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Hyperbolicities in CAT(0) cube complexes

Anthony GENEVOIS

Abstract. This paper is a survey dedicated to the following question: given a group acting
on a CAT(0) cube complex, how to exploit this action to determine whether or not the
group is Gromov/relatively/acylindrically hyperbolic? As much as possible, the different
criteria we mention are illustrated by applications. We also propose a model for universal
acylindrical actions of cubulable groups, and give a few applications to Morse, stable and
hyperbolically embedded subgroups.
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34 A. GENEVOIS
1. Introduction

A well-known strategy to study groups from a geometric point of view is to
find “nice” actions on spaces which are “nonpositively-curved”, or even better,
which are “negatively-curved”. The most iconic illustration of this idea comes
from Gromov’s seminal paper [Gro] introducing hyperbolic groups. Since then,
hyperbolic groups have been generalised in different directions. In this paper,
we are interested in Gromov’s hyperbolic groups as well as (strongly) relatively
hyperbolic groups and the recent acylindrically hyperbolic groups. Proving that
a group satisfies some hyperbolicity is very convenient as it provides interesting
information of the group; see [GdIH, Osil, Osi3] and references therein for more
information. However, it may be a difficult task to show that a given group
actually has a negatively-curved behavior, motivating the need of general criteria.

In this article, our objective is to stress out the idea that, if we want to
determine whether a given group is hyperbolic in some sense, then it may be
quite convenient to find an action on a CAT(0) cube complex (usually considered
as a generalised tree in higher dimension). So the main question of the article is
the following:

Question 1.1. Let G be a group acting on some CAT(0) cube complex X . How
to exploit the action G ~, X to determine whether or not G is Gromov/relatively/
acylindrically hyperbolic?

Our motivation is twofold. The first point is that the strategy actually works:
we are indeed able to exploit the nice geometry of CAT(0) cube complexes in
order to state and prove general criteria about hyperbolicity. And secondly, many
groups of interest turn out to act on CAT(0) cube complexes, providing a large
and interesting collection of potential applications. Along the article, as much
as possible the different criteria we will mention will be illustrated by concrete
applications, justifying our choice of working with cube complexes. (Indeed, the
applications we mention deal with no less than twelve classes of groups!)

Although most of our article is a survey of already published works, some of
our results are new, including:

e 'The introduction of Morse subgroups (introduced independently in [Tra]
under the name strongly quasiconvex subgroups) and their characterisation
in cubulable groups (see Section 4, especially Corollary 4.7).

e A proof of the freeness of Morse subgroups in freely irreducible right-angled
Artin groups (see Appendix B).

e The characterisation of hyperbolically embedded subgroups in cubulable
groups (see Section 6.4.
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e 'The introduction of hyperbolic models for CAT(0) cube complexes, with
applications to stable subgroups and regular elements (see Section 6.6).

e A short study of crossing graphs of CAT(0) cube complexes, stressing out
their similarity with contact graphs (see Appendix A).

Along our text, several open questions are left. Some of them being well-known,
and other ones being new.

2. Preliminaries

A cube complex is a CW complex constructed by gluing together cubes of
arbitrary (finite) dimension by isometries along their faces. It is nonpositively
curved if the link of any of its vertices is a simplicial flag complex (i.e., n + 1
vertices span a n-simplex if and only if they are pairwise adjacent), and CAT(0)
if it is nonpositively curved and simply-connected. See [BH, page 111] for more
information.

Fundamental tools when studying CAT(0) cube complexes are hyperplanes.
Formally, a hyperplane J is an equivalence class of edges with respect to the
transitive closure of the relation identifying two parallel edges of a square. Notice
that a hyperplane is uniquely determined by one of its edges, so if e € J we
say that J is the hyperplane dual to e. Geometrically, a hyperplane J is rather
thought of as the union of the midcubes transverse to the edges belonging to
J (sometimes referred to as its geometric realisation). See Figure 1. The carrier
N(J) of a hyperplane J is the union of the cubes intersecting (the geometric
realisation of) J.

FiGure 1
A hyperplane (in red) and the associated union of midcubes (in green)
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There exist several metrics naturally defined on a CAT(0) cube complex. For
instance, for any p € (0, +00), the £,-norm defined on each cube can be extended
to a length metric defined on the whole complex, the £,-metric. Usually, the
¢ -metric is referred to as the combinatorial distance and the {,-metric as the
CAT(0) distance. In this article, we are mainly interested in the combinatorial
metric. Actually, unless specified otherwise, we will identify a CAT(0) cube
complex with its one-skeleton, thought of as a collection of vertices endowed
with a relation of adjacency. In particular, when writing x € X, we always mean
that x is a vertex of X.

The following theorem is one of the most fundamental results about the
geometry of CAT(0) cube complexes.

Theorem 2.1. [Sag] Let X be a CAT(0) cube complex.

o If J is a hyperplane of X, the graph X\\J obtained from X by removing
the (interiors of the) edges of J contains two connected components. They
are convex subgraphs of X, referred to as the halfspaces delimited by J .

e A path in X is a geodesic if and only if it crosses each hyperplane at most
once.

e For every x,y € X, the distance between x and y coincides with the
cardinality of the set W(x,y) of the hyperplanes separating them.

Now, we record several results on the geometry of CAT(0) cube complexes which
will be used in the rest of the article.

Projections. Given a CAT(0) cube complex X and a convex subcomplex C, we
know that, for every vertex x € X, there exists a unique vertex of C minimising
the distance to x (see for instance [HW, Lemma 13.8]); we refer to this new
vertex as the projection of x onto C, and we denote by proj- : X — C the
map associating to a vertex of X its projection onto C. Below is a list of results
which will be useful later.

Proposition 2.2. [Gen2, Proposition 2.9] Let X be a CAT(0) cube complex
and A, B C X two convex subcomplexes. The projection projg(A) is a geodesic
subcomplex of B. Moreover, the hyperplanes intersecting projg(A) are precisely
those which intersect both A and B.

Lemma 2.3. [HW, Lemma 13.8] Let X be a CAT(0) cube complex, Y C X a
convex subcomplex and x € X a vertex. Any hyperplane separating x from its
projection onto Y must separate x from Y .
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Lemma 2.4. [Gen3, Proposition 2.6] Let X be a CAT(0) cube complex, C C X
a convex subcomplex and x,y € X two vertices. The hyperplanes separating the
projections of x and y onto C are precisely the hyperplanes separating x and
y which intersect C.

Lemma 2.5. [HW, Corollary 13.10] Ler X be a CAT(0) cube complex and
Y1,Yo C X two convex subcomplexes. If x € Y1 and y € Y, are two vertices
minimising the distance between Y, and Y, then the hyperplanes separating x
and y are precisely the hyperplanes separating Y1 and Y.

Lemma 2.6. [Gen5, Lemma 2.38] Let X be a CAT(0) cube complex and
Y1,Y2 C X two intersecting convex subcomplexes. Then projy, o projy, =

Projy, Ny, -

Cycles of subcomplexes. Given a CAT(0) cube complex, a cycle of subcomplexes
is a sequence of subcomplexes (Ci,...,C,) such that, for every i € Z/rZ, the
subcomplexes C; and Cj4; intersects.

Proposition 2.7. Let (A,B,C,D) be a cycle of four convex subcomplexes.
There exists a combinatorial isometric embedding [0, p] x [0,q9] < X such that
[0, p]x {0} C A, {p}x[0,q] C B, [0, p]x{q} C C and {0}x[0,q] C D. Moreover,
the hyperplanes intersecting [0, p] x {0} (resp. {0} x [0,q]) are disjoint from B
and D (resp. A and C).

Proof. First of all, let us record a statement which is contained into the proof
of [Gen5, Proposition 2.111] (in the context of quasi-median graphs, a class of
graphs including median graphs, i.e., one-skeleta of CAT(0) cube complexes).

Fact 2.8. If a is a vertex of AN D minimising the distance to B N C and if
b (resp. ¢, d) denotes the projection of a onto B (resp. BN C, C), then
there exists a combinatorial isometric embedding [0, p] x [0,¢q] < X such that
0,0)=a, (p.0)=b, (p.q) =c and (0.q) =d.

By convexity of A, B, C and D, this implies that [0, p] x {0} C A,
{p} x[0,q] C B, [0,p] x{g} C C and {0} x[0.4] C D.

Let J be a hyperplane intersecting [0, p] x{0}. We know from Lemma 2.3 that
J must be disjoint from B. Moreover, if J intersects D, then it follows from
Helly’s property, satisfied by convex subcomplexes in CAT(0) cube complexes,
that J must intersect A N D, which contradicts Lemma 2.5. Consequently, any
hyperplane intersecting [0, p] x {0} must be disjoint from both B and D. By
symmetry, one shows similarly that any hyperplane intersecting {0} x [0, g] must
be disjoint from A and C. 0
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Quadruples. Recall that, in a CAT(0) cube complex, the interval between two
vertices x and y, denoted by I(x,y), is the union of all the geodesics joining
x and y.

Lemma 2.9. Let X be a CAT(0) cube complex and xi,x,x3,x4 € X four
vertices. There exist four vertices my,my,m3,ms4 € X such that

° I(x;i,m;) U I(m;,miy,) U l(miyry1,Xi+1) C I(x;i, Xi4+1) for every i € Z/4Z;

e there exists a combinatorial isometric embedding [0,a] x [0,b] — X such
that my; = (0,0), my = (a,0), m3z = (a,b), and m4 = (0,b).

Proof. Let U denote the collection of the halfspaces containing exactly one
vertex among X, X2, X3, X4, and let D denote the collection of the halfspaces
containing exactly x,,x4 among Xx;, X2, x3,x4. Notice that any two halfspaces
of 4 U D intersect in the convex hull C of {xi, x2,x3,x4}, which is precisely
the intersection of all the halfspaces containing at least two vertices among
X1,X2,X3,X4; and that the collection U U D is finite since these halfspaces are
delimited by hyperplanes separating at least two vertices among xi, X2, x3, X4. It
follows from Helly’s property, satisfied by convex subcomplexes in CAT(0) cube
complexes, that the intersection

is non-empty. For every 1 <i <4, let m; denote the projection of x; onto Q.
By construction, the hyperplanes intersecting ( are precisely the hyperplanes
separating {x;,x2} and {xs3, x4}, and those separating {x;, x4} and {x,,x3}. Let
‘H denote the first collection, and V the second one. It follows from Lemma 2.4
that

d(my,my) = d(m3z,my) = #H, d(ma,m3) = d(my,mg) = #V,
d(ml,mg) — d(mz,m4) =#H + #V.

A fortiori, mo,mgq € I(my,m3) and my,ms3 € I(my,my). It follows from
[Gen5, Lemma 2.110] (proved in the context of quasi-median graphs, a class
of graphs including median graphs, i.e., one-skeleta of CAT(0) cube complexes)
that there exists a combinatorial isometric embedding [0,a] x [0,b] < X such
that m; = (0,0), m, = (a,0), m3 = (a,b), and m4 = (0,b).

Now fix some i € Z /47 and some geodesics [x;,m;], [m;, mit1], [Xi+1,Mit1]
respectively between x; and m;, m; and m;y;, and x;4+; and m;4;. We
claim that the concatenation [x;,m;] U [m;,m;+1] U [mi4+1,xi+1] is a geodesic.
Indeed, it follows from Lemma 2.3 that no hyperplane intersects both [x;,m;]
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and [m;,m;4+1], nor both [m;,m;+1] and [x;+1,m;+1]. Next, suppose that J
is a hyperplane intersecting both [x;,m;] and [x;41,m;+1]. We know from
Lemma 2.3 that J must be disjoint from @, so x; and x;;; belong to
the same halfspace D delimited by J. Since J ¢ H UV, this implies that
D belongs to D. By construction of @, necessarily Q C D, contradicting
the fact that m; and m;;y; do not belong to D. Consequently, the path
[x;, m;i|U[m;, m;+1]U[m;+1, x;+1] intersects each hyperplane at most once, proving
our claim. A fortiori, /(x;,m;) U I(m;,mjy+q1) U I(mjy1,xi+1) C I(xi,xi+1). U

3. Gromov hyperbolicity

Recall that a geodesic metric space X is Gromov hyperbolic (or just hyperbolic
for short) if there exists some constant § > 0 such that all the geodesic triangles
of X are §-thin, i.e., any side is contained into the §-neighborhood of the union
of the two others. The question we are interested in is: when is a CAT(0) cube
complex Gromov hyperbolic?

Of course, first we have to fix the metric we consider since, as mentioned in
Section 2, several metrics are naturally defined on CAT(0) cube complexes. Recall
that, for every p € (0, +00), the £” -metric defined on a cube complex is the length
metric which extends the £”-norms defined on each cube. For finite-dimensional
CAT(0) cube complexes, all these metrics turn out to be quasi-isometric; but they
may be quite different for infinite-dimensional complexes. Nevertheless, by noticing
that an n-cube contains a triangle which is not (n'/? —1)-thin with respect to the
£P -norm, only two cases need to be considered: the finite-dimensional situation
with respect to the £!-metric (the other ¢” -metrics being quasi-isometric to this
one); and the infinite-dimensional situation with respect to the £°°-metric (the
other {7 -metrics being not able to be hyperbolic).

The former case has been studied in several places, in particular [CDE™,
Hagl, Gen2]. Our next statement sum up the criteria which can be found there.
We begin by defining the needed vocabulary.

e A flat rectangle is a combinatorial isometric embedding [0, p] x [0, ¢] — X
for some integers p,q > 0; it is L-thin for some L > 0 if min(p,q) < L.

e A facing triple is the data of three hyperplanes such that no one separates
the other two.

e A join of hyperplanes (H,V) is the data of two collections of hyperplanes
‘H,V which do not contain any facing triple such that any hyperplane of
is transverse to any hyperplane of V; if moreover H,)V are collections of
pairwise disjoint hyperplanes, then (H, V) is a grid of hyperplanes. The join
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or grid of hyperplanes (H,V) is L -thin for some L > 0 if min(#H,#V) < L;
it is L -thick if #H,#V > L.

e The crossing graph AX of a CAT(0) cube complex X is the graph whose
vertices are the hyperplanes of X and whose edges link two transverse
hyperplanes. It has thin bicycles if there exists some K > 0 such that any
bipartite complete subgraph K, , C AX satisfies min(p,q) < K.

Notice for instance that the crossing graph of a flat rectangle defines a grid of
hyperplanes. So flat rectangles, join or grid of hyperplanes, and bipartite complete
subgraphs in the crossing graph are three different ways of thinking about “flat
subspaces” in cube complexes. Now we are ready to state our criteria, saying
basically that a cube complex is hyperbolic if and only if its flat subspaces cannot
be too “thick”.

Theorem 3.1. Let X be an arbitrary CAT(0) cube complex endowed with the
0! -metric. The following statements are equivalent:

(i) X is hyperbolic;

(ii) the flat rectangles of X are uniformly thin;

(iii) the joins of hyperplanes of X are uniformly thin;

(iv) X is finite-dimensional and its grids of hyperplanes are uniformly thin.

Moreover, if X is cocompact (i.e., there exists a group acting geometrically
on X), then the previous statements are also equivalent to:

(V) there does not exist a combinatorial isometric embedding R? — X ;

(vi) the crossing graph of X has thin bicycles.

Proof. The equivalences (i) < (ii) < (iv) are proved by [Gen2, Theorem 3.3]; the
equivalence (i) < (ii) can also be found in [CDE™, Corollary 5]. The implication
(iii) = (iv) is clear. The converse follows from the next fact, which is an easy
consequence of [Gen2, Lemma 3.7]. We recall that Ram(-) denotes the Ramsey
number. Explicitly, if n > 0, Ram(n) is the smallest integer £ > 0 satisfying
the following property: if one colors the edges of a complete graph containing at
least k vertices with two colors, it is possible to find a monochromatic complete
subgraph containing at least n vertices.

Fact 3.2. Let (H,V) be a join of hyperplanes satisfying #H,#) > Ram(k) for
some k > dim(X). Then there exist subcollections H' C H and V' CV such that
(H', V") is a grid of hyperplanes satisfying #H',V' > k.
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Now, suppose that X is cocompact. The equivalence (i) < (vi) is [Hagl,
Theorem 4.1.3]. It remains to show that (i) < (v). The implication (i) = (v)
is clear, so we only have to prove the converse. Suppose that X is not
hyperbolic. Point (ii) implies that, for every n > 1, there exists a flat rectangle
[0,2n] x [0,2n] — X ; let D, denote its image in X . Because X is cocompact,
we may suppose without loss of generality that (n,n) belongs to a given ball
B for every n > 1. Next, since X is locally finite (since cocompact), the
sequence (D,) subconverges to some subcomplex Do C X, i.e., there exists
a subsequence of (D,) which is eventually constant on every ball. Necessarily,
Do, is isometric to the square complex R?, giving a combinatorial isometric
embedding R? < X . O

As a consequence of Theorem 3.1, we recover a sufficient criterion formulated
by Gromov in [Gro, Section 4.2.C]. (In fact, under these assumptions, Gromov
showed more generally that the cube complex can be endowed with a CAT(-1)
metric.)

Corollary 3.3. Let X be a CAT(0) cube complex. If no vertex of X has an
induced cycle of length four in its link then X is hyperbolic.

Application 3.4. Fix a graph I (without multiple edges nor loops) and a collection
of groups G = {G, | v € V(I')} indexed by the vertices of I'. The graph product
"G, as defined in [Gre], is the quotient

(e, Go)/Hllgo b, (,0) € E(T).g € Gush € G,

Loosely speaking, I'G is the disjoint union of the G,’s in which two adjacent
groups commute. Notice that, if the groups of G are all infinite cyclic, we recover
the right-angled Artin group A(I'); and if the groups of G are all cyclic of order
two, we recover the right-angled Coxeter group C(I"). In [Mei], John Meier use
the criterion provided by Corollary 3.3 to characterise precisely when a graph
product is hyperbolic, just by looking at I" and the cardinalities of the vertex-
groups (trivial, finite, or infinite). As a particular case, a right-angled Coxeter
group C(I") turns out to be hyperbolic if and only if T" is square-free. For an
alternative proof of Meier’s theorem, based on Theorem 3.1 (in a more general
context, but which can be adapted to produce a purely cubical argument), see
[Gen5, Theorem 8.30].

Application 3.5. Let I' be a topological graph and n > 1 an integer. Define the
ordered configuration space C,(I') as

I"\{(x1,...,%n) | x; = x; for some i # j},
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and the unordered configuration space UC,(I") as the quotient of C,(I") by the
free action of the symmetric group S, which acts by permuting the coordinates.
The fundamental group of UC,(I') based at some point * is the graph braid
group B, (T, x). In [Abr], it is shown how to discretise UC,(I") in order to
produce a nonpositively-curved cube complex with B, (T, %) as its fundamental
group. Theorem 3.1 is applied in [Gen4] to determine precisely when a graph braid
group is hyperbolic. For instance, if I" is connected, then B,(T’, x) is hyperbolic
if and only if I' does not contain a pair of disjoint cycles.

Now, let us turn to the metric £°°. This situation was considered in [Gen2].

Theorem 3.6. Let X be a CAT(0) cube complex endowed with the {*°-metric.
Then X is hyperbolic if and only if the grids of hyperplanes of X are uniformly
thin.

Loosely speaking, passing from the £!-metric to the £>°-metric “kills” the
dimension (since the £°°-diameter of a cube remains one whatever its dimension),
which explains why one gets Point (iv) of Theorem 3.1 with the condition on
the dimension removed. Interestingly, one obtains hyperbolic infinite-dimensional
CAT(0) cube complexes.

Application 3.7. In [Wis2], Wise shows how to endow every small cancellation
polygonal complex with a structure of space with walls. The small cancellation
condition which we consider here is C’(1/4)-T(4), meaning that every cycle in the
link of some vertex has length at least four, and that the length of the intersection
between any two polygons must be less than a quarter of the total perimeter
of any of the two polygons. Under this condition, the CAT(0) cube complex
obtained by cubulating the previous space with walls is finite-dimensional and
hyperbolic if there exists a bound on the perimeters of the polygons, and infinite-
dimensional otherwise. It is shown in [Gen2] that, with respect to the £°°-metric,
this infinite-dimensional cube complex is also hyperbolic. This observation is the
starting point to the proof of the acylindrical hyperbolicity of C’(1/4)-T(4) small
cancellation products; see Application 6.7.

So we have a good understanding of the Gromov hyperbolicity of CAT(0)
cube complexes. Nevertheless, a major question remains open:

Question 3.8. Is a group which acts geometrically on a CAT(0) cube complex
and which does not contain Z? as a subgroup Gromov hyperbolic?

For background on this question, see [Wisl, CH, Gen4, SWI1, NTY, Gen6]. For
fun, we mention the following consequence of Caprace and Sageev’s work [CS].
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Theorem 3.9. A group acting geometrically on some CAT(0) cube complex which
does not contain 7Z? as a subgroup must be virtually cyclic or acylindrically
hyperbolic.

Proof. Let G be a group acting geometrically on some CAT(0) cube complex X .
According to [CS, Proposition 3.5], we may suppose without loss of generality that
the action G ~ X is essential (i.e., no halfspace is contained into a neighborhood
of its complementary). According to [CS, Theorem 6.3], two cases may happen:
either G contains a contracting isometry, so that it must be virtually cyclic or
acylindrically hyperbolic (see Section 6.2); or X decomposes as a Cartesian
product of two unbounded complexes. In the latter case, it follows from [CS,
Corollary D] (see also [Gen6]) that G contains Z> as a subgroup. ]

4. Morse subgroups

In this section, we are concerned with Morse subgroups which will play a
fundamental role in the next sections. Loosely speaking, they are subgroups with
some hyperbolic behavior. Formally:

Definition 4.1. Let X be a geodesic metric space and Y C X a subspace. Then
Y is a Morse subspace if, for every A > 0 and every B > 0, there exists
a constant K > 0 such that any (A, B)-quasigeodesic in X between any two
points of Y lies in the K -neighborhood of Y. As a particular case, if G is
a finitely generated group, then H C G is a Morse subgroup if it is a Morse
subspace in some (or equivalently, any) Cayley graph of G (constructed from a
finite generating set).

Morse subgroups encompass quasiconvex subgroups in hyperbolic groups,
fully relatively quasiconvex subgroups in relatively hyperbolic groups, and hy-
perbolically embedded subgroups in acylindrically hyperbolic groups [Sis2]. The
following result shows that Morse subgroups are convex-cocompact, generalising
[SW2, Theorem 1.1].

Proposition 4.2. Let G be a group acting geometrically on a CAT(0) cube
complex X and H < G a Morse subgroup. For any compact subspace Q C X,
there exists a G -cocompact convex subcomplex containing Q.

The proof reduces essentially to the following lemma (proved in [Hag,
Theorem H] for uniformly locally finite CAT(0) cube complexes), where Ram(-)
denotes the Ramsey number. Recall that, if n > 0, Ram(n) is the smallest integer
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k > 0 satistying the following property: if one colors the edges of a complete
graph containing at least k& vertices with two colors, it is possible to find a
monochromatic complete subgraph containing at least n vertices. Often, it is
used to find a subcollection of pairwise disjoint hyperplanes in a collection of
hyperplanes of some finite-dimensional CAT(0) cube complex (see for instance
[Gen2, Lemma 3.7]).

Lemma 4.3. Let X be a finite-dimensional CAT(0) cube complex and S C X a
set of vertices which is combinatorially K -quasiconvex. Then the combinatorial
convex hull of S is included into the Ram(max(dim(X) + 1, K))-neighborhood
of §.

Proof. Let x € X be a vertex which belongs to the combinatorial convex hull
of §, and let p € § be a vertex of § which minimises the distance to x. If
d(p,x) > Ram(n) for some n > dim(X) + 1, then there exists a collection of
hyperplanes Ji,...,J, separating x and p such that, for every 2 <i <n—1,
J; separates J;—; and J;4+;. Because x belongs to the combinatorial convex hull
of §, no hyperplane separates x from S. Therefore, there exists some y € S
such that Jy,...,J, separate p and y. Let m denote the median vertex of
{x,y, p}. Because m belongs to a combinatorial geodesic between x and p and
that d(x, p) = d(x,S), necessarily d(m,p) = d(m,S). On the other hand, m
belongs to a combinatorial geodesic between y, p € S, so the combinatorial K -
quasiconvexity of S implies d(m, S) < K, hence d(m, p) < K. Finally, since the
hyperplanes Jy,...,J, separates p from {x,y}, we conclude that n < K. [

Proof of Proposition 4.2. Let xo € X be a base vertex. Because being a Morse
subspace is invariant by quasi-isometry, the orbit H - xo is a Morse subspace.
Furthermore, if R > 0 is such that Q C (H - xo) "R, then (H -x()*® is again a
Morse subspace. Let Y denote its combinatorial convex hull. Because a Morse
subspace is combinatorially quasiconvex, we deduce from Lemma 4.3 that Y is
included into some neighborhood of H - xq. This is the cocompact core we are
looking for. L

A very important result on the geometry of CAT(0) cube complexes is that Morse
subspaces turn out to coincide with contracting subspaces.

Definition 4.4. Let X be a metric space and Y C X a subspace. Then Y is
contracting if there exists some K > 0 such that the nearest-point projection onto
Y of any ball disjoint from Y has diameter at most K.

Before proving the statement we mentioned above, let us state the next
characterisation of contracting convex subcomplexes, which was obtained in
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[Gen3]. There, the following notation is used: if Y is a subcomplex, H(Y)
denotes the set of hyperplanes separating at least two vertices of Y .

Proposition 4.5. Let X be a CAT(0) cube complex and Y C X a convex
subcomplex. The following statements are equivalent:

(i) Y is contracting;

(ii) there exists some constant C > 0 such that any join of hyperplanes (H,))
satisfying V C H(Y) and HNH(Y) = & must be C -thin.

moreover, if X is finite-dimensional, these statements are also equivalent to:

(iii) there exists some constant C > 0 such that any grid of hyperplanes (H,))
satisfying V C H(Y) and HNH(Y) = @ must be C -thin;

(iv) there exists some constant C > 0 such that every flat rectangle
R :[0, p] x[0,q] — X satisfying RNY = [0, p] x {0} must be C -thin.

Proof. The equivalence (i) < (ii) is [Gen3, Theorem 3.6]. The implication
(ii) = (iii) is clear. The converse is a consequence of Fact 3.2. Finally, the
equivalence (iii) < (iv) is proved in [Gen4, Theorem 2.7]. |

Now we are ready to prove that Morse and contracting subspaces coincide.

Lemma 4.6. Let X be a finite-dimensional CAT(0) cube complex and S C X a
set of vertices. Then S is a Morse subspace if and only if it is contracting.

Proof. It is proved in [Sul, Lemma 3.3] that, in any geodesic metric spaces, a
contracting quasi-geodesic always defines a Morse subspace. In fact, the proof
does not depend on the fact that the contracting subspace we are looking at is
a quasi-geodesic, so that being a contracting subspace implies being a Morse
subspace.

Conversely, suppose that S is not contracting. If S is not combinatorially
quasiconvex, then it cannot define a Morse subspace, and there is nothing to prove.
Consequently, we suppose that S is combinatorially quasiconvex. According to
Lemma 4.3, the Hausdorff distance between S and its combinatorial convex hull
C is finite. Thus, C cannot be contracting according to [Gen3, Lemma 2.18]. We
deduce from Proposition 4.5 that, for every n > 1, there exist a grid of hyperplanes
(H,V) satisfying HNH(C) = @, V C H(C) and #H.#V > n. We write
H={H,...,H,} (resp. V= {V,...,Vs}) so that H; separates H;_; and H;,
forevery 2 <i <r—1 (resp. V; separates V;_; and V4 forevery 2 <i <s—1);
we suppose that H; separates H, from C for every 1 <i <r —1. By applying
Proposition 2.7 to the cycle of convex subcomplexes (N(V1), N(H,), N(Vy),C),
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we find a flat rectangle [0,a]x[0,b] C X with a > s, b > r and [0,a]x{0} C C.
By assumption, we know that r,s > n, so m = min(r,s) > n. Let y, be the
concatenation

{0} x [0, m] |_JI0,m] x {m}|_J{m} x [0,m],

which links the two points (0,0) and (m,0) of C. Now, noticing that y, is a
(1/3,0)-quasi-geodesic, and that d(y,,C) > m > n, since H,,..., H, separates
C and [0,m] x {m}, we conclude that C is not a Morse subspace. A fortiori, S
as well. L]

By combining the previous statements, we get the following criterion:

Corollary 4.7. Let G be a group acting geometrically on a CAT(0) cube complex
X and H C G a subgroup. The following statements are equivalent:

(i) H is a Morse subgroup;
(ii) for every x € X, the orbit H - x is contracting;
(iii) for every x € X, the convex hull of the orbit H - x is contracting;

(iv) there exists a contracting convex subcomplex on which H acts cocompactly.

Proof. The equivalence (i) <« (ii) follows from Milnor-Svarc lemma and
Lemma 4.6. The implications (i) = (iii) = (iv) are contained in the proof of
Proposition 4.2 above. Finally, the implication (iv) = (i) is also a consequence
of Milnor-Svarc lemma and Lemma 4.6. []

Application 4.8. Corollary 4.7 can be applied to extend [Tra, Theorem 1.11] (in
which Morse subgroups are called strongly quasiconvex subgroups).

Proposition 4.9. Let I" be a finite simplicial graph and A C I' an induced
subgraph. The subgroup C(A) in the right-angled Coxeter group C(I') is a Morse
subgroup if and only if every induced square of 1" containing two diametrically
opposite vertices in A must be included into A.

We recall that the Cayley graph X(I') of C(I") constructed from its canonical
generating set is naturally the one-skeleton of a CAT(0) cube complex. (More
precisely, the Cayley graph is a median graph, and the cube complex X(I')
obtained from it by filling in the cubes, ie., adding an n-cube along every
induced subgraph isomorphic to the one-skeleton of an n-cube, turns out to be
a CAT(0) cube complex.) For every vertex u € V(I'), we denote by J, the
hyperplane dual to the edge joining 1 and u; every hyperplane of X(I') is a
translate of some J,. It is worth noticing that, for every vertices u,v € V(I'),
the hyperplanes J, and J, are transverse if and only if u and v are adjacent
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vertices of I'. Finally, if A C I' is an induced subgraph, we denote by C(A)
the subgroup generated by the vertices of A, and by X(A) C X(I') the convex
subcomplex generated by the elements of C(A).

Proof of Proposition 4.9. Suppose that C(A) is not a Morse subgroup. According
to Corollary 4.7, this means that X(A) is not contracting. Therefore, according to
Proposition 4.5, there exists a grid of hyperplanes (#, V) satisfying V C H(X(A)),
VNH(X(A) =2, # > #V([')+2 and H > #V([')+ 1. Write V = {V},..., V,}
such that V; separates V;_; and V;4; for every 2 <i <n—1; and H =
{Hy,...,Hy} such that H; separates H;_; and H;;; forevery 2 <i <m—1,
and such that H; separates X(A) and H,,. Consider the cycle of subcomplexes
(N(Vy), C(A), N(V,), N(H,,)). According to Proposition 2.7, there exists a flat
rectangle [0, p] x [0,¢q] < X such that [0, p] x {0} C X(A), {0} x[0,q] C N(11),
{p} x[0,q] € N(Vy) and [0, p] x {g} C N(Hy). Since #) > #V(I') + 2 and
#H > #V(I") + 1, necessarily p > #V(I') and g > #V(I").

Let a;---a;, denote the word labelling the path {0} x [0,¢g] (from (0,0) to
(0,9)), where aj,...,a, € I' are vertices. Because g > #V(I"), there must exist
1 <i < j <gq such that ¢; and a; are not adjacent in I'. Without loss of
generality, we may suppose that @; commutes with a; for every 1 < k < i.
It follows that ay---a;—1Js; = Jg; . Since (0,0) € C(A) but Jg, ¢ H(X(A))
according to Proposition 2.7, it follows that a; ¢ A.

Similarly, because p > #V(I'), there must exist two edges of [0, p] x {0} C
X(A) labelled by non-adjacent vertices of A, say u and v. By noticing that
any hyperplane intersecting [0, p] x {0} must be transverse to any hyperplane
intersecting {0} x [0, ¢], it follows that ¥ and v are adjacent to both a; and a; .
Otherwise saying, a;j,aj,u,v define an induced square of I" such that u,v € A
are diametrically opposite but a; ¢ A.

Conversely, suppose that there exists some induced square in I with two
diametrically opposite vertices » and v in A but with one of its two other
vertices, say a, not in A. Let » denote the fourth vertex of our square. Consider
the two infinite rays

1, u, uv, (wv)u, wv)%, ..., (Wv)",...

and
1, a, ab, (ab)a, (ab)?,..., (ab)",...

say r; and rp respectively. Since u and v commute with both ¢ and 5,
it follows that r; and r, bound a copy of [0,+o00) x [0,4+00) (which is
generated by the vertices gh where g and h are prefixes of the infinite
words (uv)* and (abh)®> respectively). As a consequence, for every n > 1,
any hyperplane of H, = {(ab)¥J, | k < n} is transverse to any hyperplane of
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Vu = {(uv)*J,, | k < n}. Moreover, notice that 7/, and V, do not contain facing
triples since they are collections of hyperplanes transverse to the geodesic rays
rp and r; respectively; and H, N H(X(A)) = @ since a ¢ A; and of course
Vo C H(X(A)). It follows from Proposition 4.5 that X(A) is not contracting, so
that C(A) is not a Morse subgroup according to Corollary 4.7. O

Application 4.10. Working harder, one can show that Morse subgroups in freely
irreducible right-angled Artin groups are either finite-index subgroups or free
subgroups. We defer the proof to Appendix B.

5. Relative hyperbolicity

In this section, we are interested in the following question: given a group
acting geometrically on a CAT(0) cube complex, how to determine whether or
not it is relatively hyperbolic? The definition of relative hyperbolicity which we
use is the following:

Definition 5.1. A finitely-generated group G is hyperbolic relative to a collection
of subgroups H = {H;,..., H,} if G acts by isometries on a graph I' such that:

e [I' is Gromov hyperbolic,

e [I' contains finitely-many orbits of edges,

e  each vertex-stabilizer is either finite or is conjugate to some H;,
° any H; stabilizes a vertex,

e [ is fine, i.e., any edge belongs only to finitely-many simple loops (or cycle)
of a given length.

A subgroup conjugate to some H; is peripheral. G is just said relatively
hyperbolic if it is relatively hyperbolic with respect to a finite collection of
proper subgroups.

We refer to [Hru] and references therein for more information on relatively
hyperbolic groups. Our main criterion is the following, which is essentially
extracted from [Gen2].

Theorem 5.2. Let G be a group acting geometrically on some CAT(0) cube
complex X . Then G is relatively hyperbolic if and only if there exists a collection
of convex subcomplexes {Y1,...,Y,} satisfying the following conditions:

e stab(Y;) acts geometrically on Y; for every 1 <i <n;
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e there exists a constant C; > 0 such that, for every 1 < i,j < n, any
two distinct translates of 'Y; and Y; are both transverse to at most C;
hyperplanes;

e  there exists a constant C, > 0 such that any C,-thick flat rectangle lies in
the C,-neighborhood of a translate of Y; for some 1 <i <n.

Moreover, the last point can be replaced with:

e  there exists a constant C, > 0 such that the image of every combinatorial
isometric embedding R*> < X is included into the C,-neighborhood of a
translate of Y; for some 1 <i <n.

If these conditions are satisfied, then G is hyperbolic relative to {stab(Y;) | 1 <
i =<m},

In other contexts, similar statements can be found in [Cap] and [HK]. We
begin by recalling [Gen4, Lemma 8.6], which will be useful in the proof of our
theorem.

Lemma 5.3. Let X be a CAT(0) cube complex and A, B C X two L -contracting
convex subcomplexes. Suppose that any vertex of X has at most R > 2 neighbors.
If there exist N > max(L,?2) hyperplanes transverse to both A and B, then the
inequality

diam (A% N B™L) > In(N — 1)/ In(R)

holds.

Proof of Theorem 5.2. Suppose that G is hyperbolic relative to H = {H;,..., H,}.
Fix a basepoint x € X, and let C = {gH/-x |1 <i <n,g € G}. According to
[DS, Theorems A.l and 5.1], X is asymptotically tree-graded with respect to C.
Moreover, it follows from [DS, Lemma 4.15] that any element of C is a Morse
subset of X ; as a consequence of Lemma 4.3, X is also asymptotically tree-
graded with respect to D = {convex hull of C | C € C}. For every 1 <i <n,
let Y; € D denote the convex hull of the orbit H;-x; since the Hausdorff distance
between H;-x and Y; is finite, H; acts geometrically on Y;; a fortiori, stab(Y;)
acts geometrically on Y;.

We know from Condition («;) in [DS, Theorem 4.1] that, for every &, there
exists some constant K such that diam(A*® N B*%) < K for every distinct
A, B € D. It follows from Lemma 5.3 that there exists a constant C; > 0 such
that, for every 1 <i,j < n, any two distinct translates of ¥; and Y, are both
transverse to at most C; hyperplanes. Next, we know from Condition (w3) of
[DS, Theorem 4.1] that there exists a constant C, > 0 such that any C,-thick
flat rectangle of X is included into the C;-neighborhood of some element of C.
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Finally, by combining Conditions («;) and (&), we deduce that there exists a
constant C3 > 0 such that the image of every combinatorial isometric embedding
R? < X is included into the Cs-neighborhood of an element of C.
Conversely, suppose that there exists a collection of convex subcomplexes
{Y1,...,Y,} satisfying the first three conditions mentioned in our theorem. Let
X denote the graph obtained from the one-skeleton of X by adding, for any
translate ¥ of some Y;, a new vertex vy and edges from vy to any vertex of
Y . According to [Gen2, Theorems 4.1 and 5.7], X is a fine hyperbolic graph on
which G acts. Notice that, as a consequence of [Gen4, Lemma 8.8], our third
condition can be replaced with the last point in our statement. Because G acts
geometrically on X, we also know that X contains finitely many orbits of edges,
and that stabilisers of vertices of X are finite. Consequently, G is hyperbolic
relative to {stab(Y;) | 1 <i <n}. O

Application 5.4. Theorem 5.2 has been applied in [Gen2] to determine precisely
when a right-angled Coxeter group C(I") is relatively hyperbolic, just by looking at
the graph I'. (This characterisation was originally proved in [BHaS2].) Moreover,
in that case, we get a minimal collection of peripheral subgroups of C(I'). (See
also [Gen5, Theorem 8.33] for a generalisation of the argument to arbitrary graph
products.)

Application 5.5. Thanks to Theorem 5.2, a sufficient criterion of relative
hyperbolicity of graph braid groups B>(I') was obtained in [Gen4, Theorem 9.41].
For instance, if I" is the union of two bouquets of circles whose centers are linked
by a segment, then B, (I") is hyperbolic relative to subgroups isomorphic to direct
products of free groups. A full characterisation of relatively hyperbolic graph braid
groups remains unknown.

In general, Theorem 5.2 is difficult to apply, essentially because one has to
guess the peripheral subgroups and the convex subcomplexes on which they act.
For instance, determining which graph braid groups (see Application 3.5) are
relatively hyperbolic is an open question; see [Gen4]. So finding other criteria is
an interesting problem.

Problem 5.6. Find criteria of relative hyperbolicity of groups acting geometrically
on CAT(0) cube complexes which do not refer to peripheral subgroups.

Interestingly, in the context of virtually (cocompact) special groups (as defined
by Haglund and Wise in [HW]), Theorem 5.2 provides the following more algebraic
statement, as shown in [Gen4, Theorem 8.1].
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Theorem 5.7. Let G be a special group and H a finite collection of subgroups.
Then G is hyperbolic relative to H if and only if the following conditions are
satisfied:

e each subgroup of H is convex-cocompact;

e  H is an almost malnormal collection (i.e., for every H, K € H and g € G,
if HNgKg™! is infinite then H = K = gKg™');

e every abelian subgroup of G which is not virtually cyclic is contained into
a conjugate of some group of H.

It is worth noticing that the characterisation of relatively hyperbolic right-
angled Coxeter groups (proved in [BHaS2, Gen2]), and more generally the
characterisation of relatively hyperbolic graph products of finite groups (which
is a particular case of [Gen5, Theorem 8.33]), follows easily from Theorem 5.7.
However, this criterion does not provide a purely algebraic characterisation of
relatively hyperbolic virtually special groups, since the subgroups need to be
convex-cocompact. But, convex-cocompactness is not an algebraic property: with
respect to the canonical action Z? ~, R?, the cyclic subgroup generated by (0, 1)
is convex-cocompact, whereas the same subgroup is not convex-cocompact with
respect to the action Z? ~, R? defined by (0,1) : (x,y) = (x + 1,y + 1) and
(1,0) : (x,y) — (x + 1,y). Nevertheless, the convex-cocompactness required in
the previous statement would be unnecessary if the following question admits a
positive answer (at least in the context of special groups):

Question 5.8. Let G be a group acting geometrically on a CAT(0) cube complex
and H C G a finitely generated subgroup. If H is almost malnormal, must it
be a Morse subgroup?

As a consequence of the previous theorem, one gets the following simple
characterisation of virtually special groups which are hyperbolic relative to
virtually abelian subgroups [Gen4, Theorem 8.14]:

Theorem 5.9. Let G be a virtually special group. Then G is hyperbolic relative
to virtually abelian groups if and only if G does not contain F, x Z as a
subgroup.

Application 5.10. Theorem 5.9 was applied in [Gen4] to determine precisely
when a given graph braid group is hyperbolic relative to abelian subgroups. As
a particular case, if I' is a connected finite graph, the braid group B,(I') is
hyperbolic relative to abelian subgroup if and only if I" does not contain a cycle
which is disjoint from two other cycles.



52 A. GENEVOIS

In another direction, a very interesting attempt to study relative hyperbolicity
from the (simplicial) boundary has been made in [BHa, Theorems 3.1 and 3.7].
However, such a criterion seems to be highly difficult to apply. We conclude this
section with an open question in the spirit of Problem 5.6.

Question 5.11. If a group acting geometrically on a CAT(0) cube complex has
exponential divergence, must it be relatively hyperbolic?

It was observed in [BHaS2] that the answer is positive for right-angled Coxeter
groups.

6. Acylindrical hyperbolicity

6.1. Acylindrical actions. From now on, we are interested in the following
question: how can one prove that a given group is acylindrically hyperbolic from
an action on a CAT(0) cube complex? Let us begin by recalling Osin’s definition
of acylindrically hyperbolic groups [Osi2].

Definition 6.1. Let G be a group acting on a metric space X. The action is
acylindrical if, for every d > 0, there exist constants N, R > 0 such that, for every
points x,y € X at distance at least R apart, the set {g € G | d(x,gx),d(y,gy) <
d} has cardinality at most N. A group is acylindrically hyperbolic if it acts
acylindrically and non-elementarily (i.e., with a limit set containing at least three
points) on some hyperbolic space.

So, in order to prove that a given group is acylindrically hyperbolic, one
possibility is to try to make it act acylindrically on some hyperbolic CAT(0) cube
complex. However, it is often difficult to show that a given action is acylindrical.
The main reason is that we are considering the elements of a group which do not
move “too much” a given pair of points. Instead, it would be easier to consider
stabilisers. More precisely, a property which should be easier to prove would be:

Definition 6.2. Let G be a group acting on a metric space X. The action is
weakly acylindrical if there exist constants N, R > 0 such that, for every points
x,y € X at distance at least R apart, the intersection stab(x) N stab(y) has
cardinality at most N .

Interestingly, it may happen that, for some specific spaces, acylindrical and
weakly acylindrical actions coincide. For instance, such an equivalence occurs for
trees. The first non-trivial example of this phenomenon appears in [Bowl], in which
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Bowditch shows that the mapping class group of a surface acts acylindrically on
the associated curve graph. Independently, Martin observed the same phenomenon
for hyperbolic CAT(0) square complexes [Marl]. This statement was generalised
to higher dimensions in [Gen2, Theorem 8.33]. One gets:

Theorem 6.3. Let G be a group acting on some hyperbolic CAT(0) cube complex
X . The following statements are equivalent:

e the action G ~ X is acylindrical;

o there exist constants R, N > 0 such that, for every vertices x,y € X
satisfying d(x,y) > R, the intersection stab(x) N stab(y) has cardinality at
most R;

e there exist constants R, N > 0 such that, for every hyperplanes Ji,J> of
X separated by at least R hyperplanes, the intersection stab(Jy) N stab(J>)
has cardinality at most N .

Application 6.4. Introduced in [Higl, Higman’s group H, is defined as
Hy = @1y 50 5illy Iaia,-+1ai_1 = ai2+1, i € Z/nl).

This group turns out to be the fundamental group of a negatively-curved polygon
of groups if n > 5, so that H, acts (with infinite vertex-stabilisers) on a CAT(-
1) polygonal complex X . In [Marl], Martin subdivided X as a CAT(0) square
complex and applied Theorem 6.3 to show that the action G ~ X is acylindrical.
A fortiori, this proves that Higman’s group H, is acylindrically hyperbolic.

So far, we have worked with CAT(0) cube complexes which are hyperbolic with
respect to the £!-metric. But, as noticed in Section 3, infinite-dimensional CAT(0)
cube complexes may be hyperbolic with respect to the £°°-metric. Acylindrical
actions in this context were considered in [Gen2]. However, we were not able
to obtain the exact analogue of Theorem 6.3: instead, acylindrical actions were
replaced with non-uniformly acylindrical actions.

Definition 6.5. Let G be a group acting on a metric space X. The action
is non-uniformly acylindrical if, for every d > 0, there exists some constant
R >0 such that, for every points x,y € X at distance at least R apart, the set
{g€G|d(x,gx),d(y,gy) <d} is finite.

Notice that, if a group G acts non-elementarily and non-uniformly acylin-
drically on some hyperbolic space, then G must be acylindrically hyperbolic
according to [Osi2] since G contains infinitely many pairwise independent WPD
isometries (see Section 6.3 for a definition). Our analogue of Theorem 6.3 for
£°° -metrics is:
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Theorem 6.6. Let G be a group acting on some CAT(0) cube complex X
endowed with the £°°-metric. Suppose that X is hyperbolic with respect to this
metric, which we denote by d. The following statements are equivalent:

e the action G ~y (X, dso) is non-uniformly acylindrical;

e there exist some constant R > 0 such that, for every vertices x,y € X
satisfying deo(x,y) > R, the intersection stab(x) N stab(y) is finite;

e there exist some constant R > 0 such that, for every hyperplanes Jy,J2 of
X separated by at least R pairwise disjoint hyperplanes, the intersection
stab(Jy) N stab(J2) is finite.

Application 6.7. Define a small cancellation product as a C’(1/4)-T(4) small
cancellation quotient of a free product. As mentioned in Application 3.7, such a
product acts on a (possibly infinite-dimensional) CAT(0) cube complex which is
hyperbolic with respect to the £°°-metric. In [Gen2, Theorem 8.23], it is shown
thanks to Theorem 6.6 that this action is non-uniformly acylindrical, proving that
small cancellation products are acylindrically hyperbolic.

6.2. Contracting isometries. Interestingly, non-hyperbolic CAT(0O) cube com-
plexes may also be useful to prove that some groups are acylindrically hyperbolic.
Indeed, it follows from [BBF, Theorem H] (see also [Sis3] and Corollary 6.62)
that a group acting properly on a CAT(0) cube complex X with a contracting
isometry must be either virtually cyclic or acylindrically hyperbolic. An isome-
try g € Isom(X) is contracting if there exists some x € X such that the map
n +— g" - x induces a quasi-isometric embedding Z — X and such that the orbit
(g) - x is contracting.

So the first natural question which interests us is: how to recognize contracting
isometries of CAT(0) cube complexes? The first partial answer was given in [BC]
in the context of right-angled Artin groups; next, the criterion was generalised in
[CSu] to uniformly locally finite CAT(0) cube complexes; finally, the following
statement was proved in [Gen3]. (It is worth noticing that, although [BC, CSu] and
[Gen3] study contracting isometries with respect to different metrics (respectively
the CAT(0) and the combinatorial metrics), a comparison of the characterisations
shows that, given a finite-dimensional CAT(0) cube complex, an isometry is
contracting with respect to the CAT(0) metric if and only if it is contracting with
respect to the combinatorial metric.)

Theorem 6.8. Let X be a CAT(0) cube complex and g € Isom(X) a loxodromic
isometry with y C X as a combinatorial axis. The following statements are
equivalent:
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e g Is a contracting isometry;

e  there exists some constant C > 0 such that every join of hyperplanes (H,V)
satisfying ‘H C H(y) must be C -thin;

e ¢ skewers a pair of well-separated hyperplanes.

We recall from [Gen3] that two hyperplanes J; and J, are well-separated
if there exists some L > 0 such that any collection of hyperplanes transverse to
both J; and J, which does not contain facing triples has cardinality at most
L. Also, an isometry g € Isom(X) skewers a pair of hyperplanes J; and J, if
there exist an integer n € Z and some halfspaces D;, D, respectively delimited
by Ji,J> such that ¢g"- Dy C D, C D;.

Application 6.9. Applying (a special case of) Theorem 6.8, it is proved in [BC]
that an element of a right-angled Artin group induced a contracting isometry
on the universal cover of the Salvetti complex if and only if it is not contained
into a join subgroup. (Notice that a flaw in [BC] is mentioned and corrected
in [MO, Remark 6.21].) As a consequence, a right-angled Artin group A(I") is
acylindrically hyperbolic if and only if I contains at least two vertices and does
not decompose as a join; or equivalently, if A(I') is not cyclic and does not
decompose as a direct product.

Alternatively, it is possible to characterise contracting isometries from the
boundary of the CAT(0) cube complex which we consider. Based on this idea,
the following criterion was proved in [Gen3]. We refer respectively to Appendix B
and to [Hag2] for the vocabulary related to the combinatorial boundary and to
the simplicial boundary.

Theorem 6.10. Let X be a locally finite CAT(0) cube complex and g € Isom(X)
an isometry with a combinatorial axis y. The following statements are equivalent:

e ¢ is a contracting isometry of X ;
e y(+00) is an isolated point in the combinatorial boundary of X ;

moreover, if X is uniformly locally finite, the previous statements are also
equivalent to:

e y(+o0) is an isolated point in the simplicial boundary of X .

Proof. 'The equivalence between the first two points is [Gen3, Theorem 4.17]. The
equivalence with the third point follows from [Hagl, Lemma 5.2.7]. I

Application 6.11. Let P = (X | R) be a semigroup presentation. The associated
Squier complex S(P) is the square complex whose:
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e vertices are the words written over X ;

e edges are written as [a¢,u — v,b] and link two words aub and avh if
u=v or v=u is a relation of R;

e squares are written as [a,u — v,b,p — ¢q,c] and have aubpc, avbpc,
aubgc and avbgc as corners.

Given a baseword w € X7, the diagram group D(P,w) is the fundamental group
of S(P) based at w. We refer to [GS] for more information on these groups.
Theorem 6.10 was applied to diagram groups in [Gen3]. As a consequence, an
easy method is given to determine whether or not an element of a diagram group
induces a contracting isometry on the CAT(0) cube complex constructed by Farley
[Far]. A characterisation of acylindrically hyperbolic cocompact diagram groups
is also provided.

Of course, a natural question is: when does a given action on a CAT(0) cube
complex contain a contracting isometry? Our following criterion was proved in
Caprace and Sageev’s seminal paper [CS, Theorem 6.3].

Theorem 6.12. Let G be a group acting essentially without fixed point at infinity
on some finite-dimensional CAT(0) cube complex X . Either X is a product two
unbounded subcomplexes or G contains a contracting isometry. If in addition X
is locally finite and G acts cocompactly, then the same conclusion holds even if
G fixes a point at infinity.

Recall that an action G ~ X on a CAT(0) cube complex X is essential if,
for every point x € X and every halfspace D, the orbit G - x does not lie in
a neighborhood of D. It is worth noticing that an action can often be made
essential thanks to [CS, Proposition 3.5]. The boundary which is considered in
this statement is the CAT(0) boundary; see [CFI, Proposition 2.26] to compare
with the Roller boundary. For the combinatorial boundary, see [Gen3], where it is
proved that, under some assumptions on the action, the existence of contracting
isometries is equivalent to the existence of an isolated point in the combinatorial
boundary. Also, it is worth noticing that, if a group acts on a CAT(0) cube
complex with a contracting isometry, then it does fix a point at infinite, as a
consequence of the North-South dynamic of contracting isometries; this justifies
the corresponding assumption in Caprace and Sageev’s statement.

Corollary 6.13. Let G be a group acting geometrically on a CAT(0) cube complex
X. Then G is acylindrically hyperbolic if and only if it is not virtually cyclic
and it contains an element inducing a contracting isometry of X .
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Proof. As a consequence of [CS, Proposition 3.5], we may suppose without loss
of generality that the action G ~ X is special. By applying Theorem 6.12, two
cases may happen. Either G contains a contracting isometry, so that G must
be either virtually cyclic or acylindrically hyperbolic; or X decomposes as a
product of two unbounded subcomplexes. In the latter case, it follows that G
unconstricted, i.e., G has not cut points in its asymptotic cones, which implies
that G is not acylindrically hyperbolic according to [Sis2]. (Alternatively, we
can argue that G has linear divergence, which also implies that it cannot be
acylindrically hyperbolic.) ]

Therefore, contracting isometries play a crucial role in the geometry of groups
acting (geometrically) on CAT(0) cube complexes. An interesting problem would
be to identify these elements purely algebraically.

Problem 6.14. Let G be a group acting geometrically on some CAT(0) cube
complex X . Characterize algebraically the elements of G inducing contracting
isometries on X.

An investigation of the examples mentioned in this article suggests the
following answer. Let G be a group acting geometrically on a CAT(0) cube
complex. Fix an infinite-order element ¢ and define its stable centraliser as

SC(g) =th e G |3In e Z\{0}, [h,g"] =1}

Is it true that g induces a contracting isometry on X if and only if SC(g) is
virtually cyclic? Although the answer is negative in full generality, it turns out
to be positive for several families of cube complexes. For instance:

Theorem 6.15. Let G be a group acting geometrically on a CAT(0) cube complex
X . Assume that, for every hyperplane J and every element g € G, the two
hyperplanes J and gJ are neither transverse nor tangent. Then an infinite-order
element of G defines a contracting isometry of X if and only its stable centraliser
is virtually cyclic.

The scope of this theorem, proved in [Gen6], includes for instance cocompact
special groups as defined in [HW].

Application 6.16. Theorem 6.15 was applied to graph braid groups in [Gen4].
As a consequence, it is possible to determine precisely when a given graph braid
group is acylindrically hyperbolic. In particular, if I" is any connected topological
graph, distinct from a cycle and from a star with three arms, then the braid group
B, (T") is acylindrically hyperbolic for every n > 1.
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6.3. WPD isometries. In the previous section, we mentioned [BBF, Theorem H]
in order to justify the acylindrical hyperbolicity of groups (which are not virtually
cyclic) acting properly on CAT(0) cube complexes with one contracting isometry.
But the conclusion is in fact more general, allowing actions with large stabilisers.
It turns out that groups (which are not virtually cyclic) acting on CAT(0) cube
complexes with one WPD contracting isometry are acylindrically hyperbolic. (See
also Corollary 6.62.)

Definition 6.17. Let G be a group acting on a metric space X . An element g € G
is WPD (for Weak Proper Discontinuous) if, for every d > () and every x € X,
there exists some N > 0 such that the set {h € G | d(x, hx),d(gVx, hg™x) < d}
is finite.

This motivates the following question: when is a contracting isometry WPD?
The following answer was proved in [Genl]; compare with Theorem 6.8.

Theorem 6.18. Let X be a CAT(0) cube complex and g € Isom(X) an isometry.
Then g is a contracting isometry if and only if g skewers a pairs of well-separated
hyperplanes Ji,J> such that stab(J;) N stab(J,) is finite.

So we know how to recognize WPD contracting isometries. But now we want
to be able to show that such isometries exist. The first result in this direction
was obtained in [MO] in the context of trees (which are one-dimensional CAT(0)
cube complexes, and hyperbolic so that every loxodromic isometry turns out to
be contracting).

Theorem 6.19. Let G be a group acting minimally on a simplicial trees T .
Suppose that G does not fix any point of T . If there exist two vertices u,v € T
such that stab(u) Nstab(v) is finite, then G contains a WPD isometry. A fortiori,
G is either virtually cyclic or acylindrically hyperbolic.

Combined with Bass—Serre theory, this criterion turns out to be extremely
fruitful.

Application 6.20. As shown in [SSch], one-relator groups with at least three
generators split as HNN extensions. In [MO], Theorem 6.19 is applied to the
action on the corresponding Bass—Serre tree. Thus, one-relator groups with at
least three generators are acylindrically hyperbolic.
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Application 6.21. For any field &, let k[x, y] denote the algebra of polynomials
on two variables with coefficients in k. It is known that k[x,y] splits as an
amalgamated product, see for instance [Dic]; and Theorem 6.19 is applied to the
action on the corresponding Bass—Serre tree in [MO]. Thus, the group k[x, y] is
acylindrically hyperbolic.

Application 6.22. Let M be a compact irreducible 3-manifold and G (a subgroup
of) the fundamental group of M. By applying Theorem 6.19 to the action of G
on the Bass—Serre tree associated to the JSJ-decomposition of M, it is proved
in [MO] that three exclusive cases may happen: G is acylindrically hyperbolic;
or G is virtually polycyclic; or G contains an infinite cyclic normal subgroup
Z such that G/Z is acylindrically hyperbolic.

Application 6.23. Let ' be simplicial graph with at least two vertices and G a
collection of non-trivial groups indexed by V(I"). To any vertex of I" corresponds
a natural decomposition of the graph product I'G as an amalgamated product. By
applying Theorem 6.19 to the collection of actions of I'G on the corresponding
Bass—Serre trees, it is proved in [MO] that I'G is virtually cyclic or acylindrically
hyperbolic it I' does not split as a join.

Theorem 6.19 was generalised in [CM] to higher dimensional CAT(0) cube
complexes which are “barely” hyperbolic, i.e., which does not split as a
Cartesian product (seeing this property as a hyperbolic behavior is motivated by
Theorem 6.12). (An alternative proof of the next statement, based on Theorem 6.18,
can be found in [Genl].)

Theorem 6.24. Let G be a group acting essentially and non-elementarily on an
irreducible finite-dimensional CAT(0) cube complex. If there exist two hyperplanes
whose stabilisers intersect along a finite subgroup, then G contains a WPD
element which skewers a pair of iiber-separated hyperplanes. A fortiori, G is
acylindrically hyperbolic.

Two hyperplanes J; and J, are iiber-separated it no hyperplane is transverse
to both of them and if any two hyperplanes transverse to Ji,J, respectively
must be disjoint. Notice that it follows from Theorem 6.8 that an isometry which
skewers a pair of iiber-separated hyperplanes must be contracting since two iiber-
separated hyperplanes are clearly well-separated. An interesting consequence of
Theorem 6.24 is:

Corollary 6.25. Let G be a group acting essentially and non-elementarily on an
irreducible finite-dimensional CAT(0) cube complex. If the action is non-uniformly
weakly acylindrical, then G is acylindrically hyperbolic.
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An action of a group G on a metric space X is non-uniformly weakly acylindrical
if, for every d > 0, there exists some constant R > 0 such that, for every points
x,y € X at distance at least R apart, the intersection stab(x) N stab(y) is finite.
Notice that we met this condition in Theorem 6.6.

Application 6.26. Let I' be a Coxeter graph, i.e., a finite simplicial graph
endowed with a map m : E(I') — N labelling its edges. The corresponding Artin
group is defined by the presentation

A=WV(T)| wvu--- = owvuv--- , (u,v) e E)).

m(u,v) letters m(u,v) letters

The Artin group A is of FC type if, for every complete subgraph A C I', the
Coxeter group

2 —_— . —_— eee
(V(A) |w” =1, uvu VUV , we V), (u,v)e ET))
m(u,v) letters m(u,v) letters

is finite. Such an Artin group acts on the corresponding Deligne complex, which
turns out to be a CAT(0) cube complex [CD]. Theorem 6.24 is applied to this
complex in [CM], proving that Artin groups of FC types whose underlying Coxeter
graphs have diameter at least three are acylindrically hyperbolic. Very recently,
this result has been generalised in a wider context by [CMW].

Another generalisation of Theorem 6.19 was proved in [CM].

Theorem 6.27. Let G be a group acting essentially and non-elementarily on an
irreducible finite-dimensional cocompact CAT(0) cube complex with no free face.
If there exist two points whose stabilisers intersect along a finite subgroup, then
G contains a WPD element which skewers a pair of iiber-separated hyperplanes.
A fortiori, G is acylindrically hyperbolic.

Application 6.28. According to [BFL], the group of tame(SL,(C)), a subgroup
of the 3-dimensional Cremona group Bir(P3(C)), acts cocompactly, essentially
and non-elementarily on a hyperbolic CAT(0) cube complex without free faces.
In [Mar2], it is proved that Theorem 6.27 applies, so that tame(SL,(C)) turns
out to be acylindrically hyperbolic.

So far, we have met weakly acylindrical actions and non-uniformly weakly
acylindrical actions as relevant types of actions on CAT(0) cube complexes.
Theorem 6.3 also suggests the following definition.
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Definition 6.29. Let G be a group acting on some CAT(0) cube complex X . The
action G ~ X is acylindrical action on the hyperplanes if there exists constants
R, N > 0 such that, for every hyperplanes J; and J, separated by at least R
other hyperplanes, the intersection stab(J;) Nstab(J,) has cardinality at most N .

These actions were introduced and studied independently in [BL] and [Genl].
In the second reference, the following criterion is proved.

Theorem 6.30. Let G be a group acting essentially on a finite-dimensional
CAT(0) cube complex. If the action is acylindrical on the hyperplanes, then G
contains a WPD contracting isometry. A fortiori, G is either virtually cyclic or
acylindrically hyperbolic.

6.4. Hyperbolically embedded subgroups. So far, we have essentially deduced
the acylindrical hyperbolicity of groups acting on CAT(0) cube complexes from
the existence of particular isometries. Otherwise saying, we have considered only
cyclic subgroups. However, in [DGO], acylindrical hyperbolicity is studied from
non-necessarily cyclic subgroups called hyperbolically embedded subgroups. This
section is dedicated to these subgroups. It is worth noticing that hyperbolically
embedded subgroups satisfy interesting properties. For instance, they are Lipschitz
quasi-retracts of the whole groups [DGO, Theorem 4.31], so that the geometries
of these subgroups are linked to the geometry of the whole group (see
[DGO, Corollary 4.32]). Consequently, characterising these subgroups in order to
recognize them more easily is an interesting general problem. Our main criterion
is the following:

Theorem 6.31. Let G be a group acting geometrically on some CAT(0) cube
complex and H a finite collection of subgroups of G. Then H is hyperbolically
embedded if and only if it is an almost malnormal collection of Morse subgroups.

Notice that we do not know if a (finitely generated) malnormal subgroup is
automatically a Morse subgroup; see Question 5.8.

Proof of Theorem 6.31. Suppose that H is an almost malnormal collection of
Morse subgroups. According to Corollary 4.7, each subgroup H € H acts
geometrically on a contracting convex subcomplex Y(H) C X; moreover, we
may suppose that Y(H) is a neighborhood of the orbit H - xy, where xp € X
is a base vertex we fix. Let Z denote the collection of the translates of all the
Y(H)’s.

Claim 6.32. There exists a constant C; > 0 such that, for every distinct
Z1,7Z, € Z, the projection of Z, onto Z; has diameter at most C,.
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Our claim follows directly from Lemma 6.35 below and Lemma 5.3.
From now, we denote by d¢ (A4, B) the diameter of the union of the projections
of A and B onto C.

Claim 6.33. There exists a constant C, > 0 such that, for every pairwise distinct
elements A, B,C € Z, at most one of dqa(B,C), dp(A,C), dc(A, B) is greater
than C,.

Let K denote the constant given by Point (ii) in Proposition 4.5 applied to
Y (or equivalently, to any element of Z). Suppose that d4(B,C) > 2C; + K. Let
x € proj4(B) and y € proj,(C) be two vertices minimising the distance between
proj4(B) and proj,(C). Notice that

d(x,y) = diam (proj4 (B) U proj,4 (C)) — diam (proj4(B)) — diam (proj4(C)) > K.

Let J be a hyperplane separating x and y. According to Lemma 2.5, J is
disjoint from proj,(B) and proj,(C), so that, according to Proposition 2.2, J
must be disjoint from B and C. As a consequence of Lemma 2.3, we know that
J cannot separate B and proj,(B) since J intersects A; similarly, J cannot
separate C and proj,(C). Therefore, J separates B and C. Thus, we have
proved that the H(x | y) of the hyperplanes separating x and y is included into
the set H (B | C) of the hyperplanes intersecting A and separating B and C.
A fortiori, #H4(B | C) > K.

Similarly, if dg(A,C) > 2Cy+ M; for some M; > 0, then #Hp(A | C) > M;.
Notice however that (H4(B | C),Hp(A | C)) defines a join of hyperplanes
satisfying Hq(B | C) C H(A) and Hp(A | C) N H(A) = . Therefore, since
#Ha(B | C) > K, necessarily

M, <#Hp(A|C) = K.

A fortiori, dg(A,C) <2C; + K. Similarly, one shows that dc(A4, B) <2C; + K.
Consequently, C, = 2C; + K is the constant we are looking for.

Claim 6.34. For any distinct A,B € Z, the set {C € Z | dc(A,B) > 3C;} is
[inite.

Let Cy,...,C, € Z be a collection of subcomplexes satisfying d¢, (A4, B) >
3Cy = 2Cy + Cy; recall from the proof of the previous claim that this implies that
#Hc, (A | B) > Cy. As a consequence, we deduce from Claim 6.32 that, for every
distinct 1 <i,j <r, necessarily Hc,(4 | B) # Hc;(A | B) since otherwise the
projection of C; onto C; would have diameter greater than C;. Consequently,
r < 2#H(AIB) ~ 4 5o, This concludes the proof of our third and last claim.
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Our three previous claims allow us to apply [BBF, Theorem A]. Thus, we get
a geodesic metric space C(Z) on which G acts equipped with an equivariant
embedding Z — C(Z) which is isometric on each Z € Z. As a consequence,
each H € H acts properly on C(Z) and each Z € Z is contained into a
neighborhood of (the image of) the orbit of our basepoint x, under the coset of
some subgroup of H. Moreover, according [Sisl, Theorem 6.4], the space C(Z)
is hyperbolic relative to (the image of) Z, and a fortiori relative to the orbits
of (the image of) xo under the cosets of the subgroups of H. Now, it follows
from Sisto’s criterion [Sisl, Theorem 6.4] that H is a hyperbolically embedded
collection of subgroups.

Conversely, a hyperbolically embedded collection of subgroups is always
an almost malnormal collections of Morse subgroups according to [DGO,
Proposition 4.33] and [Sis2, Theorem 2]. L]

Lemma 6.35. Let G be a group with a uniform bound on the size of its
finite subgroups and H an almost malnormal subgroup. Suppose that G acts
metrically properly on some geodesic metric space X, and that there exists a
subspace Y C X on which H acts geometrically. For every L > 0, there exists
a constant A > 0 such that YL N gY L has diameter at most A for every
geq.

Proof. Fix a basepoint x € Y. Because H acts geometrically on Y, there exists
a constant C > 0 such that Y is covered by H -translates of the ball B(x,C).
Suppose that the diameter of ¥ TXNg¥ T1 is at least n(2C +1) for some n > 1. As
a consequence, there exist aj,...,a, € Y "L NgY L such that d(a;,a;) > 2C +1
for every distinct 1 <i,j <n. For every 1 <i <n, fix b; €Y and ¢; € gY
such that d(a;,bh;) < L and d(a;,c;) < L. For every 1 < i < n, there exist
h; € H and hy € HE such that d(b;,h;x) < C and d(c;,k;x) < C. Notice that,
for every 1 <i <n, one has

d(hix,kix) < d(hjx,b;) + d(b;i,a;) + d(a;,c;) + d(ci kix) <2(L + C),

or equivalently, d(x,h;'k;x) < 2(L + C). Now, because G acts metrically
properly on X, there exists some N > O such that at most N elements
of G may satisfy this inequality. Consequently, if n > N -#(H N H¥), then
{hi_lki | 1 <i < n} must contain more than #(H N H¥#) pairwise equal elements,
say hi'ky,....h7tks; equivalently, hyh;lkiki'! =1 for every 1 < i < s.
For convenience, set p; = hih;' = kik;! for every 1 < i < s; notice that
pi € HN HE& . Next, for every distinct 1 <i,j <s, one has

d(piai, pjai) > d(a;, a;) — d(piai, pja;) > d(ai,a;) — d(hi 'a;, x) — d(x, hi'a;)
>2C+1-C—-C =1
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A fortiori, p; # pj. Thus, we have constructed more than #(H N H¥)
pairwise distinct elements in H N H# , which is of course impossible. Therefore,
n<N-#(H N H&). We conclude that A = NF(2C + 1) is the constant we are
looking for, where F denotes the maximal cardinality of a finite subgroup of
G. ]

Application 6.36. Any hyperbolically embedded subgroup of a freely irreducible
right-angled Artin group must be either a finite-index subgroup or a free subgroup.
This statement is direct consequence of Theorems 6.31 and B.1.

It is interesting to notice that, as a consequence of [Osi2, Theorem 1.4],
Corollary 4.7 and Proposition 6.46 below, a cyclic subgroup H of some group
G acting geometrically on a CAT(0) cube complex is Morse if and only if the
subgroup

EH)={g G |#(H N HE) = +oo}

is hyperbolically embedded. Loosely speaking, you make your subgroup almost
malnormal to get a hyperbolically embedded subgroup. This implies that any
cyclic Morse subgroup is a finite-index subgroup of some hyperbolically embedded
subgroup. However, such a phenomenon does not occur in full generality for other
kinds of subgroups, even in elementary situations. For instance, consider the free
group G = (a,b | ) and its subgroup H = {(a,bab~!). Let K be an arbitrary
malnormal subgroup of G containing a subgroup commensurable to H . Notice
that there exists some integer n > 1 such that @” and ha"bh~! both belong to K.
Since the intersections KNaKa~! and KNbhKb~! are infinite, necessarily a and
b both belong to K, hence K = G. Consequently, no malnormal subgroup of
G, and a fortiori no hyperbolically embedded subgroup of G, is commensurable
to H.
Nevertheless, we are able to prove:

Theorem 6.37. Let G be a group acting geometrically on some CAT(0) cube
complex. The following statements are equivalent:

e G is acylindrically hyperbolic;
e G contains an infinite stable subgroup of infinite index;

e G contains an infinite Morse subgroup of infinite index.

Recall from [DT] that a subgroup H in a finitely generated group G is stable
if, for any constants A > 1 and B > 0, there exists a constant K > 0 such
that the Hausdorff distance between any two (A, B)-quasi-geodesics linking two
points of H is at most K. Equivalently, stable subgroups are hyperbolic Morse
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subgroups. The criterion used to prove the acylindrical hyperbolicity of our group
in the previous statement will be the following. We refer to Appendix B for the
definition of the vocabulary related to the combinatorial boundary.

Proposition 6.38. Letr G be a group acting geometrically on some CAT(0) cube
complex X . The following statements are equivalent:

(i) G contains a contracting isometry;
(ii) the combinatorial boundary d°X contains an isolated point;

(iii) the combinatorial boundary 9°X is not <-connected.

Proof. The implication (i) = (ii) follows from Theorem 6.10. The implication
(i) = (iii) is clear. Now suppose that G does not contain contracting
isometries. It follows from [Gen3, Theorem 5.46] (which is an easy consequence
of Theorem 6.12) that X contains a G -invariant convex subcomplex Y which
decomposes as a Cartesian product of two unbounded subcomplexes. Because G
acts cocompactly on both X and Y, necessarily X is neighborhood of Y, so
that 0°Y = 0°X . But d°Y must be connected as any combinatorial boundary of a
product of two unbounded complexes. This proves the implication (iii) = (i). [l

Proof of Theorem 6.37. If G is acylindrically hyperbolic, then G contains a
Morse element g € G according to [Sis2]. Thus, (g) is a stable subgroup of
G, which has infinite index since G is not virtually cyclic. Next, it is clear that
if G contains an infinite stable subgroup of infinite index then it must contain
an infinite Morse subgroup of infinite index since a stable subgroup is a Morse
subgroup as well. From now on, suppose that G contains an infinite Morse
subgroup H < G of infinite index.

According to Corollary 4.7, there exists an H -cocompact contractible convex
subcomplex Y C X. As a consequence of [Gen3, Remark 4.15], the combinatorial
boundary d°Y of Y is full in d°X, i.e., any element of 0°X which is <-
comparable to an element of 9°Y must belong to d°Y . Therefore, three cases
may happen: 90°Y may be empty; 0°Y may coincide with 0°X; or 0°X may
not be <-connected. In the latter case, we deduce from Proposition 6.38 that
G contains a contracting isometry, so that G must be either virtually cyclic
or acylindrically hyperbolic according to Corollary 6.13; because G contains an
infinite Morse subgroup of infinite index, it cannot be virtually cyclic, so we get
the desired conclusion.

Next, notice that Y cannot be empty since H is infinite. Moreover, since H
has infinite index in G, necessarily 0°Y < 9°X . Indeed, suppose that 0°Y = 0°X .
We deduce from Lemma 6.39 below that H acts cocompactly on X. Let O be
a finite fundamental domain for G ~ X and C a finite fundamental domain for
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H ~ X which contains Q. Because C is finite, there exist g;,...,gm € G such

m

that C C |J £;0; and because the action G ~ X is properly discontinuous,
i=1

S={geG|gQnNQ # @} is finite. Fix some vertex xo € Q. Now, if g € G,

there exists & € H such that hg-xo € C, and then g;'hg-xo € Q for some
1 <i <m. Therefore, g € Hg;S. We conclude that H is a finite-index subgroup.
This concludes the proof of our theorem. L]

Lemma 6.39. Let X be a locally finite CAT(0) cube complex and Y a convex
subcomplex. The equality 0°Y = 0°X implies that X is neighborhood of Y .

Proof. Suppose that X is not contained into a neighborhood of Y . So there exists

a sequence of vertices (x,) satisfying d(x,,Y) =7 +00. Let J",...,J,;'(n)
n—>1+00

denote the hyperplanes separating x, from its projection onto Y ; notice that J;"
separates x, from Y according to Lemma 2.3. Fix some base vertex x ¢ Y ; if
such a vertex does not exist, then X =Y and there is nothing to prove. For every
n > 1, let y, be the projection of x onto the halfspace delimited by J,?(n) which
is disjoint from Y, and fix some geodesic [x,y,] between x and y,. Because
X is locally finite, our sequence ([x,y,]) must have a subsequence converging
to some combinatorial ray p. By construction, H(p) contains infinitely many
hyperplanes disjoint from Y, so that [Gen3, Lemma 4.5] implies p(+00) ¢ 0°Y .
A fortiori, 0°Y < 9°X . This proves our lemma. 1

6.5. Quasi-isometry. It is worth noticing that being acylindrically hyperbolic is
stable under quasi-isometry among cubulable groups. In fact, this is true more
generally for CAT(0) groups. (But it is an open question in full generality [DGO,
Problem 9.1].) Let us show the following statement:

Theorem 6.40. Let G be a group which is not virtually cyclic and which acts
geometrically on a CAT(0) space X . The following assertions are equivalent:

(i) G is acylindrically hyperbolic;
(ii) G contains a contracting isometry;
(iii) the contracting boundary 0.X is non-empty;
(iv) the divergence of X is superlinear.
In particular, notice that the points (iii) and (iv) are invariant under quasi-

isometries (see respectively [CSu, Theorem 3.10] and [Ger, Proposition 2.1]), so
that:
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Corollary 6.41. Among CAT(0) groups, being acylindrically hyperbolic is a quasi-
isometric invariant.

In [Sis3], and in a more general form in [BBF], it is proved that if a group G
acts on a CAT(0) space X and if G contains a contracting isometry, then it is
possible to construct a new action of G on a some hyperbolic space Y (in fact,
a quasi-tree) such that the previous contracting isometry becomes a loxodromic
isometry of Y. The general idea is that it is possible to associate an action
on some hyperbolic space to any action (on arbitrary metric spaces) containing
isometries “which behave like isometries of hyperbolic spaces”. In particular, this
allows Sisto to prove a strong version of the implication (ii) = (i) of our theorem:

Theorem 6.42. [Sis3] Let G be a group which is not virtually cyclic and which
acts properly discontinuously on a CAT(0) space. If G contains a contracting
isometry, then it is acylindrically hyperbolic.

In another article [Sis2], Sisto proves a kind of reciprocal, in the sense that, for
any geometric action of an acylindrically hyperbolic group on an arbitrary metric
space, our group must contain an isometry which “which behave like isometries
of hyperbolic spaces”, but with a different meaning:

Theorem 6.43. [Sis2, Theorem 1] Any acylindrically hyperbolic group contains
a Morse element.

Given a CAT(0) space X and some of its isometry g € Isom(X), we say that
g is a Morse isometry if g is a loxodromic isometry, with some axis y, such
that for any k,L > 1, there exists a constant C = C(k, L) so that any (k,L)-
quasigeodesic between two points of y stays into the C -neighborhood of y; the
definition does not depend on the choice of the axis. Thus, if an acylindrically
hyperbolic group acts geometrically on a CAT(0) space, then it must contain a
Morse isometry.

In general, a Morse isometry is not necessarily contracting, but the two notions
turn out to coincide in CAT(0) spaces:

Theorem 6.44. [CSu, Theorem 2.14] An isometry of a CAT(0) space is
contracting if and only if it is a Morse isometry.

By combining Theorem 6.43 with Theorem 6.44, we deduce the implication
(i) = (ii) of our theorem, i.e., an acylindrically hyperbolic group acting
geometrically on a CAT(0) space must contain a contracting isometry. This proves
that, in the context of CAT(0) spaces, contracting isometries are fundamentally
linked to acylindrical hyperbolicity.
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Thus, we get a dynamic characterisation of acylindrical hyperbolicity. In order
to find a geometric characterisation, we need Charney and Sultan’s contracting
boundary [CSul].

Definition 6.45. Let X be a CAT(0) space. Its contracting boundary, denoted
dc X, is the set of the contracting geodesic rays starting from a fixed basepoint
up to finite Hausdorff distance. The definition does not depend on the choice of
the basepoint.

It is clear that, if our group G contains a contracting isometry, then our
CAT(0) space X have a non-empty contracting boundary, since it will contain
any subray of an axis of this isometry. This proves the implication (ii) = (iii)
of our theorem. Conversely, as noticed in [Mur, Corollary 2.14], it follows from
a result of Bullmann and Buyalo [BB] that G necessarily contains a contracting
isometry if X contains a contracting ray, so that the acylindrical hyperbolicity
of G follows from Theorem 6.43. This proves the implication (iii) = (ii) of our
theorem.

Finally, the equivalent (iii) < (iv) was proved in [CSu, Theorem 2.14]. This
concludes the proof of our theorem.

We conclude this section with a last statement, which will be useful in the
next section (in the context of CAT(0) cube complexes).

Proposition 6.46. Let G be an acylindrically hyperbolic group acting geometri-
cally on a CAT(0) space X. Then g € G is a generalised loxodromic element if
and only if it is a contracting isometry of X.

Recall from [Osi2] that, given a group G, an element g € G is a generalised
loxodromic element if G acts acylindrically on a hyperbolic space such that g
turns out to be a loxodromic isometry.

Proof. Let g € G be a generalised loxodromic element. According to [Sis2], g
is a Morse element, so that g must be a Morse isometry of X, and finally a
contracting isometry according to Theorem 6.44. Conversely, supposed that g € G
is a contracting isometry of X . Then [Sis3] implies that g is contained in a
virtually cyclic subgroup which is hyperbolically embedded, so that g must be a
generalised loxodromic element according to [Osi2, Theorem 1.4]. U

6.6. Acylindrical models. Given a group G, one of its elements g € G is a
generalised loxodromic element it G acts acylindrically on some hyperbolic
space so that g induces a loxodromic isometry; see [Osi2] for equivalent
characterisations. Loosely speaking, theses elements are those which have a
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“hyperbolic behavior”. A universal action is an action of G on a hyperbolic
space so that all its generalised loxodromic elements induce WPD isometries; and
a universal acylindrical action is an acylindrical action of G on a hyperbolic space
so that all its generalised loxodromic elements induce loxodromic isometries. For
instance, the action of the mapping class group of a (non-exceptional) surface on
its associated curve graph is a universal acylindrical action. This is the typical
example, so that the hyperbolic graphs constructing in attempts to make some
classes of groups act systematically on hyperbolic spaces are often referred to as
curve graphs; see for instance [CW, KK, BHaSlI]. It was proved in [Abb] that
Dunwoody’s inaccessible group does not admit a universal acylindrical action,
but the existence or non-existence of such actions for finitely presented groups
remains open.

A first naive attempt to define the curve graph of a CAT(0) cube complex X,
inspired from curve graphs of surfaces, would be to consider the graph whose
vertices are the hyperplanes of X and whose edges link transverse hyperplanes.
This is the crossing graph AX of X . However, this graph may not be connected,
and even worse, it was noticed in [Rol, Hag3] that every graph is the crossing
graph of a CAT(0) cube complex; in particular, the crossing graph of a CAT(0)
cube complex may not be hyperbolic. (Nevertheless, the crossing graph may be
interesting, see Appendix A.) Instead, Hagen introduced in [Hag3] the contact
graph T'X of X as the graph whose vertices are the hyperplanes of X and
whose edges link two hyperplanes whose carriers intersect.

Theorem 6.47. Let G be a group acting geometrically on a CAT(0) cube complex
X. Then T'X is a quasi-tree on which G acts non-uniformly acylindrically, and,
for every g € G, either a power of g stabilises a hyperplane of X (and a fortiori
fixes a vertex of T'X) or g is a contracting isometry and induces a loxodromic
isometry on I'X.

Proof. The fact that the contact graph is quasi-isometric to a tree is proved by
[Hagl, Theorem 3.1.1]. (Interestingly, the constants occurring in the quasi-isometry
do not depend on the CAT(0) cube complex we consider.) The acylindricity of
the action was proved in [Genl], and the third statement of the theorem comes
from [Hagl, Corollary 6.3.1]. Il

It remains unknown whether the action on the contact graph is always
acylindrical. See [HS] for more details.

Notice that the contact graph does not provide a universal action for cubulable
groups, since contracting isometries may stabilise hyperplanes. (This may happen
for instance in right-angled Coxeter groups, even if the action is essential.) In
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fact, although the existence of a universal acylindrical action has been proved in
some cases [ABD], it remains an open question in full generality.

Question 6.48. If a group acts geometrically on a CAT(0) cube complex, does
it admit a universal acylindrical action?

In this section, we explain how to construct hyperbolic models of CAT(0)
cube complexes. Question 6.48 is one of the motivations, but several applications
will be given at the end of the section.

Definition 6.49. Let X be a CAT(0) cube complex and L > 0 an integer.
Define the metric §; on (the vertices of) X as the maximal number of pairwise
L -well-separated hyperplanes separating two given vertices.

It is worth noticing that one essentially recovers the contact graph when
E=1.

Fact 6.50. Let X be a CAT(0) cube complex. A map sending every vertex of X to
a hyperplane whose carrier contains it induces a quasi-isometry (X,8p) — I'X.

Proof. Let x,y € X be two vertices and J, H be two hyperplanes of X such that
xe N(J) and y e N(H). Let S(J, H) denote the maximal number of pairwise
strongly separated hyperplanes separating J and H . Because any hyperplane
separating J and H separates necessarily x and y, one has S(J, H) < §o(x, ).
Next, let Vq,...,V, be a collection of pairwise strongly separated hyperplanes
separating x and y; without loss of generality, suppose that V; separates V;_;
and V;4; for every 1 <i <r and that V; separates x from V,...,V,. Notice
that, because x does not belong to N(V2) and that V, separates x from V3, if
J is transverse to V3 then necessarily it must also be transverse to V,, which
is impossible since V, and V3 are strongly separated. Consequently, J and
V3 are disjoint. Similarly, one shows that H and V,_, are disjoint. Therefore,
V3,...,V,—» is a collection of pairwise strongly separated hyperplanes separating
J and H . This proves that §o(x,y) < S(J,H) + 4.

Thus, we have proved that our map (X,8p) — I'X is quasi-isometric when
the contact graph T'X is endowed with S(-,-). The conclusion follows since we
know from [Genl, Proposition 23] that S(-,-) is coarsely equivalent to dry. [

In the opposite direction, if one allows L = +4oo (which is not the case in
the sequel), then one recovers the £°°-metric, since this distance turns out to
be equal to the number of pairwise disjoint hyperplanes separating two given
vertices [BvdV, Corollary 2.5]. Our next observation is that, if X is hyperbolic,
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then (X,d8z) turns out to be quasi-isometric to X whenever L is sufficiently
large. This motivates the idea that (X, §;), for a sufficiently large L, captures all
the hyperbolic properties of X .

Lemma 6.51. Let X be a hyperbolic CAT(0) cube complex. Fix a constant
Lo = 0 such that the joins of hyperplanes of X are all Lg-thin. For every
L > Lg, the canonical map X — (X,8L) is a quasi-isometry.

Proof. Because X is necessarily finite-dimensional, we may consider without
loss of generality the {*°-metric do, on X. Let x,y € X be two vertices.
Since any collection of pairwise L -well-separated hyperplanes separating x and
y provides a collection of pairwise disjoint hyperplanes separating x and y,
necessarily 81 (x,y) < doo(x,y). Now, let Jy,...,J, be a maximal collection of
pairwise disjoint hyperplanes separating x and y. So r = dx(x,y). Fix some
1 <i<r—Lyp—1 and let £ be a collection of hyperplanes transverse to both J;
and J;yr,+1 which does not contain any facing triple. By noticing that X and
{Ji,Jit1,...,JigLo+1} define a join of hyperplanes, it follows that #K < Lo. A
fortiori, J; and Jj;r,4+1 are L-well-separated. Therefore,

8p(x,y) = “doo(X,y) — Lo — 1.

T Lo+ 1
This conclude the proof of our lemma. Il

The main result of this section is the following:

Theorem 6.52. Let G be a group acting geometrically on a CAT(0) cube complex
X . Then:

e forevery L>0, (X,81) is 9(L + 2)-hyperbolic;
e for every L >0, the action G ~ (X,81) is non-uniformly acylindrical;
e an isometry g € Isom(X) defines a contracting isometry of X if and only

if it induces a loxodromic isometry on (X,8r) when L is sufficiently large;
otherwise, g induces an elliptic isometry of (X,06L) for every L > 0.

We emphasize that our metric space (X,dr) is not geodesic (although it
follows from Lemma 6.54 below that it is quasi-geodesic), so the definition of
hyperbolic metric spaces which have to use is the following: a metric space (S, d)
is 4 -hyperbolic if, for every four points p,q,r,s € §, the following inequality
holds:

d(p.r) +d(q,s) <max(d(p,q) +d(r,s),d(p,s)+d(q,r)) + 26.

We refer to [GdIH] for more information on equivalent definitions of Gromov
hyperbolicity.
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Proposition 6.53. Let X be a CAT(0) cube complex and L > 0 an integer. Then
(X,681) is 9(L + 2)-hyperbolic.

Before proving Proposition 6.53, we begin by noticing that combinatorial
geodesics are unparametrised quasi-geodesics with respect to our new metrics.

Lemma 6.54. Let X be a CAT(0) cube complex, x,y € X two vertices and
L >0 an integer. The inequalities

8L(X’Z) +5L(Z’y) _Z(L +3) ot SL(X,y) = SL(X’Z) +8L(Z’y)

holds for every z € I(x,y).

Proof. Let H (resp. V) be a maximal collection of pairwise L -well-separated
hyperplanes separating x and z (resp. z and y). Write ‘H as {Hy,..., H,} so
that H; separates H;_; and H;y;, forevery 2 <i <r —1 and H; separates z
from Hs,..., H,; and similarly V as {Vi,..., Vs} so that V; separates V;_; and
Vigr for every 2 <i <s—1 and V; separates z from V,,...,V;. Notice that
r =01(x,z) and s = 8. (z,y). Since 8z(x,y) > 81(x,z) and 81.(x,y) > 8.(z,y),
there is nothing to prove if r < 2(L +3) or s < 2(L + 3), so we suppose that
r,s > 2(L + 3).

Observe that, if there exist some 1 < i < r and some 1 < j < s such
that V; and H; are transverse, then V, and H,; must be transverse for every
l1<p<iand j <q <r.Because H; and H, are L-well-separated, necessarily
Vi,...,VL+1 cannot be all transverse to both H; and H,, so we deduce from our
previous observation that H, and Vz; must be disjoint. Similarly, one shows
that V, and Hp4; are disjoint. Consequently, the hyperplanes

HL+2’---5HI”$VL+25""VS

are pairwise disjoint. If H; and V; are not L -well-separated for some i, j > L+3,
then there exists a collection X of at least L 4+ 1 hyperplanes transverse to both
H; and V; which does not contain any facing triple. But then the hyperplanes of
K must be all transverse to both Hyy, and Hp 3, which are L-well-separated.
Observe that we have proved the following statement:

Fact 6.55. Let x,y € X and z € [(x,y) be three vertices, and H (resp.
V) a collection of pairwise L-well-separated hyperplanes separating x and z
(resp. z and y). There exist subcollections H' C H and V' C V satisfying
#H' =#H — L —3 and #V' = #V — L —3 such that the hyperplanes of H' UV’
are pairwise L -well-separated.
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Consequently, the hyperplanes
Hits,...,Hy, Viys, ..., Vs
are pairwise L -well-separated. The inequality
Sp(x, ) =r+s—2(L+3)=68(x,2) +68r(z, y) — 2(L + 3)

follows. The second inequality in our lemma is obtained from the triangle
inequality. L]

Proof of Proposition 6.53. Our goal is to prove that, for any four vertices
X1,X2,X3, X4 € X, the inequality

8L (x1,x3) + 8 (x2, x4)
< max (82 (x1, x2) + 81(x3,x4), 81 (x1, x4) + 8 (x2, x3)) + 18(L + 2)

holds. Let mi,m,,m3,my4 be the vertices provided by Lemma 2.9. For conve-
nience, we set m = &y, (mq,mp) = 8 (m3,my4) and n = g, (my,my) = 81 (my, ms3).
One has

6.(x1,x3) + 81 (x2, x4) < 8r.(x1,m1) + 8r.(m3,x3) + 61(x2, m2) + 8L (M4, x4)
+2(m + n)
< (8(x1,m1) + m + 8p.(m2, x2))
+ (82.(x3,m3) + m + 81 (x4, m4)) + 2n
< 8p(x1,x2) + 0. (x3,%x4) + 8(L + 3) + 2n

One shows similarly that
0L (x1,x3) + 8L(x2, X4) < dL(x1, Xa) + 81(x2, X3) + 8(L + 3) + 2m.

Suppose without loss of generality that 8z (x1,x4) + 0r(x2,x3) < 6p(x1,x2) +
Sr(x3,x4). Since

4
SL(x1.%4) +8L(x2,%3) = ) 1. (xi,my) + 2n —8(L +3)

i=l1

and
4

B (1 x2) + 81 (3, xa) 2 ) 81 (xiomi) +2m —8(L +3),
i=1
it follows that n —m < 4(L + 3). Notice that, if &7 (m;,myq) = n > 2, necessarily
m < L. Therefore, n < max(2,L + 4(L + 3)) < 5L + 12. Finally, we conclude
that
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8r.(x1,x3) + 01.(x2, x4) <81 (x1,x2) + 81.(x3,x4) + 8(L 4+ 3) +2(5L + 12)
<68p(x1,x2) + 8 (x3,x4) + 18(L + 2)

which is the desired inequality. ]

Now, we focus on the acylindricity of the action.

Proposition 6.56. Let G be a group acting non-uniformly weakly acylindrically
on a CAT(0) cube complex X, and L > 0 an integer. The action G ~ (X,481)
is non-uniformly acylindrical.

Before proving our proposition, let us consider the following statement:

Lemma 6.57. Let X be a CAT(0) cube complex, g € Isom(X) an isometry,
L > 0 an integer and x,y € X two vertices. Suppose that 51 (x,gx) < € and
0r(y,gy) <€ for some ¢ > 0. Then 81.(z,gz) < 3(e+L+3) forevery z € I(x,y).

Proof. Let H (resp. N') denote a maximal collection of pairwise L -well-separated
hyperplanes separating x and z (resp. z and gz). Notice that a hyperplane
separating z and gz must separate x and gx; or y and gy; or {z,gx} and
{v,gz}; or {x,z} and {gz,gy}. Since 5 (x,gx) <€ and §.(y,gy), there exists
a subcollection N’ C N satisfying #N’ > #N — 2¢ such that no hyperplane of
N’ separates x and gx nor y and gy. Because a hyperplane separating {z, gx}
and {y,gz} is transverse to any hyperplane separating {x,z} and {gz,gy}, the
hyperplanes of N’ either all separate {z, gx} and {y, gz}, or all separate {x,z}
and {gz, gy}. Without loss of generality, say that we are in the former case. If
#N' < 1, then 8.(z,gz) = #N < 2¢ + #N’ < 2¢ + 1 and we are done, so we
suppose that #A’ > 2.

Next, notice that at most € hyperplanes of H separate x and gx since
dr(x,gx) <€, and at most L hyperplanes of H separate either gx and gy or y
and gy, since any such hyperplane must be transverse to all the hyperplanes of
N’. Therefore, there exists a subcollection H' C H satisfying #H' > #H —e — L
such that any hyperplane of H’ separates gx and gz.

By applying Fact 6.55, we find subcollections H” Cc H and N” C N’
satisfying #H"” > #H'— L —3 and #N” > #N’ — L — 3 such that the hyperplanes
of H” UN" are pairwise L-well-separated. Consequently, we have

HH =8 (x,z) =8 (gx,gz) = #H" +#V" > #H +#N —2(L +3) —3e — L

hence
6.(z,gz) = #N < 3(e + L + 3),

which concludes the proof of our lemma. [
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Proof of Proposition 6.56. Suppose that the action G ~ H(X) is not non-
uniformly acylindrical. So there exists some € > 0 such that, for every Ry > 0,
there exist two vertices x,y € X satisfying 6z (x,y) > Ry such that

F={geG|8(x,gx) <€8.(y.gy) <€}

is infinite. Suppose that Ry > 8L + 10e¢ 4+ 25, and for convenience write
R = Ro—8L + 10e + 25.

Fix an element g € F. Let H be a maximal collection of pairwise L-
well-separated hyperplanes separating x and y. Because dr(x,gx) < € and
6r.(y,gy) < €, there exist at most 2¢ hyperplanes of H separating either x and
gx or y and gy. Moreover, notice that, if a hyperplane J separating x and y
separates x and gx, then any hyperplane separating x and J must separate x
and gx as well; similarly, if a hyperplane J separating x and y separates y and
gy, then any hyperplane separating y and J must separate y and gy as well.
Consequently, if H’' denotes the collection of hyperplanes obtained from #H by
removing the first and last ¢ hyperplanes (ordering H by following a geodesic
from x to y), then the hyperplanes of H’ separates gx and gy. Write H' as
{Hy,..., Hg} such that H; separates H;—; and H;4+; for every 2 <i <k — 1
and such that H; separates x and H>,..., Hy. Because

k=#H =#M1 —2¢ =6.(x,y) —2¢ > Ry —2¢ = R + 8(L + €) + 25,

there exist r < p <q <s such that |[p—¢q| > R+2(L+1) and |p—r|,|qg—s| >
e+ L+3)and |[r—1|, |k —s|> €.

We claim that, for every hyperplane J separating H, and H,, the hyperplane
gJ intersects the subspace delimited by H, and Hj. Indeed, let z be a vertex of
N(J)NI(x,y). By applying Lemma 6.57, we know that 87 (z,gz) < 3(e+ L +3).
Consequently, gz € N(gJ) cannot be outside the subspace delimited by H, and
H since |p—r| and |q¢ —s| are greater than 3(e + L + 3).

Next, let A denote the set of all the hyperplanes J separating H, and H,
such that gJ is transverse to H,_;. By noticing, thanks to our previous claim,
that gAg is a collection of pairwise L -well-separated hyperplanes transverse
to both H,_; and H, which does not contain any facing triple, we deduce
that #4, < L. Similarly, if B, denotes the set of all the hyperplanes J
separating H, and H, such that gJ is transverse to Hgyy, then #B, < L.
Set H, = H(H, | Hy)\ (Ag U B;), where H(H, | H;) denotes the set of all the
hyperplanes separating H, and H,.

So, if a hyperplane J belongs to H/,, then gJ is included into the subspace
delimited by H,_y and Hgyy. If gJ, H,_; and Hgz4; define a facing triple, then
the halfspace delimited by gJ which is disjoint from H,_; and Hi; must contain
either gx and gy, which is impossible: in the former case, x and gx would
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be separated by Hi,..., H,—;, contradicting the inequality &7 (x,gx) < € since
r > e+ 1; and in the latter case, y and gy would be separated by Hy,..., Hy,
contradicting the inequality 6z (v, gy) < € since k—s > €. Therefore, gJ separates
H,_; and Hgy,. The conclusion is that g induces a map Hg — H(H,—; | Hs41)
where we set

He :”H;ﬂ{H xovey Hgy = {H, ,...,Hq}\(AgUBg).
Notice that
#He > |p—q| —#Ag —#Bg = |p—q| —2L > R+ 2.

Thus, we have proved that every g € F naturally induces a map H, —
H(Hy—1, Hg41) for some Hg C {Hp,..., Hy} of cardinality more than R + 2.
Because F is infinite, there must exist infinitely many pairwise distinct elements
£0,81,... € F inducing the same map. So there exists a subcollection V C
{Hp,..., H;} of cardinality more than R + 2 such that g;J = g;J for every
i,j >0 and every J € V. As a consequence, there exist two L -well-separated
hyperplanes Vi, V, € V separated by more than R other hyperplanes such that
the intersection stab(V;) N stab(V;) is infinite, since it contains the elements
90'81.80"g2,... which are pairwise distinct by assumption. So far, we have
proved the following statement:

Fact 6.58. Let G be a group acting on a CAT(0) cube complex X and L,e >0
two constants. If x,y € X are two vertices satisfying 8p(x,y) > Ry where
Ro = 8L + 10€ + 25 and such that

{€€G|dr(x,gx) <€ OL(y,8y) < €}

is infinite, then there exist two hyperplanes Vi,V, separating x and y such that
stab(V7) Nstab(V,) is infinite and such that Vi and V, are separated by at least
Ro — 8L + 10€ + 25 pairwise L -well-separated hyperplanes.

Now, by noticing that the intersection stab(}/;) N stab(V2) acts on the convex
subcomplexes projyy,)(N(V2)) and projyy,)(N(V1)), which have finite diameters
since V; and V, are well-separated, we deduce that that our subgroup stabilises
two cubes of N(V;) and N(V,). A fortiori, there exist two vertices a € N(V7)
and b € N(V3) such that stab(a) N stab(b) is infinite.

Thus, we have proved that, for every R > 0, there exist two vertices a,h € X
at distance at least R apart such that stab(a) N stab(b) is infinite. This concludes
the proof of our proposition. []

Finally, our last preliminary result towards the proof of our main theorem
determines which isometries of the cube complex induce loxodromic isometries
with respect to the new metric.
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Lemma 6.59. Let X be a CAT(0) cube complex, L > 0 an integer and
g € Isom(X) an isometry. Then g induces a loxodromic isometry of (X,8r)
if and only if g skewers a pair of L-well-separated hyperplanes; otherwise, g
induces an elliptic isometry of (X,8L).

Proof. Let g € Isom(X) be an isometry. If g is an elliptic isometry of X, then
¢ must induce an elliptic isometry of (X,d7). Suppose that g is a loxodromic
isometry of X . Up to subdividing X, we may suppose without loss of generality
that g acts by translation on a (combinatorial) geodesic line y; fix a basepoint
x € y. Suppose first that H(y) contains at most three hyperplanes which are
pairwise L -well-separated. A fortiori, g does not skewer a pair of L-well-
separated hyperplanes. Clearly, 8 (x,g"x) < 3 for every n € Z, so that g
induces an elliptic isometry of (X, §;). Otherwise, suppose that 7(y) contains
at least three pairwise L -well-separated hyperplanes, say A, B, C; by orienting
y so that g acts on it by positive translations, say that A, B,C intersect y in
that order. Let n > 1 be an integer so that g” - A intersects y after C. Because
B and C are well-separated, there must exists some m > n such that g” A is
disjoint from B. A fortiori, g skewers the pair of L-well-separated hyperplanes
{A, B}. Notice that, since any hyperplane transverse to both 4 and g™ A must
be transverse to both 4 and B, necessarily A and g™A are L-well-separated.
A fortiori, A = {gk™A | k € Z) is an infinite collection of pairwise L -well-
separated hyperplanes. Let d denote the length of the subpath of y linking
N(A) and N(g™A). Because two vertices a,bh € y are separated by at least
1 .d(a,b) — 1 hyperplanes of A, we deduce that

1

7 -d(a,b)—1=<6(a,b) <d(a,b)
for every a,b € y. As a consequence, the axis y of g is quasi-isometrically
embedded into (X,dz), which implies that g induces a loxodromic isometry of
(X,8L). O

An immediate consequence of Lemma 6.59 and Theorem 6.8 is:

Corollary 6.60. Let X be a CAT(0) cube complex and g € Isom(X) an isometry.
Then g is a contracting isometry of X if and only if it defines a loxodromic
isometry of (X,81) for L sufficiently large.

Proof of Theorem 6.52. The first two points of the theorem follows directly from
Propositions 6.53 and 6.56. The last point is a consequence of Corollary 6.60. []
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Application 1: Acylindrical hyperbolicity. Our hyperbolic models allow us to
give an alternative and purely cubical proof of the fact a group acting on a
CAT(0) cube complex with at least one WPD contracting isometry must be either
virtually cyclic or acylindrically hyperbolic

Proposition 6.61. Let G be a group acting on a CAT(0) cube complex X and
g € G a WPD contracting isometry. There exists some Ly > 0 such that, for
every L > Lg, g is a WPD loxodromic isometry of (X,8r).

Proof. For convenience, we fix a combinatorial axis y of g (which exists up
to subdividing X). According to Theorem 6.18, there exists some Lo > 0 such
that g skewers a pair of Lg-well-separated hyperplanes J; and J, such that
stab(J1) N stab(J,) is finite. Notice that J; and J, necessarily intersect y. Fix
some L > Lo and let D denote the maximal number of pairwise L -well-
separated hyperplanes separating J; and J,. Notice that we already know from
Lemma 6.59 that g defines a loxodromic isometry of (X,éz). If g does not
induce a WPD isometry of (X,dz), then we can find a vertex x € y, a constant
€ > 0 and a sufficiently large integer m > 0 such that §r (x, g"x) > D+ |/ g||+8L
(where ||g|| the translation length of g) and such that

{heG|é(x,hx) <€, 8.(g"x,hg"x) <€}

is infinite. It follows from Fact 6.58 that there exist two hyperplanes H;, H>
separating x and g™x such that stab(H;) N stab(H,) is infinite and such
that H,; and H, are separated by at least D + |g| + 3 pairwise L-well-
separated hyperplanes. Up to translating H; and H, by a power of g, we
may suppose without loss of generality that J; and J, both separate H; and
H, . Because there exist only finitely many hyperplanes separating H; and H,,
we know that stab(H,) N stab(H,) contains a finite-index subgroup included
into stab(J;) N stab(J2), which is impossible since stab(J;) N stab(J;) is finite
and stab(H,) N stab(H>) infinite. Consequently, g must be a WPD isometry of
(X,61). O

Corollary 6.62. If a group acts on a CAT(0) cube complex with at least one WPD
contracting isometry, then it is either virtually cyclic or acylindrically hyperbolic.

Application 2: Stable subgroups. Notice that the third point of Theorem 6.52
implies that, if g € G is a contracting isometry, or equivalently if (g) is a stable
subgroup of G, then the orbits of (g) are quasi-isometrically embedded into
H(X). We generalise this observation to arbitrary stable subgroups.
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Theorem 6.63. Let G be a group acting geometrically on a CAT(0) cube complex
X and H C G a subgroup. If H is a stable subgroup, then there exists some
Lo > 0 such that its orbits in (X,81) are quasi-isometrically embedded for every
L>1Ly.

Our statement will be a straightforward consequence of the following propo-
sition:

Proposition 6.64. Let X be a cocompact CAT(0) cube complex and ¥ C X a
convex subcomplex. Then Y is a stable subcomplex if and only if there exists
some Lo > 0 such that the inclusion Y C X induces a quasi-isometric embedding
Y — (X,8L) for every L > Ly.

Given a metric space M, a subspace N C M is stable if, for every A > 1
and B > 0, there exists a constant K > 0 such that the Hausdorff distance
between any two (A, B)-quasi-geodesics linking two points of H is at most K.
It is worth noticing that N is stable if and only if it is a Morse subspace in
which any two quasi-geodesics stays at finite Hausdorfl distance (depending only
on the parameters of the quasi-geodesics), or equivalently, if it is a hyperbolic
Morse subspace.

As a preliminary result, we prove the following statement, which we think to
be of independent interest.

Lemma 6.65. Let X be a CAT(0) cube complex and Y C X a convex subcomplex.
If Y is a contracting subcomplex, then there exists some C > 0 such that

1

=Sl y) = C <87 (x,y) <51 (x.y)

for every L >0 and every x,y €Y, where 85 denotes the distance §; defined
on X and 87 its restriction to Y .

Proof. Fix some L >0 and a constant C > 0 so that ¥ is C -contracting, i.e.,
every join of hyperplanes (#,)) satisfying H C H(Y) and VNH(Y) = @ must
be C-thin (see Proposition 4.5). Let x,y € ¥ be two vertices. Because two
hyperplanes of X which are L-well-separated in X are clearly L -well-separated
in Y, necessarily

55 (x,y) < 8 (x,y).

Now, let Hy,..., H, be a maximal collection of hyperplanes of ¥ which are
pairwise L -well-separated in Y. So r = 5{ (x,y). Fixsome 1 <i<r—C—1
and let K be a collection of hyperplanes of X transverse to both H; and H;ic+1
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which does not contain any facing triple. Because H; and H,;i c4; are L-well-
separated in Y, necessarily # (XX N H(Y)) < L. And because Y is C -contracting,
#(KNH(Y)C) < C. Therefore, # < L + C. This shows that H; and H;ic4
are (L + C)-well-separated in X . Consequently,

1
55+C+1(X’J’) & 5§+C(X,y) = ﬁ-S}f(x,y) —C —1.

This concludes the proof of our lemma. Ll

Proof of Proposition 6.64. Suppose that Y is a stable subcomplex, and let
C,Ly > 0 denote the constants respectively given by Lemmas 6.65 and 6.51.
Fix some L > Ly + C. We know from Lemma 6.51 that the metrics 8{ and
SZ_C are quasi-isometric to the metric of Y. We conclude from Lemma 6.65
that the restriction of 55 to Y has to be quasi-isometric to the metric of Y.
Conversely, suppose that there exists some L > 0 such that the canonical map
Y — (X,dr) is a quasi-isometric embedding. As a consequence, Y is hyperbolic
and there exists a constant A > 0 such that, for every vertices x,y € X, the
inequality d(x,y) > A implies &7 (x,y) > 2. Let (H,V) be a grid of hyperplanes
satisfying #V > A+2, VC H(Y) and HNH(Y) = @. Write V as {V;,...,V;}
so that V; separates V;—; and V4 for every 2 <i <r — 1. Fix two vertices
x €Y NN(Vy) and y € Y N N(V,) minimising the distance between Y N N(V;)
and Y N N(V,). A fortiori, x and y are separated by V5,...,V,_;, hence
d(x,y) > A, and finally &.(x,y) > 2. So there exist two L-well-separated
hyperplanes J; and J, separating x and y. According to Lemma 2.5, J; and
Jo separates ¥ N N(V;) and Y N N(V,). Moreover, because the projection of
N(Vy) onto Y turns out to be Y N N(V;) (as a consequence of Lemma 2.6),
we deduce from Lemma 2.3 and Proposition 2.2 that any hyperplane intersecting
N(V1) outside Y must be disjoint from Y . Therefore, J; and J, must separate
Vi and V,, so that Vi and V, have to be L -well-separated as well, hence
#H < L. It follows from Proposition 4.5 that Y is contracting. Consequently, Y
is a stable subcomplex. L

Proof of Theorem 6.63. Fix a basepoint x € X and suppose that H is a stable
subgroup. As a consequence of Corollary 4.7, the convex hull ¥ of H-x in X
is a contained into a neighborhood of Y. A fortiori, Y is a stable subcomplex.
It follows from Proposition 6.64 that there exists some Lo > 0 such that Y
quasi-isometrically embeds into (X,dr) for every L > Lo. A fortiori, H - x
quasi-isometrically embeds into (X,dr) for every L > Ly. O
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It may be expected that the converse of Theorem 6.63 holds, i.e., if the orbits
of the subgroup H quasi-isometrically embed into (X,d8z) for some L > 0, then
H turns out to be a stable subgroup. In view of Proposition 6.64, the only point
to verify is that H is a convex-cocompact group, or equivalently, that the convex
hull of an H -orbit lies in a neighborhood of this orbit. However, the implication
which interests us is really the one proved by Theorem 6.63 because it implies
restrictions on the possible stable subgroups of a given group acting geometrically
on some CAT(0) cube complex. For instance, we are able to reprove a result
which follows from [KMT, KK]. (An alternative argument can also be found at
the end of the proof of Theorem B.1.)

Proposition 6.66. A stable subgroup in a right-angled Artin group is necessarily

free.

Sketch of proof. Let A be a free irreducible right-angled Artin group and X
the universal cover of the associated Salvetti complex. It is not difficult to show
that two hyperplanes of X are well-separated if and only if they are strongly
separated, i.e., no hyperplane of X is transverse to both of them. Consequently,
for every L > 0 the metric space (X,dz) is isometric to (X, dp), which turns out
to be quasi-isometric to the contact graph of X . A fortiori, (X, §;) is a quasi-tree
for every L > 0. It follows from Theorem 6.63 that any stable subgroup of A
must be quasi-isometric to a tree, and so must be virtually free (see for instance
[GdIH, Théoréme 7.19]) and finally must be free since A is torsion-free (see
[Sta]). J

Application 3: Regular elements. Given a product X = X; x .-+ x X, of
irreducible CAT(0) cube complexes, an isometry g € Isom(X) is regular if it
induces a contracting isometry of X; for every 1 <i < n. Regular isometries
have been introduced in [CS] by analogy to regular semi-simple elements for
symmetric spaces. Our goal is to give an alternative proof of [FLM, Theorem 1.5]
(which is an improvement of [CS, Theorem D]), namely:

Theorem 6.67. Let G be a group acting essentially on a product X = X1 x---x X,
of irreducible, unbounded and finite-dimensional CAT(0) cube complexes. Assume
that G does not a finite in X nor in its visual boundary. Then G contains a
regular element.

The argument of [FLM] is probabilistic. We propose here an argument based
on cubical and hyperbolic geometries. In addition to the hyperbolic models we
introduced, we need the following statement:
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Proposition 6.68. Let G be a group acting by isometries on quasi-geodesic
hyperbolic spaces X,...,X,. Assume that:

e forevery 1 <i <n, G contains a loxodromic isometry of X;;

e and for every 1 <i <n, an element of G either has bounded orbits in X;
or is loxodromic.

Then there exists an element g € G which defines a loxodromic isometry of X;
Jor every 1 <i <n.

An elementary proof of this result can be found in [CU] under two strengthened
assumptions: hyperbolic spaces are supposed to be geodesic, and an element of
G which has a bounded orbit is supposed to fix a point. Proposition 6.68 follows
from [CU] as a consequence of the following two observations:

e Let X be a quasi-geodesic hyperbolic space. There exists a constant C > 0
such that, if Y denotes the graph whose vertex-set is X and whose
edges link two points within distance C, then Y is connected. Then Y is
geodesic hyperbolic space in which X is quasi-dense and quasi-isometrically
embedded.

e Let X be a geodesic §-hyperbolic space. Fix a bounded metric space M
and a basepoint m € M. Let Y denote the metric space obtained from X
by adding a copy Mg of M for every subset S C X of diameter at most
58 and by linking the basepoint m € Mg to every point of S by a segment
[0,1]. Then Y is geodesic hyperbolic space in which X is quasi-dense
and quasi-isometrically embedded. Moreover, M can be chosen so that any
isometry of Y leaves X invariant; for instance, take M = [0,a] x[0,a] with
a large compared to §. If g € Isom(Y) has a bounded orbit, then it has a
bounded orbit in X . According to [BH, Lemma III.T".3.3], ¢ must have an
orbit S of diameter at most 56. Therefore, g fixes the basepoint of Mg.

Theorem 6.67 is now an easy consequence of the combination of Proposition 6.68
with our hyperbolic models of cube complexes.

Proof of Theorem 6.67. Up to replacing G with one of its finite-index subgroups,
we suppose that G preserves the product structure of X . Forevery 1 <i <n, G
acts essentially on X; without fixing a point in the visual boundary. It follows from
Theorem 6.12 that G contains a contracting isometry of X;, so that, according to
Corollary 6.60, there exists L(i) > 0 such that G contains a loxodromic isometry
of (X;,d8r@)). Notice that, according to Lemma 6.59, we know that an element
of G either has bounded orbits in (X;,8r¢)) or is loxodromic. By applying
Proposition 6.68 to the actions of G on (X1,87(1)),-.., (Xn, L)), we deduce
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that G contains an element g defining a loxodromic isometry of (X;,d8r)) for
every 1 <i <n. We conclude from Corollary 6.60 that g defines a contracting
isometry of X; for every 1 <i <n, i.e., is a regular isometry. [

Open questions. We conclude this section by stating a few open questions about
our hyperbolic models. First of all, is it really a model for universal acylindrical
actions? Theorem 6.52 does not completely prove this assertion, since our action
is non-uniformly acylindrical.

Question 6.69. Let G be a group acting geometrically on a CAT(0) cube complex
X . Does there exist an L > 0 such that any two disjoint hyperplanes of X are
either L -well-separated or both transverse to infinitely many hyperplanes? If so,
is the induced action G ~, (X, d1) acylindrical?

Interestingly, the lack of acylindricity in the proof of Proposition 6.56 seems
to have the same origin as the lack of acylindricity in the proofs of [Gen2,
Theorem 7.1] and [Genl, Theorem 22]. Therefore, understanding this problem
would be interesting. Another motivation would be to deduce from [Bow2] that a
group acting geometrically on a CAT(0) cube complex contains only finitely many
conjugacy classes of purely contracting subgroups (i.e., subgroups containing only
contracting isometries) isomorphic to a given finitely presented one-ended group.

From now on, given a CAT(0) cube complex X, we fix one of its hyperbolic
models H(X), hopefully the metric space (X,d;) where L is the constant given
by a positive answer to Question 6.69.

A natural question would be to study the behavior of H(X) up to quasi-
isometry.

Question 6.70. Does a quasi-isometry X — Y between cocompact CAT(0)
cube complexes induces a quasi-isometry H(X) — H(Y)? A homeomorphism
0H(X) — 0H(Y)?

A positive answer to this question would allow us to define the hyperbolic
boundary 9,G of a group G acting geometrically on a CAT(0) cube complex
X as the Gromov boundary of the hyperbolic space H(X). As a consequence,
Lemma 6.65 would imply that, for every group G acting geometrically on some
CAT(0) cube complex and for every Morse subgroup H C G, the hyperbolic
boundary d;H of H topologically embeds into the hyperbolic boundary 9,G of
G. As a particular case, if H is a stable subgroup, then its Gromov boundary
dH topologically embeds into d,G . With respect to this vocabulary, the proof of
Proposition 6.66 amounts to saying that the hyperbolic boundary of a right-angled
Artin group is a Cantor set, so that the Gromov boundary of any infinite stable
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subgroup must be a Cantor set as well, which implies that these groups must be
free.

Basic (but non-trivial) results on Gromov boundaries of hyperbolic groups
is that a multi-ended hyperbolic group splits over a finite subgroup and that a
hyperbolic group with a Cantor set as its boundary must be virtually free. Are
there similar statements with respect to our hyperbolic boundary?

Question 6.71. Let X be a cocompact CAT(0) cube complex. When is dH(X)
a Cantor set? When is it connected?

A. Crossing graphs as curve graphs

Recall that the crossing graph AX of a CAT(0) cube complex X is the graph
whose vertices are the hyperplanes of X and whose edges link two transverse
hyperplanes. This graph is a natural analogue of curve graphs of surfaces, but
usually two objections are given against this analogy: first, the crossing graph
may be disconnected; and next, every graph turns out to be the crossing graph
of some CAT(0) cube complex, which prevents, in particular, the crossing graphs
from being always hyperbolic. In this section, our goal is to show that these
objections are not justified, and that crossing graphs are not so different from
Hagen’s contact graphs.

First, thanks to [Nib, Lemma 2], we understand precisely when the crossing
graph is disconnected:

Proposition A.l. Let X be a CAT(0) cube complex. The crossing graph AX is
disconnected if and only if X contains a cut vertex.

Therefore, when the crossing graph is disconnected, one can consider the
graph T whose vertices are the cut vertices of X and the connected components
of the complement, and whose edges link a cut vertex to all the components
containing it. Because X is simply connected, 7 turns out to be a tree, so
that Bass—Serre theory implies that any group acting on X splits as a graph
of groups such that vertex-groups are stabilisers of cut vertices or stabilisers of
components. So, by the arboreal structure 7 on X, we reduce the situation to
actions on cube complexes whose crossing graphs are connected. As a particular
case of the previous discussion, combined with Stallings’ theorem, it follows that,
if a one-ended group acts minimally and geometrically on some CAT(0) cube
complex, then the crossing graph is necessarily connected.

Next, if one considers only CAT(0) cube complexes which are uniformly
locally finite, then crossing graphs turn out to be hyperbolic.
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Proposition A.2. Let X be a uniformly locally finite CAT(0) cube complex
without cut vertex. The crossing graph AX is a quasi-tree.

Our proof follows essentially the arguments used [Hagl, Theorem 3.1.1]. In
particular, our goal is to apply the bottleneck criterion [Man]:

Proposition A.3. A geodesic metric space Y is quasi-isometric to a tree if and
only if there exists a constant § > 0 such that, for every x,y € Y, there is a
midpoint m between x and y, i.e.,

d(m. x) = %a’(x,y) — d(m. y).

with the property that any path y : [a,b] — Y joining x to y satisfies
d(y(t),m) <& for some t € [a,b].

We begin by stating and proving two preliminary lemmas about the metric in
AX.

Lemma A4. Let X be a CAT(0) cube complex. Let Jy,...,J, be a path in
AX. For every hyperplane H separating J, and J, in X, there exists some

1 <i <n such that dax(H, J;) < 1.

Proof. There must exist some J; such that either H = J; or H transverse to
J;, since otherwise Ji,...,J, would be included into the halfspace delimited by
H which does not contain J,, which is absurd. A fortiori, dax(H, J;) < 1. [

Lemma A.5. Let X be a CAT(0) cube complex. Suppose that the link of every
vertex of X has diameter at most R for some uniform R > 0. Let Jy,...,J, be
a geodesic in AX . For every 1 <i <n, there exists a hyperplane H separating
J1 and J, in X such that dax(J;, H) <3+ R.

Proof. Let Hy,..., H, be a maximal collection of pairwise disjoint hyperplanes
separating J; and J,. Suppose that H; separates H;j_; and H;y; for every
2<j<m-—1. As a consequence of Lemma 2.5, for every 1 < j <m — 1, the
hyperplanes H; and H;4; must be tangent, so that dax(H;, Hj+1) < R. Fix
some 1 <i <n.If J; is transverse or equal to some H;, then dax(J;, H;) <1
and we are done. Notice also that J; cannot be separated by J; from J,, and
similarly by J, from J;, because otherwise it would be possible to shorten
the path Jq,...,J, in AX. The last possible configuration is when J; lies
in the subspace delimited by H; and H;y; for some 1 < j <m—1. As a
consequence of Lemma A.4, there exist 1 < r,s < n satisfying r <i < s such
that dAx(Jr,Hj) <1 and dAx(JS, Hj+1) <1. So
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dax(Ji, Hj) <dax(Ji, J;) +dax(Jr, Hy) < dax(Js, Jr) + 1
<dax(Hj,Hj+1)+3<R+3

concludes the proof. L]

Proof of Proposition A.2. Because X does not contain any cut vertex, the link of
every vertex of X is finite; and because X is uniformly locally finite, we deduce
that the links of vertices of X have diameters uniformly bounded, say by some
constant R > 0. Let J, H be two hyperplanes of X . Fix a geodesic between J
and H , and let K be one of its vertices at distance at most 1/2 from its midpoint
M. Let Ay,..., A, be any path between J and H . According to Lemma A.4,
there exists a hyperplane S separating J and H such that dax(K,S) <3+ R;
and according to Lemma A.5 that there exists some 1 < i < n such that
dax(A;, S) < 1. Therefore,

dax(Ai, M) < dax(Ai, S) +dax(S,M) < R+9/2.
It follows from the bottleneck criterion that AX is a quasi-tree. L]

As a consequence, if a one-ended group acts minimally and geometrically on
some CAT(0) cube complex, then the crossing graph is connected and quasi-
isometric to a tree. This observation make crossing graphs good candidate for
curve graphs of CAT(0) cube complexes. In fact, the next proposition implies
that crossing graphs and contact graphs are essentially identical.

Proposition A.6. Let X be a uniformly locally finite CAT(0) cube complex
without cut vertex. The canonical map AX — I'X is a quasi-isometry.

The key point to prove this proposition is that the distance in AX coincides
coarsely with the maximal number of pairwise strongly separated hyperplanes
separating two given hyperplanes. (Recall that two hyperplanes are strongly
separated if no other hyperplane is transverse to both of them.) This idea is
made precise by the next two lemmas.

Lemma A.7. Let X be a CAT(0) cube complex. Suppose that there exists some
R > 1 such that the link of every vertex of X has diameter at most R. If
J, H are two hyperplanes satisfying dax(J,H) > 11Rn, there exist at least n
pairwise strongly separated hyperplanes separating J and H in X.

Proof. Let J = Vp,Vq,.... Vi1, V;, = H be a geodesic in AX between J
and H. According to Lemma A.5, for every 1 < k < r — 1, there exists a
hyperplane S; separating J and H such that dry(Vk,Sx) <3+ R. For every
1<k<(r-—1)/5and every 1 <j <(r—1)/5—k, we have
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dax (S11Rk- S11R*&k+7)) = dax (Viire, Viirgke+j)) —dax (Vi1Rk. S11Rk)
—dax (Vi1RK+j)> S11RK+)))
> 11Rj —2(3 + R) > 3.

A fortiori, Sj1rk and Si1rk+j) are strongly separated. Therefore, {Siire | 1 <
k < n} defines a collection n pairwise strongly separated hyperplanes separating
J and H, concluding the proof. O

Lemma A.8. Let X be a CAT(0) cube complex. Let J and H be two hyperplanes.
If they are separated in X by n pairwise strongly separated hyperplanes
Vi,...,Vu, such that V; separates V;_; and Vi4y for every 2 <i <n —1,
then dax(J,H) >n.

Proof. Let J = So,S81,...,8—-1,S, = H be a geodesic in I'X between J
and H. According to Lemma A.4, for every 1 < k < n, there exists some
1 <ng <r—1 such that drx(Vi, Ss,) < 1. Notice that, for every 1 <i < j <n,
because V; and V; are strongly separated, necessarily n; # n;. Let ¢ be a
permutation so that the sequence (nyr)) is increasing. We have

n
dax(J, H) = Z dax (Snyq- Sn¢(k+1))
k=1

n
B Z (dAX(V(,,(k), Votk+1) — dax (Vo) S”w(k))
k=1
— dAX(th(kH)’ S"w(k+1)))

n
> (3-1-1)=n,
k=1

where we used the inequality drx(Vyw), Vek+1)) = 3, which precisely means
that Vi) and Vyk41y are strongly separated. This completes the proof. L]

Proof of Proposition A.6. Lemmas A.7 and A.8 show that the metric in AX
is coarsely equivalent to the maximal number of separating pairwise strongly
separated hyperplanes. The same conclusion holds for the metric in T'X according
to [Genl, Proposition 23]. The conclusion follows. L]

It is worth noticing that, if a group acts on the CAT(0) cube complex we are
considering, the quasi-isometry provided by the previous proposition is equivariant.
As a consequence, the conclusion of Theorem 6.47 also holds with respect to the
contact graph.
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B. Morse subgroups of right-angled Artin groups

As promised in Application 4.10, this appendix is dedicated to the proof of
the following statement:

Theorem B.1. A Morse subgroup in a freely irreducible right-angled Artin group
is either a finite-index subgroup or a free subgroup containing only contracting
isometries.

Our proof to this theorem is based on the combinatorial boundary as introduced
in [Gen3]. (An alternative argument can be found in [Tra].) We begin by defining
the vocabulary which we will use below.

Fix a CAT(0) cube complex X . For any subcomplex Y C X we denote by
H(Y) the set of hyperplanes of X dual to some edge of Y. We define a partial
order < on the set of the combinatorial rays of X by: r; < rp if all but finitely
many hyperplanes of #(r;) belong to H(r2), denoted by H(r1) (a: H(r,). Notice

that, if 0°X denotes the quotient of the set of combinatorial rays by the relation ~
defined by: ry ~ ry if and only if r; <7, and r, < r;; then < induces naturally
a partial order on d°X, also denoted by < for convenience. The poset (9¢X, <)
is the combinatorial boundary of X.If Y C X is a subcomplex, the relative
combinatorial boundary 0°Y of Y in X is the subset of d°X corresponding to
the set of the combinatorial rays included into Y.

The boundary 0°X can be endowed with a graph structure by adding an
edge between two <-comparable rays. In this context, the <-components of 3°X
correspond to the connected components of this graph. In particular, a point of
0°X is isolated if the <-component containing it is a single point. Finally, we
denote by d< the graph metric on 0°X.

The following observation will be useful later:

Lemma B.2. Let X be a finite-dimensional CAT(0) cube complex. Then any
increasing chain in (0°X, <) has length at most dim(X).

Proof. Let ry < --- < r, be an increasing chain in (0°X, <). Our goal is to prove
that n < dim(X) + 1. We begin by proving the following claim:

Claim B.3. Let py,p> be two rays satisfying p1 < p2. All but finitely many
hyperplanes of H(p2)\H(p1) are transverse to all but finitely many hyperplanes
of H(p1)-

Suppose that J € H(p2)\H(p1) is a hyperplane which does not separate p;(0)
and p,(0). Let e denote the edge of p, which is dual to J and let let H € H(p1)
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be a hyperplane which does not separate p;(0) and p2(0) nor p,(0) and e. Let
e1, ez denote the edges of pj, pp respectively which are dual to H. By noticing
that J separates p,(0) and e, but does not separate p;(0) and p,(0) nor p;(0)
and ey, it follows that J separates ¢; and e,. A fortiori, J and H must be
transverse. This proves our claim.

Now, let us construct a sequence of hyperplanes Jq,...,J,—; by applying
iteratively Claim B.3. Let J; € H(r,)\H(r,—1) be a hyperplane which is transverse
to all but finitely many hyperplanes of H(rp,—;); up to replacing r,—; with a
subray starting from r,—;(k) for some sufficiently large k, we may suppose
without loss of generality that J; is transverse to all the hyperplanes of H(r,—1).
Similarly, fix a hyperplane J, € H(r,—1)\#H(r,—2) which is transverse to all the
hyperplanes of H(r,—») (up to replacing r,—, with a subray); and so on. Thus,
we get a sequence of pairwise transverse hyperplanes Ji,...,J,—;. A fortiori,
n—1 <dim(X), which proves our lemma. (]

Now, let us show that the relative combinatorial boundary of a contracting
subcomplex in the whole combinatorial boundary satisfies some specific properties.

Definition B.4. Let X be a CAT(0) cube complex. A subset S C X is full if
every point of d°X which is <-comparable to some point of S must belong to
S.

Definition B.5. Let X be a CAT(0) cube complex. A sequence of combinatorial
rays (r,) satisfying r,(0) = r,,(0) for every n,m > 0 converges to a combinatorial
ray r if, for every ball B centered at ry(0), the sequence (B Nr,) is eventually
constant to BNr. A subset d C d°X is sequentially closed if, for every sequence
of combinatorial rays (r,) converging to some combinatorial ray r and satisfying
ra(+00) € d for every n >0, r(4+00) € d holds.

Lemma B.6. Let X be a CAT(0) cube complex and Y C X a combinatorially

convex subcomplex. If Y is contracting then 0°Y is a full and sequentially closed
subset of 0°X.

Proof. The fact that 0°Y is full in 09X was noticed in [Gen3, Remark 4.15]. Let
(rn) be a sequence of combinatorial rays such that:

e there exists some xy € X such that r,(0) = xo for every n > 0;
o rn(+00) € d°Y for every n > 0;
e and (r,) converges to some other combinatorial ray r.

We want to prove that r(+o0) € 9°Y . According to [Gen3, Lemma 4.5], it is
equivalent to show that H(r) C H(Y). For convenience, set D = d(r(0),Y).
a
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Suppose that there exists a finite subcollection H C H(r)\'H(Y) such that there
exists some k greater than max(D,dim(X)) so that #H > Ram(k); if such a H
does not exist, then |H(r)\H(Y)| < Ram(max(D,dim(X))) and there is nothing
to prove. Notice that H contains a subcollection #, with at least k pairwise
disjoint hyperplanes. Because there exist at most D hyperplanes separating r(0)
from Y, Ho contains a subcollection H; such that #H; > #Ho — D and such
that no hyperplane of #; separates r(0) from Y. A fortiori, the hyperplanes of
‘H; separate some subray of r from Y.

Now, choose some n > 0 sufficiently large so that the hyperplanes of 7,
separate ¥ and some subray p, C r,. Because r,(+00) € d°Y, we know that
H(r) g H(Y). As a consequence, we can choose some vertex z € r, sufficiently

far away from r,(0) so that there exists a collection V of at least B + 1
hyperplanes intersecting both p, and Y, where B is the constant given by Point
(ii) in Proposition 4.5 applied to Y . Since the hyperplanes of 7, separate p,
and Y, and that the hyperplanes of V intersect both p, and Y, we deduce
that any hyperplane of H; is transverse to any hyperplane of V. Moreover, H;
and V do not contain any facing triple, so (#;,V) define a join of hyperplanes
satisfying Hy NH(Y) =@, V C H(Y) and #V > B + 1. From the definition of
the constant B, it follows that #H; < B. Therefore,

k =#Ho <#H,+ D < B + D,

hence #H < Ram(B + D). Consequently, H(r)\H(Y) is finite, which concludes
the proof. ]

Now we are ready to turn to right-angled Artin groups. First of all, we recall
some classical facts on their cubical geometry. So let I' be a simplicial graph.
The Cayley graph X(I") of the right-angled Artin group A(I'), constructed from
its canonical generating set, is naturally a CAT(0) cube complex. (More precisely,
the Cayley graph is a median graph, and the cube complex X(I') obtained from
it by filling in the cubes, i.e., adding an n-cube along every induced subgraph
isomorphic to the one-skeleton of an n-cube, turns out to be a CAT(0) cube
complex.) For every vertex u € V(I'), we denote by J, the hyperplane dual to
the edge joining 1 and u; every hyperplane of X(I') is a translate of some J,.
It is worth noticing that, for every vertices u,v € V(I"), the hyperplanes J,, and
J, are transverse if and only if ¥ and v are adjacent vertices of I'. Moreover,
the carrier N(J,) of the hyperplane J, coincides with the subgraph generated
by (link(u)) U u(link(u)), where link(x) denotes the collection of the vertices of
' adjacent to u. As a consequence, the stabiliser of the hyperplane J, is the
subgroup (link(u)).
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A key point in the proof of Theorem B.1 will be to understand the structure of
the combinatorial boundary of X(I'). This is the purpose of our next statement.

Proposition B.7. Let I be a connected simplicial graph not reduced to a single
vertex. There exists a unique <-component of 9°X(I') which is not reduced to a
single point. Moreover, its sequential closure is the whole boundary 0°X(I").

Before proving this proposition, we will need several preliminary lemmas.

Lemma B.8. Let X be a complete locally finite CAT(0) cube complex and
r € °X a <-minimal combinatorial ray. Either there exists a hyperplane J
such that r(+o00) € 0°N(J) C 0°X, or H(r) contains an infinite collection of
pairwise strongly separated hyperplanes. In the latter case, r(+00) is an isolated
point of °X.

Proof. According to [Gen3, Lemme 4.8], there exists an infinite collection
{V1,Va,...} C H(r) of pairwise disjoint hyperplanes. For convenience, suppose
that V; separates V; and Vi forevery 1 <i < j <k.

First, suppose that, for every i > 1, there exists some j > i such that V;
and V; are strongly separated. Notice that, for every j; > j» > j3 > 1, if V,
and V;, are strongly separated, as well as V;, and Vj;, then V; and Vj, are
necessarily strongly separated. Consequently, {V;, V>,...} (and a fortiori #(r))
must contain an infinite subcollection of pairwise strongly separated hyperplanes.
Up to taking a subcollection of {V7,V,,...}, let us suppose that V; and V; are
strongly separated for every 1 <i < j. We want to prove that r(4oc) is an
isolated point of 9¢X .

Let p be a combinatorial ray. Up to taking a ray equivalent to p, we may
suppose without loss of generality that p(0) = r(0). If there exists some i > 1
such that J; ¢ H(p) then V;, Vi1, ... € H(r)\'H(p), and because no hyperplane
intersects both V; and V;41, H(p) N H(r) must be included into the set of the
hyperplanes separating r(0) from the edge r N N(V;4+1), so that it has to be
finite. Thus, neither r < p nor p < r holds. From now on, up to extracting a
subcollection of {V7,V>,...}, suppose that Vi, Va,... € H(p). Let J € H(r) be
a hyperplane such that the edge N(J) N r is between V; and V;4; for some
J = 2. Because no hyperplane intersects both V;_; and V;, nor both V;;; and
Vi4+2, we deduce that J separates Vj_; and V4. On the other hand, we know
that V;_; and V,4, intersect p, hence J € H(p). Thus, we have proved that
r < p. By symmetry, the same argument shows that p < r, hence r ~ p. As a
consequence, we deduce that r(+oo) is an isolated point of 9°X .

Next, suppose that there exists some i > 1 such that V; and V; are not
strongly separated for every j > i. Up to taking a subcollection of {V;, V,,...},
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we may suppose without loss of generality that i = 1. So we know that, for every
i > 1, there exists a hyperplane H; intersecting both V; and V;. Consequently,
(N(V1), N(r), N(V;), N(H;)) is a cycle of four convex subcomplexes. Let D; < X
be the flat rectangle given by Proposition 2.7; for convenience, we identify D;
with its image in X . Write 0D; = u; Up; Uv; Uh; where u; C N(V1), pi C N(r),
v; C N(V;) and h; C N(H;) are combinatorial geodesics. Because X is locally
finite, up to taking a subsequence we may suppose without loss of generality
that (D;) converges to a subcomplex D, in the sense that, for every ball B
centered at r(0), the sequence (B N D;) is eventually constant to B N Dy.
Noticing that each D; is a flat rectangle and that p; i _)—+>oo +00, we deduce
that Do, is isometric to either [0, +00) x [0, +00) or [0, +00) x [0, L] for some
L > 1 (depending on whether (length(x;)) is bounded or not). If J denotes
the hyperplane dual to the edge {0} x [0,1] of Dy, and p the combinatorial ray
[0, +00) x {0} C Dy (which is also the limit of (p;)), then p(400) € I°N(J)
since p C N(J) by construction. On the other hand, we know that p; C N(r)
for every i > 1, so p C N(r). Because the hyperplanes of the subcomplex N(r)
are precisely the hyperplanes intersecting r, it follows that p < r. Finally, since
r is <-minimal by assumption, necessarily

r(+o00) = p(+00) € 3°N(J),

which concludes the proof. ]
Lemma B.9. Let ' be a connected simplicial graph which is not reduced to
a single vertex and H, H' two hyperplanes of X(I'). There exist a sequence of

hyperplanes
Ho=H, H,....,Hyp—y, Hy =T

of X(I') such that, for every 0 <i <n — 1, there exists two adjacent vertices
u,v € V(I') and some g € A(T') such that H; = gJ, and Hjy1 = gJy).

Proof. Up to translating by an element of A(I"), we suppose without loss of
generality that H = J,, and H' = gJ, for some u,v € V(I') and g € A(T"). We
argue by induction on the length of g. If |g| =0 then H' = J,. Let

Zog = U, Z1y...,2Zp—1, Zyr =V
be a path in I' from u to v. Then the sequence of hyperplanes
JZ():H'J le,.-., er_l, erIH,

allows us to conclude. Next, suppose that |g| > 1. Write g as a reduced word hk
where h € A(I") and k € (w)\{l} for some w € V(I'). Fix a vertex x € V(I')
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adjacent to w (such a vertex exists since I is a connected graph which is not
reduced to a single vertex). Let

20:x7 le---szl‘—ls Zr =
be a path in I" from x to v. Then
gJZ():ng:th’ 8Jz1seovs 82y &8Iz, = 8Ty

defines a suitable sequence of hyperplanes from hJ, to gJ,. Noticing that
|h| < |g|, we deduce from our induction hypothesis that there exists a suitable

sequence of hyperplanes from J, = H to hJ,. By concatenating our two
sequence of hyperplanes, we get a suitable sequence of hyperplanes from H to
gJ, = H', which concludes the proof. ]

Lemma B.10. Let T" be a simplicial graph and u € V(I') a vertex which is not
isolated. Then 1 < diam<d“N(J,) < 4.

Proof. We know that N(J,) C (star(u)) = (u) x {link(u)). Because u is not an
isolated vertex of I', link(u) is non-empty, so that N(Jy,) is included into the
convex subcomplex (star(u)) which decomposes as a Cartesian product of two
unbounded subcomplexes, hence

diam<d°N(J,) < diam<0d°(star(u)) = 4.

Moreover, since (star(x)) contains a combinatorial copy of R?, it is clear that
the d°N(J,) contains at least two two points, hence diam<d“N(J,) > 1. L]

Lemma B.11. Let T" be a simplicial graph and u,v € V(I') two adjacent vertices.
Then diam< (0°N(Jy) U 3°N(Jy)) < 10.

Proof. Let r, (resp. ry) denote the combinatorial ray starting from 1 and labelled
by u-u---- (resp. labelled by v-wv---). Because u € link(v), we know that
&, := ry(4o00) belongs to d°N(Jy); similarly, &, := ry(4+00) € 0°N(J,). Now,
let p denote the combinatorial ray starting from 1 and labelled by u-v-u-v---.
The situation is the following: (u,v) defines a convex subcomplex isomorphic to
R2, and r, corresponds to the horizontal ray [0, +oc) x {0}, r, to the vertical
ray {0} x[0,+0o0) and p to the “diagonal” ray starting from the origin included
into the upper-right quadrant. In particular, r, < p and r, < p. For convenience,
set £ := p(+00). Thanks to Lemma B.10, we deduce that

diam< (0°N(Jy) U °N(Jy)) < diam<d° N(Jy,) + d<(&y, &) +diam<d° N(Jy) < 10,

since d<(&y,&y) < d<(&y,&) + d<(&, &) = 2. This concludes the proof. O
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Proof of Proposition B.7. Let r{,r, be two combinatorial rays such that r{(+o0)
and r;(4o00) are not isolated points of 0°X(I"). We want to prove that r](400)
and r;(+o0) belong to the same <-component of 3°X(I).

First, as a consequence of Lemma B.2, there exist two <-minimal combina-
torial rays ry,r, such that r; <r; and r, < rj. So it is sufficient to prove that
r1(+00) and ra(+o00) belong to the same <-component of d¢X(I"). We deduce
from Lemma B.8 that there exist two hyperplanes H;, H, of X(I') such that
r1(+o0) € 0°N(H;) and ra(+o0) € ° N(H3). Let

Ji=Hy, J2,...,J0n—1, Jn= Hy

be the sequence of hyperplanes provided by Lemma B.9. We deduce from
Lemma B.11 that
n—1
d<(r1(+00),r2(+00)) < Y " diam(d° N(Jx) U 3°N(Ji41)) < 10(n — 1) < +o0.
k=1
A fortiori, r1(+00) and ra(+0c0) belong to the same <-component of 9°X(T").
Thus, we have prove that d°X(I") contains at most one <-component which
is not reduced to a single point. On the other hand, we assumed that I" is not
reduced to a single vertex, so X(I') contains a combinatorial copy of R?, which
implies that 9°X(I") contains at least one <-component which is not reduced to
a single point. Consequently, we have proved the first assertion of our proposition.
Let us denote by d the unique connected component of 3¢ X(T").
Let r be a combinatorial ray such that r(0) =1 and such that r(4o00) is an
isolated point of 9 X(I'), and let

1 = g oy, + By - o

denote the infinite reduced word labelling r (where £1,£, € V(I") U V(I')71).
Fix some n > 1. Say that ¢, € (u) for some u € V(I') and let v € V(T") be a
vertex adjacent to u (such a vertex exists since [' is a connected graph which
we supposed not reduced to a single vertex). Set

+ +1 +1 +1
wn :ﬂl...,@n_l.gn.v -V -V sl

and w, = w,} if wl is a reduced word and w, = w; otherwise. Notice that
at least one of w, and w;, must be reduced, so that w, has to be reduced. In
particular, if we denote by r, the path in X(I") starting from 1 and labelled by
wy, then r, is a combinatorial ray. Moreover, r, eventually lies in £;---£,-N(J,),
so that ry(+00) € £1---£,-9°N(Jy). As a consequence of Lemma B.10, 9°N(J,,)
is not reduced to a point and its <-diameter is finite, so that 9 N(J,), and a
fortiori £, ---£,-0°N(J,), cannot contain isolated points of 9°X(I"). We conclude
that r,(+o0) € 0.
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By construction, our sequence (r,) is eventually constant to r on each ball,
so that (r,) converges to r. Since we know that r,(+0c0) € d for every n > 1,
we deduce that r(+o00) belongs to the sequential closure of d, which concludes
the proof of our proposition. [

We are finally ready to prove Theorem B.1.

Proof of Theorem B.1. Let I' be a connected simplicial graph which is not
reduced to a single vertex, and let H be a Morse subgroup of A(I'). According
to Corollary 4.7, there exists a contracting convex subcomplex Y C X(I') on
which H acts cocompactly. Therefore, it follows from [Gen3, Remark 4.15]
and Lemma B.6 that 0°Y is a full and sequentially closed subset of 9°X(I").
We deduce from Proposition B.7 that, if 0°Y contains an isolated point of
0°X(I"), then 0°Y = d°X(I"), so that X(I') is a neighborhood of Y according
to Lemma 6.39. It follows that H acts cocompactly on X(I'), so that H must
be a finite-index subgroup of A(T).

From now on, suppose that d°Y contains only isolated points of 3°X(I'). As a
consequence, the endpoints at infinity of an axis of any non-trivial element of H
must be isolated in d° X(I"), since they necessarily belong to d°Y , so we deduce
from Theorem 6.10 that any non-trivial isometry of H is contracting. Now, we want
to prove that H is free. Let J be a hyperplane. As a consequence of Lemma B.10,
d°N(J) does not contain any isolated point of 9 X(I"), so that 0 N(J)NI°Y = .
Since a locally finite CAT(0) cube complex of infinite diameter must contain a
combinatorial ray, we deduce that the intersection N(J)NY is necessarily finite.
Therefore, because the hyperplanes of Y are precisely the intersections of the
hyperplanes of X(I') with Y, it follows that the hyperplanes of Y are finite. In
fact, since H acts cocompactly on ¥, we know that the hyperplanes of Y are
uniformly finite, so that ¥ must be quasi-isometric to a tree according to [Gen2,
Proposition 3.8]. A fortiori, H must be quasi-isometric to a tree, which implies
that H is virtually free (see for instance [GdIH, Théoreme 7.19]), and in fact free
since H is also torsion-free (see [Sta]). L]

Acknowledgments. I am grateful to Hung Tran for useful comments on the first
version of this paper.
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