain and choose
e > 0 so small that there is a smooth function F: M — R such that

F(x) =& on U_,, F(x)=0 on M\ U_,

such that ¢ and O are the only critical values of F, and such that X has no non-
constant 1-periodic orbits. By spectrality, o(F) € {0,¢}. Take G as in Lemma 5.6
with support in M \ U-; and such that G > —e. Then F —¢ < G and hence
o(F —¢) <o(G) < 0. Together with the shift property, o(F) = o(F —¢)+¢ < ¢,
whence o(F) = 0.

Given H € #(U) we find 7 < 0 so small that H, < F. Then o(H;) <
o(F) =0 by monotonicity, and so o(H) = e*o(H;) <0 by Lemma 5.5. ]

5.3. Path independence. Let o: (M) — R be an action selector. Every
function H € H(M) generates a Hamiltonian diffeomorphism ¢}, . Does o
induce a map Ham(M,®w) — R on the group formed by these diffeomorphisms?

If two functions in J (M) differ by a constant, they have the same time-I
map. In this paragraph we therefore restrict o to normalized functions: If M
is closed, H is normalized if [,, H(t,-)w" =0 for all + € T. If M is open,
we fix an end e of Int(M) and say that H is normalized if for each t € T
the function H(¢,-) vanishes on e; notice that this normalization depends on the
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choice of e. Write Hy ~ H, if Hy, H, are the endpoints of a smooth path H
of normalized functions that all generate the same Hamiltonian diffeomorphism.

Lemma 5.7. If Hy ~ Hy, then o(Hy) = o(H,).

Proof. The claim follows from the continuity of o if one knows that the sets
spec (H) are independent of s. This in turn easily follows for closed M if the
flow of H, has a contractible 1-periodic orbit, see [Schw, § 3.1], and for open M
if the flow of H, has a constant orbit of action zero, see [FS, Cor. 6.2]. The
existence of such an orbit for closed M follows from Propositions 2.1 and 2.2,
see Remark 2.3, and for open M is obvious (take a point in the end e off the
support of Hy). O

The lemma implies that o descends from the set of normalized Hamiltonians
to the universal cover Ham (M,®), where for open M we denote by Ham(M, w)
the group of Hamiltonian diffeomorphisms of M generated by normalized
Hamiltonians. Does o further descend to Ham(M,w)? In other words, is it
true that o(G) = o(H) if ¢ = ¢y for normalized G, H ? This is so if one
knows that ¢g = ¢y for normalized G, H implies that spec (G) = spec (H),
and that o satisfies the triangle inequality, see [FS, proof of Prop. 7.1]. The first
requirement always holds true.

Lemma 5.8. Let (M,w) be a symplectically aspherical manifold. If ¢ = ¢y
for normalized Hamiltonians G, H € #(M), then spec(G) = spec(H).

Proof. This is again easy to verify for M open [FS, Cor. 6.2]. For M closed the
proof is more difficult. Under the additional assumption that also the first Chern
class of (M,w) vanishes on mp(M), the proof is given by Schwarz [Schw,
Theorem 1.1]. One can dispense with this assumption thanks to results of
McDuff [McD]. We give a rough outline of the argument.
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Let y be the loop in Ham(M, w) obtained by first going along ¢z and then
along ¢;;*, for 1 € [0,1]. To y one associates a bundle £ with fiber M and
base S? by gluing two copies of the trivial bundle M x D over the closed disk
along their boundaries via the loop y. The total space E comes with a closed
2-form wg, the so-called coupling form, that restricts to w on each fiber. The
assertion of the lemma will follow if we can show that

(20) ] s og = 0
S2

for one and hence any section s: S? — E, see [Schw, Lemma 4.6].

Let J be an almost complex structure on FE that is @-compatible on each
fibre and such that the projection E — S? is J-i-holomorphic, where i is the
usual complex structure on S2. Since [w] vanishes on mp(M), for a generic
choice of J the space M(J) of holomorphic sections s: S? — E is a closed
manifold, and its dimension is 2n. Further, for given z € S? the evaluation map

M) —> M, evy(u) =u(z)

has non-vanishing degree, see [McD, p. 117]. Now (20) follows exactly as in the
proof of Corollary 4.14 in [Schw]. O

On the other hand, we do not know whether the triangle inequality holds for
our action selector A. At least for Liouville domains, one can go around the
triangle inequality and prove the following result.

Proposition 5.9. Assume that (M,®) is a Liouville domain. Then for any action
selector o on J (M) it holds that 0(G) = o(H) whenever G, H are normalized
Hamiltonians with ¢g = ¢m.

Proof. The claim is shown for (R?”, wg) in [HZ, Proposition 11 in § 5.4]. Their
proof can be adapted to Liouville domains. We give a somewhat streamlined
argument.

Let L be a normalized Hamiltonian such that ¢; = id, that is, ¢], t € [0,1],
is a loop in Ham(M, @) . The ends of Int(M) are in bijection with the components
Ny, ..., N of the boundary of M . By assumption, L(x,7) = h;(¢) for x near N;,
and one of these functions vanishes. Denote the Liouville vector field on M again
by Y, and for = <0 set M; = ¢3(M). Then the function

e*L(t,¢y"(x)) if x € My,
Le(tx) =\ eth; (1) if xe |J b))

t<t<0

is smooth and normalized, and it generates the loop
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¢ _ ) dyodrodyt(x) if x e M,
Pr. () = { N if x¢&M,.
Assume now that ¢g = ¢gy. Let G7(t,x) = —G(t,¢5(x)) be the function

generating ¢g'. Then L := G™#H generates the loop ¢z’ o ¢4, . Now note that
H ~ G#G #H = G#L ~ G#L,.
Together with Lemma 5.7 and Property 7 we obtain
o(H) = 0(G#L,) <0(G) + ET (L) =0(G) +e"ET(L)

for every 7 < 0. Hence o(H) < o(G). In the same way, o(G) <o(H). ]

Corollary 5.10. The conclusion of Proposition 5.9 also holds for all compact
2-dimensional symplectic manifolds (M,w) with M not diffeomorphic to the
2-sphere.

Proof. If (M,w) is closed and different from the sphere, then the fundamental
group of Ham(M,w) is trivial [Poll, § 7.2.B], and the claim follows. If M is
not closed, then (M,w) is a Liouville domain, see [McDS2, Exercise 3.5.30],
and so the claim follows from Lemma 5.9. O

6. Three applications of the existence of a minimal action selector

In this section we illustrate by three examples how the existence of a minimal
action selector provides short and elementary proofs of theorems in symplectic
geometry and Hamiltonian dynamics. Our examples are Gromov’s non-squeezing
theorem, the existence of periodic orbits near displaceable energy surfaces, and
the unboundedness of Hofer’s metric.

6.1. Gromov’s non-squeezing theorem. In the standard symplectic vector space
(R*", wp) with n > 2 and wy = );_, dx; Ady; we consider the open ball B>"(r)
of radius r and the cylinder Z?"(R) = B*(R)xR?"~? = {x? + y? < R?}. For any
r > 0 the ball B?"(r) embeds into Z2"(R) by a volume preserving embedding;
just take a suitable diagonal linear map of determinant one. Every symplectic
embedding ¢: B*"(r) — Z?*(R) is volume preserving, since

¢*(wg) = (9" wo)" = wy,

but there is no such embedding if r > R. This celebrated theorem of Gromov [Gro]
shows that symplectic mappings are much more rigid than volume preserving
mappings.
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Theorem 6.1. If r > R there exists no symplectic embedding of the ball B*"(r)
into the cylinder Z*"(R).

Proof. Let ¢: B?"(r) — Z?"(R) be a symplectic embedding. Fix ¢ € (0,r), and
choose a symplectic ellipsoid

E(Rl,...,Rn) = {(XhJ’ls---,xn,)"n)

n x2-|—2
YL <1
R}

=il
such that
(21) ¢ (B*(r—£)) C E(Ry,....Ry) C Z*'(R).

By the elementary Extension after restriction principle from [EH], see also [Schl,
Appendix A], there exists a compactly supported Hamiltonian function G on
T x R?" such that ¢ = ¢ on B?"(r —¢e). Choose p so large that the support
of G is contained in B?"(p). Let o be a minimal action selector on the convex
symplectic manifold (M,w) = (an (p),wo). For every open subset U of the
interior of M we set

¢s(U) =sup{|o(H)|| H has compact support in T x U }.

We will prove that

|l®

n(r —e)? 2 Cy (BZ”(r - 8))

o (#6(B(r—2)))

@ ®
¢o(E(R1,...,Ry)) < m(Ry +&)? < w(R+ &)

NS

Theorem 6.1 then follows since & > 0 can be chosen arbitrarily small.
Choose a smooth function f: [0, +o00) — R with support in [0, 7(r — £)?)
such that

f(0)=min f <0, [f'(s)€[0,1) Vse€][0,+00), [f(s)=0 if f'(s)=0.

While all orbits of the Hamiltonian flow of the function Hp: R?" —» R,
Hr(z) = f(m|z|?), are closed, only those on the sphere of radius \/v/_zr
with f’/(s) € Z have period one. Hence the spectrum of Hy contains only 0
and min Hy. By the non-degeneracy property 8 in Proposition 5.4, o(Hy) < 0
and so o(Hy) = min Hy by the spectrality axiom. Since we can choose f such
that min Hy is as close to —m(r —¢)? as we like, inequality (1) follows.

Equality @) follows from the coordinate change property 3 in Proposition 5.4.

Inequality (3 follows from the first inclusion in (21): We can use more
Hamiltonian functions in E(Ry, ..., R,) than in ¢G(B*"(r—e¢)) C ¢(B*"(r—%)) C
E(Ry,....Ry).
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It is easy to construct a compactly supported Hamiltonian function K,
on R? such that |K;| < n(R; + ¢)? and such that ¢g, displaces B*(Ry),
see [HZ, p. 171]. Let K be a compactly supported cut-off of the function
(X1, Y1s---+sXn,yn) = Ki(x1,y1) such that ¢g displaces E(R;,...,R,) and
|K| = ||Ky]|. Choosing p larger if necessary, we can assume that the support
of K is contained in B2"(p). The energy-capacity inequality 6 in Proposition 5.4
now implies that ¢o(E(R1,...,Ry)) < (R + £)2.

Finally, the second inclusion in (21) shows that 7(R; +¢)?> < r(R+¢)?>. [

6.2. Existence of periodic orbits near a given energy surface. The search for
periodic orbits of prescribed energy is a traditional topic of celestial mechanics and
therefore also of Hamiltonian dynamics. We consider an autonomous Hamiltonian
H: M — R on a symplectic manifold (M,w), and assume that ¢ is a regular
value of H with compact energy surface S, = H~!(c). By preservation of energy,
S, is invariant under the Hamiltonian flow of H . Examples by Ginzburg [Gin]
and Herman [Her] show that S, may carry no periodic orbit. We therefore look
for periodic orbits on nearby energy surfaces S, = H~'(¢’).

Theorem 6.2. Let (M,w) be a compact symplectically aspherical manifold, which
is either closed or convex, and assume that the compact and regular energy
surface S, = H~Y(c) is disjoint from 0M and displaceable, namely there exists
a smooth function K: T x M — R with support in T x (M \ IM) such that
¢k (Sc) NS, = . Then there exists a sequence c; — ¢ of regular values of H
such that every energy surface S, carries a periodic orbit of the flow of H.

By applying this result to sufficiently large balls or disc bundles we obtain
the existence of nearby periodic orbits for compact regular hypersurfaces in R2"
and (under the displaceability assumption) in cotangent bundles.

Proof of Theorem 6.2. Since ¢ is a regular value and S, is disjoint from oM ,
we find an open interval I = (¢ —e&,c + ¢) of regular values of H such
that the union U = [[.; S of diffeomorphic hypersurfaces forms an open
neighbourhood of S, in M \ M. Choose a smooth function K: T x M — R
with support in T x (M \ dM) such that ¢x(S;) N S, = @. Then ¢g displaces
a whole neighbourhood of S.. We can therefore choose ¢ smaller if necessary,
such that ¢g(U)NU = &. Let f.: R — R be a smooth non-positive function
with support in / whose only critical values are 0 and —| K| — 1, see Figure 7.

The function H, := f. o H has support in U. Let o be a minimal
action selector for M (it exists by our construction in Sections 3 and 4
and by Remark 4.3). By the non-degeneracy property 8 in Proposition 5.4,
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o(H,;) < 0. Further, the energy-capacity inequality 6 in Proposition 5.4 shows
that |o(H.)| < || K| . Hence

Kl =1 < o(Hs) <O.

Since the only critical values of H, are 0 and —| K| — 1, and since o(H,)
belongs to the spectrum of Hg, it follows that H,; has a non-constant 1-periodic
orbit in U . A constant reparametrization of this orbit is a periodic orbit y of H,
and H(y) € I. Since & > 0 was arbitrary, the theorem follows. O

Theorem 6.2 can be improved in two directions: First, an elementary additional
argument shows that the set of energies ¢’ € (c —e,¢ + ¢) at which the flow
of H has a periodic orbit actually forms a set of full Lebesgue measure. Secondly,
assume in addition that near S, one can find a Liouville vector field Y transverse
to Sc. In this case, S. is called of contact type. Using the local flow ¢} of Y
we define another foliation [[..; S =: U with central leaf S. = S. by

Ser 1= ¢f’—cS

We now look at the “tautological” function H:U >R glven by H (x) = i
if x e S . The restrictions of the Hamiltonian flow of H to S¢ and Scf are
conjugate under qﬁY ~¢ up to a constant time-change. By Theorem 6.2 we find ¢’
such that the flow of H has a periodic orbit on S. . Hence the flow of H
also has a periodic orbit on S.. A reparametrisation of this orbit is a periodic
orbit of the flow of our original function H . This result proves a special case of
the Weinstein conjecture on the existence of a periodic Reeb orbit on any closed
contact manifold. We refer to Sections 4.2 and 4.3 of [HZ] for detailed proofs
of these improvements.
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6.3. Unboundedness of Hofer’s metric. By Darboux’s theorem, every symplec-
tic manifold (M, w) locally looks like the standard symplectic vector space of
the same dimension, and so there are no local geometric invariants of (M,w).
However, on the group Ham(M, ) of Hamiltonian diffeomorphisms there is a
bi-invariant Finsler metric, the so-called Hofer metric, which is defined by

d(¢.id) =inf | H],

where H varies over those H € J(M) with ¢; = ¢ and where [|H| is the
Hofer norm defined by (19). The only difficult point in verifying that d is indeed
a metric is its non-degeneracy. For closed or convex symplectically aspherical
manifolds, this can be done by using any minimal action selector. We leave this
nice exercise to the reader.

Note that in the above infimum we can ask the Hamiltonian H to be normalized
as in Section 5.3, which for M closed means that

f H(t,)o" =0 YteT.
M

Indeed, any Hamiltonian can be normalized by adding a suitable function of ¢,
and this operation neither affects the Hamiltonian vector field nor the Hofer norm.
Symplectic geometers use their metric intuition to prove results on the metric
space (Ham(M, w),d), which in turn help understanding the dynamics and the
symplectic topology of the underlying manifold (M, w), see for instance [Poll]. A
first question one can ask on a metric space is whether it has bounded diameter.
The following result was proven by Ostrover [Ost] under the assumption that also
the first Chern class vanishes on 7>(M), and by McDuff [McD] without this
assumption. They both used the PSS selector.

Theorem 6.3. Let (M,w) be a closed symplectically aspherical manifold. Then
the Hofer metric on Ham(M, ®) is unbounded.

Proof. Let B C M be a symplectically embedded ball in M, so small that there
exists a Hamiltonian diffeomorphism /4 of M with A(B)NB = @&. We can assume
that & is the time-1 map of an autonomous and normalized Hamiltonian H . Let
f:M — R be a function such that f =1 on M\ B and [,, f " =0.

For s € R consider the Hamiltonian diffeomorphism

¢s = hodsys =ho¢>}_
Let G be any normalized Hamiltonian generating ¢;. We shall prove that

(22) spec(Gs) = spec(H) + s.
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f 1

FIGURE 8
The function f and the map h

Now let o be any (not necessarily minimal) action selector on #(M). Since
spec H has empty interior and o is continuous, (22) implies that o(Gy) = 59 +
for some so € R and every s € R. Further, since G; is normalized, E~(G;y) <
0 < ET(Gy) for every s. Property 5 in Proposition 5.4 thus implies that

”GS” = E+(Gs) — E7(Gy) = E+(Gs) > 0(Gg) = 59 + 5.

This holds for all normalized Hamiltonians generating ¢;, and so
d(¢s,id) > 59 +5 — +00 as s — +o0.

In order to prove (22) we use that by Lemma 5.8 the set spec(Gg) does not
depend on the specific choice of the normalized Hamiltonian G generating ¢ .
It therefore suffices to prove (22) for the “natural” Hamiltonian generating ho ¢y
given by

By a(t+ %)sf(x) if te [0, %],
(0 = a(t) H(x) if re[L1],

that first generates the map ¢z, in time % and then generates the map /4 in

time %, yielding % o ¢sy in time 1. Here, : R — R is a smooth non-negative
function with support in (%, 1) and [ a(t)dt = 1. At first reading one should
take o = 2, but this would result in a Hamiltonian @S not smooth at 1 = %

Since h(B) N B = &, the contractible 1-periodic orbits of ¢’6 are exactly
the contractible 1-periodic orbits of gb; g - Such an orbit y must start outside the
ball B and does not move for ¢ € [0, %] hence f =1 along y. The autonomous
Hamiltonian H is also constant along y. After reparametrization, y corresponds
to a l-periodic ym of ¢}, .

Given such an orbit y and a disc ¥ that restricts to y along its boundary,
we compute the actions
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1 1
A&}(”):[?w +s[0 ot + %)f(y(z))a,’t+[l a(r) H(y(t)) dt

:/_a)+s+/01H(yH(t))dr 2

Y
= Ag(yua) +s.

Claim (22) follows. O

7. Further directions and open problems

In this section we describe a few modifications of the construction in Section 3.
For the proofs of the claims made we refer to [Hau]. To fix the ideas we assume
that the symplectically aspherical manifold (M, ®) is closed.

7.1. Smaller deformation spaces. Our definition of an action selector admits
several variations.

7.1.1. Smaller classes of functions deforming H. The set K (H) is a large
class of deformations of H, and it might be useful to consider smaller classes.

Definition 7.1. A subset K'(M) = Uy K'(H) of K(M) is admissible if
the following holds: For any pair Hy > H; and for any K; € KX'(H,) with
suppds K, C [s7,s], every Ko € K(Hp) with 93Kg < 0 for s < s~ and
Ko = K, for s > s~ belongs to K’'(H).

For every admissible set K'(M) C KX(M) and D'(H) := K'(H) X $p(M),

A'(H) = sup min agy
(K,HNeD'(H) WK,J)

defines a minimal action selector.
Examples of admissible sets are given by the monotone decreasing deforma-
tions (dgK < 0), and for every real number ¢ by the set

Kc(M)={KeXM)| K" =c}.

Of course, A’ < A for every admissible subset K'(M) of J(M). For the classes
K.(M) equality holds, see [Hau, Prop. 4.5.2]:

Proposition 7.2. For every ¢ € R we have A.(H) = A(H) for all functions
H e C=(T x M,R).
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For functions K € Ko(H ), the removal of singularity theorem shows that the
elements of U(K,J) are actually open disks which are J¥-holomorphic near
the origin and satisfy the Floer equation on a collar of the boundary equipped
with cylindrical coordinates. These are exactly the objects which are used in the
PSS isomorphism from [PSS], see Section 7.3 below.

7.1.2. Smaller classes of almost complex structures. Given an -compatible
almost complex structure J on M that does not depend on s, define

Ajy(H)= sup min ap.

KeX(H) WK.J) "

While we do not know if A;(H) depends on J, the number sup; A;(H) is
of course independent of J. All of the functions A;(H) and sup; A;(H) on
C>®(T x M) are minimal action selectors, by the same (and sometimes easier)
arguments as for A(H). We have chosen to give the construction for A(H) since
this is more natural given our deformation approach. Clearly,

A(H) >supAjy(H)> Ay(H) for every J and H.
J

Are these inequalities all equalities? A class of Hamiltonian functions for which
A(H) = Ajy(H) for every J is given in Remark 7.6. A somewhat different
class is given by the intersection of the Hamiltonians in Proposition 3.9 and the
proposition below.

For the selectors A; and hence also for sup; A; we have the following
variant of Proposition 3.9, which is Proposition 4.4.2 in [Hau]. Its proof appeals
to the transversality and gluing analysis from Floer theory.

Proposition 7.3. Let H € C°°(M) be an autonomous Hamiltonian such that
Xy has no non-constant contractible closed orbits of period T € (0,1]. Then for
every w-compatible J,

Aj(H) = nlbin H.

7.2. Action selectors associated to other cohomology classes. By using the
result stated in Remark 2.4, one can construct spectral values A(&, H) € spec(H)
for every non-zero cohomology class § € H*(M;Z,). In the case £ = 1 €
H%(M:Z5), the value A(1,H) agrees with A(H). These spectral values are
monotone and continuous in A and hence are action selectors, but for £ # 1
they are in general larger than the action selector A and not minimal. For
instance, for the generator [M] of H?"(M:Z5) and for C?-small autonomous
Hamiltonians with exactly two critical values we have

A(M], H) = max H.
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We refer to [Hau, § 5] for the proofs and for further properties of these action
selectors.

7.3. Comparison with the PSS selector. Recall that in [Schw] and [FS] the
PSS selector was constructed on closed and convex symplectically aspherical
manifolds with the help of Floer homology. While our selector A already has
many applications to Hamiltonian dynamics and symplectic geometry, some of
the applications of the PSS selector rely on additional properties, that we were
not able to verify for the selector A. One such property is the triangle inequality

opss (G#H ) = 0pss(G) + ovss(H),

that is stronger than the composition property 7 in Proposition 5.4. Proving the
triangle inequality requires the compatibility of the selector with the pair of paints
product. The triangle inequality can be used, for instance, to define a bi-invariant
metric on the group Ham(M, w) that in general is different from the Hofer metric,
and to construct partial symplectic quasi-states [EP, PR]. Another property of
the PSS selector is the minimum formula from [HRS]: Given H; and H, with
support in disjoint incompressible Liouville domains,

opss(H1 + Hz) = min {UPSS(HI): Upss(Hz)}-

It is shown in [HRS] that for any minimal action selector o satisfying this formula
there is an algorithm for computing o on autonomous Hamiltonians on surfaces
different from the sphere.

All properties of the PSS selector would of course hold for our selector A4 if
we could show that they agree. The selectors A and opss both select “essential”
critical values, but in a rather different way: While A(H) is the highest critical
value of Agy such that all strictly lower critical points can be “shaken off”,
opss(H) is the Ap -action of the lowest homologically visible generator of the
Floer homology of H . Assuming that the reader is familiar with Floer homology,
we describe opss(H) in a way relevant for its comparison with A(H).

By the C?-continuity of both selectors, we can assume that all contractible
1 -periodic orbits of H are non-degenerate, in the sense that for every such
orbit x, 1 is not in the spectrum of the linearized return map d¢y (x(0)).
There are then finitely many 1-periodic orbits of ¢j,. Fix K € K (H) such that
KT =0 and J with J~ generic. Recall that for such functions K, for every
element u € U(K,J) the limit ev(u) := limg o u(s,z) € M exists. Choose
a Morse function f on M with only one minimum m, and let W?3(m) be
the stable manifold of m with respect to the gradient flow —V f of a generic
Riemannian metric on M. Then opss(H) is the smallest action Ag(x) of a
contractible 1-periodic orbit x with the following properties: x is a generator of
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HF,(H,J7;Z) (namely x is in the kernel of the Floer boundary operator d;-
but not in its image, and x has Conley—Zehnder index 0), and the number of
those elements u € U(K,J) that start at x and satisfy ev(u) € WS(m) is odd.
Then clearly opss(H) > mingk,7)ay . Since opss(H) does not depend on the
choice of K € Kyo(H) nor on J, we conclude that opss(H) > Ag(H). Together
with Proposition 7.2 we obtain the following result, which is Proposition 9.1.1
in [Hau].

Proposition 7.4. opss(H) > A(H) for all H € C>®(T x M,R).
Open Problem 7.5. Is it true that A(H) = opss(H) for all H € C°(T x M,R)?
The following remark was made by the referee.

Remark 7.6. The equality A(H) = opss(H) holds for C?-small autonomous
Hamiltonians H, and more generally for those H with the following properties.

(H1) There exists m € M such that H,;(m) = minyep H,(x) for every t € T.
(H2) 1is not in the spectrum of the linearized flow d¢i, (m) for all t € (0,1].

(H3) The flow of Xy has no non-constant contractible closed orbits of period
T € (0,1].

Indeed, for such Hamiltonians we have
(23) ACH) = opss(H) = [T H,(m) dt.
For the proof we shall show that

[ Hy(m) dt = opss(H) > A(H) > f H,(m) d.
T T

The first inequality follows from Proposition 7.4. Assumption (H3) in particular
implies that the only contractible 1-periodic orbits of the flow of Xy are the rest
points. Together with (HI) we obtain [, H;(m)dt = minspec (H), whence the
second inequality follows in view of the spectrality of A. For the equality

(24) [T H,(m) dt = opss(H)

we first notice that the assumptions (H1) and (H3) imply that the constant orbit m
is a critical point of the action functional Ay for every s € [0, 1] and that for
any other critical point y of Ay,

(25) Asg(y) = Agg(m) = s[f H,(m)dt, se€]0,1].
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By the continuity of opgs it suffices to prove (24) for a C°-close Hamiltonian.
In view of the non-degeneracy assumption (H2) we find a C?2-small perturbation
such that the contractible I-periodic orbits of the new H are non-degenerate and
such that (H1), (H2), and (25) still hold for the same point m. (There now may
be non-constant contractible 1-periodic orbits y.)

In the above description of the PSS selector we then choose the Morse
function f such that m is the unique minimum and the deformation K of the
form K = B(s)H with a cut-off function . One can now show using (25) that
for a generic choice of the path Jg the critical point m is indeed selected by opgs,
see the proof of Theorem 5.3 in [FS].

We also remark that the inequality A(H) > A;(H) and the spectrality of A,
imply that on the above class of Hamiltonian functions, every action selector A
is also equal to the three quantities in (23).

A. Appendix

In this appendix we prove the following existence result for zeroes of a section
of a Banach bundle, which is used in the proof of Proposition 2.2. Results of
this kind are well-known and widely used in nonlinear analysis. The proof uses
standard ideas from degree theory for proper Fredholm maps.

Theorem A.l. Let n: E — B be a smooth Banach bundle over the Banach
manifold B and let
S:[0,1]xB— E

be a C? map such that S(t,-) is a section of E for every t € [0,1]. Assume

that S satisfies the following conditions:

(i) The inverse image S~'(0g) of the zero section O is compact.

(ii) For every (t,x) € S~Y(0g) the fiberwise differential of the section S(t,-)
at x is a Fredholm operator of index 0.

(iii) There exists a unique xo € B such that S(0,x¢) € Og.

(iv) The fiberwise differential of S(0,-) at x¢ is an isomorphism.

Then the restriction of the projection [0,1]x B — [0,1] to S™1(0g) is surjective.
In particular, there exists at least one x; € B such that S(1,x;) € 0g.

Proof. In order to simplify the notation, we assume that the Banach bundle E has
a global trivialization E =~ B x Y, where the Banach space Y is the typical fiber
of E. The bundle to which we applied the theorem in the proof of Proposition 2.2
has a global trivialization, since its typical fiber is an L?-space and the general
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linear group of L7 -spaces is contractible by a version of Kuiper’s theorem, [Mit].
By using such a trivialization, we write

Sltx) = (x, F(l,x))
for a suitable C2-map F:[0,1]x B — Y that has the following properties:
(i’) The inverse image F~1(0) of 0 €Y is compact.
(ii’) For every (t,x) € F~1(0) the differential of the map F(¢,-) at x is a
Fredholm operator of index 0.
(iii”) There exists a unique xo € B such that F(0,xy) = 0.
(iv’) The differential of F(0,-) at xo is an isomorphism.

We wish to show that the restriction of the projection [0,1] x B — [0, 1] to
F~1(0) is surjective. By (ii’) the differential of F at each (¢,x) € F~1(0) is a
Fredholm operator of index 1. Since Fredholm operators of a given index form
an open set, there exists an open neighborhood U C [0,1] x B of F~1(0) on
which F is a Fredholm map of index 1. Fix p € F~1(0). Since Fredholm maps
are locally proper [Sma, p. 862, (1.6)], we find an open neighborhood V(p) such
that V(p) Cc U and Fly(, 18 a proper map. Since Fly,: V(p) = Y is a
proper C2? Fredholm map of index 1, the Sard-Smale theorem [Sma] implies
that the set R(p) of regular values of F|y): V(p) — Y is residual in Y
(actually, in [Sma] the Sard—Smale theorem is stated under the assumption that
the domain of the map — in our case [0, 1] x B — is second countable, but the
proof consists in showing the above local statement for proper Fredholm maps,
see also [QS, p. 1106]). Here, if V(p) intersects {0,1} x B we view V(p) as a
manifold with boundary V(p) N ({0, 1} x B), and a boundary point is considered
to be regular if it is regular for the restriction of F to the boundary. By (i’) we
find finitely many points p; € F~1(0) such that F~1(0) C U; V(pj) =: V. The
set R:=[); R(p;) CY is also residual, and Fl3 is a proper map.

By (iii’) and (iv’), the point (0,xo) belongs to F~1(0) and F(0,-) is a
local C?-diffeomorphism at xq. Since xq is the unique zero of F(0,-), up to
reducing V' we may assume that the restriction of F to V N ({0} x B) is a
diffeomorphism onto an open subset of Y containing a ball of radius ry centered
in 0.

Denote by dV the topological boundary of V' in [0, 1] x B. In Figure 9 this
set is indicated by the dashed curves. Proper maps between metric spaces are
closed, so F(dV) is a closed set and, since it does not contain 0, there exists a
positive number r; such that all the elements of F(dV) have norm at least ry.

Altogether, for every natural number » we can find a regular value y, € Y
with

(26) Iynll < min{27", ro,r1}.
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Ficure 9
The subsets F~1(0) and T, € #7(v,) of V C[0,1] x B

The set F~'({y,})NV is a one-dimensional submanifold of V, and its boundary
is precisely F~'({y,}) NV N ({0, 1} x B). Indeed, the fact that ||y,| < r; implies
that F~!({y,}) does not intersect the topological boundary dV of V in [0,1]xB.
Together with the fact that F|y is proper, this implies that the set F~'({y,})NV
is compact. Therefore, F~!({y,})NV is a finite union of C?-embedded images of
S1 and [0, 1]; embedded images of [0, 1] have boundary points on VN ({0, 1}x B).
The fact that ||y,| < ro and the property of the restriction of F to V N ({0} x B)
stated above imply that F~!'({y,}) NV has exactly one point on {0} x B, that
we denote by (0, z,). Denote by I, the connected component of F~!({y,)NV
that contains (0, z,). By what we have said above, I';, is an embedded image
of [0, 1] with one boundary point (0,z,) and the other one on {1} x B. By the
connectedness of [0, 1], the restriction of the projection [0,1]x B — [0,1] to T,
is then surjective.

Now let ¢ € [0,1] and let u, € B be such that (z,u,) belongs to I',,. Then
the sequence (F(t,u,)) = (y,) tends to O by (26), and by the properness of F
on V the sequence (f,u,) has a subsequence which converges to some (f,u).
By the continuity of F we have F(¢,u) = 0. This shows that F~1(0) intersects
{t} x B, as we wished to prove. O
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