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Reciprocity by resultant in k[t]

Pete L. Clark and Paul Pollack

Abstract. Let k be a perfect field with procyclic absolute Galois group and containing

a primitive n-th root of unity. We define a degree n power residue symbol (|T in the

ring k[t), show that it is equal to "the character of the resultant Res(h,a)" and deduce

a reciprocity law. We are motivated by commonalities between the classical case k =Fq
and the novel but very simple case k — M.

Mathematics Subject Classification (2010). Primary: 11A15, 11C08.

Keywords. Reciprocity law, resultant, polynomial ring, perfect procyclic field.

In this paper we explore quadratic and higher reciprocity laws in the ring k[t]
of polynomials over a suitable class of fields k.

Here is a simple setup for pursuing abstract algebraic generalizations of
quadratic reciprocity: let R be a PID. We say that a,h e R are coprime if
a and b are nonzero and the ideal (a,b) generated by a and b is all of R.
For coprime a, p e R such that (p) is a prime ideal, we define the Legendre

symbol (^) to be the integer 1 if a is a square in the field R/(p) and the

integer —1 otherwise. For coprime a,b e R, let b up\ pr for a unit u e Rx

and prime elements p\ pr e R. We define the Jacobi symbol

The value of (|) does not change if b is replaced with another generator of (h),
but this value does in general depend on the chosen generator a of (a).

We begin with the following two classical results.

1. Quadratic reciprocity in a PID
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Theorem 1 (Quadratic Reciprocity in Z). (a) (Gauss [Gau]) Let p and q be

distinct odd prime numbers. Then

(b) (Jacobi [Ja37]) Let a and b be coprime odd positive integers. Then

(a\ s 11h\
b)~ 122 (a}

Theorem 2 (Quadratic Reciprocity in F?[t]). Let q be an odd prime power, and

let a,b F?[t] be coprime monic polynomials. Then

(1) ^ degadegi)

Dedekind stated Theorem 2, when q is prime, in [Ded] but did not prove it:
he felt that Gauss's fifth proof of Theorem 1 carried over with little change ("the
deductions [... ] are so similar to the ones in the cited treatise of Gauss that no

one can escape finding the complete proof.") The first published proof is due to

Kühne [Küh],

2. A low-hanging quadratic reciprocity law

We now give a further simple, but motivational, quadratic reciprocity law.

Theorem 3 (Quadratic Reciprocity in M[r]). Let a, h e R[t] be coprime monic

polynomials. Then

(2) (|j - (_l)deg«degèM

Proof. For A e Mx, we put

sgn(T)
1 if A > 0,

-1 if A < 0.

Step 1: We will show that for all monic irreducible p k[t] and a,b e k[t] such

that {ab, p) — 1 we have (y) (^)(|). From this it follows that the symbol (|)
is bimultiplicative - i.e., for all nonzero ai,a2,b e k[t] with (a\a2,b) — k[t] we
have



Reciprocity by resultant in k[t\ 103

a-^\= and
i(l\(l2 / \ûl / \Ü2

The monic irreducible polynomials in E[t] are t — A for A e M and irreducible

quadratics. Evaluation at A gives an isomorphism ¥l[t\/(t — A) E. For a e E[t]
with a (A) ^0 we have

(7^) s®n<<,(/'))

and it follows that for a,b e E[t] with a{A)b{A) /0 we have

/ ab
sgn{a(A)b(A)) sgn(a(T)) sgn(b(A))\t — A I \t — Aj\t — AJ

In M[t]/(<2) C every element is a square, so for all a e E[f] with (a, Q) —

we have (^) 1, and thus certainly for a,h e E[t] with {ab, Q) E[t] we have

(?)-(#)
Step 2: Since both sides of (2) are multiplicative in a and h, we reduce to the

case in which a and b are moreover irreducible. If a — Q\ and b Q2 are

both quadratic then

I RlI 1 _ (_ ndegöi degÔ2 [ Q2\

W w'
If Q e E[t] is monic irreducible quadratic, then 0(E) c E>0, so for all A e

we have

-^t) - sgn(ß(^)) 1 (-l)deg(r -A)deSQ[

\t~A) " \ Q

Finally, if a t — A and h t — B for /1/ßeK then

(ïH)(Û)) VHB-AUlHA-B)—1

Theorem 2 looks strikingly similar to Theorem 3. The only difference is that
q— 1

the (—1)~t~ over Fq is replaced by —1 over E. This can be understood as

follows: we have

[Fx : Fx2] 2 [Ex : Ex2],

and thus in either field k we have a unique nontrivial quadratic character - i.e.,

a unique nontrivial group homomorphism /' k* {±1}- Namely:
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4-1
X'- F* -» {±1}, ma 2 /:EX-^{±1}, a h* sgn(a).

Thus if k is either F9 or R, then for coprime monic polynomials a,b e k[t] we

have

a"I — ^(_l)degadegi|

3. Reciprocity by resultant

Here is another way to look at the proof of Theorem 3: for coprime monic

a,b e M[t], let ä (resp. b) be the "split part" of a (resp. b) - i.e., the largest

monic divisor of a that has only real roots. Then the above considerations show

(H)
If we write out

ä (t - aO • • • (t - ar), b (t - ßi) (t - ßs),

then using the bimultiplicativity of Jacobi symbols established above, we get

n (737r)=sgn( n (&-«/)]= sgn Res(M),
V / 1 <i<r, 1 <j<s \ •'/ yl<i<r, 1 <j<s f

where Res(h,a) M[f] is the resultant of the polynomials b and ä. We

recommend [Bou, § IV.6] for a treatment of resultants of univariate polynomials
over an arbitrary commutative ring.

This motivates us to examine the connection between Jacobi symbols and

resultants for all coprime monic a,b e M[f], Let a, ß e C \ M be such that

a <£ {ß,ß} and let del. Then

sgn Res ((t — a)(t — a), t — d)) sgn ((a — d)(a — A)j 1

^

sgn Res (t — A, (t - a){t — a)) sgn ((d — a)(d — a)^ 1

and

sgn (Res ((f - a)(t - a), (t - ß)(t - ß))^ sgn ((a - ß)(a - ß)(a - ß)(ct - ~ß))

y(t -a)(t -ä)J'
Because Res(a,b) is also bimultiplicative, this establishes the following:

(t — a)(t — a)J'

(t — a)(t — cf)\
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Theorem 4. Let a,b e M[r] be coprime monic polynomials. Then

(3) /(Res(b,a)) sgnRes(Z?,a).

For any field k and monic a,b e k\t), we have the (obvious!) primordial
reciprocity law

We observe that (3) and (4) immediately imply (2).

It is natural to ask: does the analogous identity hold in F9[?]7 Indeed it does:

Theorem 5. Let a, h e F?[l] be coprime monic polynomials. Then

We observe that (5) and (4) immediately imply (1). Ore gave a proof of
Theorem 2 centered around (5) in 1934 [Ore], Several years earlier, Schmidt
had proved Theorem 2 by an equivalent approach [Sch], but without drawing
attention to the fact that the expressions appearing in his proof could be described

as resultants. (Both authors treat not only quadratic reciprocity, but the higher

reciprocity law described below in Theorem 6.) We believe that Ore's decision

to make Theorem 5 explicit was a wise one; indeed, one of the main points of
this note to is demonstrate that (5) is a harbinger of a more general phenomenon.

Contemporary expositions (e.g., [Ros, Ch. 3], [Tha, § 1.4]) seem to follow Schmidt
rather than Ore, so that Theorem 5 is no longer well known. The present authors

learned of Theorem 5 from a more recent paper of Hsu [Hsu], who seems to

have independently rediscovered it.

When we say a field k "contains the n -th roots of unity," we mean that the

group of n -th roots of unity in k has order n. This implies that the characteristic

of k does not divide n.
And now the plot thickens: already in 1902, Kühne gave a higher reciprocity

law in F?[f], For this, let n e Z+ be such that n \ q— 1 : equivalently, contains

the n -th roots of unity. Let jin c F * be the subgroup of n -th roots of unity.
Then [F* : F*n] n, and the map

(4) Res(b,a) (—l)degadegè Res(a, £).

(5)

<7—1

/in, a h->> a n

induces an isomorphism F*/F*n pn. Now for coprime a.p £ F9[t] with p
irreducible, we define the n -th power residue symbol
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n

:= a «
gdeg />_)

This extends by bimultiplicativity to a symbol (|)n defined for all coprime

Then we have the following result:

Theorem 6. Let q be a prime power, and let n \ q — 1 be a positive integer. Let

a,b e F?[t] be coprime monic polynomials. Then:

Again we observe that via the primordial law (4), Theorem 6a) implies
Theorem 6b).

This brings us to a more precise goal: to generalize this "reciprocity by

resultant" to k[t] for other fields k. Let us begin with the n 2 case, in which

we want a character /2: kx -> {±1} such that for all coprime monic a,b e k[t]
we have

If this holds, then since /2(Res(è,a)) is bimultiplicative, the Jacobi symbol (|)
must be bimultiplicative as well. The following result shows that this places

significant restrictions on k.

Lemma 7. For a nonzero prime element p in a PID R, the following are

equivalent:

(i) The map a (R/p)x (^j {±1} is a group homomorphism.

(ii) The field I := R/(p) has at most two square classes: [lx : lx2] < 2.

a,be¥q[t]\{0}.

(a) (Ore) (f)n *„(Res(M)).

(b) (Kühne) (f)„ /„(-l)degadegè(|)n (-l)^degadegft(|)„.

4. Statement of the Main Theorem

(6)

Proof. Let x,y e lx. The homomorphism property of (i) fails iff there are

nonsquares x,y 6 lx such that xy is also not a square iff the group lx/lx2 has

more than two elements.
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Applying Lemma 7 with R k[t), we find that if (6) holds, then every
monogenic finite extension of k has at most two square classes. Henceforth

we shall assume k is perfect, so using the Primitive Element Theorem [Lan,
Ihm. V.4.6] the above condition becomes that every finite extension of k has at

most two square classes. More generally, if a perfect field k contains the n-th
roots of unity jLn for some ne Z+, and if by an n -th power residue symbol

(I) we mean a map to jin such that when b is irreducible we have (|)n 1 iff
a is an n-th power in k[t]/(b), then if there is a character Xn- kx -* ptn such

that /„(Rest/),a)), the symbol (|)n is bimultiplicative, and it follows for

every finite extension l/k, the group /x//x" is cyclic, so k/l has at most one

cyclic degree n subextension.

These considerations lead us to the following class of fields. A perfect procyclic
field is a pair (k, F) where k is a perfect field and F is a topological generator
of Qk Aut(k/k): that is, Qr {F). A perfect field k with algebraic closure

k admits a topological generator iff every finite subextension / of k/k is cyclic
Galois iff for all d e Z+ there is at most one degree d subextension of k/k.
If k is perfect procyclic and l/k is a degree d subextension of k/k, then we

endow / with the structure of a perfect procyclic field by taking the topological

generator Fd of g;.

Example 8. (a) For any prime power q, (¥q, F : x i-> xq) is a perfect procyclic
field, with g^ Z.

(b) A field k is real-closed if it can be ordered and k(V—I) is algebraically
closed. Then g^ {1, F} has order 2 and (k. F) is a perfect procyclic field.

(c) Let C be an algebraically closed field of characteristic 0, and let k C((X
be the Laurent series field over C The Puiseux series field [J</ez+ C((X d

is an algebraic closure of k. Choose for each de Z+ a primitive d -th root
of unity Çd e C such that for all m,n e Z+ we have f//ul /n. Let F e g^:

be the unique element such that for all d e Z+, we have F{Xd) =/dx~d
Then (k, F) is a perfect procyclic field with g^ Z - a quasi-finite field.

Quasi-finite fields appear in a generalization of local class field theory due

to Moriya, Schilling, Whaples, Serre and Sekiguchi [Ser, Ch. XIII].

(d) If (k.F) is perfect procyclic and l/k is any subextension of k/k, then I

can be given the structure of a perfect procyclic field: if every finite extension

of k is cyclic Galois, then the same holds for / [Lan, Cor. VI.1.11],

(e) The perfect fields with procyclic absolute Galois group form an elementary
class. That is, there is a theory T in the first order language of fields
whose models are precisely the perfect fields with procyclic absolute Galois

group. Thus an ultraproduct of such fields can be given the structure of
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a perfect procyclic field. (A good reference for such things is [FJ], For

a self-contained introduction to model theory and ultraproducts from the

field-theoretic perspective, see Chapter 7. That perfect fields with procyclic
absolute Galois group form an elementary class follows from the proof of
and Remark 20.4.5d). That elementary classes are closed under ultraproducts
follows from Proposition 7.7.1, a result of Los.)

(f) (Artin-Quigley [Qui]) Let K/k be a a field extension with K algebraically
closed. Let a e K\k, and let I be a maximal subextension of K/k such

that a <jÉ I. Such fields exist by Zorn's Lemma. Then K is an algebraic
closure of I and [1(a) : I] — p is a prime number. Moreover:

• Either I is perfect or k has characteristic p.

• If I is perfect, then g/ Aut(K/l) is isomorphic either to Z/2Z or
to 7LP. In particular, I can be given the structure of a perfect procyclic
field.

• If / is not perfect, then K/l is purely inseparable, and for all n e Z+
there is a unique subextension ln of K/k with [/„ : I] pn. Thus

K U„ In-

• If a is transcendental over k, then for all prime numbers p there is a

subextension I of K/k that is maximal with respect to the exclusion

of a with [1(a) : I] p. When p is the characteristic of k, the field
I can moreover be chosen to be perfect and can also be chosen to be

imperfect. It follows that there are imperfect fields having within their

algebraic closure at most one degree n field extension for all n e Z+.

Let n e Z+, let (k,F) be a perfect procyclic field that contains the n-th
roots of unity, and let pn c kx be the group of n-th roots of unity in k. We

define a homomorphism

Xk,n ' k ~~Fn

as follows: for a e kx, let a1/" be any n-th root of a in k, and put

F(a1'n)
^n(oc) :=

This does not depend on the choice of a1/". Then Xk,n induces an injective
homomorphism

Xn:k*/kxn^pn.
Moreover, Xk,n is obtained by composing the Kummer isomorphism kx/kxn
Hom(gji,g„) with the homomorphism IIom(g^, /i„) -> pn obtained by evaluating
at the topological generator F. It follows that if mn is the gcd of n and the
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supernatural order of g^ - in other words, the largest divisor d of n such that
has a finite quotient of order d - then kxn fcxm" and

Xk,n : kx/kxn — kx/kxm" —4 /zm„ C pn.

Let a, p e k[t] be coprime polynomials with p irreducible of degree d. Let

Idlk be the unique degree d subextension of k/k, so that (ld.Fd) is perfect

procyclic. Let i: k[t]/(p) Id be a A:-algebra isomorphism. Then we define the

n-th power residue symbol

^ := Xld,n(t(a mod P))-

We claim that this symbol does not depend upon the choice of t. Indeed, the k -

algebra isomorphisms from k[t]/(p) to Id are the maps Fl oi for some 0 < i < d.
For a E k[t]/(p), let i(a)n be an n-th root of i(a). Then F'(i(a)1!") is an

n-th root of F'(i(a)), so

(„H of _ Fd(Fi(a«)1,n)) _ Pl (Fd(L(a)V")\ _
Fd(t(a)'/")

Xid,n( (t(a))j F''(t(a)1,n) \ j(a)1/n J i(a)l'n

Xlj ,«0(a))

since F^"y/P e Fn C k, establishing the claim. This permits us to identify

k[t]/(p) with Id and (-) with xid,n For a,h e k[t] coprime monic polynomials,

write b up\ pr as above and put (|)n := ]~[/=i (^r) • The bimultiplicativity
of is immediate from the definition.

At last we can state the main result of this note.

Theorem 9. Let n e Z+, and let k be a perfect procyclic field that contains the

n -th roots of unity. Let a,b E k [/] be coprime polynomials. Then:

(a) If b is monic, we have

(7) Xk,n{R&s(b,a)).

(b) If a and b are monic, we have

(8) fj =/M(-Ddcgadeg6Q •

Once again we observe that via (4), Theorem 9a) implies Theorem 9b).
Theorem 9 recovers all the reciprocity results in k[t] discussed above and via

Example 8 gives new ones. Here is one application:
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Corollary 10. Let k be a perfect procyclic field containing the n -th roots of
unity for all n £ Z+ - e.g., k C((X)). Let a.b £ k[t] be coprime monic

polynomials. Then:

(a) We have (§)„ (*)„.

(b) If a and b are moreover irreducible, then a is an n -th power modulo b

iff h is an n -th power modulo a.

Proof. For all n £ Z+, the hypothesis implies that —1 is an «-th power, so

Xk,n(~l) 1-

5. Proof of the Main Theorem

Once again it is enough to show (7), for then the primordial reciprocity law

(4) gives (8).

For a commutative ring k and a A:-algebra / that is finite-dimensional and

free as a A:-module, let Ni/k- I -> k be the norm map: that is, for x £ I,
N„k(x) is the determinant of x» £ Endfc(/). Thus Ni/k - lx -> kx is a group
homomorphism.

Lemma 11. Let k be a commutative ring, let a,b £ k[t] \ {0} with b monic.
Then

(9) Nk[t]m/k(amodb) Res(b,a).

Proof. See [Bou, Prop. 7, pp. IV.77]. For our application, it suffices to have (9)
when b is irreducible over k and k\i]/(b) is Galois over k. In that case the

following argument suffices: We may view £ as k(ß), where ß := t mod h.

Using ßj for the Galois conjugates of ß, we have b(t) Y\j(t — ßj). Factoring

a(t) — a0 n,(f — Ci) in a suitable extension of I, we find that

Nk[t]/(b)/k^a mod ^ NHk{a(ß)) \\a{ßj) «oegè Yl(ßj ~ ai) Res(h>a)-

j bj

Let (k, F) be a perfect procyclic field containing the «-th roots of unity p,n.
Because both sides of (7) are multiplicative in h, it suffices to treat the case

in which b p is monic irreducible, say of degree d. As justified above, we

identify k[t]/(p) with lj c k and (-^) with Xld,n'- 1% P-n- Then by Lemma 11

it suffices to show that

Xld,n ~ Xk,n 0 Nid/k.
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So let a e 1%. Then we have

d-1
Nid/k(ot) Y\ F'(°0-

i=0

Since nf=o F\al/n) is an n-th root of nf=o Fl(a), we have

Fd(a}l")
a1/"

Xn,id(pt).

6. Comments and complements

6.1. Procyclic absolute Galois groups. In order to better understand the scope
of Theorem 9 we give the following classification of absolute Galois groups of
perfect procyclic fields.

Proposition 12. (a) Let k be a field with procyclic absolute Galois group Qf,.

Then exactly one of the following holds:

(i) k is separably closed. Equivalently, Qk is the trivial group.

(ii) k is real-closed. Equivalently, qk has order 2.

(iii) There is a nonempty set S of prime numbers such that as topological

(b) Conversely, if G is the trivial group, the group of order 2 or rites for
some nonempty set of prime numbers S, then there is a perfect field k with
absolute Galois group Qk G.

Proof. Let G be a procyclic group. Then we have G \\tGi, where the product
extends over the prime numbers and each Gt is isomorphic to a quotient of

- i.e., isomorphic either to itself or to Z/faZ for some a e Z+ [Wil,
Prop. 2.4.3 and Exercise 1.15]. Thus if G is torsionfree, then there is a subset S

of the prime numbers such that G fites • Each of these groups occurs up
to isomorphism as a closed subgroup of the absolute Galois group of Fp, so

occurs as the absolute Galois group of an algebraic extension of
Now let k be a (not necessarily perfect) field, with absolute Galois group

Qk Aut(/cscp/k) Aut(k/k). Let o e Qk be a nontrivial element of finite
order. By a theorem of Artin-Schreier [Cla, Thm. 15.24], the automorphism a
has order 2 and k^ is real-closed. Moreover, by [Efr, Prop. 19.4.3], (o) is self-

normalizing in Qk, which is impossible if Qk is commutative of order greater
than 2.

groups, we have Qk fîtes
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6.2. Supplementary Laws. When R Z, F9[f] or R[r], to compute all

Legendre symbols one needs some supplements to the quadratic reciprocity law:

Proposition 13. (a) For all odd b e Z+, we have (^) (—l)^.

(b) For all odd b e Z+, we have (|) (—l)^^-1.

(c) For q an odd prime power, u e F* and b e F?[t] \ {0}, we have

(I)

(d) Let /4elx, and let b e R[t] \ {0}. Then we have (j) — sgn(T)deg*.

In all cases, after checking that both sides of the claimed identity are

multiplicative in b, we reduce to the case in which b — p is a prime element.

Then part (a) is a consequence of the "Euler relation" (j) a 2 : this is just the

explicit form of the quadratic character /2' F* -> {±1}. Similar remarks apply

to part (c) upon observing that q ^ — ^—(1 +q H + qde^b~l) and that u

is fixed by the q -th power map. For part (d) one reduces to the cases b — t — a

or b — Q irreducible quadratic, which are immediate.

Thus the only part with any depth is part (b) - which has no analogue in the

k[t] case. In fact it follows from Theorem 1 and Proposition 13(a): for odd n > 3,

we have

Proposition 13(c) combines with Theorem 2 to give a reciprocity statement for

(|)n for all coprime a,b e F?[t] and n \ q — 1 : see, e.g., |Ros, Thm. 3.5].

In our generalized setting, the notion of a supplementary law becomes

tautologous. Indeed, if k is a perfect procyclic field containing the n -th roots

of unity, then for u e kx and irreducible p e k[t] of degree d, we have

(f) Xld,n(u) - by definition!

6.3. The case k R. Several years ago the first author found Theorem 3

while exploring representation theorems for binary quadratic forms over F9[f]
and R[t], For instance, Proposition 13c) applies to prove a result of Leahey [Lea]
and Gerstein [Ger, p. 133, Prop.]:
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Proposition 14. Let q be an odd prime power, and let D e F* be such that
—D fi F*2. For c e Fq[/] \ {0}, the following are equivalent:

(i) Ttiere are x,y e F^[t] such that x2 + Dy2 c.

(ii) For every monic irreducible p e ¥'q [f] of odd degree, there is r > 0 such

that p2r I c and p2r+l -[ c.

Similarly Proposition 13(d) applies to prove the following well-known analogue
of Fermat's Two Squares Theorem in E[f]:

Proposition 15. Let c e ![/]. Then there are x,y e E[t] such that x2 + y2 c

iff c(R) C R-°.

Concerning precedents of Theorem 3 in the literature, we found (only) the

following ones:

• In [Knil] and [Kni2], J.T. Knight develops some foundations of a theory
of quadratic forms over M[t]. In [Knil, Prop. 2.7] he gives the analogue in
M(f) of Hilbert's reciprocity law for quaternion algebras. He then writes

This is a much weaker result than the classical analogue, and is

not worth deducing the trivial law of quadratic reciprocity from.

However, on the first page of [Kni2], Knight writes:

We can also develop a theory of quadratic residues in R[f],
defining the generalised Legendre symbol {^} to be 1 or —1

according as x2 a (mod ß) has or has not a root [...] we

invite the reader to verify: Lemma 1.2. Suppose (a, ß) — 1 ; then

{f} 1 ^ VÇeR, M) 0 a(£)>0.
When ß is irreducible, Knight's symbol {j) coincides with the Legendre
symbol, but in general it does not correspond to the Jacobi symbol. This

symbol does not appear elsewhere in [Kni2].

• In an unpublished preprint of T.J. Ford from circa 1995 [For], Theorem 3

appears in the case in which a and b are irreducible (from which the general
case follows by bimultiplicativity). Ford deduces it from a reciprocity law
in the Brauer group of R(t). On the one hand, this is an amusingly erudite

proof of such a simple result, and this informed our decision to include

a straightforward, elementary proof. On the other hand, Ford's approach is

quite interesting. It may be possible to prove our Theorem 9 via similar
Brauer group considerations. (For starters: If k is perfect procyclic and not
real-closed, then the Brauer group of k((t)) is canonically isomorphic to

Hom(fljç-,Q/Z), which is a subgroup of Q/Z. If k is real-closed then the

Brauer group of k((t)) is isomorphic to (Z/2Z)2.)
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6.4. Reciprocity by resultant over Z. We conclude with a brief discussion

of proofs of quadratic reciprocity in Z that go via the primordial reciprocity
law. Here we relied on Lemmermeyer's invaluable compendium [Lern] to locate

relevant references.

In 1876, Kronecker [Kro] showed that for all odd coprime positive integers

a,b, the Jacobi symbol (|) satisfies

(10) $--( n (H))-
V / \0<u<a/2 'a/2

0<v<b/2

The right-hand side of (10) can be interpreted as the sign of a resultant: Let /
be any real-valued, strictly decreasing function on [0,1 /2]. For each odd positive

integer m, put

*„»:= n (*-/©)•
0<w<m/2

r
2so that UvdX) e R[x] is monic of degree • Since ^ — f has the same sign

as / (£) ~ f (a)' efi- (]°) imPlies that

(11) sgnRes(Vb, Va).

Theorem 1(b) follows immediately via the primordial reciprocity law.

Introducing resultants in this way appears somewhat perverse: the identity
(10) on its own immediately implies the reciprocity law! But for certain /,
one can prove (11) independently of (10), and thus derive a fresh proof of
Theorem 1. Pocklington [Poc], explicitly motivated by (10), proves (11) directly
for (distinct, odd) primes a,b, and fix) 2cos(2jtx). Theorem la) follows

immediately. See [ACL] for a different proof of (11) for prime a,b, with the

same fix). Taking instead fix) 2cos(27rx) — 2 —4sin2(7rx), Hambleton
and Scharashkin prove (11) for primes a,h in [HS]. Already in 1900, Fischer

[Fis] had shown that (|) sgn Res(<3>a, <£>&) for all odd coprime positive a,b,
where now f(x) — 4 sin2(7rx). This last fix) is increasing on [0,1/2] rather than

decreasing, which explains why the roles of a and b are reversed vis-à-vis (11);
of course this does not affect the deduction of the reciprocity law. We remark that

for all of these (closely related) choices of /, each of the polynomials 4>m(x)

belong to Z [x], and all of the resultants that appear come out as ± 1, so that in
fact it is not necessary to apply the sgn function.

Acknowledgments. We thank Daniel B. Shapiro for suggesting we consider the

examples of Artin-Quigley.
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