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Nonhyperbolic Coxeter groups with Menger boundary

Matthew HaurLmark, G. Christopher HrRuska and Bakul SATHAYE

Abstract. A generic finite presentation defines a word hyperbolic group whose boundary
is homeomorphic to the Menger curve. In this article we produce the first known examples
of non-hyperbolic CAT(0) groups whose visual boundary is homeomorphic to the Menger
curve. The examples in question are the Coxeter groups whose nerve is a complete graph
on n vertices for n > 5. The construction depends on a slight extension of Sierpinski’s
theorem on embedding 1-dimensional planar compacta into the Sierpinski carpet. We give
a simplified proof of this theorem using the Baire category theorem.

Mathematics Subject Classification (2010). Primary: 20F67; Secondary: 20F55, 54F50.
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1. Introduction

Many word hyperbolic groups have Gromov boundary homeomorphic to the
Menger curve. Indeed random groups have Menger boundary with overwhelming
probability [Cha, DGP]. Therefore, in a strong sense, Menger boundaries are
ubiquitous among hyperbolic groups. This phenomenon depends heavily on the
fact that the boundary of a one-ended hyperbolic group is always locally connected,
a necessary condition since the Menger curve is a locally connected compactum.

However in the broader setting of CAT(0) groups, the visual boundary often
fails to be locally connected, especially in the case when the boundary is one-
dimensional. For instance the direct product F, x Z of a free group with the
integers has boundary homeomorphic to the suspension of the Cantor set, which
is one-dimensional but not locally connected. The CAT(0) groups with isolated
flats are, in many ways, similar to hyperbolic groups, and are often viewed as the
simplest nontrivial generalization of hyperbolicity. However, even in that setting
many visual boundaries are not locally connected. For example if X is formed
by gluing a closed hyperbolic surface to a torus along a simple closed geodesic
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loop, then its fundamental group G is a CAT(0) group with isolated flats that
has non-locally connected boundary [MR].

One might wonder whether the Menger curve boundary is a unique feature
of the hyperbolic setting. Indeed, recently Kim Ruane observed that not a single
example was known of a nonhyperbolic CAT(0) group with a visual boundary
homeomorphic to the Menger curve, posing the following question.

Question 1.1 (Ruane). Does there exist a nonhyperbolic group G acting properly,
cocompactly, and isometrically on a CAT(0) space X such that the visual
boundary of X is homeomorphic to the Menger curve?

In this article we provide the first explicit examples of nonhyperbolic CAT(0)
groups with Menger visual boundary.

Theorem 1.2. Let W be the Coxeter group defined by a presentation with n
generators of order two such that the order mg; of st satisfies 3 < mg < 00
for all generators s # t (or more generally let W be any Coxeter group whose
nerve is 1-dimensional and equal to the complete graph K,).

(1) If n =3 the group W has visual boundary homeomorphic to the circle and
acts as a reflection group on the Euclidean or hyperbolic plane.

(2) If n =4 the group W has visual boundary homeomorphic to the Sierpiriski
carpet and acts as a reflection group on a convex subset of H3? with
Jundamental chamber a (possibly ideal) convex polytope.

(3) For each n = 5, the group W has visual boundary homeomorphic to the
Menger curve.

The nerve of a Coxeter system is defined in Definition 3.1. The nerve is 1-
dimensional when all three-generator special subgroups are finite (see Remark 3.3).
We note that a 1-dimensional nerve L is a complete graph if and only if every
mg, is finite.

The proof of this theorem depends on work of Hruska—Ruane determining
which CAT(0) groups with isolated flats have locally connected visual boundary
[HR1] and subsequent work of Haulmark on the existence of local cut points in
boundaries [Hau]. In particular, [Hau] gives a criterion that ensures the visual
boundary of a CAT(0) group with isolated flats will be either the circle, the
Sierpinski carpet, or the Menger curve (extending a theorem of Kapovich—Kleiner
from the word hyperbolic setting [KK]). The circle occurs only for virtual surface
groups. In order to distinguish between the other two possible boundaries, one
needs to determine whether the boundary is planar. In general the nerve of
a Coxeter group does not have an obvious natural embedding into the visual
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boundary. However we show in this article that Coxeter groups with nerve K, do
admit an embedding of K5 in the boundary and hence have non-planar boundary
whenever n > 5.

By Bestvina—Kapovich—Kleiner [BKK], we get the following corollary.

Corollary 1.3. Let W be a Coxeter group with at least 5 generators such that
every my, satisfies 3 < mg; < oo. Then W acts properly on a contractible 4-
manifold but does not admit a coarse embedding into any contractible 3 -manifold.
In particular, W is not virtually the fundamental group of any 3-manifold.

1.1. Related problems and open questions. A word hyperbolic special case of
Theorem 1.2 (when all mg, are equal and are strictly greater than 3) is due to
Benakli [Ben]. Related results of Bestvina—Mess, Champetier, and Bonk—Kleiner
[BM, Cha, BK] provide various methods for constructing embedded arcs and
graphs in boundaries of hyperbolic groups.

In principle, any of the well-known hyperbolic techniques could be expected
to generalize to some families of CAT(0) spaces with isolated flats, although the
details of such extensions would necessarily be more subtle than in the hyperbolic
case. For example, as mentioned above many groups with isolated flats have non-
locally connected boundary, and thus are not linearly connected with respect to
any metric.

We note that the proof of Theorem 1.2 given here is substantially different
from the methods used by Benakli in the hyperbolic setting. The proof here is
quite short and uses a slight extension of Sierpinski’s classical embedding theorem
to produce arcs in the boundary. (We provide a new proof of this embedding
theorem.) Unlike in the hyperbolic setting, these arcs do not arise as boundaries
of quasi-isometrically embedded hyperbolic planes.

Nevertheless it seems likely that many of the hyperbolic techniques mentioned
above could also be extended to the present setting, which suggests the following
natural questions.

Question 1.4. What conditions on the nerve of a Coxeter group W are sufficient
to ensure that the open cone on the nerve L admits a proper, Lipschitz, expanding
map into the Davis—Moussong complex of W ? When does the nerve L embed
in the visual boundary?

Question 1.5. Let G be a one-ended CAT(0) group with isolated flats. Does
the visual boundary of G have the doubling property? If the boundary is locally
connected, is it linearly connected? Note that the usual visual metrics on Gromov
boundaries do not exist in the CAT(0) setting, so a different metric must be used
— such as the metric studied in [OS].
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Question 1.6. Let W be the family of all nonhyperbolic Coxeter groups W
with nerve a complete graph K, where n > 5 and all labels mg, = 3. Are all
groups in W quasi-isometric? Can conformal dimension be used to distinguish
quasi-isometry classes of groups in W? As above, one would need to select an
appropriate metric on the boundary in order to make this question more precise.

It is known that vanishing of the ¢?-Betti number in dimension i is a quasi-
isometry invariant for each i [Gro, Pan]. Mogilski has computed the (2 -Betti
numbers of the groups mentioned in the previous question: for each W € W
they are nontrivial in dimension two and vanish in all other dimensions [Mog,
Cor 5.7]. However, this computation does not give any information about the
quasi-isometry classification of the family W. Thus different techniques would
be needed to address Question 1.6.

2. Arcs in the Sierpinski carpet

In 1916, Sierpiniski proved that every planar compactum of dimension at most
one embeds in the Sierpiriski carpet [Sie]. The main result of this section is
Proposition 2.3 — a slight extension of Sierpinski’s theorem — which establishes
the existence of embedded graphs in the Sierpinski carpet that connect an arbitrary
finite collection of points lying on peripheral circles.

Although Sierpiniski’s proof of the embedding theorem was rather elaborate,
we present here a simplified proof using the Baire Category Theorem. The general
technique of applying the Baire Category Theorem to function spaces in order
to prove embedding theorems is well-known in dimension theory and appears to
originate in work of Hurewicz from the 1930s. The conclusion of Proposition 2.3
may not be surprising to experts, but we have provided the proof for the benefit
of the reader.

We begin our discussion with a brief review of Whyburn’s topological
characterization of planar embeddings of the Sierpinski carpet.

Definition 2.1 (Null family of subspaces). Let M be a compact metric space.
A collection A of subspaces of M is a null family if for each ¢ > 0 only
finitely many members of A have diameter greater than ¢. If A is a null family
of closed, pairwise disjoint subspaces, the quotient map =: M — M/A, which
collapses each member of A to a point, is upper semicontinuous in the sense
that 7 is a closed map (see for example Proposition 1.2.3 of [Dave]).
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Remark 2.2 (Planar Sierpinski carpets). A Jordan region in the sphere S? is
a closed disc bounded by a Jordan curve. By a theorem of Whyburn [Why], a
subset S C S? is homeomorphic to the Sierpifiski carpet if and only if it can
be expressed as S = S? — [ Jint(D;) for some null family of pairwise disjoint
Jordan regions {Djy, D5, ...} such that | D; is dense in S2. A peripheral circle
of S is an embedded circle whose removal does not disconnect S. Equivalently
the peripheral circles in a planar Sierpinski carpet S C S? are precisely the
boundaries of the Jordan regions D;. We will denote the collection of peripheral
circles in S by P.

Let E; be the k-pointed star, i.e., the cone on a set of k points. Let
e1,...,ex be the edges of Ej, which we will think of as embeddings of [0, 1]
into E parametrized such that ¢;(0) = ¢;(0) for all i,j € {1,...,k}.

Proposition 2.3. Let Py,...,Py € P be distinct peripheral circles in the
Sierpiniski carpet S, and fix points p; € P;. There is a topological embedding
h: Ep — S such that hoe;(1) = p; for each i € {1,...,k}. Furthermore the
image of Ej intersects the union of all peripheral circles precisely in the given

POWILS Pis .oy Pl

Proof. Let Q be the quotient space S/~ formed by collapsing each peripheral
circle P € P—{Py,..., Pt} to a point. Our strategy is to first show that Q is an
orientable, genus zero surface with £ boundary curves. Then we apply the Baire
Category Theorem and the fact that E; is 1-dimensional to find embeddings of
Ej that avoid the countably many peripheral points of Q. The conclusion of the
Proposition is illustrated in Figure 1.

We first check that Q is a surface. Fix an embedding S <> S§? as in
Remark 2.2. We may form Q from S? in two steps as follows. First collapse
each peripheral Jordan region to a point except for those bounded by the curves
Pi,..., Pr. By a theorem of R.L. Moore [Moo], this upper semicontinuous
quotient of S$? is again homeomorphic to §2. (In particular, the quotient is
Hausdorft.) The space Q may be recovered from this quotient by removing the
interiors of the regions bounded by P;,..., Px. Therefore Q may be obtained
from a 2-sphere by removing the interiors of k& pairwise disjoint Jordan regions.

Let 7: S — @ be the associated quotient map. By a slight abuse of notation
we let P; C Q and p; € Q denote n(P;) and nw(p;). A peripheral point of
Q is the image of a peripheral circle P € P —{Py,..., Pr}. Observe that the
peripheral points are a countable dense set in Q.

Let £ be the space of all embeddings ¢: Ex — Q such that for each i we
have toe;(1) = p; and the image of ¢ intersects Py U---U Py only in the k
points pi,..., pr. We fix a metric p on Q and equip £ with the complete
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Figure 1
An embedding of the graph FEs that intersects the union of
all peripheral circles precisely in the given points pp,..., ps

metric given by d(f,g) = sup{p(f(x).g(x)) | x € Ex }. Our strategy is to show
that for each peripheral point p, the set of embeddings avoiding p is open and
dense in £. It then follows by the Baire Category Theorem that there exists an
embedding ¢ € £ whose image contains no peripheral points.

Toward this end, we fix an arbitrary peripheral point p € Q. Since Ej is
compact, the set of embeddings avoiding p is open, so we only need to prove
that it is dense. Suppose f € £ and p is in the image of f. Let € be any
positive number small enough that the ball B(p,¢) lies in the interior of Q.
Since f is a homeomorphism onto its image, the image f(Ey) is 1-dimensional
and thus does not contain any 2-dimensional disc. In particular, there is at least
one point ¢ € B(p,€) not in the image f(Er). Apply an isotopy ®; to Q
keeping Q — B(p,¢€) fixed and such that ®;(¢q) = p. Then &0 f: Ex — Q
is an element of £ which misses p. Furthermore its distance from f is less
than 2¢. Since ¢ may be chosen arbitrarily small, we conclude that the set of
embeddings avoiding p is open and dense in £.

Since the quotient map m: S — @ is one-to-one on the complement of the
peripheral circles, we may lift any embedding f € £ that avoids peripheral points
to an embedding Ej — S satisfying the conclusion of the proposition. Indeed by
compactness, f(Ey) is closed in Q, so its preimage 7! f(Eg) in S is closed.
The restriction of 7 to this compact preimage is a continuous bijection onto the
Hausdorff space f(Ex), so there is a continuous inverse function 7~! defined
on f(Ex). The composition z~! f is the desired lift. Il



Nonhyperbolic Coxeter groups with Menger boundary 213

3. Coxeter groups and the Davis—Moussong complex

Let YT be a finite simplicial graph with vertex set S whose edges are labeled
by integers > 2. Let my, denote the label on the edge {s,t}. If s and ¢ are
distinct vertices not joined by an edge, we let my, = oo. The Coxeter group
determined by Y is the group

W =(S |s? (sr)™ for all s, distinct elements of S ).

A Coxeter system (W,S) is a Coxeter group W with generating set S as above.

Definition 3.1. The nerve of a Coxeter system (W,S) is a metric simplicial
complex with a O-simplex for each generator s € S and a higher simplex for
each subset 7 C S such that 7 generates a finite subgroup of W.

If (W,S) is any Coxeter system, the Coxeter group W acts properly,
cocompactly, and isometrically on the associated Davis—Moussong complex
3(W,S), a piecewise Euclidean CAT(0) complex such that the link L of each
vertex is equal to the nerve of (W,.S) [Davl, Mou, Dav2].

We state here a result regarding limit sets of special subgroups. The first part
is a folklore result (see, for example, Swigtkowski [Swi]). The second part holds
for all convex subgroups of CAT(0) groups (see, for instance, Swenson [Swe]).

Proposition 3.2. Let (W, S) be any Coxeter system and let Wr denote the special
subgroup of W generated by a subset T C S.

(1) The Davis—Moussong complex ~(Wr,T) is a convex subspace of (W, S)
whose limit set AX(Wr,T) is naturally homeomorphic to the visual boundary
of T(Wr,T).

(2) For any two subsets T and T' of S, we have

AS(Wr, T) N AS(Wr, T = AS(Wrar, T O T).

Remark 3.3 (1-dimensional nerves). A Coxeter group has a 1-dimensional nerve
L if and only if L does not contain a 2-simplex. A set of three generators {r,s,}
bounds a 2-simplex in L precisely when it generates a finite subgroup, i.e., when
1/mps + 1/mgy + 1/my > 1. (We follow the usual convention regarding oo by
considering 1/myg; to equal zero when mg = oo.) Therefore the nerve L is
1 -dimensional if for each triangle, the sum above is < 1. For example a Coxeter
group has large type if all my, satisfy 3 < my; < oo. Evidently all large type
Coxeter groups have 1-dimensional nerve.
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In the 1-dimensional case, the nerve L is equal to the graph Y, the Davis—
Moussong complex is 2-dimensional, each face is isometric to a regular Euclidean
(2myg,)-sided polygon, and the nerve L has a natural angular metric in which
each edge {s,t} has length 7= — (7/my,). We refer the reader to [Dav2] for more
background on Coxeter groups from the CAT(0) point of view.

Coxeter groups of large type always have isolated flats — even when the
nerve is not complete — by an observation of Wise (see [Hru] for details). The
following analogous result for Coxeter groups with nerve a complete graph follows
immediately from Corollary D of [Cap], since two adjacent edges in the nerve
cannot both have label 2.

Proposition 3.4. Coxeter groups whose nerve is a complete graph always have
isolated flats.

By Hruska—Kleiner [HK], the groups acting geometrically on CAT(0) spaces
with isolated flats have a well-defined boundary in the following sense: If G acts
geometrically on two CAT(0) spaces X and Y with isolated flats, then there
exists a G -equivariant homeomorphism between their visual boundaries X and
dY . This common boundary will be denoted 9G .

Proposition 3.5. Let W be a Coxeter group whose nerve is a complete graph
K, with n > 3. The boundary oW of W is homeomorphic to either the circle,
the Sierpinski carpet, or the Menger curve.

Proof. A theorem due to Serre [Ser, §1.6.5] states that if G is generated by a
finite number of elements sy, ...,s, such that each s; and each product s;5; has
finite order, then G has Serre’s Property FA. In other words, every action of
G on a simplicial tree has a global fixed point. Evidently W satisfies Serre’s
criterion, and hence W does not split as a nontrivial graph of groups.

Since W acts geometrically on a 2-dimensional CAT(0) space, its boundary
has dimension at most 1 by [Bes]. As W is infinite and not virtually free the
dimension of the boundary must be exactly 1, provided that n > 3.

The first author proves in [Hau] that a CAT(0) group with isolated flats with
1 -dimensional boundary that does not split over a virtually cyclic subgroup must
have visual boundary homeomorphic to either the circle, the Sierpifiski carpet,
or the Menger curve. M

Infinite Coxeter triangle groups always act as reflection groups on either the
Euclidean plane or the hyperbolic plane. In particular they have circle boundary.
The following proposition examines the case of Coxeter groups with nerve Kjy.
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Proposition 3.6. Let W be a Coxeter group whose nerve L is a complete
graph K4 on 4 vertices. Then the boundary oW of W is homeomorphic to the
Sierpinski carpet, and the limit set of each three generator special subgroup of
W is a peripheral circle.

Proof. The nerve L of W is planar, so W embeds as a special subgroup of a
Coxeter group with visual boundary S2 by a well-known doubling construction.
(See, for example, [DO].) Indeed, one embeds L into S?, and then fills each
complementary region in the sphere with 2-simplices by adding a vertex in the
interior of the region and coning off the boundary of the region to the new
vertex. Each such cone is “right-angled” in the sense that each added edge {s,t}
is assigned the label mg, = 2. This procedure produces a metric flag triangulation
L of $2, which has L as a full subcomplex. Let W+ be the Coxeter group

determined by the 1-skeleton of L, and having the triangulated 2-sphere L as
its nerve. Then dW+ is homeomorphic to S2. By Proposition 3.2(1), it follows
that W is planar.

Let 7 be the collection of three generator special subgroups of W. Each
element W’ € 7 is an infinite triangle reflection group, i.e., either Euclidean
or hyperbolic type. By Proposition 3.2 the circle boundary of each W' € T
embeds in oW, and these circles are pairwise disjoint. Since dW is planar and
contains more than one circle, it must be homeomorphic to the Sierpinski carpet
by Proposition 3.5.

The group W is hyperbolic relative to 7 by [Cap]. Hung Cong Tran has
shown that the Bowditch boundary is the quotient space obtained from the
visual boundary dW by collapsing the limit sets of the three generator special
subgroups and their conjugates to points [Tra]. Since W has Property FA, its
Bowditch boundary d(W,7) has no cut points [Bow]. It follows that the limit
set of a three-generator special subgroup (or any of its conjugates) is always a
peripheral circle of the Sierpinski carpet. L]

In fact, the group W in the preceding proposition acts on H?* as a geometrically
finite reflection group, as described below.

Remark 3.7. In the special case where the nerve is K, and every my, = 3,
the group W is an arithmetic nonuniform lattice acting on H?® as the group
generated by the reflections in the faces of a regular ideal tetrahedron and is
commensurable with the fundamental group of the figure eight knot complement
and the Bianchi group PGL(2, O3). The relationship between W and the figure
eight knot group is discussed, for example, by Maclachlan—Reid (see Section 4.7.1
and Figure 13.2 of [MRe]).
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More generally each Coxeter group with nerve K4 acts as a reflection group on
a convex subset of H3 with fundamental chamber a possibly ideal convex polytope.
Start with the triangulation L of S2 described in the proof of Proposition 3.6, and
replace each right-angled cone on a Euclidean triangle with a single 2-simplex.
The dual polytope K has a (possibly ideal) hyperbolic metric by Andreev’s
theorem (see Theorem 3.5 of [Sch] for a detailed explanation). The reflections in
the faces of K generate a Coxeter group that contains W as a special subgroup.
The union of all W -translates of K is a convex subspace of H?® on which W
acts as a reflection group with fundamental chamber K.

4. Proof of the main theorem

The goal of this section is to prove that the boundary of a Coxeter group
W is homeomorphic to the Menger curve when the nerve is K, for n > 5. By
Proposition 3.5, it suffices to show that dW is nonplanar when »n > 5. Thus the
following result completes the proof of Theorem 1.2.

Proposition 4.1. If W is any Coxeter group with nerve K, for n > 5, then the
complete graph Ks embeds in W . In particular, oW is not planar.

Proof. Let W5 be any five generator special subgroup of W . By Proposition 3.2(1)
it suffices to embed K5 into dWs.

Suppose s1,...,55 are the five generators of Ws. For each i € {1,...,5}, let
Wi be the special subgroup of Ws generated by {sy,..., 5 ,...,55}. The limit
set AW/} is homeomorphic to the Sierpinski carpet by Proposmon 3.6. Similarly
for each i # j in {1,...,5} let W, b7 denote the special subgroup generated by
{8 w5 s BB g 1 w55 5},...,55}, whose limit set is a circle.

Since W;’j is a subgroup of W}, its limit set is a peripheral circle of
the Sierpiriski carpet AW, and similarly it is a peripheral circle in the carpet
AW4j . Indeed this circle is precisely the intersection of these two Sierpinski
carpets by Proposition 3.2(2). The five Sierpifiski carpets AW/ and their circles
of intersection are illustrated in Figure 2.

Choose points p; ; on the circles AW3i’j such that p; ; = p,; for i # j.
Let Ei be a collection of 4-pointed stars for 1 < i < 5. For a fixed i,
we label the four edges of Ej as e}, where 1 < j <5 and j # i.
Proposition 2.3 for every i, there is a topologlcal embedding h;: Ei — BW’
such that A; oe; (1) = pij € BW . Then h; oe; 1(0) is the center of the star in
AW4‘, and we w1ll denote it by v;.

The union of the five stars is an embedded complete graph Ks in JdWs.
Indeed, we have 5 vertices vi,...,vs and an edge between every two vertices.
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AW}

FiGURrE 2
The five Sierpifiski carpets AW,!,...AW? and their circles of intersection. The dotted
edges between carpets indicate the pairs of peripheral circles that are identified in 0Ws.

An edge between vertices v; and v; is given by concatenating the images of the
edges et and ¢/ in AW, and AW, respectively. These edges do not intersect
except at their endpoints v; . U
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