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Reciprocity by resultant in k[z]

Pete L. CLark and Paul PoLrLack

Abstract. Let k be a perfect field with procyclic absolute Galois group and containing
a primitive n-th root of unity. We define a degree n power residue symbol (%) , in the
ring k[t], show that it is equal to “the character of the resultant Res(bh,a)” and deduce
a reciprocity law. We are motivated by commonalities between the classical case k = T
and the novel but very simple case k = R.

Mathematics Subject Classification (2010). Primary: 11A15, 11CO08.
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1. Quadratic reciprocity in a PID

In this paper we explore quadratic and higher reciprocity laws in the ring k[¢]
of polynomials over a suitable class of fields k.

Here is a simple setup for pursuing abstract algebraic generalizations of
quadratic reciprocity: let R be a PID. We say that a,h € R are coprime if
a and b are nonzero and the ideal (a,b) generated by a and b is all of R.
For coprime a, p € R such that (p) is a prime ideal, we define the Legendre
symbol (%) to be the integer 1 if @ is a square in the field R/(p) and the
integer —1 otherwise. For coprime a,h € R, let b = up; --- p, for a unit u € R™
and prime elements pi,..., p, € R. We define the Jacobi symbol

) =1G)

The value of (%) does not change if b is replaced with another generator of (),
but this value does in general depend on the chosen generator a of (a).
We begin with the following two classical results.
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Theorem 1 (Quadratic Reciprocity in Z). (a) (Gauss [Gau]) Let p and q be
distinct odd prime numbers. Then

()=o)
q p

(b) (Jacobi [Ja37]) Let a and b be coprime odd positive integers. Then

a a—1b-1 b
(5) o= ()

Theorem 2 (Quadratic Reciprocity in F,[t]). Let q be an odd prime power, and
let a,b € Fy[t] be coprime monic polynomials. Then

(1) (g) — (_])q—}Ldegadegb(é)_
b a

Dedekind stated Theorem 2, when ¢ is prime, in [Ded] but did not prove it:
he felt that Gauss’s fifth proof of Theorem 1 carried over with little change (“the
deductions [...] are so similar to the ones in the cited treatise of Gauss that no
one can escape finding the complete proof.”) The first published proof is due to
Kiihne [Kiih].

2. A low-hanging quadratic reciprocity law
We now give a further simple, but motivational, quadratic reciprocity law.

Theorem 3 (Quadratic Reciprocity in R[¢]). Let a,b € R[t] be coprime monic
polynomials. Then

) T degadegh [
G

Proof. For A € R*, we put

1 it A>0,

Lo {—1 if 4<0

Step 1: We will show that for all monic irreducible p € k[t] and a,b € k[t] such
that (ab, p) = 1 we have (%) = (%) (%). From this it follows that the symbol (%)
is bimultiplicative — i.e., for all nonzero ay,a2,b € k[t] with (ajaz,b) = k[t] we

have
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(57) - ()) = (@) - C)(E)

The monic irreducible polynomials in R[¢] are t — A for A € R and irreducible
quadratics. Evaluation at A gives an isomorphism R[¢]/(t—A) = R. For a € R[t]

with a(A) # 0 we have
(ﬁ) — sgn(a(A))

and it follows that for a,b € R[f] with a(A)b(A) # 0 we have

b b
(l‘i A) = sgn(a(A)b(4)) = sgn(a(4)) sgn(b(4) = (: A) (t - A).

In R[t]/(Q) = C every element is a square, so for all « € R[¢] with (a, Q) = R[¢]
we have (&) = 1, and thus certainly for a,b € R[t] with (ab, Q) = R[t] we have

R

Step 2: Since both sides of (2) are multiplicative in « and h, we reduce to the
case in which a and b are moreover irreducible. If ¢« = Q; and b = Q, are

both quadratic then
_Q_l = ) = (_l)dengdegQZ & .
O3 01

If Q €RJ[t] is monic irreducible quadratic, then Q(R) C R™?, so for all 4 € R

we have
(i) = sgn(Q(4)) = 1 = (~1)eet-Ddeel (—” = A).

t—A 0
Finally, if a =t — A and b=t — B for A # B € R then

a @_ = = _ 1 _ (_1\degadegh
(M)(a(t))—sg"w Aysgn(A — B) = —1 = (—1ykeeadesb [

Theorem 2 looks strikingly similar to Theorem 3. The only difference is that
the (—1)‘1—51 over [, is replaced by —1 over R. This can be understood as
follows: we have

[F, :F, %l =2=[R*:R*?,

and thus in either field & we have a unique nontrivial quadratic character — i.e.,
a unique nontrivial group homomorphism y: k* — {£1}. Namely:
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x: By — {1}, aﬁa%, x: R* = {£1}, a > sgn(a).

Thus if k is either F, or R, then for coprime monic polynomials a,b € k[t] we

have
a b
=1 = y(-1 degadegh | )

3. Reciprocity by resultant

Here is another way to look at the proof of Theorem 3: for coprime monic
a,b € R[t], let a (resp. b) be the “split part” of a (resp. ) — i.e., the largest
monic divisor of a that has only real roots. Then the above considerations show

a a
b bl
If we write out

a=(—a)t—a), b=—p1) - (—Bs),

then using the bimultiplicativity of Jacobi symbols established above, we get

( ) = ] (;:;l) = sgn [I (Bi—a) | =sgnRes(b,a),

I<i<r, 1<j<s J 1<i<r, 1<j<s
where Res(h,a) € R[t] is the resultant of the polynomials b and 4. We
recommend [Bou, § IV.6] for a treatment of resultants of univariate polynomials
over an arbitrary commutative ring.
This motivates us to examine the connection between Jacobi symbols and
resultants for all coprime monic a,b € RJt]. Let o, € C\ R be such that
o ¢ {B,B) and let A € R. Then

Sl

(1 — )t —@)
L (t=0e-3
N t—A ’
and

sgn (Res (1 =)t =@). (1 — Bt — B)) ) = sen (@ — B)(e — B) (@ — B)(@ — B))

i (t —B)(t—P)
O\t -o)

Because Res(a, b) is also bimultiplicative, this establishes the following:

S@R%«pqna—mJ—A»=4g(m—Axa—m):1:(——tli_),

sgnRes (t — A, (t —a)(t —@)) = sgn ((A —a)(4 — a))
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Theorem 4. Let a,b € R[t] be coprime monic polynomials. Then

3) (%) = y(Res(h,a)) = sgnRes(b,a).
For any field £ and monic a,b € k[t], we have the (obvious!) primordial
reciprocity law

4) Res(h, a) = (—1)%¢229eb Reg(q, b).

We observe that (3) and (4) immediately imply (2).
It is natural to ask: does the analogous identity hold in F,[¢]? Indeed it does:

Theorem 5. Let a,b € F,[t] be coprime monic polynomials. Then

(5) (%) — y(Res(b,a)) = Res(h,a)’=".

We observe that (5) and (4) immediately imply (I). Ore gave a proof of
Theorem 2 centered around (5) in 1934 [Ore]. Several years earlier, Schmidt
had proved Theorem 2 by an equivalent approach [Sch], but without drawing
attention to the fact that the expressions appearing in his proof could be described
as resultants. (Both authors treat not only quadratic reciprocity, but the higher
reciprocity law described below in Theorem 6.) We believe that Ore’s decision
to make Theorem 5 explicit was a wise one; indeed, one of the main points of
this note to is demonstrate that (5) is a harbinger of a more general phenomenon.
Contemporary expositions (e.g., [Ros, Ch. 3], [Tha, § 1.4]) seem to follow Schmidt
rather than Ore, so that Theorem 5 is no longer well known. The present authors
learned of Theorem 5 from a more recent paper of Hsu [Hsu], who seems to
have independently rediscovered it.

When we say a field k “contains the n-th roots of unity,” we mean that the
group of n-th roots of unity in k& has order ». This implies that the characteristic
of k does not divide n.

And now the plot thickens: already in 1902, Kiithne gave a higher reciprocity
law in F,[¢]. For this, let n € Z* be such that n | g—1: equivalently, F, contains
the n-th roots of unity. Let p, C FS be the subgroup of n-th roots of unity.
Then [Fj :F "] =n, and the map

.
In B = pn, ar>am

induces an isomorphism [ /" 5 n. Now for coprime a, p € Fq[t] with p
irreducible, we define the n-th power residue symbol
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(a) o
— =da n .
P n

This extends by bimultiplicativity to a symbol (§) defined for all coprime
a,b € F,[t]\ {0}.
Then we have the following result:

Theorem 6. Let g be a prime power, and let n | g — 1 be a positive integer. Let
a,b € F,[t] be coprime monic polynomials. Then:

(@) (Ore) (§), = xn(Res(b,a)).
(b) (Kiihne) (%)n = ¥n (_1)degadegb(f_l)n — (_1)"7—1 degadegb(g)n.

Again we observe that via the primordial law (4), Theorem 6a) implies
Theorem 6b).

4. Statement of the Main Theorem

This brings us to a more precise goal: to generalize this “reciprocity by
resultant” to k[t] for other fields k. Let us begin with the n = 2 case, in which
we want a character y,: kK — {Z£1} such that for all coprime monic a,b € k[t]
we have

©6) (;—’) = 12(Res(b, a)).

If this holds, then since yx2(Res(b,a)) is bimultiplicative, the Jacobi symbol (§)
must be bimultiplicative as well. The following result shows that this places
significant restrictions on k.

Lemma 7. For a nonzero prime element p in a PID R, the following are
equivalent:

(i) The map a € (R/p)* (%) € {+1} is a group homomorphism.
(i) The field | == R/(p) has at most two square classes: [I* :1*?] < 2.
Proof. Let x,y € [*. The homomorphism property of (i) fails iff there are

nonsquares x,y € [* such that xy is also not a square iff the group [*/1*? has
more than two elements. ]
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Applying Lemma 7 with R = k[t], we find that if (6) holds, then every
monogenic finite extension of k has at most two square classes. Henceforth
we shall assume k is perfect, so using the Primitive Element Theorem [Lan,
Thm. V.4.6] the above condition becomes that every finite extension of k has at
most two square classes. More generally, if a perfect field k contains the n-th
roots of unity w, for some n € Z*, and if by an n-th power residue symbol
(%), we mean a map to j, such that when b is irreducible we have (5), = 1 iff
a is an n-th power in k[t]/(b), then if there is a character y,: k™ — wu, such
that (§) = xn(Res(b,a)), the symbol (§), is bimultiplicative, and it follows for
every finite extension [/k, the group 1*/1*" is cyclic, so k/I has at most one
cyclic degree n subextension.

These considerations lead us to the following class of fields. A perfect procyclic
field is a pair (k, F) where k is a perfect field and F is a topological generator
of gg := Aut(k/k): that is, gx = (F). A perfect field k with algebraic closure
k admits a topological generator iff every finite subextension / of k/k is cyclic
Galois iff for all d € Z* there is at most one degree d subextension of k/k.
If k is perfect procyclic and I/k is a degree d subextension of k/k, then we
endow [ with the structure of a perfect procyclic field by taking the topological
generator F¢ of g;.

Example 8. (a) For any prime power g, (IF;, F: x — x?) is a perfect procyclic
field, with gp, = Z.

(b) A field k is real-closed if it can be ordered and k(+/—1) is algebraically
closed. Then g = {1, F} has order 2 and (k, F) is a perfect procyclic field.

(¢) Let C be an algebraically closed field of characteristic 0, and let k = C(X))
be the Laurent series field over C. The Puiseux series field | J; o7+ C(X Z}))
is an algebraic closure of k. Choose for each d € Z* a primitive d -th root
of unity ¢z € C such that for all m,n € Z* we have {, =1¢,. Let F € g
be the unique element such that for all d € Z*, we have F(X@) ={;X 7.
Then (k, F) is a perfect procyclic field with gz = Z - a quasi-finite field.
Quasi-finite fields appear in a generalization of local class field theory due
to Moriya, Schilling, Whaples, Serre and Sekiguchi [Ser, Ch. XIII].

(d) If (k,F) is perfect procyclic and [/k is any subextension of k/k, then I
can be given the structure of a perfect procyclic field: if every finite extension
of k is cyclic Galois, then the same holds for / [Lan, Cor. VLLII].

(e) 'The perfect fields with procyclic absolute Galois group form an elementary
class. That is, there is a theory 7T in the first order language of fields
whose models are precisely the perfect fields with procyclic absolute Galois
group. Thus an ultraproduct of such fields can be given the structure of
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a perfect procyclic field. (A good reference for such things is [FJ]. For
a self-contained introduction to model theory and ultraproducts from the
field-theoretic perspective, see Chapter 7. That perfect fields with procyclic
absolute Galois group form an elementary class follows from the proof of
and Remark 20.4.5d). That elementary classes are closed under ultraproducts
follows from Proposition 7.7.1, a result of Los.)

(f) (Artin-Quigley [Qui]) Let K/k be a a field extension with K algebraically
closed. Let @ € K \ k, and let / be a maximal subextension of K/k such
that « ¢ /. Such fields exist by Zorn’s Lemma. Then K is an algebraic
closure of / and [l(x): /] = p is a prime number. Moreover:

e  Either / is perfect or £ has characteristic p.

e If [ is perfect, then g; = Aut(K/[) is isomorphic either to Z/27Z or

to Zp. In particular, / can be given the structure of a perfect procyclic
field.

e If / is not perfect, then K/I is purely inseparable, and for all n € Z*
there is a unique subextension /, of K/k with [, : [] = p". Thus

K=U,.

e If o is transcendental over k, then for all prime numbers p there is a
subextension [ of K/k that is maximal with respect to the exclusion
of a with [[(a) : ] = p. When p is the characteristic of &, the field
[ can moreover be chosen to be perfect and can also be chosen to be
imperfect. It follows that there are imperfect fields having within their
algebraic closure at most one degree n field extension for all n € Z*.

Let n € Z™, let (k, F) be a perfect procyclic field that contains the n-th
roots of unity, and let w, C k* be the group of n-th roots of unity in k. We
define a homomorphism

Xien: K — gy

as follows: for a € k*, let @'/* be any n-th root of « in k, and put

This does not depend on the choice of «!/”. Then Xk.n induces an injective
homomorphism
Yn: K[ g

~

Moreover, yi, is obtained by composing the Kummer isomorphism k*/k*" =
Hom(gx, n) with the homomorphism Hom(gg, ;) — i, obtained by evaluating
at the topological generator F. It follows that if m, is the gcd of n and the
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supernatural order of gr — in other words, the largest divisor d of n such that
gr has a finite quotient of order d — then k™" = k>*™» and

Xiw: K/ K" =KX [ K7™ =5 i, C .

Let a,p € k[t] be coprime polynomials with p irreducible of degree d. Let
l;/k be the unique degree d subextension of k/k, so that (Iz, F¢) is perfect
procyclic. Let ¢: k[t]/(p) => l; be a k-algebra isomorphism. Then we define the
n-th power residue symbol

(%)n = Xlg.n (L(a mod p)).

We claim that this symbol does not depend upon the choice of ¢. Indeed, the k-
algebra isomorphisms from k[t]/(p) to I are the maps Fiot for some 0 <i < d.
For a € k[t]/(p), let ()7 be an n-th root of t(e). Then Fi(i(x)'/") is an
n-th root of F!(1(x)), so

; B Fd(Fi(L(Ot)l/n)) 3 Fd(L(Ol)l/") B Fd([(a)l/n)
de,n(F (L(a)))— Fi @) —F( @ = @

= Kign(1(@))

FQ@'/™)
() 1/

k[t]/(p) with Iz and (;)n with x;, . For a,b € k[t] coprime monic polynomials,

since € U, C k, establishing the claim. This permits us to identify

write b = up; --- p, as above and put (%) = []i_, (P%)n. The bimultiplicativity
of (‘bi)n is immediate from the definition.
At last we can state the main result of this note.

Theorem 9. Let n € 7", and let k be a perfect procyclic field that contains the
n-th roots of unity. Let a,b € k[t] be coprime polynomials. Then:
(a) If b is monic, we have

a

(7 (E) = Xik.n(Res(b,a)).

(b) If a and b are monic, we have

(8) (ﬂ) :an(_l)degadegb (é) )
h n ’ 4 n

Once again we observe that via (4), Theorem 9a) implies Theorem 9b).
Theorem 9 recovers all the reciprocity results in k[t] discussed above and via
Example 8 gives new ones. Here is one application:
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Corollary 10. Let k be a perfect procyclic field containing the n-th roots of
unity for all n € 2+ — eg., k = C(X)). Let a,b € k[t] be coprime monic
polynomials. Then:

(a) We have (), = (g)n.
(b) If a and b are moreover irreducible, then a is an n-th power modulo b
iff b is an n-th power modulo a.

Proof. For all n € Z*, the hypothesis implies that —1 is an n-th power, so
Xen(=1) = 1. O

5. Proof of the Main Theorem

Once again it is enough to show (7), for then the primordial reciprocity law
(4) gives (8).

For a commutative ring k and a k-algebra [ that is finite-dimensional and
free as a k-module, let Nyx: ! — k be the norm map: that is, for x € [,
Nj/k(x) is the determinant of xe € Endi(/). Thus Nyjx: ™ — k* is a group
homomorphism.

Lemma 11. Let k be a commutative ring, let a,b € k[t]\ {0} with b monic.
Then

9) N

kin)/o) [ (@ 004 b) = Res(b, a).

Proof. See [Bou, Prop. 7, pp. IV.77]. For our application, it suffices to have (9)
when b is irreducible over k and k[t]/(h) is Galois over k. In that case the
following argument suffices: We may view £ as k(B), where B := ¢t modb.
Using B, for the Galois conjugates of f, we have h(t) = [];(t — B;). Factoring
a(t) =ao[[;(t — ;) in a suitable extension of £, we find that

degh
Nty /@ mod B) = Nepi(@(B)) = [ a(B)) = ap*" [](8; — o) = Restb.a).
J i,j

]

Let (k, F') be a perfect procyclic field containing the n-th roots of unity w,, .

Because both sides of (7) are multiplicative in b, it suffices to treat the case

in which » = p is monic irreducible, say of degree d. As justified above, we

identify k[t]/(p) with l[; C k and (;)’2 with x;,n: 1 — pn. Then by Lemma 11
it suffices to show that

Xign = Xkn © Nigjk-
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So let @ € l(}‘. Then we have
d=i
Ni, k(@) = l_[ F'(a).
i=0

Since ]—[;12—01 Fi(a'/") is an n-th root of ]_[f;(,l Fi(a), we have
d— ;
F(Nig/e@)'") _ F([TiZy Fi@/™) _ F@!/™)
Nigk(@)'/" [155 Figat/m) al/n
= Xn,ty ().

Xn k(N si(@)) =

6. Comments and complements

6.1. Procyclic absolute Galois groups. In order to better understand the scope
of Theorem 9 we give the following classification of absolute Galois groups of
perfect procyclic fields.

Proposition 12. (a) Let k be a field with procyclic absolute Galois group gy .
Then exactly one of the following holds:

(i) k is separably closed. Equivalently, g is the trivial group.
(ii) k& is real-closed. Equivalently, gx has order 2.

(iii) There is a nonempty set S of prime numbers such that as topological
groups, we have gi = [l;es Ze¢-

(b) Conversely, if G is the trivial group, the group of order 2 or [[,.q Z¢ for
some nonempty set of prime numbers S, then there is a perfect field k with
absolute Galois group gr = G.

Proof. Let G be a procyclic group. Then we have G = [[, G¢, where the product
extends over the prime numbers and each Gy is isomorphic to a quotient of Zg
— i.e., isomorphic either to Z; itself or to Z/¢%Z for some a € Z* [Wil,
Prop. 2.4.3 and Exercise 1.15]. Thus if G is torsionfree, then there is a subset S
of the prime numbers such that G =~ [[,.g Z;. Each of these groups occurs up
to isomorphism as a closed subgroup of the absolute Galois group of IF,, so
occurs as the absolute Galois group of an algebraic extension of I, .

Now let k be a (not necessarily perfect) field, with absolute Galois group
ar = Aut(k*P/k) = Aut(k/k). Let o € g; be a nontrivial element of finite
order. By a theorem of Artin-Schreier [Cla, Thm. 15.24], the automorphism o
has order 2 and E(G) is real-closed. Moreover, by [Efr, Prop. 19.4.3], (o) is self-
normalizing in gg, which is impossible if gz is commutative of order greater
than 2. 0
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6.2. Supplementary Laws. When R = 7Z, F,[t] or R[f], to compute all
Legendre symbols one needs some supplements to the quadratic reciprocity law:

Proposition 13. (a) For all odd b € 7", we have (3) = (—1)"5 .

2_
(b) For all odd b € Z*, we have (2) = (=1)"5 .
(c) For g an odd prime power, u € FF and b € Fy[t] \ {0}, we have
() =T 2.

(d) Let A€ R, and let b € R[t]\ {0}. Then we have (%) = sgn(4)%e?.

In all cases, after checking that both sides of the claimed identity are

multiplicative in b, we reduce to the case in which b = p is a prime element.
p—1

Then part (a) is a consequence of the “Euler relation” (%) = a2 : this is just the

explicit form of the quadratic character y»: F — {%1}. Similar remarks apply

to part (c) upon observing that A P8 q—;l(l +q -+ g%e21) and that u

is fixed by the g-th power map. Fozr part (d) one reduces to the cases b =t —a
or b = Q irreducible quadratic, which are immediate.

Thus the only part with any depth is part (b) — which has no analogue in the
k(t] case. In fact it follows from Theorem 1 and Proposition 13(a): for odd n > 3,

we have

(-6 G-

= (-1)'F )F ---(—1)1(%) = (D) =

Proposition 13(c) combines with Theorem 2 to give a reciprocity statement for
(%), for all coprime a,b € Fy[t] and n | g —1: see, e.g., [Ros, Thm. 3.5].

In our generalized setting, the notion of a supplementary law becomes
tautologous. Indeed, if k is a perfect procyclic field containing the n-th roots
of unity, then for u € k* and irreducible p € k[t] of degree d, we have
u

(%) = 1) - by definition!

6.3. The case k = R. Several years ago the first author found Theorem 3
while exploring representation theorems for binary quadratic forms over [F,[¢]
and R]¢]. For instance, Proposition 13c) applies to prove a result of Leahey [Lea]
and Gerstein [Ger, p. 133, Prop.]:
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Proposition 14. Let q be an odd prime power, and let D € F; be such that
—D ¢ ]F;z. For ¢ € F,[t]\ {0}, the following are equivalent:

(i) There are x,y € Fy[t] such that x> + Dy? = c.

(ii) For every monic irreducible p € F4[t] of odd degree, there is r > 0 such
that p?" | ¢ and p*>"*! }c.

Similarly Proposition 13(d) applies to prove the following well-known analogue
of Fermat’s Two Squares Theorem in R|[¢]:

Proposition 15. Let ¢ € R[t]. Then there are x,y € R[t] such that x* + y?> = ¢
iff c(R) C R,

Concerning precedents of Theorem 3 in the literature, we found (only) the
following ones:

e In [Knil] and [Kni2], J. T. Knight develops some foundations of a theory
of quadratic forms over R[¢]. In [Knil, Prop. 2.7] he gives the analogue in
R(¢r) of Hilbert’s reciprocity law for quaternion algebras. He then writes

This is a much weaker result than the classical analogue, and is
not worth deducing the trivial law of quadratic reciprocity from.

However, on the first page of [Kni2], Knight writes:

We can also develop a theory of quadratic residues in R[¢],
defining the generalised Legendre symbol {%} to be 1 or —I
according as x?> = « (mod B) has or has not a root [...] we
invite the reader to verify: Lemma 1.2. Suppose («, 8) = 1; then

{8} = 1iff VE€R, ) =0 = a(§) > 0.

When g is irreducible, Knight's symbol {%} coincides with the Legendre
symbol, but in general it does not correspond to the Jacobi symbol. This
symbol does not appear elsewhere in [Kni2].

e In an unpublished preprint of T.J. Ford from circa 1995 [For]|, Theorem 3
appears in the case in which ¢ and b are irreducible (from which the general
case follows by bimultiplicativity). Ford deduces it from a reciprocity law
in the Brauer group of R(#). On the one hand, this is an amusingly erudite
proof of such a simple result, and this informed our decision to include
a straightforward, elementary proof. On the other hand, Ford’s approach is
quite interesting. It may be possible to prove our Theorem 9 via similar
Brauer group considerations. (For starters: If k is perfect procyclic and not
real-closed, then the Brauer group of k((¢)) is canonically isomorphic to
Hom(gg,Q/Z), which is a subgroup of Q/Z. If k is real-closed then the
Brauer group of k((¢)) is isomorphic to (Z/27)?.)
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6.4. Reciprocity by resultant over Z. We conclude with a brief discussion
of proofs of quadratic reciprocity in Z that go via the primordial reciprocity
law. Here we relied on Lemmermeyer’s invaluable compendium [Lem] to locate
relevant references.

In 1876, Kronecker [Kro] showed that for all odd coprime positive integers
a,b, the Jacobi symbol () satisfies

o (e )

O<v<b/2

The right-hand side of (10) can be interpreted as the sign of a resultant: Let f
be any real-valued, strictly decreasing function on [0, 1/2]. For each odd positive

integer m, put
o= T1 (=1 (3).

O<w<m/2
so that W,,(x) € R[x] is monic of degree ’”T_l Since ¥ — 7 has the same sign
as f(})— f (%), eq. (10) implies that
a
(11) (B) = sgnRes(Vp, ¥,).

Theorem 1(b) follows immediately via the primordial reciprocity law.

Introducing resultants in this way appears somewhat perverse: the identity
(10) on its own immediately implies the reciprocity law! But for certain f,
one can prove (11) independently of (10), and thus derive a fresh proof of
Theorem 1. Pocklington [Poc], explicitly motivated by (10), proves (11) directly
for (distinct, odd) primes a,b, and f(x) = 2cos(2wx). Theorem la) follows
immediately. See [ACL] for a different proof of (11) for prime a,b, with the
same f(x). Taking instead f(x) = 2cos(2rx) — 2 = —4sin?(7x), Hambleton
and Scharashkin prove (11) for primes a,b in [HS]. Already in 1900, Fischer
[Fis] had shown that (%) = sgnRes(®,, @) for all odd coprime positive a,b,
where now f(x) = 4sin?(wx). This last f(x) is increasing on [0, 1/2] rather than
decreasing, which explains why the roles of a and » are reversed vis-a-vis (11);
of course this does not affect the deduction of the reciprocity law. We remark that
for all of these (closely related) choices of f, each of the polynomials W, (x)
belong to Z[x], and all of the resultants that appear come out as =£1, so that in
fact it is not necessary to apply the sgn function.

Acknowledgments. We thank Daniel B. Shapiro for suggesting we consider the
examples of Artin—Quigley.
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