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Nonhyperbolic Coxeter groups with Menger boundary

Matthew Haulmark, G. Christopher Hruska and Bakul Sathaye

Abstract. A generic finite presentation defines a word hyperbolic group whose boundary

is homeomorphic to the Menger curve. In this article we produce the first known examples

of non-hyperbolic CAT(O) groups whose visual boundary is homeomorphic to the Menger

curve. The examples in question are the Coxeter groups whose nerve is a complete graph

on n vertices for n > 5. The construction depends on a slight extension of Sierpiriski's

theorem on embedding I -dimensional planar compacta into the Sierpinski carpet. We give

a simplified proof of this theorem using the Baire category theorem.

Mathematics Subject Classification (2010). Primary: 20F67; Secondary: 20F55, 54F50.

Keywords. Nonpositive curvature, Menger curve, Coxeter group.

1. Introduction

Many word hyperbolic groups have Gromov boundary homeomorphic to the

Menger curve. Indeed random groups have Menger boundary with overwhelming

probability [Cha, DGP]. Therefore, in a strong sense, Menger boundaries are

ubiquitous among hyperbolic groups. This phenomenon depends heavily on the

fact that the boundary of a one-ended hyperbolic group is always locally connected,

a necessary condition since the Menger curve is a locally connected compactum.
However in the broader setting of CAT(0) groups, the visual boundary often

fails to be locally connected, especially in the case when the boundary is one-
dimensional. For instance the direct product F2 x Z of a free group with the

integers has boundary homeomorphic to the suspension of the Cantor set, which
is one-dimensional but not locally connected. The CAT(0) groups with isolated

flats are, in many ways, similar to hyperbolic groups, and are often viewed as the

simplest nontrivial generalization of hyperbolicity. However, even in that setting

many visual boundaries are not locally connected. For example if X is formed

by gluing a closed hyperbolic surface to a torus along a simple closed geodesic
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loop, then its fundamental group G is a CAT(O) group with isolated flats that

has non-locally connected boundary [MR],
One might wonder whether the Menger curve boundary is a unique feature

of the hyperbolic setting. Indeed, recently Kim Ruane observed that not a single

example was known of a nonhyperbolic CAT(O) group with a visual boundary

homeomorphic to the Menger curve, posing the following question.

Question 1.1 (Ruane). Does there exist a nonhyperbolic group G acting properly,

cocompactly, and isometrically on a CAT(O) space X such that the visual

boundary of X is homeomorphic to the Menger curve?

In this article we provide the first explicit examples of nonhyperbolic CAT(O)

groups with Menger visual boundary.

Theorem 1.2. Let W be the Coxeter group defined by a presentation with n

generators of order two such that the order mst of st satisfies 3 < mst < oo

for all generators s f t (or more generally let W be any Coxeter group whose

nerve is 1 -dimensional and equal to the complete graph Kn

1 If n — 3 the group W has visual boundary homeomorphic to the circle and

acts as a reflection group on the Euclidean or hyperbolic plane.

(2) If n 4 the group W has visual boundary homeomorphic to the Sierpinski

carpet and acts as a reflection group on a convex subset of H3 with

fundamental chamber a (possibly ideal) convex polytope.

(3) For each n > 5, the group W has visual boundary homeomorphic to the

Menger curve.

The nerve of a Coxeter system is defined in Definition 3.1. The nerve is 1 -

dimensional when all three-generator special subgroups are finite (see Remark 3.3).

We note that a 1 -dimensional nerve L is a complete graph if and only if every

mst is finite.
The proof of this theorem depends on work of Hruska-Ruane determining

which CAT(O) groups with isolated flats have locally connected visual boundary
[HR1J and subsequent work of Haulmark on the existence of local cut points in

boundaries [Hau|. In particular, [Hau] gives a criterion that ensures the visual

boundary of a CAT(O) group with isolated flats will be either the circle, the

Sierpinski carpet, or the Menger curve (extending a theorem of Kapovich-Kleiner
from the word hyperbolic setting [KK]). The circle occurs only for virtual surface

groups. In order to distinguish between the other two possible boundaries, one
needs to determine whether the boundary is planar. In general the nerve of
a Coxeter group does not have an obvious natural embedding into the visual
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boundary. However we show in this article that Coxeter groups with nerve Kn do

admit an embedding of K5 in the boundary and hence have non-planar boundary
whenever n > 5.

By Bestvina-Kapovich-Kleiner [BKK], we get the following corollary.

Corollary 1.3. Let W be a Coxeter group with at least 5 generators such that

every mst satisfies 3 < mst < oo. Then W acts properly on a contractible 4-

manifold but does not admit a coarse embedding into any contractible 3 -manifold.
In particular, W is not virtually the fundamental group of any 3 -manifold.

1.1. Related problems and open questions. A word hyperbolic special case of
Theorem 1.2 (when all mst are equal and are strictly greater than 3) is due to
Benakli [Ben], Related results of Bestvina-Mess, Champetier, and Bonk-Kleiner
[BM, Cha, BK] provide various methods for constructing embedded arcs and

graphs in boundaries of hyperbolic groups.
In principle, any of the well-known hyperbolic techniques could be expected

to generalize to some families of CAT(O) spaces with isolated flats, although the

details of such extensions would necessarily be more subtle than in the hyperbolic
case. For example, as mentioned above many groups with isolated flats have

nonlocal ly connected boundary, and thus are not linearly connected with respect to

any metric.
We note that the proof of Theorem 1.2 given here is substantially different

from the methods used by Benakli in the hyperbolic setting. The proof here is

quite short and uses a slight extension of Sierpinski's classical embedding theorem

to produce arcs in the boundary. (We provide a new proof of this embedding
theorem.) Unlike in the hyperbolic setting, these arcs do not arise as boundaries

of quasi-isometrically embedded hyperbolic planes.

Nevertheless it seems likely that many of the hyperbolic techniques mentioned
above could also be extended to the present setting, which suggests the following
natural questions.

Question 1.4. What conditions on the nerve of a Coxeter group W are sufficient

to ensure that the open cone on the nerve L admits a proper, Lipschitz, expanding

map into the Davis-Moussong complex of IF When does the nerve L embed

in the visual boundary?

Question 1.5. Let G be a one-ended CAT(O) group with isolated flats. Does

the visual boundary of G have the doubling property? If the boundary is locally
connected, is it linearly connected? Note that the usual visual metrics on Gromov
boundaries do not exist in the CAT(O) setting, so a different metric must be used

- such as the metric studied in [OS].
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Question 1.6. Let W be the family of all nonhyperbolic Coxeter groups W

with nerve a complete graph Kn where n > 5 and all labels mst 3. Are all

groups in W quasi-isometric? Can conformai dimension be used to distinguish

quasi-isometry classes of groups in W? As above, one would need to select an

appropriate metric on the boundary in order to make this question more precise.

It is known that vanishing of the £2-Betti number in dimension i is a quasi-

isometry invariant for each i [Gro, Pan]. Mogilski has computed the I2 -Betti
numbers of the groups mentioned in the previous question: for each W W
they are nontrivial in dimension two and vanish in all other dimensions [Mog,
Cor 5.7]. However, this computation does not give any information about the

quasi-isometry classification of the family W. Thus different techniques would
be needed to address Question 1.6.

2. Arcs in the Sierpinski carpet

In 1916, Sierpinski proved that every planar compactum of dimension at most

one embeds in the Sierpinski carpet [Sie]. The main result of this section is

Proposition 2.3 - a slight extension of Sierpinski's theorem - which establishes

the existence of embedded graphs in the Sierpinski carpet that connect an arbitrary
finite collection of points lying on peripheral circles.

Although Sierpinski's proof of the embedding theorem was rather elaborate,

we present here a simplified proof using the Baire Category Theorem. The general

technique of applying the Baire Category Theorem to function spaces in order

to prove embedding theorems is well-known in dimension theory and appears to

originate in work of Hurewicz from the 1930s. The conclusion of Proposition 2.3

may not be surprising to experts, but we have provided the proof for the benefit

of the reader.

We begin our discussion with a brief review of Whyburn's topological
characterization of planar embeddings of the Sierpinski carpet.

Definition 2.1 (Null family of subspaces). Let AT be a compact metric space.

A collection A of subspaces of M is a null family if for each e > 0 only

finitely many members of A have diameter greater than e. If A is a null family
of closed, pairwise disjoint subspaces, the quotient map n: M -> M/A, which

collapses each member of A to a point, is upper semicontinuous in the sense

that jt is a closed map (see for example Proposition 1.2.3 of [Dave]).



Nonhyperbolic Coxeter groups with Menger boundary 211

Remark 2.2 (Planar Sierpinski carpets). A Jordan region in the sphere S2 is

a closed disc bounded by a Jordan curve. By a theorem of Whyburn [Why], a

subset S C S2 is homeomorphic to the Sierpinski carpet if and only if it can
be expressed as S S2 — [Jint(D!) for some null family of pairwise disjoint
Jordan regions {Di, D2, } such that |J D, is dense in S2. A peripheral circle
of S is an embedded circle whose removal does not disconnect S. Equivalently
the peripheral circles in a planar Sierpinski carpet S c S2 are precisely the

boundaries of the Jordan regions D,. We will denote the collection of peripheral
circles in S by V.

Let Ek be the k -pointed star, i.e., the cone on a set of k points. Let

ei,...,ek be the edges of Ek, which we will think of as embeddings of [0,1]
into E parametrized such that e,(0) ej(0) for all i,j e {1.....k}.

Proposition 2.3. Let Pi,..., Pk e V he distinct peripheral circles in the

Sierpinski carpet S, and fix points pi e P,. There is a topological embedding
h: Ek S such that h °e,(l) pi for each i e {1 k}. Furthermore the

image of Ek intersects the union of all peripheral circles precisely in the given

points pi,...,pk.

Proof Let Q be the quotient space <S/~ formed by collapsing each peripheral
circle P eV — {Pi,..., Pk) to a point. Our strategy is to first show that Q is an

orientable, genus zero surface with k boundary curves. Then we apply the Baire

Category Theorem and the fact that Ek is 1 -dimensional to find embeddings of
Ek that avoid the countably many peripheral points of Q. The conclusion of the

Proposition is illustrated in Ligure 1.

We first check that Q is a surface. Pix an embedding S S2 as in
Remark 2.2. We may form Q from S2 in two steps as follows. First collapse
each peripheral Jordan region to a point except for those bounded by the curves

Pi, Pk By a theorem of R. L. Moore [Moo], this upper semicontinuous

quotient of S2 is again homeomorphic to S2. (In particular, the quotient is

Hausdorff.) The space Q may be recovered from this quotient by removing the

interiors of the regions bounded by Pi Pk Therefore Q may be obtained

from a 2-sphere by removing the interiors of k pairwise disjoint Jordan regions.
Let 7T : S —> Q be the associated quotient map. By a slight abuse of notation

we let Pi C Q and /;, e Q denote n(l'i) and rt(/?,). A peripheral point of
Q is the image of a peripheral circle P e V - {Pi Pk}- Observe that the

peripheral points are a countable dense set in Q.
Let £ be the space of all embeddings t: Ek Q such that for each i we

have o e,- 1 pt and the image of 1 intersects Pi U • • • U Pk only in the k

points pi,...,pk- We fix a metric p on Q and equip £ with the complete



212 M. Haulmark, G. C. Hruska and B. Sathaye

Figure 1

An embedding of the graph £5 that intersects the union of
all peripheral circles precisely in the given points p\,...,ps

metric given by d( f,g) sup{ p(/(x), g(x)) | x e }. Our strategy is to show

that for each peripheral point p, the set of embeddings avoiding p is open and

dense in £. It then follows by the Baire Category Theorem that there exists an

embedding 1 e £ whose image contains no peripheral points.

Toward this end, we fix an arbitrary peripheral point p g Q. Since is

compact, the set of embeddings avoiding p is open, so we only need to prove
that it is dense. Suppose f e £ and p is in the image of /. Let e be any

positive number small enough that the ball B(p, e) lies in the interior of Q.
Since f is a homeomorphism onto its image, the image f(Ek) is 1-dimensional
and thus does not contain any 2-dimensional disc. In particular, there is at least

one point q G B(p,e) not in the image f(Ek). Apply an isotopy T, to Q

keeping Q - B(p,e) fixed and such that <£1(17) p. Then o /: Ek Q

is an element of £ which misses p. Furthermore its distance from / is less

than 2e. Since e may be chosen arbitrarily small, we conclude that the set of
embeddings avoiding p is open and dense in £.

Since the quotient map n : <S -» Q is one-to-one on the complement of the

peripheral circles, we may lift any embedding / £ that avoids peripheral points
to an embedding E^ S satisfying the conclusion of the proposition. Indeed by

compactness, /(£*) is closed in Q, so its preimage n~l f(Ek) in S is closed.

The restriction of it to this compact preimage is a continuous bijection onto the

Hausdorff space f{Ek), so there is a continuous inverse function 1r_1 defined

on f(Ek). The composition n~x f is the desired lift.
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3. Coxeter groups and the Davis-Moussong complex

Let T be a finite simplicial graph with vertex set S whose edges are labeled

by integers > 2. Let mst denote the label on the edge {s,t}. If s and t are

distinct vertices not joined by an edge, we let mst oo. The Coxeter group
determined by T is the group

W — (S I s2, (st)mst for all s,t distinct elements of S

A Coxeter system W,S) is a Coxeter group W with generating set S as above.

Definition 3.1. The nerve of a Coxeter system (W, S) is a metric simplicial
complex with a 0-simplex for each generator s e S and a higher simplex for
each subset T ç S such that T generates a finite subgroup of W.

If (W, S) is any Coxeter system, the Coxeter group W acts properly,

cocompactly, and isometrically on the associated Davis-Moussong complex
S(VL, S), a piecewise Euclidean CAT(O) complex such that the link L of each

vertex is equal to the nerve of (W, S) [Davl, Mou, Dav2],
We state here a result regarding limit sets of special subgroups. The first part

is a folklore result (see, for example, Swiqtkowski [Swi]). The second part holds

for all convex subgroups of CAT(O) groups (see, for instance, Swenson [Swe]).

Proposition 3.2. Let (W, S) be any Coxeter system and let Wj denote the special
subgroup of W generated by a subset T C S.

(1) The Davis-Moussong complex S(Wj. T) is a convex subspace of L(W, S)
whose limit set A E (Wt, T) is naturally homeomorphic to the visual boundary

of V(Wt,T).

(2) For any two subsets T and T' of S, we have

AE(WV, T) n AE(Wtv, 7") A£(HW', T (T T').

Remark 3.3 1 -dimensional nerves). A Coxeter group has a 1 -dimensional nerve

L if and only if L does not contain a 2-simplex. A set of three generators \r, ,v, tj
bounds a 2-simplex in L precisely when it generates a finite subgroup, i.e., when
1 /ftirs + 1 /mst + 1 /mrt > 1. (We follow the usual convention regarding oo by

considering 1 /mst to equal zero when mst oo.) Therefore the nerve L is
1 -dimensional if for each triangle, the sum above is < 1. For example a Coxeter

group has large type if all mst satisfy 3 < mst < oo. Evidently all large type
Coxeter groups have 1 -dimensional nerve.
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In the 1 -dimensional case, the nerve L is equal to the graph T, the Davis-
Moussong complex is 2-dimensional, each face is isometric to a regular Euclidean

(2mst) -sided polygon, and the nerve L has a natural angular metric in which
each edge {.v, /} has length n — (jt/mst). We refer the reader to [Dav2] for more

background on Coxeter groups from the CAT(O) point of view.

Coxeter groups of large type always have isolated flats - even when the

nerve is not complete - by an observation of Wise (see [Hru] for details). The

following analogous result for Coxeter groups with nerve a complete graph follows

immediately from Corollary D of [Cap], since two adjacent edges in the nerve

cannot both have label 2.

Proposition 3.4. Coxeter groups whose nerve is a complete graph always have

isolated flats.

By Hruska-Kleiner [HK], the groups acting geometrically on CAT(O) spaces
with isolated flats have a well-defined boundary in the following sense: If G acts

geometrically on two CAT(O) spaces X and Y with isolated flats, then there

exists a G -equivariant homeomorphism between their visual boundaries dX and

8Y. This common boundary will be denoted 3G.

Proposition 3.5. Let W he a Coxeter group whose nerve is a complete graph
Kn with n > 3. The boundary 3 W of W is homeomorphic to either the circle,
the Sierpinski carpet, or the Menger curve.

Proof. A theorem due to Serre [Ser, §1.6.5] states that if G is generated by a

finite number of elements si,... ,sn such that each and each product SiSj has

finite order, then G has Serre's Property FA. In other words, every action of
G on a simplicial tree has a global fixed point. Evidently W satisfies Serre's

criterion, and hence W does not split as a nontrivial graph of groups.
Since W acts geometrically on a 2-dimensional CAT(O) space, its boundary

has dimension at most 1 by [Bes], As W is infinite and not virtually free the

dimension of the boundary must be exactly 1, provided that n >3.
The first author proves in [Hau] that a CAT(O) group with isolated flats with

1 -dimensional boundary that does not split over a virtually cyclic subgroup must
have visual boundary homeomorphic to either the circle, the Sierpinski carpet,

or the Menger curve.

Infinite Coxeter triangle groups always act as reflection groups on either the

Euclidean plane or the hyperbolic plane. In particular they have circle boundary.
The following proposition examines the case of Coxeter groups with nerve K4.
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Proposition 3.6. Let W be a Coxeter group whose nerve L is a complete

graph K4 on 4 vertices. Then the boundary 3 W of W is homeomorphic to the

Sierpihski carpet, and the limit set of each three generator special subgroup of
W is a peripheral circle.

Proof. The nerve L of W is planar, so W embeds as a special subgroup of a

Coxeter group with visual boundary S2 by a well-known doubling construction.

(See, for example, [DO|.) Indeed, one embeds L into S2, and then fills each

complementary region in the sphere with 2-simplices by adding a vertex in the

interior of the region and coning off the boundary of the region to the new

vertex. Each such cone is "right-angled" in the sense that each added edge {.y, r}
is assigned the label mst 2. This procedure produces a metric flag triangulation
L of S2, which has L as a full subcomplex. Let W~ be the Coxeter group
determined by the 1-skeleton of L and having the triangulated 2-sphere L as

its nerve. Then BW^~ is homeomorphic to S2. By Proposition 3.2(1), it follows
that BW is planar.

Let T be the collection of three generator special subgroups of W. Each

element W' e T is an infinite triangle reflection group, i.e., either Euclidean

or hyperbolic type. By Proposition 3.2 the circle boundary of each W' e T
embeds in BW, and these circles are pairwise disjoint. Since BW is planar and

contains more than one circle, it must be homeomorphic to the Sierpinski carpet
by Proposition 3.5.

The group W is hyperbolic relative to T by [Cap], Hung Cong Tran has

shown that the Bowditch boundary is the quotient space obtained from the

visual boundary BW by collapsing the limit sets of the three generator special

subgroups and their conjugates to points [Tra]. Since W has Property FA, its
Bowditch boundary B{W, T) has no cut points [Bow]. It follows that the limit
set of a three-generator special subgroup (or any of its conjugates) is always a

peripheral circle of the Sierpinski carpet.

In fact, the group W in the preceding proposition acts on H3 as a geometrically
finite reflection group, as described below.

Remark 3.7. In the special case where the nerve is K4 and every mst 3,
the group W is an arithmetic nonuniform lattice acting on H3 as the group
generated by the reflections in the faces of a regular ideal tetrahedron and is

commensurable with the fundamental group of the figure eight knot complement
and the Bianchi group PGL(2, ö3). The relationship between W and the figure
eight knot group is discussed, for example, by Maclachlan-Reid (see Section 4.7.1

and Figure 13.2 of [MRe]).
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More generally each Coxeter group with nerve KA acts as a reflection group on

a convex subset of H3 with fundamental chamber a possibly ideal convex polytope.
Start with the triangulation L of S2 described in the proof of Proposition 3.6, and

replace each right-angled cone on a Euclidean triangle with a single 2-simplex.
The dual polytope K has a (possibly ideal) hyperbolic metric by Andreev's
theorem (see Theorem 3.5 of [Sch] for a detailed explanation). The reflections in
the faces of K generate a Coxeter group that contains IE as a special subgroup.
The union of all W -translates of A" is a convex subspace of H3 on which W

acts as a reflection group with fundamental chamber K.

4. Proof of the main theorem

The goal of this section is to prove that the boundary of a Coxeter group
W is homeomorphic to the Menger curve when the nerve is Kn for n > 5. By
Proposition 3.5, it suffices to show that 3W is nonplanar when n > 5. Thus the

following result completes the proof of Theorem 1.2.

Proposition 4.1. If W is any Coxeter group with nerve Kn for n > 5, then the

complete graph K5 embeds in dW. In particular, 3 IE is not planar.

Proof. Let be any five generator special subgroup of W. By Proposition 3.2(1)

it suffices to embed K5 into 3W5.

Suppose ,vi,..., .v5 are the five generators of 1E5. For each i e {1,..., 5}, let

1E4 be the special subgroup of IE5 generated by {si, ....s},... ,.95}. The limit
set AIE4 is homeomorphic to the Sierpinski carpet by Proposition 3.6. Similarly
for each i ^ j in {1,...,5} let W^'J denote the special subgroup generated by

{.si,..., Si s] s5}, whose limit set is a circle.
Since Wlf] is a subgroup of IE4, its limit set is a peripheral circle of

the Sierpinski carpet AIE4!, and similarly it is a peripheral circle in the carpet
A Wj Indeed this circle is precisely the intersection of these two Sierpinski

carpets by Proposition 3.2(2). The five Sierpinski carpets A!E4! and their circles

of intersection are illustrated in Figure 2.

Choose points pij on the circles KW\'} such that ptj — pj4 for i f j.
Let E\ be a collection of 4-pointed stars for 1 < i < 5. For a fixed i,
we label the four edges of E\ as ej, where 1 < j < 5 and j f i. By
Proposition 2.3 for every i, there is a topological embedding A, : E\ -» 31E4

such that hi o ej 1 ptj e 3W^J Then A,- oej(O) is the center of the star in

AIE4 and we will denote it by 1.
The union of the five stars is an embedded complete graph K5 in 31E5.

Indeed, we have 5 vertices vi,...,v5 and an edge between every two vertices.



Figure 2

The five Sierpinski carpets AWj ,...\W% and their circles of intersection. The

edges between carpets indicate the pairs of peripheral circles that are identified in
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Alf,1

AWl

dotted

dw5.

An edge between vertices u; and vj is given by concatenating the images of the

edges e'j and e\ in KW\ and A WI respectively. These edges do not intersect

except at their endpoints t>;.
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