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Traversing three-manifold triangulations and spines

J. Hyam Rubinstein, Henry Segerman and Stephan Tillmann

Abstract. A celebrated result concerning triangulations of a given closed three-manifold is

that any two triangulations with the same number of vertices are connected by a sequence
of so-called 2-3 and 3-2 moves. A similar result is known for ideal triangulations of
topologically finite non-compact three-manifolds. These results build on classical work
that goes back to Alexander, Newman, Moise, and Pachner. The key special case of
one-vertex triangulations of closed three-manifolds was independently proven by Matveev
and Piergallini. The general result for closed three-manifolds can be found in work of
Benedetti and Petronio, and Amendola gives a proof for topologically finite non-compact
three-manifolds. These results (and their proofs) are phrased in the dual language of spines.

The purpose of this note is threefold. We wish to popularise Amendola's result; we

give a combined proof for both closed and non-compact manifolds that emphasises the

dual viewpoints of triangulations and spines; and we give a proof replacing a key general

position argument due to Matveev with a more combinatorial argument inspired by the

theory of subdivisions.

Mathematics Subject Classification (2010). Primary: 57Q15, 57Q25, 52B70, 57N10,

57M50, 57M27.

Keywords. Triangulation, three-manifold, surface, combinatorial topology, triangulated

manifolds, bistellar moves, standard spines.

1. Introduction

Suppose you have a finite number of triangles. If you identify edges in pairs
such that no edge remains unglued, then the resulting identification space looks

locally like a plane and one obtains a closed surface, a two-dimensional manifold
without boundary. The classification theorem for surfaces, which has its roots

in work of Camille Jordan and August Möbius in the 1860s, states that each

closed surface is topologically equivalent to a sphere with some number of
handles or crosscaps. For example, the torus is a sphere with a single handle,
and the projective plane is a sphere with a single crosscap. A modern proof of
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the classification theorem is due to John Conway and presented by Francis and

Weeks [FW],
Now suppose you have a finite number of tetrahedra and identify triangular

faces in pairs such that no face remains unglued. In this case, the resulting
identification space is again closed (it has no boundary). The resulting space
looks everywhere like three-dimensional euclidean space except possibly at the

vertices and at mid-points of edges. This can be seen as follows.

The local picture near a vertex in the identification space can be understood

by tracing the small triangles in the tetrahedra cutting off the vertices that are

identified under the face gluings (see Figure 1). If these small triangles globally
glue up to a sphere, then in the identification space the sphere formed by the

triangles bounds a ball and the vertex in the identification space looks like the

centre of a ball. In this case, the vertex is called material. However, if the triangles
glue up to a sphere with at least one handle or crosscap, then the space near this

vertex looks like a cone on this surface. Such a vertex is called ideal.

Figure 1

Small triangles near the vertices of the tetrahedra glue up to form a surface.

Only the cone on a sphere is a ball; the cone on a different surface is more
difficult to visualise. In general one can imagine this cone as obtained as follows.
First take a product of the surface S with an interval I. The resulting three-

dimensional space has two boundary components, each a copy of S. One then

collapses one of these boundary components to a point, giving the cone on the

surface. If S is orientable, one can picture the product S x I in three-dimensional
euclidean space. If S is a sphere, it is now also easy to see that after collapsing
one of the boundary components, one obtains a ball.

The situation at the midpoints of edges arises from the issue that an edge

may be identified with itself but in the opposite direction. In this case, a small

neighbourhood of the midpoint of such an edge is bounded by a projective plane
(see Figure 2). If this happens, we can turn the mid-point into an ideal vertex by
subdividing the tetrahedra.
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(a) A projective plane
bounds the neighbourhood
of the midpoint of an i

(b) After subdivision we get an
ideal vertex whose small triangles glue
up to produce the projective plane.

Figure 2

Hence we will assume that when we identify faces of a collection of tetrahedra,

then the resulting space looks everywhere like three-dimensional euclidean space

except possibly at the vertices. If all vertices are material, we have a three-

dimensional manifold and if there is at least one ideal vertex, we have a

three-dimensional pseudo-manifold. In each case, the space also comes with
a triangulation, namely the collection of tetrahedra and face pairings with the

property that the only non-manifold points are at the vertices.

Why think about triangulations? As Bill Thurston [Thu] puts it, "Manifolds are

around us in many guises." We will not give the technical definition of a manifold
here. A key result of Moise [Moi] states that every three-dimensional manifold

can be triangulated in the way described above. If one is given a compact three-

dimensional manifold with non-empty boundary and one cones each boundary

component to a point (one cone point for each boundary component), then it is a

closed three-dimensional pseudo-manifold. A relative version of Moise's theorem

allows the compact three-dimensional manifold with boundary to be triangulated,
and coning each triangulation of a boundary component to a point gives a

triangulation of the pseudo-manifold. In fact, there is a more general definition of
three-dimensional pseudo-manifolds than that considered in this paper, where not

only the vertices but also points at edges have neighbourhoods that don't look like
balls. Such spaces arise naturally in algebraic geometry. Banagl and Friedman [BF]
showed that these more general three-dimensional pseudo-manifolds can also be

triangulated.
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This is in contrast with higher dimensions. There is a four-dimensional

manifold, called Freedman's Eg manifold, which was shown in the mid 1980s

through work of Casson [AC] to have no triangulation. The existence of such

manifolds in all dimensions greater or equal to five was recently shown by
Manolescu [Man3], An overview of the so-called triangulation conjecture can be

found in [Manl, Man2],
The interest in triangulations lies in their combinatorial framework that

allows the study of geometric and topological properties of a manifold both

in theory and in practice. In three-dimensional geometry and topology this is

completely general due to Moise's result, and hence gives a framework for

proving important theoretical results [Kne, Hak2, Hak4, JRul, JRu2, JRu3], design

algorithms for decisions problems [Hakl, Schu, Hak3, JO, Tho, Rub, Li, DH],
and allows the analysis of the computational complexity of such decision

problems [HLP, AHT, CL, BD, Sehl]. Triangulations also carry the geometry of
a three-manifold [Neu, NZ, NR, FP] and allow rigorous computation of geometric
invariants [NY, CGHN, HIK+], such as the volume or the length of a shortest

curve that cannot be contracted to a point. In addition, there are also numerous

topological or geometric invariants that can be computed from triangulations, see,

for example, [BB, Kas, CCM, Kab]. Many of these algorithms are implemented
in publicly available software packages [CDW, BBP],

Turaev and Viro [TV, Tur] showed that this can also be turned around. They

define powerful invariants of closed three-manifolds using triangulations, and there

is currently much activity in trying to link these invariants to known topological
or geometric invariants, see [Mur, DG] and the references therein.

To show that a quantity computed using a triangulation is indeed independent
of the triangulation requires means to compare the quantities associated to different

triangulations. A similar situation arises in knot theory. In this case, there are

quantities, properties or mathematical objects that can be computed from a

diagram, which is a particular way of drawing the knot in the plane. These

are computed using a prescribed set of rules. Reidemeister showed that any two

diagrams of the same knot are related by a particular set of moves (see Figure 3).

So if the result computed before applying any one of Reidemeister's moves is the

same as the result computed after performing that move, then one has shown that

the result is independent of the particular diagram and hence an invariant of the

knot. Examples of this are the property of tricolourability, the Jones polynomial
or the fundamental group. An excellent, elementary introduction to these ideas is

given by Adams [Ada],
The invariants of Turaev and Viro work similarly. Suitable moves that change

one triangulation to another are the bistellar moves that have been popularised
by Pachner [Pac], The bistellar moves play the role of Reidemeister's moves in
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Figure 3

Reidemeister moves. The colouring indicates that they preserves tricolourability. In
particular, the trefoil knot cannot be deformed into the unknot.

this setting. We drop down by one dimension to introduce the bistellar moves
and highlight some subtle points.

An interlude about surfaces. For surfaces, the corresponding moves are shown

in Figure 4. The 1-3 move introduces a vertex at the centre of a triangle and

connects this to the three vertices of the triangle, thus dividing it into three

triangles. Hence the name 1-3 move. Its inverse is called a 3-1 move, and can
be performed on any vertex at which three different triangles meet. The second

move is the 2-2 move. Two triangles sharing an edge can be thought of as a

quadrilateral with a diagonal drawn in. The 2-2 move changes this diagonal to
the other diagonal of the quadrilateral. Note that the 1-3 and 3-1 moves change
the number of vertices, edges and triangles, whilst the 2-2 move leaves all of
these quantities unchanged. There is a conceptually nice way of thinking about

these moves. The boundary of a tetrahedron has a natural triangulation with four

Figure 4

The 1-3 and 2-2 moves
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triangles. The above moves can be thought of as swapping any subset of triangles
on the boundary of the tetrahedron with their complementary triangles. The three
bistellar moves we have just described can be used to change a given triangulation
into a different triangulation.

However, in the setting we are interested in, one is given two different

triangulations of the same space. What does this mean? One way to interpret
this is that our topological space, in this case a surface S, comes with two
sets of triangles drawn on it, and we'd like to apply the moves to change one

set to another. The immediate idea is to superimpose both triangulations. This
introduces new vertices at the places where edges of the two triangulations meet.
The resulting cells may not all be triangles, but can be easily be subdivided
into triangles. So the result is a third triangulation that is a common refinement
of both triangulations. It is therefore enough to show that one can transform a

triangulation to an arbitrary refinement using the given set of moves. There is
a hidden assumption in this argument, though, namely that the edges of both

triangulations only meet in finitely many points. Think of a small disc on the

surface as parameterised as the euclidean plane. It might be that an edge in one

triangulation looks like y 0 whilst an edge in the other triangulation looks
like y x sin(^) for x > 0 and includes the origin as a vertex. These edges

meet in infinitely many points! We appear to have gone down the rabbit hole
further: given a triangulation of a surface, one can define a smooth structure on
the surface that makes the triangulation smooth. A nice account of this is given
by Thurston [Thu, Section 3.10], So now each triangulation gives us a smooth

structure on the surface. A theorem of Whitehead says that one can indeed

perturb the triangulations in order to arrange the finite intersection property. In
applying this theorem, there is yet again a hidden assumption: that one of the

triangulations may be curvy but at least sufficiently nice with respect to the

smooth structure induced on the surface by the other triangulation. To concoct

something unpleasant, imagine that an edge with respect to one triangulation looks
like a fractal curve with respect to the smooth structure induced by the other.

That both triangulations are piecewise smooth with respect to the same structure
can also be arranged by a perturbation. This was shown by Epstein [Eps] in 1966.

Hatcher [Hatl] recently gave a very nice proof of this fact using the so-called

Kirby torus trick. So we may (and will) assume that the triangulations have the

finite intersection property after performing a small perturbation.

How do we transform a given triangulation To of the closed surface S to an

arbitrary subdivision 71 of % only using 1-3, 2-2 and 3-1 moves? First apply
a small isotopy of the triangulation To that keeps all vertices fixed and moves
each edge to a position where it does not meet any of the additional vertices

of 71. Then repeatedly apply 1-3 moves to the isotopic copy of To to introduce
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vertices precisely where the vertices of 71 are. Denote the resulting triangulation
Tq. We now have two triangulations of the surface that share the same set of
vertices. It is now a pleasant exercise to show that there is a sequence of 2-2

moves that transforms Tq into a triangulation that is isotopic to T\, again keeping
the vertices fixed. So we have argued that any triangulation of a surface can be

transformed to a subdivision by first applying an isotopy fixing the vertices of
the initial triangulation, then applying a sequence of 1-3 moves followed by a

sequence of 2-2 moves, and completing with an isotopy fixing the vertices of
the target triangulation. The isotopies are merely for cosmetic reasons: they put
edges neatly on top of each other, rather than roughly in the right place. In

conclusion, given two arbitrary triangulations, we can transform one to the other

by applying an isotopy, a sequence of 1-3 moves, a sequence of 2-2 moves, an

isotopy, a sequence of 2-2 moves, a sequence of 3-1 moves, and finishing with an

isotopy. Topological proofs of the existence of the sequence of 2-2 moves can be

found in work of Mosher [Mos] and Hatcher [Hat2], A geometric proof using the

Epstein-Penner decomposition [EP] transforms each triangulation with the same

number of vertices via 2-2 moves to a canonical triangulation by first choosing

a geometric structure on the surface. This can be found in [TW].

Many authors also allow combinatorial isomorphisms when moving between

different triangulations. These are maps from S to S that take vertices to

vertices, edges to edges, and triangles to triangles. This has the following effect.

Combinatorially, there is a unique one-vertex triangulation of the torus: it has two

triangles, three edges and one vertex. If one allows combinatorial isomorphism
as a move to go from one triangulation to another, then for any two one-vertex

triangulations of the torus, no bistellar moves would be required at all, but only
a single combinatorial isomorphism to go from one to another. If one is not
allowed to perform any combinatorial isomorphisms but only bistellar moves and

isotopies, then there are infinitely many inequivalent one-vertex triangulations
of a torus. However, one can apply a sequence of 2-2 moves and isotopies to

connect any one-vertex triangulation to any other. See Figure 5 for an example
of two such triangulations related by a single 2-2 move. The set of all isotopy
classes of one-vertex triangulations of the two-torus connected by 2-2 moves
thus has the structure of an infinite trivalent tree. In particular, for any two
such triangulations, there is a unique minimal sequence of moves connecting
them. All of this has beautiful stories in itself, of which we mention three. One

story links triangulations to geometry and the Farey tesselation of the hyperbolic
plane [Mos, Hat2]. In particular, we can not only tell any two of them apart,
but can easily work out the minimal number of moves needed to transform one

to another. Another story gives a geometric interpretation of Markov triples and

diophantine equations [Penl, Pen2], see [Spr] for a nice account of this. A third
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(a) (b) (c)

Figure 5

Two one-vertex triangulations of the torus related by a single 2-2 move,
and another one-vertex triangulation obtained by performing two more flips.

story uses these triangulations of the torus to construct special triangulations of
the so-called lens spaces, a special class of three-manifolds [Jru4, JRT],

Here is another reason why one might not want to allow combinatorial

isomorphisms. To return to the analogy with knot theory, there are knots that

cannot be transformed to their mirror image by a sequence of Reidemeister moves.

An example is the trefoil knot. If we allowed the operation that takes a knot to
its mirror image as an additional transformation, then the distinction between a

right-handed and a left-handed trefoil knot is lost.

Back to 3-dimensional spaces. The situation for 3-dimensional manifolds

regarding common refinements of triangulations is similar to surfaces, albeit

slightly more difficult to visualise. Details and references are given in Section 2.6.

The moves on 3-dimensional triangulations are also completely analogous. The 1-4

move introduces a vertex inside a tetrahedron and connects it to the four vertices

of the tetrahedron with four edges. This creates six new triangular faces, spanned

by the edges of the tetrahedron and the new vertex, and four new tetrahedra.

The inverse move is called a 4-1 move. Then there is the 2-3 move, which is

performed on two different tetrahedra meeting in a triangular face. The 2-3 move
deletes this face by introducing a new edge connecting the opposite corners of the

tetrahedra. Its inverse is the 3-2 move. Each of these moves changes the number

of tetrahedra, faces and edges. However, the 2-3 and 3-2 moves do not affect the

number of vertices in the triangulation. The 1-4 and 4-1 moves only change the

number of material vertices, but not the number of ideal vertices. One may again

imagine all of these moves as swapping subsets of tetrahedra on the boundary of
a four-dimensional simplex!
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4
Figure 6

The 1-4 and 2-3 moves

The use of bistellar moves in the work of Pachner has its roots in the stellar

moves used by Alexander [Ale] and Newman [New], The bistellar moves are

equivalent to moves on a dual structure, called a spine, due to Matveev [Matl].
Classically, the stellar and bistellar moves were only defined, and results involving
them only proved, for special types of triangulations that are less general than

the ones we defined above. Vertices, edges, triangular faces and tetrahedra are

called simplices, and one indicates the dimension d of a simplex by saying
that it is a d -simplex. A simplex contained in another simplex o is said

to be a face of a. A simplicial triangulation requires any two simplices to

meet in either a face or not at all. A combinatorial triangulation has the

additional requirement that the manifold structure is completely evident from the

combinatorics - this is technically made precise by requiring that the so-called

link of every simplex is a sphere. For surfaces and three-dimensional manifolds,

every simplicial triangulation is combinatorial, and the distinction is only of
relevance in higher dimensions (which are of no concern for this paper). Our

triangulations are sometimes called singular or semi-simplicial in the literature.

They can be turned into simplicial triangulations by performing at most two

barycentric subdivisions. We define these in Section 2.5 and show that barycentric
subdivision can be achieved using the bistellar moves 1-4, 2-3 and 3-2. We also

show that stellar moves can be achieved using these moves - the caveat here is

that one stellar move may turn into an arbitrarily long sequence of bistellar moves.

In this sense, there are infinitely many stellar moves but only four bistellar moves.

This discussion connects our triangulations to the general theory of simplicial or
combinatorial triangulations via bistellar moves, and we therefore use the word

triangulation throughout this paper without further qualification. We also always

allow the implicit use of isotopy - so our statements are really statements about

triangulations up to isotopy, rather than fixed triangulations. We summarise this

discussion in the following theorem.

Theorem 1.1 (Alexander, Newman, Moise, Pachner). The set of all triangulations
of a closed three-dimensional manifold M is connected under 1-4, 2-3, 3-2 and
4-1 moves.
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An excellent account of the history and proof of a similar result that holds in
all dimensions was recently given by Lickorish [Lie], A more general definition of
triangulations, and a different set of moves, is used by Ludwig and Reitzner [LR],

Banagl and Friedman [BF, Proposition 2.16] give a version of this theorem for
closed three-dimensional pseudo-manifolds starting with a more general definition
of a pseudo-manifold, and use this to extend the Turaev-Viro invariants to three-

dimensional pseudo-manifolds:

Theorem 1.2 (Banagl-Friedman). The set of all triangulations of a closed three-

dimensional pseudo-manifold is connected under 1-4, 2-3, 3-2 and 4-1 moves.

We remark that in the above, the number of ideal vertices remains unchanged,
but the number of material vertices may vary. Proofs of Theorems 1.1 and 1.2 are

sketched in Section 2.6.

The interest of results such as the above is indeed the construction of invariants.
This is made even easier by limiting the number of moves required, which is

achieved by the following refinement of Theorem 1.1 of Matveev [Mat2] and

Piergallini [Pie],

Theorem 1.3 (Matveev, Piergallini). The set of all triangulations of a closed three-

dimensional manifold M with exactly one material vertex is connected under 2-3

and 3-2 moves, excepting triangulations with a single tetrahedron.

This theorem was originally stated in the dual language of spines, which

we discuss in Section 2.7. There are precisely three closed three-manifolds that

admit a triangulation with a single tetrahedron: the three-dimensional sphere and

two other lens spaces, namely L(4,1) and L(5,2). See Figure 7. All of these

manifolds are orientable. Moreover, up to combinatorial equivalence, there are

(a) S3 (b) S3 (c) L(4,1) (d) L(5,2)

Figure 7

Single tetrahedron triangulations of closed manifolds
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precisely four triangulations with a single tetrahedron. The three-sphere has two
such triangulations, but one of them has two vertices. So the exclusion only
concerns three triangulations of three three-dimensional manifolds. No 2-3 or 3-2

moves can be applied to these triangulations.
Benedetti and Petronio [BP1, BP2] outlined a proof of the fact that the above

result also holds for any prescribed number of material vertices in a triangulation
of a three-dimensional manifold, and Amendola [Ame] shows that this extends to

three-dimensional pseudo-manifolds. In each case, key results of Matveev [Mat2]
are used and the techniques involve the dual viewpoint of spines. The main

purpose of this note is threefold. We wish to popularise Amendola's result; we

give a proof that emphasises the dual viewpoints of triangulations and spines;
and we give a proof replacing a key general position argument of [Mat2] with a

more combinatorial argument inspired by the theory of subdivisions.

Theorem 1.4 (Amendola). Let M be a three-dimensional manifold or pseudo-

manifold. The set of triangulations of M with a fixed number (possibly zero) of
material vertices is connected under 2-3 and 3-2 moves, excepting triangulations
with a single tetrahedron.

As for the additional exceptions to the theorem: The only closed orientable

three-dimensional pseudo-manifolds having a triangulation with a single
tetrahedron are the manifolds given above. The only non-orientable pseudo-manifold

having a triangulation with a single tetrahedron is the so-called Gieseking manifold
shown in Figure 8. Here, the vertex link is a Klein bottle.

3

0

Figure 8

The Gieseking manifold. Vertices are labelled by the number of arrows pointing
towards the vertex. The faces are identified by 012 023 and 013 -o- 123.

Theorems 1.1 and 1.2 are important connectivity results. They are useful

for defining invariants in terms of triangulations, and for building censuses
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of triangulations. Theorem 1.3 is a great improvement over Theorem 1.1 in the

view of the theory of O-efficient triangulations of Jaco and Rubinstein [JRu3],
which require only a single vertex for the most important classes of closed

three-dimensional manifolds. In the same vein, Theorem 1.4 allows us to pass
between any two triangulations with no material vertices without introducing
material vertices along the way. We also remark that Amendola [Arne] proves a

more general theorem that keeps track of finer information on the manifold than

Theorem 1.4.

In the literature, there are a number of papers that attribute Theorem 1.4

to Matveev or Piergallini. Personal communication with both of these authors

revealed that both think they only proved Theorem 1.3, but that their techniques

may extend to that effect. This paper affirms this belief.
We give a complete proof of Theorem 1.4. We will assume Theorems 1.1 and 1.2

(proofs are sketched in Section 2.6), but we do not assume Theorem 1.3. Our
main task is thus to convert any appearance of 1-4 or 4-1 moves into sequences
of 2-3 and 3-2 moves. Our contribution in reproving Theorem 1.3 in the proof of
Theorem 1.4 is to view the passage between triangulations from two perspectives:
the triangulations on the one hand and the dual notion of special spines on the

other.

The structure of this paper is as follows. More examples, as well as the

definitions of triangulations and spines are given in Section 2. Here, we also

describe classical constructions, such as stellar moves and barycentric subdivision,
and outline proofs of classical results going back to Alexander and Newman.

We set the scene in Section 3, proving a lemma that simplifies the set-up for the

proof of the main result. Whilst the main ideas for the main proof will be present,
the interplay between triangulations and spines is not yet required. The strategy
for the proof of the main result is presented in Section 4. The remainder of the

paper aims at filling in the missing details. This starts in Section 5 by discussing
Matveev's arch, and describing arch constructions as moves on triangulations.
The first serious steps in providing details are taken in Section 6, which can be

viewed as a pre-processing step for the two triangulations, reducing the problem
of connecting them to the problem of sweeping a membrane across a ball. This

last task is performed in detail in Section 7, thus completing this paper.
In writing this paper, we have considered other strategies to prove this particular

connectivity result for triangulations. Inevitably, the problem was always reduced

to a situation that could not easily be swept under the rug. In the end, we settled

for sweeping across a ball, as here the generic situation is easy to deal with and

hence the overall strategy easy to follow.
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2. Triangulations and spines

In the hope of providing a reference that is useful for novices in the field, we

provide this section to make this paper as self-contained as possible. We give
further examples (Section 2.1); define manifolds and pseudo-manifolds (Section 2.2)
and the triangulations we consider (Section 2.3). We then discuss classical moves

on triangulations, namely stellar moves (Section 2.4) and barycentric subdivision

(Section 2.5) and explain how these can be performed using bistellar flips.
We use these in Section 2.6 with sketches of proofs of Theorems 1.1 and 1.2.

The dual notion of spines (Section 2.7) completes the summary of background
material required for this paper.

2.1. Examples. Before we formalise the definition of a triangulation given in the

introduction, we give some examples. In the introduction, we have already seen

triangulations just involving one tetrahedron. Figure 7 shows that we can build
the three-dimensional sphere with just one tetrahedron. A simplicial triangulation
of the three-dimensional sphere requires at least five tetrahedra. The advantage of
the more general triangulations thus lies in their efficiency.

Ideal triangulations similarly turn out to be an efficient way of encoding
manifolds. An example is given by Thurston's ideal triangulation of the complement
of the figure eight knot shown in Figure 9. This is a space obtained by deleting
the figure eight knot from the three-sphere. One can build a pseudo-manifold with
just two tetrahedra with the property that the complement of the vertex in this

pseudo-manifold is homeomorphic to the complement of the figure eight knot.

If one considers the space obtained by deleting a small regular neighbourhood

(a) (b)

Figure 9

The ideal triangulation of the complement of the figure eight knot in
the three-sphere. The shown triangles form a tube enclosing the knot.
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of the knot from the three-sphere, one obtains a compact three-manifold with

boundary a torus. To divide this into (material) tetrahedra requires ten - where

now we allow some faces of tetrahedra not to be identified so as to form the

boundary.

2.2. Manifolds and pseudo-manifolds. A euclidean three-simplex a is the

convex hull of four points p0, p\, pi< P3 in euclidean three-space that are in

general position. What matters in our discussion is not the euclidean, but just the

affine structure. A unified discussion of simplices and subsimplices is aided by
the following definition. An «-simplex a is the convex hull of n + 1 affinely
independent points po,.... p„ in some affine space of dimension at least n. The

convex hull of a subset of {p0, pn} is & face or subsimplex of a. We refer to

three-simplices as tetrahedra, two-simplices as triangles, one-simplices as edges

and zero-simplices as vertices.

Let A be a finite union of pairwise disjoint euclidean three-simplices. Every
k -simplex r in A is contained in a unique three-simplex ctt. A two-simplex
in A is called a facet. Let <t> be a family of affine isomorphisms pairing the

facets in A with the properties that cp e <I> if and only if <p~l e <f>, and every
facet is the domain of a unique element of <ï>. The elements of <f> are termed

face pairings.
The quotient space P — A / $ with the quotient topology is then a closed

three-dimensional pseudo-manifold, and the quotient map is denoted p : A -> P.

We will always assume that P is connected. In the case where P is not connected,
the results of this paper apply to its connected components.

If one considers any point p e P that is not a vertex or a mid-point of an

edge, then a small neighbourhood of p looks like the neighbourhood of a point
in three-dimensional euclidean space. This is easy to see for points in the interior
of a tetrahedron, not too difficult for points in faces, and a little more involved

for points that lie in edges. So what makes P a pseudo-manifold is the fact that

we have no control over small neighbourhoods of its vertices, and over small

neighbourhoods of mid-points of edges. Place a small triangle in the corner of
each tetrahedron so that these triangles glue up to form a closed surface. This

surface is called the link of the vertex, and the neighbourhood of the vertex is a

cone over this surface, with cone point the vertex. This cone is a ball precisely
when the surface is a sphere. We thus call a vertex material when its link is a

sphere and ideal otherwise. To see what happens at midpoints of edges, take the

intersection of the tetrahedron with a small sphere based at the midpoint. This

gives a lune in the tetrahedron. Now trace the chain of tetrahedra around this edge.

With each tetrahedron, this adds another lune until we get to the last tetrahedron.

Here again, a lune is added but this is also identified to the initial lune. There
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are two different ways of making the identification: one gives a sphere, and the

other gives a projective plane. In the second case, the edge is identified with
itself but in opposite orientation. To rule out this case and to align the structure

of the triangulation with the structure of our pseudo-manifolds, we require that

(1) the restriction of the map p: A -> P to the interior of each k -simplex in

A is a homeomorphism for all k e {0,1,2,3}.

This is only a restriction on the triangulations we allow, but not on the pseudo-
manifolds. The restriction has consequences only for k 1, indeed it only
avoids the situation where an edge may fold back onto itself, but it allows

extra identifications along the boundary of a simplex. With this requirement, the

pseudo-manifold F is a manifold if and only if every vertex is material.

We still refer to the image under p of a triangle in A as a triangle in P,
but the reader should bear in mind that this may not be an embedded triangle
and have identifications along its boundary. The same applies to tetrahedra or
edges in P.

The quotient space P is studied via the map p : A -» P. The degree of
the triangle, edge or vertex r in P is the number of preimages it has in A ;

equivalently, the degree of the restriction p : p~l{x) -> x.

There is a more restrictive class, where such confusion cannot arise. We say

that A <t>) is simplicial if
(1) the restriction of the map p : A —> P to each k -simplex A is a

homeomorphism for all k {0,1,2,3}, and

(2) for any two simplices r0 and x\ in A p(jo) n p(T\) is either empty or a

single simplex.

2.3. Triangulations. In the previous section, we have defined a three-dimensional
manifold or pseudo-manifold using tetrahedra. Now suppose you are given such

a manifold or pseudo-manifold M. We say that the triple T — A h) is a

triangulation of M if
h : P -> M is a piecewise linear homeomorphism.

The images of vertices, edges, triangles and tetrahedra under the composition of
the map p: A —> P with h give us the vertices, edges, triangles and tetrahedra

of the triangulation in M. Again, these generally have self-identifications along
their boundaries. The triangulation T — A h) is a simplicial triangulation
of M if A d>) is simplicial.

We say that two triangulations To (A0, $o>^o) and 7} (Ai,4>i,Ai)
are equivalent or the same if there is a simplicial bijection .v : A 0 ->• A 1 such

that ho o poo s is isotopic to h\o px. This in particular allows the same union
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of tetrahedra and set of face pairings to give inequivalent triangulations that are

combinatorially equivalent.
We will be concerned with changing a given triangulation. On a formal level,

this amounts to changing a triangulation % — (Àq^o-Âo) of M to another

triangulation T\ A i, hi). Such a change can be very focal, such as

replacing one simplex and the associated face pairings in A 0, d>0) with a small

number of simplices and corresponding face-pairings. Or it could be a change

that replaces all simplices and face-pairings. As an example, we mention that it
is always possible to transform a triangulation into a simplicial triangulation by

applying at most two barycentric subdivisions. This replaces each three-simplex

by 24 x 24 576 three-simplices. We give the definition in Section 2.5 and show

how to achieve this using 1-4, 2-3 and 3-2 moves.

In the remainder of this paper, we try to keep notation to a minimum in order

to not distract from the main ideas. A precise notation is, of course, relevant for

an actual implementation in software. There is a natural way to track vertices,

edges, and so forth through a sequence of moves on a triangulation. Our moves are

typically performed topologically inside the pseudo-manifold, and the simplices

can then be disassembled to form a triangulation together with a preferred quotient

map A -> M.

2.4. Stellar moves. There are three types of stellar moves. The first type is simply
the 1-4 move. See Figure 6. It places a vertex in the interior of a tetrahedron

and divides the tetrahedron into four tetrahedra. Each of these can be viewed as

a cone from a boundary face of the original tetrahedron to the central vertex.

The second type of stellar move is conceptually similar, this time performed

on a facet r that is contained in two distinct tetrahedra op and oq. Here, one

first performs a 1-3 move on x. One then subdivides each of the two tetrahedra

into three by coning the triangulation of the subdivided face to the remaining
vertex. See Figure 10a. This operation can be described as an operation on A

so it is irrelevant that some of the edges or vertices of the tetrahedra may be

identified. To achieve this move by our four bistellar moves, one can first apply
a 1-4 move on <70- The face r is not affected by this, and one can now perform
a 2-3 move that replaces the two tetrahedra meeting in r with three tetrahedra

meeting in an edge. The result is the same as the stellar move on the face r.
The third move is performed on an edge e that is only contained at most once

in any tetrahedron and of degree at least two. We place a new vertex on e. In
each tetrahedron, one now creates a new triangle by coning the edge opposite e

to the new vertex, thus cutting the tetrahedron into two. See Figure 10b. Again,
this operation can be done consistently in A and so is well-defined. We need

to show how to realise this move by bistellar moves. Choose a cyclic order of the
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Figure 10

Stellar moves

tetrahedra abutting e, and starting with one tetrahedron label them er0. • • • » <*k-

Suppose Oj and cp+1 meet along r,, and Ok and ct0 meet along r^. First apply
a 1-4 move on ct0. This increases the degree of e by one. Then apply a 2-3 move

along the face r0 (interpreted as a face in the new triangulation). This decreases

the degree of e by one. Now we iteratively apply 2-3 moves along ti, x2,

until only Xk-\ and Xk are left. At this stage, e (interpreted as an edge in the

resulting triangulation) has degree three. Hence apply a 3-2 move (noting that all
three tetrahedra meeting in e are distinct). See Figure 15.

2.5. Barycentric subdivision. A barycentric subdivision can be defined inductively.

A barycentric subdivision of a one-simplex introduces a vertex at its

midpoint and divides it into two one-simplices. A barycentric subdivision of a

two-simplex introduces a vertex at its centre and cones this to the barycentric
subdivision of its boundary. This divides it into six two-simplices. For a three-

simplex, we again introduce a vertex at its centre and then cone to the barycentric
subdivision of its boundary, thus dividing it into 24 three-simplices. See Figure 11.

It follows from the definition of a triangulated pseudo-manifold that one can

apply this procedure to each three-simplex in the triangulation, and hence break
the triangulation up into a finer triangulation having 24-times as many tetrahedra.

It turns out that this can be achieved using stellar moves. Hence, by the previous
section, barycentric subdivision can be realised using 1-4, 2-3, 3-2 moves on the

original triangulation.
To achieve barycentric subdivision, first apply a 1-4 move to each three-simplex

in the original triangulation A to obtain a new triangulation A0 with four times

as many tetrahedra. There are facets and edges that persist from A to A0. On

each of these facets, perform a stellar move, giving a new triangulation Ai with
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(a) The result of barycentric (b) The result of barycentric
subdivision on a two-simplex subdivision on a three-simplex

Figure 11

Barycentric subdivision

three times as many tetrahedra as A0. The edges that persisted from A to A0
are still present in Ai. Now perform stellar moves on all of these edges, giving
a triangulation A2 with twice as many tetrahedra as Aj. So in total we have

4 x 3 x 2 24 times as many tetrahedra as we started with, and we hope the

reader is convinced that the overall elfect is the same as applying a barycentric
subdivision to each tetrahedron! The moves are illustrated in Figures 12-15.

(a) (b) (c) (d)

Figure 12

Barycentric subdivision for two-dimensional triangulations via bistellar moves
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Figure 13

Introducing the vertices corresponding to the three- and two-dimensional

simplices for the barycentric subdivision of a three-dimensional triangulation

(a) Before adding the ver- (b) The first step is (c) The end result, after
tex corresponding to an edge to apply a 1-4 move applying the subsequent

steps shown in Figure 15

Figure 14

Introducing the vertex corresponding to a one-dimensional simplex
for the barycentric subdivision of a three-dimensional triangulation

Figure 15

The subsequent steps in adding the vertices corresponding to the one-dimensional

simplices for the barycentric subdivision of a three-dimensional triangulation. The

horizontal cross-section through the tetrahedra is shown. Edges are drawn with a solid

line, while intersections of faces with the cross-section are drawn with a dotted line.
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2.6. Common refinements. Even though we stated in the introduction that we

will prove our main result assuming Theorems 1.1 and 1.2, we cannot resist

sketching proofs of these results.

We are given triangulations To and 71 of a three-manifold M. To apply the

classical results, we first apply two barycentric subdivisions to each in order to
obtain the simplicial triangulations Tq À 0, O0, po) and T{ (A i, <$> i, /?i

respectively. We have quotient maps p0\ A 0 M and p\ : Aj -> M. We

view M as the quotient space A0/4>o, so that po is a linear map on simplices.
The work of Moise (see also Brown [Bro] and Hamilton [Ham]) now allows us

to compose p\ with an isotopy i: M -> M so that the restriction of io px is

also linear on each simplex. In particular, Alexander's theorem [Ale] (see also

Lickorish [Lie] and Turaev-Viro [TV]) now allows us to transform Tq and T[ to

a common refinement by applying stellar moves.

We have shown above that barycentric subdivisions and stellar moves can be

performed through sequences of bistellar moves. This completes our sketch of the

proof of Theorem 1.1.

The class of pseudo-manifolds considered in this paper is less general than

that considered by Banagl and Friedman [BF], Our pseudo-manifolds are merely

compact manifolds with boundary, where we have added a cone to each boundary

component. It is therefore straightforward to sketch a proof of Theorem 1.2

analogous to the above. We have the same set-up as before, and apply two

barycentric subdivisions, giving quotient maps p0 : A 0 -> M and p\ : A i -> M.
The work of Brown [Bro] (see [BF, Theorem 2.13]) now allows us to compose p\
with an isotopy t: M M so that the restriction of i o pl is also linear on each

simplex. Due to the topology of the pseudo-manifold, the isolated ideal vertices

are necessarily fixed under the isotopy. Alexander's theorem again provides stellar

moves resulting in a common refinement, and we conclude as above that there is

the desired sequence of bistellar moves.

2.7. Special spines. We now describe a two-dimensional object, a spine, that

encodes M, a three-dimensional manifold or pseudo-manifold. To begin with,

suppose you have a triangulation A of M, and pass to the second barycentric
subdivision A" of A. This has the following nice property. Let u be a vertex of
A" that corresponds to a vertex of A. Then the collection Lk(u) of all tetrahedra

in A" containing « is a cone on a triangulated surface with cone point v, and

for any two distinct vertices of A, the two corresponding surfaces are disjoint.
Hence if we remove Lk(u) for each vertex v of A from A", we obtain the

triangulation of a compact three-dimensional manifold Mc with boundary, and

M is obtained from Mc by adding the cones on its boundary components. Hence

we can reconstruct M from Mc.
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(a) A butterfly in- (b) Three different types of point on a spine. From left
side of a tetrahedron to right: a non-singular point, a triple point, and a vertex.

Figure 16

Spines

One can now collapse Mc onto a two-dimensional complex S that is the

union of all triangles in the first barycentric subdivision of A with the property
that they do not contain any vertex of A. For each tetrahedron of A this is

the butterfly shown in Figure 16a. Note that Mc is homeomorphic to a regular
neighbourhood of S in Mc. We claim that S determines Mc (and hence M)
independent of its embedding in Mc. The important properties of S that make

this possible are the following.
Each point in S has a neighbourhood that is homeomorphic to one of the

three models shown in Figure 16b. A point is singular if it does not have a

neighbourhood homeomorphic to a disc. The set of all singular points consists of
the triple points and vertices, and is naturally a graph. The nodes of this graph

are called vertices of the spine. The complement of the set of singular points
in S is a surface, and we claim that it is a disjoint union of open discs. This

comes from the local structure: each connected component of the complement is

the union of all triangles in A' having a vertex on the barycentre of an edge

in A. If one removes the vertices from the singular set, then each connected

component is an interval - this is clear because we have a graph. The relationship
with the triangulation is again evident: The interval connects the barycentres of
adjacent tetrahedra through the barycentre of a common face. These properties
are summarised by saying that S is a special spine of M.

Having observed this, one can show that if So and Si are special spines of
Mo and Mj, with the property that S0 and Si are homeomorphic, then M0
and Mi are homeomorphic. The reader may find pleasure in proving this result,

or can find it in Matveev's book [Mat2, Theorem 1.1.17],

Special spines and triangulations are dual objects: each vertex of a spine is

dual to a tetrahedron; each edge of a spine is dual to a triangle; each face of
a spine is dual to an edge of the triangulation. The complementary regions of a

spine in the pseudo-manifold are dual to the vertices of the triangulation. Indeed,
each such region is the cone over a surface, where the surface is homeomorphic
to the vertex link. In particular, material vertices correspond to three-balls.
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2.8. Moves on triangulations and spines. Using this duality, we should be able

to view moves performed on triangulations in the dual spine picture. For example,
the bistellar moves we introduced earlier can be seen as moves performed on

spines, as shown in Figure 17. Pictures of spines are often more flexible, with

many ways to draw the same spine. Figure 18 shows an alternative picture for the

2-3 move.

(a) The 1-4 and 4-1 moves

Figure 17

Bistellar moves on triangulations and

(b) The 2-3 and 3-2 moves

their dual special spines

Figure 18

An alternative picture of the 2-3 move on a spine

Similarly, we can see our barycentric subdivision moves (as implemented using
bistellar moves) in the dual spine picture. These are shown in Figures 19 and 20.

The spine picture is sometimes clearer than the triangulation picture when

illustrating certain sequences of moves. For example, Matveev introduces the V-

move, which replaces one vertex of a spine with three vertices. Matveev shows

that the V-move can be implemented using 2-3 and 3-2 moves, assuming that a

spine has more than one vertex (or dually that the triangulation has more than

one tetrahedron), see Proposition 1.2.8 of [Mat2]. For the convenience of the



Traversing three-manifold triangulations and spines 177

(a) T (b) r (c) (d) T"

Figure 19

Figure 13, drawn in the dual spine picture

(e) (f) (g)

Figure 20

Figures 14 and 15, drawn in the dual spine picture

reader, we reproduce the argument in Figure 21. This sequence of moves would
be confusing and difficult to draw in the triangulation picture. (Try it!)

Note that by applying symmetries of the spine in the initial drawing, we can

apply any of the three possible V-moves to any vertex of a spine that contains

more than one vertex. The procedure requires an auxilliary neighbouring vertex

- any vertex in a spine has such a neighbour unless it is incident to itself along
all four arcs of triple points, but then it would be the only vertex in the spine.
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Figure 21

The V-move and its construction from 2-3 and 3-2 moves

3. A warm-up exercise

As a warm-up exercise for our proof of Theorem 1.4, we prove the following
lemma. This introduces some of the ideas of the main proof in an easier context,
and will be useful later. In the proof, we introduce the triangular 0-2 move and

pillow marks. They give a first taste for what is to come.

Lemma 3.1. Let Ta and Tb be two triangulations of a given 3-manifold M
with the same number, k, of material vertices. Then there is a sequence of
triangulations Ta T\,Ti,... ,Tn — Tb, with adjacent triangulations related

by 2-3, 3-2, 1-4 and 4-1 moves, such that each triangulation Ti has at least k
material vertices.

Proof. The statement of this lemma is essentially the statement of Theorem 1.2,

except that we also require that the number of material vertices does not go
below the number, k, of material vertices that Ta and Tb have. We will work
from a sequence S of triangulations Ta T\,Ti, ,Tn Tb given to us by
Theorem 1.2, and will modify it if and when the number of material vertices goes
below k.

In fact, we may assume that Tj, ,Tn-\ have precisely k — 1 vertices, and

thus Ti is obtained from 71 by a 1-4 move, Tn is obtained from Tn-i by a 4-1

move, and all other moves are 2-3 and 3-2 moves. If we are able to replace this

by a sequence of triangulations for which the number of vertices is always at

least k, then by induction we obtain the result.

Our tool to increase the number of vertices in a triangulation is the triangular
0-2 move. Its reverse is the triangular 2-0 move. See Figure 22. The triangular 0-2

move is performed by ungluing one of the triangular gluings of the triangulation,



Figure 22

Above: the triangular 0-2 move adds a vertex and two tetrahedra to a triangulation.

Below: the triangular 0-2 move can be implemented using a 1-4 move

applied to a tetrahedron adjacent to the triangle, followed by a 3-2 move.

We draw a bigon to show the two external faces of the triangular pillow.

and inserting into the resulting gap a triangular pillow - a three-ball formed from
two tetrahedra, glued to each other along three faces, so that the three-ball has an

internal vertex. The triangular 0-2 move can be performed on any triangular face

of the triangulation, and implemented using a 1-4 move followed by a 3-2 move,
as shown in Figure 22. The inverse move is called the triangular 2-0 move, and

can be performed on any triangular pillow as long as the two outer faces of the

pillow are not glued to each other. 1

We modify our sequence of triangulations Ta 71,7â,..., Tn — Tb as follows.

Immediately before the initial 4-1 move takes us to k — 1 material vertices, we

perform a triangular 0-2 move on some triangle A of the triangulation, increasing
the number of material vertices to k + 1. If this triangle A is not deleted by

any of the subsequent moves taking us to Tn, then we perform those moves as

before, with the resulting triangulations modified from the original sequence by

our triangular 0-2 move. After performing the final 1-4 move (taking us to k + 1

material vertices), we remove the triangular pillow with the triangular 2-0 move,

taking us back to k material vertices, and we have arrived at Tb

1 If they were glued then the entire triangulation would consist of only the triangular pillow, so
performing the 2-0 move would result in a triangulation with no tetrahedra!
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If there is no triangle of Ta that persists throughout the sequence of moves
then the above process will not work. Whichever choice we make for A, at some

point a 2-3 or 3-2 move in the sequence (or the final 4-1 move) is supposed to
delete A. However, we will be unable to perform this move because the triangular
pillow blocks it. In these cases, we must first move the triangular pillow elsewhere.

In order to organise the argument, for each triangulation of S, we will mark
a triangle with a pillow mark, showing where we want the triangular pillow to
be. We denote by T( the marked triangulation resulting from adding a pillow
mark to the triangulation 77. Denote the result of inserting a triangular pillow
into a marked triangulation T( according to the pillow mark by T-. We refer

to these triangulations T- as waypoint triangulations. Our plan then is to build
a new sequence of triangulations S which again connects Ta to Tb but for
which the number of material vertices never goes below k. We do this by going
from Ta T\ to T\ via a triangular 0-2 move (i.e., a 1-4 followed by a 3-2),
then connecting each adjacent pair T- and T'i+l of waypoint triangulations

using 1-4, 2-3, 3-2 and 4-1 moves, then finally going from T'n to Tn Tb via
a triangular 2-0 move (i.e., a 2-3 followed by a 4-1).

First, we describe where the pillow mark is on each T{ The idea is to have

the pillow mark of T- move when it is involved in the bistellar move relating

7/ and T(+l. Having done this, we will describe sequences of 1-4, 2-3, 3-2 and

4-1 moves to take each waypoint triangulation T- to the subsequent T'i+l. See

Figure 23.

Ta — 7] T2 » T > » Tn-1 Tn Tb

% —- % — -> rn-x - rn

Figure 23

The original sequence of triangulations S is on the upper row. The modified

waypoint triangulations are below. Dashed arrows indicate sequences of 1-4,

2-3, 3-2 and 4-1 moves. All vertical arrows indicate triangular 0-2 moves.

In T{, we choose the pillow mark arbitrarily. There are two cases under which
we determine the new pillow mark on T/+l based on the location of the pillow
mark on 71 :

If a pillow mark is on a triangle of T{ that is not deleted by the bistellar

move relating 71 and 77+t, then we leave it where it is, duplicating it on Ti'+l
If a pillow mark is on a triangle of T- that is deleted by the bistellar move,
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then we must first move it to any triangle of 77 that is not deleted by the move.

We denote the resulting marked triangulation by T". This done, we perform the

bistellar move and get T(+l, where the pillow mark doesn't move between T('
and 7/+1- Note that there is always a triangle of 77 that is not deleted by the

bistellar move, since every triangle on the boundary of the region altered by a

bistellar move remains after the move.

Having constructed these markings on the triangulations of S, the resulting

waypoint triangulations T- never have fewer than k material vertices. In fact,

T\ and T'n have k + 1 vertices, while all others have k vertices. All that

remains is to show how to connect 77 to T\, how to connect 7~- to 7~-+i

for each subsequent pair of waypoint triangulations, and how to connect T'n to

77 by sequences of 1-4, 2-3, 3-2 and 4-1 moves, without reducing the number of
material vertices below k.

To connect 71 to T\, we apply a triangular 0-2 move. This is implemented

by a 1-4 move followed by a 3-2 move, as shown in Figure 22, and takes us

from a triangulation with k vertices to one with k + 1 vertices. The connection
between T'n to Tn is the same but in reverse.

In the case that we did not move the pillow mark between T( and 77'+1, then

the triangular pillow is not in the way of the corresponding 2-3 or 3-2 move

on T\, and so we simply apply the move to obtain T'i+l, which doesn't alter

the number of vertices. In the case that we did move the pillow mark, we get
from T to T" by first performing a triangular 0-2 move in the location of
the new pillow mark, and then perform a triangular 2-0 move to remove the old

triangular pillow and obtain T-+1. Thus the number of material vertices goes

up by one to k + 1 and then down by one to k in this process, but never goes
below k. Having moved the pillow mark out of the way of the 2-3 or 3-2 move
that converts 77 into 77+i, we apply the move to T" to obtain T'i+1, which

again doesn't alter the number of vertices.

Making these moves connects the waypoint triangulations together, and so

connects Ta to Tb by a sequence of bistellar moves, in such a way that all

triangulations in the sequence have at least k material vertices.

Remark 3.2. One might ask why we use the triangular 0-2 move to increase

the number of vertices instead of the simpler 1-4 move. The answer is that the

triangular pillow is easier to "hide" from the other Pachner moves than the result

of the 1-4 move. For example, the sequence S might have a triangulation with
only two tetrahedra on which we are supposed to perform a 2-3 move. Neither
of the two tetrahedra would be valid locations to hide the extra vertex if we used

the 1-4 move.
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4. Proof strategy

In order to prove Theorem 1.4, suppose that we are given two triangulations,
Ta,Tb of a given manifold M with the same number, k say, of material

vertices. By Theorems 1.1 and 1.2, we have a sequence S of triangulations
Ta Ti,T2,...,Tn Tb, with adjacent triangulations related by 2-3, 3-2, 1-4

and 4-1 moves. We convert this sequence S of triangulations into another sequence
S that connects Ta to Tb but that does not use 1-4 or 4-1 moves.

Note that every triangulation of the desired sequence S must have k material

vertices, since the number of vertices only changes under 1-4 and 4-1 moves. By
Lemma 3.1, we may assume that every triangulation in our sequence S has at least

k material vertices, so we must avoid intermediate triangulations with more than

k material vertices. Again, as in the proof of the lemma, it suffices to consider an

innermost pair of triangulations with the property that the two triangulations have

k material vertices, and the triangulations between them k + 1. In particular, we

may assume that the first bistellar move is a 1-4 move applied to Ta, followed

by a sequence of 2-3 and 3-2 moves, and the sequence is then completed with a

4-1 move resulting in Tb

We need a number of tools to achieve this, primarily the arch. The arch is

a structure we can add in to a spine (or dually a triangulation). The move of
inserting an arch has the effect of connecting together two three-dimensional

regions in the complement of the spine, while only altering the spine in a very
localised fashion. Dually, this move unglues a triangular face A at which two

(or possibly one) tetrahedra are glued, and inserts the arch (made from a single
tetrahedron). The effect is to identify two of the three vertices incident to A.
This move cannot be achieved by 2-3 and 3-2 moves, because these moves do

not change the number of vertices of the triangulation. We discuss the arch in
detail in Section 5.1.

Since the triangulations in our sequence S have at most k + 1 material

vertices, we will need to insert at most one arch in each triangulation. In order

to organise the argument, we will mark the triangle of each triangulation where

we wish to insert an arch. Each such arch mark shows both the triangle for an

arch to be introduced into, and the pair of incident vertices to be connected. See

Figure 24. We denote by T( the marked triangulation resulting from adding an

arch mark to the triangulation 77- Dually, an arch mark is associated to an edge

of the spine, and indicates which pair of incident three-dimensional regions are

to be connected by inserting the arch.

We will choose where to put each arch mark in such a way that after

performing the arch insertions, the resulting triangulations have the same number

of material vertices as Ta and Tb Denote the result of inserting an arch into a
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Figure 24

An arch mark on a triangle shades the triangle and adds

arrows showing the vertices to be identified by the arch.

marked triangulation T( by T-. We refer to these triangulations T- as waypoint
triangulations. Our plan then is to connect each adjacent pair T- and T'i+1 of
waypoint triangulations using only 2-3 and 3-2 moves, producing a new sequence
of triangulations S which again connects Ta to Tb but that only uses 2-3 and

3-2 moves. See Figure 25. We give the details of the proof in Section 6.

-> r3 » Tn-1 Tn — Tb

yysY Y S

- % — - T'n_y

Figure 25

The original sequence of triangulations S is on the upper row. The

waypoint triangulations are below. Dashed arrows indicate sequences of
2-3 and 3-2 moves. All vertical arrows indicate arch insertion moves.

5. The arch and associated constructions

Two of the tools that are key to the visual simplicity and conceptual elegance

of working with spines are Matveev's arch and arch-with-membrane. This section

describes these constructions and their equivalent moves on triangulations.

5.1. The arch [Mat2, page 7]. Figure 26 shows the arch, and the related structure

of an arch-with-membrane in spine form. Figure 27 shows the arch in the dual

triangulation picture. Also see Fig. 1.29 of [Mat2],

TA — 71 71
\x

\
-f7' 2

Proposition 5.1. The move of inserting an arch into a spine, connecting two
distinct three-dimensional regions, at least one of which is a three-ball, results

in a spine of the same pseudo-manifold.



(a) An edge of the spine (b) An arch (c) An arch-with-membrane

Figure 26

Introducing an arch (i.e., going from Figure 26a to 26b) connects together the

regions A and A'. Figure 26c shows the related structure of an arch-with-membrane.

Figure 27

The arch is harder to see in the dual picture of the triangulation. Here we

show the shape of the single tetrahedron. First we identify the two edges

marked with a single arrow, and separately the two edges marked with a

double arrow. This produces the middle diagram: a shape with two triangular

faces on the exterior, and two cone-shaped faces on the interior.
Second, we glue the two interior faces together, which also identifies the two

edges with arrows. The result has an exterior consisting of two triangular
faces, with two of the vertices of these triangles identified with each other.

J. H. Rubinstein, H. Segerman and S. Tillmann

Proof. We first consider the set of all triple points. It is easy to see that this is a

union of open intervals: no loops have been introduced. It is slightly more subtle

to see that all of the two-dimensional surfaces (the non-singular points) are again
disks. The monogon region in Figure 26b is a disk. The surface containing the

tube is formed by starting with the two disks / and g as shown in Figure 26a,

taking their connect sum, and then cutting the result along the boundary of the

monogon. This cuts open the surface to form a disk, as long as / and g were
distinct. If / g, then we have two cases. Consider the transverse coorientation



Traversing three-manifold triangulations and spines 185

on / pointing from A into B. Following this coorientation around, if we find
that it also points from A' into B, then A — A', contradicting the fact that the

two regions to be connected by the arch are distinct. If instead we find that the

transverse coorientation also points from B into A', then we find that A B

and ß d', so we reach the same contradiction.

Breaking symmetry, suppose that A is homeomorphic to a ball. Since A and

A! are distinct, the result of connecting together A and A! is homeomorphic to
A'. The topology of the other complementary regions is unchanged.

5.2. Building an arch-with-membrane. Using 2-3 and 3-2 moves, we can make

an arch-with-membrane on any edge of a spine which has more than one vertex.
The moves are applied in a neighbourhood of a vertex of the spine incident to

the edge. This is illustrated in Figure 28.

isotopy IV-move

isotopy

Figure 28

Building an arch-with-membrane. We perform a V-move, a 2-3 move and

then a 3-2 move. An isotopy moves the bigon along the tube. (In the last

diagram here we have zoomed in to the arch-with-membrane and no longer see

the original vertex.) A further isotopy (not shown), pushing the bigon in the

final diagram forward gives the arch-with-membrane as shown in Figure 26c.

5.3. Implementing a 1-4 move followed by introducing an arch using 2-3 and
3-2 moves. Similarly, we cannot perform a 1-4 move using only 2-3 and 3-2

moves. However, we can recreate the result of performing a 1-4 move followed
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Figure 29

By building an arch-with-membrane and performing two 2-3 moves,

we implement the composition of a 1-4 move with inserting
an arch while keeping the number of material vertices constant.

by inserting an arch using 2-3 and 3-2 moves. This is achieved by constructing
an arch-with-membrane, then applying two 2-3 moves. See Figure 29.

6. Details in the main proof

The point of time has come where we cannot further postpone diving into the

intricacies of the proof of the main theorem. This section explains how we position
and, if required, move arch marks, and how we connect waypoint triangulations
with 2-3 and 3-2 moves. The overall aim is to preprocess the triangulations in
such a way, that all that remains is a step that is easy to describe but requires
work to justify in detail: sweeping a membrane across a ball, from one arch to
another. This very last step is given in Section 7.

6.1. Arch mark positioning. First, we describe where the arch mark is on each

of T2 through Then we describe sequences of 2-3 and 3-2 moves to take

71 to T'2, to take each waypoint triangulation T- to the subsequent T'i+1, and

to take T'n_l to Tn
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Figure 30

We draw an arch mark to connect the vertex created

by the 1-4 move to one of the existing vertices.

In each triangulation 77, for i e {2,— 1}, the arch mark must connect
a material vertex to some other vertex (either material or ideal).2

In 7^, we choose the arch mark to connect the new vertex formed by the

1-4 move to one of the other vertices incident to it. See Figure 30. There are a

number of cases under which we determine the new arch mark on T{+1 based on
the arch mark on T(. If an arch mark is on a triangle that is not deleted by the

bistellar move relating 77 and 77+i, then we leave it where it is, duplicating it on

77+i • If an arch mark is on a triangle that is deleted by a 2-3 or 3-2 move, then

we must first move it to another triangle of 77 that is not deleted by the move.
We denote the resulting marked triangulation by T". This done, we perform the

bistellar move and get 7}'+l. We will require that the arch marks on T( and T('
share a material vertex. This will allow us to move the arch itself from 77 to

T" in Section 6.3. We deal with the following cases:

(1) In the case of a 2-3 move, one triangle is removed from the interior of the

six-sided polyhedron involved in the move. An arch mark on this triangle
connects together two of the three vertices on the "equator" of the polyhedron.
We move such a mark to either of the two triangles on the boundary of
the polyhedron that share the same two vertices. This done, the arch mark
connects the same two vertices together as before, so the arch marks on 77

and 77" share a material vertex. See Figure 31.

(2) In the case of a 3-2 move, three triangles are removed from the interior of
the six-sided polyhedron involved in the move. An arch mark on one of these

triangles is in one of two cases: either it connects a vertex on the equator
of the polyhedron to one of the two polar vertices of the polyhedron, or it
connects the two polar vertices together. In the first case, we again move
such a mark to one of the two triangles of the polyhedron that share the

same two vertices. Again, the new arch mark connects the same two vertices

so the arch marks on 77 and T" share a material vertex. See Figure 32a.

2 Note that joining a material vertex to itself would produce an ideal vertex, and connecting two
ideal vertices by an arch would act as a connect sum on their links.
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Figure 31

If a 2-3 move deletes the face that the arch mark is on, we move the arch mark

so as to connect the same pair of vertices before performing the 2-3 move.

In the second case, label the two polar vertices N and S, and let A be one

of the equatorial vertices. Without loss of generality, assume that IV is a

material vertex. If A is distinct from N then we connect A to N, again by

adding an arch mark on a boundary triangle of the polyhedron. Otherwise

we connect A to S, again by adding an arch mark on a boundary triangle
of the polyhedron. By hypothesis, A — N is distinct from S. Here, the arch

marks on T( and T" share the material vertex N. See Figure 32b.

With the above moves, we can add arch marks to all triangulations 7î. • • Tn~i
in the sequence, and produce all of the waypoint triangulations T-, all of which
have the same number of material vertices as Ta and Tb by construction.

6.2. Moving from T\ to T'2. The triangulation T\ is related to 'Ti by a 1-4

move, we need a sequence of 2-3 and 3-2 moves that produces the result of a

1-4 move followed by adding an arch, converting T\ to Ti- We gave details of
this in Section 5.3.

6.3. Moving between waypoint triangulations using 2-3 and 3-2 moves. If
the arch mark does not move between T( and T{+1 (since the 2-3 or 3-2 move

does not destroy its triangle), then T- and T'i+1 are related by the same 2-3

or 3-2 move, so we connect them using that move.

If however we had to move the arch mark first, via a marked triangulation
T", then we need a way to move the arch via 2-3 and 3-2 moves, connecting
the triangulations T- and T ". Having moved the arch, we then connect T"
to T'i+[ by the same 2-3 or 3-2 move that connects 71 to 71+1.

We have arranged matters so that the arch marks on T( and T" share a

material vertex, v say. In the dual spine picture for 71, there is a three-ball B
dual to v since v is a material vertex. In T-, B is connected via a cylinder in
the neck of the arch to the dual region R to the vertex on the other end of the

arch mark on T(. See Figure 33a. Here the arch is to the right of the figure, and

in the middle we have drawn part of the boundary of B, as seen from within B.
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the new arch mark may or may not connect the
same pair of vertices together as the old arch mark.

Figure 32

If a 3-2 move deletes the face that the arch mark is on,

we move the arch mark before performing the 3-2 move.

First we build a arch-with-membrane (see Figure 26c) in the location of the

new arch mark. This can be made using 2-3 and 3-2 moves - see Section 5.2.

The result is shown in Figure 33b. This done, we see B with an arch glued to

one end and an arch-with-membrane glued to the other.

Next, we sweep the membrane from the arch-with-membrane, through B,
and into the other arch. This turns the arch-with-membrane into an arch, and

the arch into an arch-with-membrane. See Figure 33c. Then, we deconstruct the

new arch-with-membrane, following the reverse of the sequence of moves used

to build such an arch-with-membrane. Having performed these moves, we have

moved the arch. See Figure 33d. We give details of this sweep move in Section 7.

6.4. Moving from T'n_l to T„. If our arch mark is connected to the material

vertex w we are about to remove in the 4-1 move then we perform the reverse

procedure to Section 6.2 and we are done. If however the arch mark is connected

to some other material vertex v, then we must do some further work first. If v
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(a) We start with a three-ball B
connected via a cylinder in the neck of an arch
to some other three-dimensional region R.

(b) First we build an arch-with-membrane
in the desired new location for the arch.

(c) Next we sweep the membrane across B,
from the arch-with-membrane into the arch.

(d) Finally we deconstruct the

resulting arch-with-membrane.

Figure 33

Moving an arch across a material vertex, drawn in the dual spine picture

and w share an edge e, then we move the arch mark to a triangle containing e

so that it connects v to w. As in the previous section, moving the corresponding
arch can be performed by sweeping across a three-ball, here it is the three-ball
dual to v. If v and w do not share an edge, then we move w until they do. After
the 4-1 move our triangulation is Tn, and we may think of Tn-i as T„ with one

of its tetrahedra, a say, subdivided into four. See Figure 34a. By performing a

3-2 move on one of the four edges incident to w, we convert 7^-i into the result

of inserting a triangular pillow into a face of Tn incident to a. See Figure 34b.

Note that we can perform this 3-2 move because the three tetrahedra incident to

this edge are distinct, since we were able to perform a 4-1 move on them and

one other tetrahedron. The 3-2 move creates a new face that forms one of the

two outer faces of the triangular pillow. By performing a 2-3 move on the other

outer face, we then get the result of subdividing a tetrahedron a' of Tn incident

to a. See Figure 34c. Note that we can perform this 2-3 move because the two
tetrahedra incident to the face are distinct: one is part of the triangular pillow,
while the other is not.

These two bistellar moves transport the vertex w from cr to a', and once

again we are a 4-1 move away from Tn By repeatedly moving w in this way, we

can arrange for v and w to share an edge. Also note that in moving w in this
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Figure 34

The vertex w can be moved from one tetrahedron of Tn to a

neighbouring tetrahedron by a 3-2 move followed by a 2-3 move.

way, we do not destroy the triangle containing the arch mark, because in order

to do so, w and v would already share an edge.

7. Moving a membrane across a ball, from one arch to another

There are two key steps at which we depart from the proofs of Matveev and

Amendola in how we sweep a membrane across a ball. We point these out in
the discussion below.

We must connect together triangulations Ta and Tp, say, shown in dual spine
form in Figures 33b and 33c respectively. We note that this is the setting of
Lemma 1.2.16 (two-cell replacement) of [Mat2], Matveev's method is to slide

the membrane across the ball from the arch-with-membrane into the arch. The

combinatorial changes as one slides the membrane are 2-3 and 3-2 moves, and

what we call quadrilateral 0-2 moves. In the literature this move is often called

simply a "0-2 move", but we add the adjective "quadrilateral" to distinguish them

from our triangular 0-2 move.3 Matveev refers to a quadrilateral 0-2 move as

a lune move. The implementation of the lune move in terms of 2-3 and 3-2

moves is quite subtle in full generality, due to self-gluings in the vicinity of the

move. In our setting, we will be able to avoid these subtleties (although at the

cost of adding other subtleties!) The use of 2-3, 3-2 and lune moves to sweep
the membrane across the ball is also somewhat tricky. The situation is (again)

complicated by the fact that the ball may have self gluings, so when we isotope
the membrane across a self-glued face of the ball, it potentially interacts with

parts of itself meeting that face from the other side. Thus, Matveev's proof that

the moves can be done to achieve the sweep involves a PL topology argument.

3 The name comes from the dual triangulation picture: the quadrilateral 0-2 move inserts a

quadrilateral pillow consisting of two tetrahedra, instead of the triangular pillow inserted in the triangular
0-2 move.
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In contrast, our method is entirely combinatorial. Our strategy is to first apply
moves to each of the triangulations Ta and Tß to convert them to triangulations

and Tß, which again only differ by the position of the membrane, and for
which the ball has no self-gluings. This means that we can then organise the

isotopy of the membrane from one arch to the other in a combinatorial way, and

convert T„ into Tß.

First of all, we see what to do in the case that the ball has no self-gluings.

7.1. The no self-gluings case. Again, we must get from Figure 33b to Figure 33c

by sweeping the membrane disk across the three-ball B, which we assume for
the moment has no self-gluings. Equivalently, we have to slide the boundary of
the disk, a circle C, across the annulus A formed from the boundary of the

B minus the initial and final positions of the membrane. Let Cstart and Cend

be the start and end positions of C, which are therefore also the two boundary

components of A. The key point is that the pattern on the annulus A formed

from the intersection of the boundary of B with parts of the spine outside of B

is a trivalent graph T. Let estart and eend be the edges of T that intersect Cstart

and Cend respectively. See Figure 35a.

(a) The annulus A. The boundary of (b) After pushing C over the spanning tree T
the membrane is shown at its initial
position Cstart and final position Cend,
which are also the boundary curves of A

Figure 35

The setting in which we sweep a membrane across a three-ball, from an arch-

with-membrane to another arch, assuming that the ball has no self-gluings.



Traversing three-manifold triangulations and spines 193

(a) The 2-3 move (b) The quadrilateral 0-2 move

Figure 36

Sliding the upper disk past parts of the spine below the plane is
achieved by the 2-3 move and (the inverse of the) quadrilateral 0-2 move.

We slide C across A in two stages. First, we push C off Cstart slightly
into A, then choose a spanning tree T for F (not including eend)> and push C

over T. This is achieved by a sequence of 2-3 moves, as shown in Figure 36a.

Figure 35b shows the result in our example. In the second stage, we slide C over
the 2-cells of A, as follows. These 2-cells themselves form a tree T', dual to T.
There is one special vertex uend of T', corresponding to the 2-cell incident to
Ccnd • We may collapse T' onto uend by performing a sequence of quadrilateral
2-0 moves (Figure 36b shows the reverse move). We perform a quadrilateral
2-0 move on a leaf of T' to remove it from the tree as we push C over the

corresponding 2-cell. Since T' is a tree, we can always find a leaf vertex other

than Dend to perform a quadrilateral 2-0 move on.

7.2. Performing the quadrilateral 2-0 moves. In Lemma 1.2.11 of [Mat2],
Matveev shows that the quadrilateral 0-2 move can be performed using 2-3 and

3-2 moves in a very general setting. In this paper however, we only prove that it
can be performed in our more restrictive setting.

Here we state the moves purely in terms of the circle intersecting the planar
graph. The meaning of "0-2", "2-3" and "3-2" moves is as for the boundary of
the upper disk moving against the boundary of the spine below the plane, as

shown in Figure 36.

See Figure 37. We have a "bump" in the curve C, which protrudes into the

face /. We wish to push the bump into g. There are always two components
.4start and /tend of A — C, which contain Cstart and Cend respectively, and we

want to push the bump from the Tstart side towards the Tcnd side.

The bump intersects 3g in two points, say p\ and p2. The circle C also

intersects 3g at some other point on dg. This follows since if not, after the 2-0

move C would lie in the interior of the face g of the spine. But C cannot

contract to either side since it is essential in A. Therefore g cannot be a disk,
which is a contradiction. Let q\ and q2 be the first such intersection points
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Figure 37

Moves to perform a quadrilateral 2-0 move

moving away from the bump in the directions of p\ and p2 respectively. Let

a\ and a2 be the subarcs of 3g between px and qx, and between p2 and q2

respectively. At least one of a \ and a2 does not contain estart. Relabelling if
necessary, we assume that ai does not contain estart-

In our setting, ai is in dstart. Therefore there are no intersections between C

and «1, and by our previous choice ax does not contain estart. So, we can move
the bump along ax via a sequence of 2-3 and 3-2 moves, staying inside of A,
as shown in Figure 37, until it is next to q1. Finally, the inverse of a V-move

removes the bump.
After performing all of these moves, the position of C is identical to its

original position, except that the original bump has been removed. This then

achieves the quadrilateral 2-0 move.
In this process, we should be concerned that some moves we make might

be blocked by self-identifications in our graph F. It is possible that some of
the edges of ax are identified with each other, corresponding to identifications

among the sides of the face g. Note that any identification between these edges

must be orientation reversing since the graph is planar. Moreover, there can be no

identification between adjacent edges since the graph is trivalent. Each such step

of the bump from sitting in one edge to sitting in the next involves only a small
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neighbourhood of the vertex between the two edges. By the above comments,
there can be no identification between parts of T involved in the step.

7.3. Removing self-gluings. Now that we know how to sweep a membrane

across a ball when the ball has no self-gluings, we now have to deal with balls

with self-gluings.
Fixing some notation, we have membranes ma and mß in Ta and Tß

respectively, and the difference in the position of the two membranes is the

only difference between the two spines. Let Taß (Ta U mß) — (Tß U ma). See

Figure 38.

The ball B is one of the connected regions of M minus the spine Taß Let
Ra be the other incident region to ma, and similarly for Rß and mß. We have

Ra B ^ Rß, although Ra may or may not be the same region as Rß. The 1-

cell dma is incident to two 2-cells other than ma, namely fa and ga. The 2-cell

fa separates B from another region Ca, while ga separates Ra from Ca. The

region Ca meets itself along a 2-cell da associated to the arch-with-membrane.
We have similar notation for the ß side of the picture. The regions Ca and Cß

may each be the same as any of the other regions listed, including B if fa or
fß is a self-gluing of B. Moreover, we may have fa fß if the intersection

of the 1-skeleton of the spine with dB does not separate the two arches, and we

may have ga gß, connecting around outside of B.
Note that dB (before we glue up the faces of B) consists of (ma U mß),

together with an annulus A. After gluing, the ball B may be glued to itself along
some faces, which means that the annulus has some faces identified.

B

Figure 38

The spine Taß
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The pattern on 3B U ga U gß formed from the intersection of the boundary of
B with parts of the spine outside of B (and parts of dda and ddß intersecting

ga and gß is a trivalent graph F.
We will remove self-gluings of B, using moves analogous to the barycentric

subdivision moves from Section 2.5. As we modify our triangulations to remove

self-gluings, we abuse notation and continue to refer to the results of our various

moves as Ta, Tß and Tap Similarly, we will maintain the same names for the

various cells of our spines, even as they are modified or moved. Having removed

all self-gluings, we move the membrane from its position in Ta to its position
in Tß, similarly to as in Section 7.1 (with a few modifications we will give after
this section). This connects the two triangulations.

In this process, we may do moves to Ta in the vicinity of mp. We will alter
the corresponding moves applied to Tß (and Tap so as to give the same result.

To be more precise, we will apply various composite moves to Ta, Tß and Taß

The same composite moves on these triangulations may consist of a different

sequence of bistellar moves, to deal with the fact that membranes may or may
not be present in different positions for the three spines. However, after each

such composite move, we require that the identity Taß (Ta U mp) (Tß U ma)
holds. Our composite moves are given in the following sections.

7.3.1. Ensure that there are no BBB spine edges. First, we will require that

there are no edges of Taß (thought of as a spine) whose only incident region
is the ball B ("BBB -edges"). We can remove BBB -edges as follows. First, if
there is a BBB -edge then there must be a vertex v of the spine Tap incident to
B three times and some other region, R say, distinct from B. If no such vertex

can be found, then the BBB -edges and their incident regions form a connected

component of the manifold, which therefore contains only B. But we know that

B is incident to a vertex of the spine inside the arch-with-membrane, which is

incident to Ra ^ B, a contradiction. Having found such a vertex v, we perform
a 2-3 move along its incident BBB-edge e, noting that the 2-3 move is possible:
e cannot connect v to itself since no other edge incident to v is a BBB-tdge.
This 2-3 move reduces the number of Süß-edges by one. By induction we can

remove all BBB-edges.

If ddp is a BBB-edge in Ta, then this procedure will perform a 2-3 move

along it. We must apply appropriate bistellar moves to Tß so that Tp is identical
to Ta U mp in the vicinity of mp. This is done by using two 2-3 moves along
3dp instead of just one. See Figure 39. We apply a similar technique if dda is

a BBB -edge in Tp

Having completed this step, no triangle of Tap (thought of as a triangulation)
has three B vertices.
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Figure 39

Top row: a 2-3 move applied to an edge. Bottom row: the same result is achieved

despite a membrane disk (shaded gray) being in the way by applying two 2-3 moves.

7.3.2. Thickening the 1-skeleton of B. Next, let K be the 1-skeleton of B (in
Taß, thought of as a spine), union the edges in dga, and dgß, and those edges

that intersect dma and 3mß, but minus 3ma and 3mß themselves. We wish to
"thicken up" K, inspired by the implementation of barycentric subdivision given
in Section 2.5, which uses 1-4 moves. Of course we cannot perform any 1-4 moves

here, but we can perform the composition of a 1-4 move with adding an arch, as

shown in Figure 29. Moreover, since every vertex of K is incident to the region
B at most twice, we can arrange matters so that the arch is on an edge of the

resulting spine which is not incident to B. In the dual triangulation picture, we

apply a 1-4 move and can indicate the arch with an arch mark. The picture is

the same as shown in Figure 30. Here, we put the arch mark on the internal

triangle incident to two non- B vertices. Following this convention, after these

moves our triangulation Ta is the result of adding arches at arch marks drawn on

a triangulation say, where 7jjJ has an extra material vertex for every 1-4 move.
On T„, we label the new vertices of the triangulation "3", as in the first stage

of barycentric subdivision, given in Section 2.5. This thickens up the vertices of
K. To thicken up the edges of K, we continue with the barycentric subdivision

procedure, adding vertices labelled "2" to T„, again with arches connecting the

new vertices back to non- B vertices, with arch marks placed on triangles with
vertices labelled 2, 3 and a non- B 0 vertex. Again this is always possible to

do, since no face of the triangulation has three B vertices. In the second part
of this stage of barycentric subdivision, we perform a 2-3 move on a face of the

triangulation with three 0 vertices. We are able to do this without destroying one
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of our arch marks because all of our arch marks are on triangles with at least

one non-0 vertex. This done, we have thickened K.
When we thicken an edge that intersects dma, on Ta we apply two 2-3 moves

instead of one, just as in Section 7.3.1, in order to keep up with Tß. The same

applies with a and ß swapped.

Having completed this step, each face of the spine Taß (and also T£o incident
to B has all of its incident vertices and edges distinct. Moreover, in 7^, no
arch mark is on a triangle with a B-vertex.

7,3.3. Thickening self-gluings of B. We now wish to continue the barycentric
subdivision theme, thickening up the faces of B that are self-gluings. For such a

face, we are precisely in the setting of adding a vertex labelled 1, as in Figure 14.

Again here we implement the 1-4 and arch move on Ta with 2-3 and 3-2 moves.
The corresponding arch mark is placed on a triangle of Té not incident to a B

vertex. In fact we may place it on a triangle with vertices labelled 1, 2 and 3.

Next we follow the subsequent steps, as shown in Figure 15. These are all 2-3

moves, deleting triangles with two B vertices, which therefore do not have arch

marks on them, and a final 3-2 move. Each of the three triangles deleted in the

final 3-2 move has a B vertex, and so again there are no arches in the way of
this move.

In this step, special handling for ma (and rnß respectively) is needed in
the case that B Ca, so /„ is a self-gluing of B. In this case, for Tß, the

membrane ma is not present, so fa — ga, and the entire face is thickened. So,

we must do the same for Ta, despite ma being in the way. To achieve this, first
of all let's break the operation of thickening up a face, as shown in Figure 20,
into two stages.

(1) First, from Figure 20a to 20b we create a new three-cell region (here,
connected via an arch to one of the neighbouring regions).

(2) Second, from Figure 20b onwards, we expand the new region outwards,

collapsing the face away.

The data determining a face collapse move consists of

(1) the face / to be collapsed, together with

(2) the collapsing edge of / which expands into / as / collapses.

In Figure 20b the collapsing edge is drawn dashed. In order to perform a face

collapse, we require that all vertices of the face be distinct, and that there are at

least three vertices.

Figure 40 shows the effect of thickening a face fa incident to a membrane ma.
(Note that this is not a completely general picture: the degree of the remains of
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(d) (e)

Figure 40

Collapsing a face past a membrane (shaded gray)

fa could reach three earlier than shown, in which case we perform a 3-2 move
rather than further 2-3 moves.) Now, to continue the thickening of fa into ga, we

perform a second collapsing step, this time collapsing ga, without first creating a

new region. Instead we use the region already created to thicken fa, collapsing

ga with the collapsing edge shown in Figure 40e. Note that by construction, at

the start of the second collapsing step the degree of ga is at least three, so we

are able to perform the collapse: If the degree of ga were two, then before the

thickening move we would have had an arc of r cross <)ma and return, forming
a bigon. But our previous moves cannot produce such a configuration.

Also note that if ga gß, then it is possible that we collapse ga first, which
then requires us to collapse into fa. Finally, it is also possible that we have

that fa fß, since the graph F does not separate them, and moreover that

ga gß, connecting around outside of B. In this case, the membrane (in either

position) cannot be ignored - without it there is one face fa — fß — gß ga,
which is therefore not a disk. When we collapse this face, we continue on from

Figure 40e to Figure 41a. Completing the collapse in the rest of Figure 41, we gain
an extra rectangular face, parallel to the membrane, which separates the region
that expanded into fa fß gß — ga from itself. Here, we need to do a little
more work to maintain (TaUmß) (Tß U ma). In particular, after thickening

fa fß — gß ga, we have a rectangle near ma in Ta, but one near mp in

Tß-

We can move the rectangle past a membrane using a 2-3 followed by a 3-2

move, and we can move it around the boundary of the thickened face using
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(c) (d)

Figure 41

Collapsing a face past a membrane (shaded gray) when the membrane is a self-gluing

Figure 42

Sliding the rectangle past a membrane (first row) or a corner of the thickened face (second

row). In both cases, this is achieved by applying a 2-3 move followed by a 3-2 move.

similar moves. See Figure 42. Note that although we are sliding a disk (the

rectangle) through a ball (the thickened face), this is a much simpler setting
than our original problem: there are no self-identifications and the thickened face

has a much simpler graph on its boundary. These two rectangle moves suffice

to transport it from its location near ma to its location near mß, as long as

we don't attempt to move it past the arch connecting the thickened face to the
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outside. Thankfully, we can either move the rectangle through B or around the

outside of B, and one of these two paths does pass by the arch.

7.4. Modifications to moving a membrane across a ball. The only difference

in the setup here in comparison to that in Section 7.1 is that there may be more
than one edge of F exiting the annulus A through each of its boundary curves
Cstart and Cend: If dda is a BBB -edge then in Section 7.3.1 we remove it. The

resulting spine has two edges intersecting dma. When we thicken up edges in

Section 7.3.2, this again doubles the number of edges intersecting dma. The same

is true for edges intersecting dmß. Our algorithm is however almost identical

to the one given in Section 7.1. All we need to do is choose one of the edges

intersecting Cstart to be estart> and have the spanning tree include that estart but

no other edges intersecting Cstart or Cend- The rest of the algorithm then goes

through identically.
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