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Moser's shadow problem

Jeffrey C. Lagarias, Yusheng Luo and Arnau Padrol

Abstract. Moser's shadow problem asks to estimate the shadow function ahin), which

is the largest number such that for each bounded convex polyhedron P with n vertices

in 3-space there is some direction v (depending on P) such that, when illuminated by

parallel light rays from infinity in direction v, the polyhedron casts a shadow having

at least shin) vertices. A general version of the problem allows unbounded polyhedra

as well, and has associated shadow function su(n). This paper presents correct order

of magnitude asymptotic bounds on these functions. The bounded shadow problem has

answer Sf,(n) 0(log(«)/(log(log(n))). The unbounded shadow problem is shown to

have the different asymptotic growth rate s„(n) 0(1 Results on the bounded shadow

problem follow from 1989 work of Chazelle, Edelsbrunner and Guibas on the (bounded)

silhouette span number s£(n), defined analogously but with arbitrary light sources. We

complete the picture by showing that the unbounded silhouette span number s*(n) grows

as ©( log(n)/(log(log(n))).

Mathematics Subject Classification (2010). Primary: 52B10; Secondary: 51N15, 65D18,

68U05, 90C05.

Keywords. Moser's shadow problem, silhouette span problem, 3-dimensional polytopes and

polyhedra, shadows and silhouettes.

1. Introduction

This paper gives complete answers to several variants of a problem raised

in 1966 by Leo Moser [Mo] in an influential list of problems in discrete and

combinatorial geometry, later reprinted in 1991 [Mos]. Problem 35 of Moser's list
is as follows.1

1 We have changed the original notation / to s in stating Problems 1 and 2.
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Problem 1. Estimate the largest s s(n) such that every convex polyhedron of
n vertices has an orthogonal projection onto the plane with s(n) vertices on the

'outside'.

A nearly equivalent problem was formulated in a 1968 paper of G. C. Shep-
hard [She2, Problem VIII].

Problem 2. Find a function s(u) such that every convex polyhedron with v

vertices possesses a projection which is an «-gon with n >s{v).

This problem has been called Moser's shadow problem ([CEG, p. 140], |CFG,
Problem BIO]), because such projections can be viewed as the shadow of the

polyhedron cast by parallel light rays coming from a light source "at infinity".
The problem can be formulated in two variants, depending on whether or not

unbounded polyhedra are allowed. Shephard's version of the problem [Shel, She2|

definitely restricts to bounded polyhedra since he treats polyhedra that are the

convex hull of a finite set of points. Moser's original problem statement does

not explicitly indicate whether polyhedra are required to be bounded, though he

probably had bounded polyhedra in mind. In any case the unbounded version of
the problem is of interest because polyhedra defined as intersections of half-spaces

naturally arise in linear programming, and certain linear programming algorithms
have an interpretation in terms of shadows.

In this paper we consider both the bounded and unbounded case. To distinguish
the bounded case from the general (unbounded) case we let Sb(n) denote the

minimal value over bounded polyhedra (i.e., 3-polytopes) having n vertices,
and su(n) denote the minimal value allowing unbounded polyhedra with n vertices

as well (counting only bounded vertices). We call Moser's shadow problem the

problem of determining the growth rate of s£>(«). We also formulate in analogy
Moser's unbounded shadow problem, which concerns the growth rate of su(n).

A related problem, the silhouette span problem, was formulated by Chazelle,
Edelsbrunner and Guibas in 1989 [CEG]. It is a variant of the shadow problem
that allows more freedom in the location of the light source from which the

shadow is cast. It considers shadows cast by point light sources at finite distance

from the polytope. The corresponding bounded silhouette span number s*h (n) is

defined analogously as the shadow number, maximizing over all finite locations

of the light source. It is also possible to define the unbounded silhouette span
number, s*(n). Its formal definition is a little subtle, and is given in Section 2.

Chazelle, Edelsbrunner and Guibas [CEG, Theorem 4] determined the exact

asymptotics of the bounded silhouette span function s*b{n).
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Theorem 1 (Chazelle-Edelsbrunner-Guibas). The hounded n-vertex silhouette

span number s^(n) for 3-dimensional convex polytopes satisfies

In this paper, our object is to determine the asymptotic growth rates of the

other three functions Sb{n), $u(n) and s*(n), as n —> oo. In particular, the

original Moser shadow problem corresponds to sb(n)-
Our first result puts on record a complete solution to Moser's shadow problem

in the bounded polyhedron case.

Theorem 2. The hounded n-vertex shadow number Sb(n) for 3-dimensional

convex polytopes satisfies

As we shall explain below, this result should be attributed to Chazelle,
Edelsbrunner and Guibas, in the sense that all the ingredients for a proof are

present in their 1989 paper [CEG], However, although they mentioned the shadow

problem, they did not point out that their results implied a solution. In Section 3

we provide the missing steps for the proof of Theorem 2.

The remainder of the paper is devoted to the unbounded polyhedron versions

of the shadow and silhouette span problems. In Section 4 we prove that the

unbounded shadow function s„(») is eventually constant.

Theorem 3. The unbounded n-vertex shadow number su(n) far 3-dimensional

convex polyhedra satisfies

su(n) ©(1).

In fact su(n) 3 for all n >3 (and su(l) 1 and su(2) 2).

Finally, in Section 5 we treat the unbounded version of the silhouette span

problem. There is a subtlety in generalizing the definition of silhouette span to
unbounded polyhedra. Certain edges visible in the shadow may not correspond
to an edge of the unbounded polyhedron itself. Our definition, which in the

bounded polyhedron case is equivalent to that used in [CEG, Sect. 5.3], allows

as potentially visible edges corresponding to the recession directions of the

unbounded polyhedron. See Section 2. We obtain the following result, which
shows the order of magnitude of the silhouette span number does not decrease

when one allows unbounded polyhedra.
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Theorem 4. The unbounded n-vertex silhouette span number s*(n) for 3-
dimensional convex polyhedra satisfies

This result is proved by reduction to the bounded silhouette span case. Notice
that our results show that the shadow and silhouette span problems have different

growth rates in the unbounded case (in contrast with the bounded case, where

both coincide).

1.1. Related work. After Moser's original formulation in 1966, the problem was

restated several times [CFG, Mo, Mos, She2], The problem book of Croft, Falconer
and Guy [CFG, Problem BIO| reports that Moser conjectured s/,(«) C)( login))
and it sketches the construction of a polytope whose shadow number is of this
order of magnitude. Shephard [She2, Problem VIII] did not conjecture a value

for Sb(n). However, in the dual formulation terms of sections |She2, Problem VI |,

he proposed a lower bound for the silhouette span problem of the form n" for

some constant 0 < a < 1.

The 1989 paper of Chazelle, Edelsbrunner and Guibas [CEG] treated a diverse

set of problems concerning the combinatorial and computational complexity of
diverse stabbing problems in dimensions two and three, among which the silhouette

span problem. Their approach to the silhouette span problem (in the bounded case)

exploited the polarity operation, and was shown to be equivalent to the cross-
section span problem: finding the maximal number of facets of the polar polytope
which can be intersected with a plane. This problem is actually another of the

problems in Shephard's list |She2, Problem VI], Both problems are solved and

shown to be of order 0( log(n)/ log log(«))).
The fact that 5*b{n) > Sb{n), yielding an upper bound for sbin), was noted

in [CEG, pp. 174-175]. As we remarked above, [CEG| also contains ingredients

sufficing to prove a lower bound for $b(n). Indeed, under polarity the shadow

problem can be seen to correspond to maximizing the number of facets that can
be intersected with a plane that goes through the origin. Although in [CEG] the

authors only claim results for the silhouette span problem and the cross-section

span problem, their lower bound proof for cross-section span only uses planes

through the origin [CEG, Lemma 5.1], and hence is also valid for Moser's shadow

problem. Thus Theorem 2 follows from the results in |CEG]. However, the relevant

bound in Lemma 5.1 is stated for an unnamed function c^(n) and their paper
did not remark on its consequences for the shadow problem, which has been

considered open until now.
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Glisse et al. [GLMP] studied the expected shadow number of a random 3-

polytope obtained by a Poisson point process on the sphere and showed it to be

of order

1.2. Higher-dimensional generalized shadow problems. Shadow problems
can be generalized to higher dimensions by considering k -dimensional
shadows/silhouettes of d -dimensional polytopes.

The special higher-dimensional case of 2-dimensional projections of d-
dimensional polyhedra has been studied in connection with linear programming
algorithms. The shadow vertex simplex algorithm is a parametric version of the

simplex algorithm in linear programming introduced by Gass and Saaty [GS] in

1955. The analysis of this algorithm leads to the study of 2-dimensional shadows

of d -dimensional polyhedra. A variant of the algorithm was studied in detail by

Borgwardt [Borl, Bor2, Bor3, Bor4], Later Spielman and Teng [ST| and Kelman
and Spielman [KS| studied the shadow vertex simplex algorithm in connection

with average-case analysis of linear programming problems.
Several different types of higher-dimensional shadow problems can be considered:

(1) Worst case problems concern the problem of maximizing shadow numbers

for a fixed number of vertices. The worst case behavior of the shadow vertex
method is related to polyhedra having large shadows, For dimension d 3

it is easily seen that for all n > 4 there are polyhedra having all vertices

visible in a shadow: one may take a suitable oblique cone over a base that

is an (,n - l)-gon. Amenta and Ziegler [AZ] and Gärtner, Helbling, Ota and

Takahashi [GHOT] (see also [GJM]) present constructions of bad examples

of 2-dimensional shadows in all higher dimensions d.

(2) Average case problems concern the average size of k -dimensional shadows

taken with respect to some measure on the set of directions. Such problems
for 2-dimensional shadows arose from the average case analysis of the

shadow vertex algorithm. In the 1980's Borgwardt [Borl, Bor2, Bor3, Bor4]
developed a polynomial time average case analysis of the variant of the

simplex method for linear programming that uses the shadow vertex pivot
rule. The shadow vertex simplex algorithm later provided the fundamental

example used in Spielman and Teng's [STJ theory of smoothed analysis of
algorithms. Their analysis requires obtaining some control on the (average)
size of shadows, as a function of the numbers of variables and constraints in

the linear program. Further developments of smoothed analysis are given in

Deshpande and Spielman [DS], Keiner and Spielman [KS], Vershynin [Var],
and Dadush and Huiberts |DH].
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(3) Minimax case problems for 2-dimensional shadows in dimensions d > 4

generalize the shadow problem treated in this paper. Toth [Tot] has studied

line stabbing numbers of convex subdivisions in all dimensions, extending
the analysis of Chazelle et al. [CEG]. His lower bounds induce lower bounds

for 2-dimensional shadow numbers of d -polyhedra, however his examples
for upper bounds are not face-to-face, and hence do not arise from convex

polytopes.

The general minimax problem for k-dimensional shadows is:

Problem 3. Estimate the growth rate of the maximal number Sb(n,d,k) (resp.

s^(n,d,k)) such that every d -polytope with n vertices has a A:-dimensional

shadow (resp. silhouette) with Sf,(n.d,k) (resp. s*h(n, d. k)) vertices. Do the

same for maximizing over all d -polyhedra su(n,d,k) (resp. s*(n,d,k).)

To our knowledge all these minimax problems are open in dimensions d > 4;
and so are the analogue silhouette span questions.

2. Definitions

We follow the terminology for convex polytopes in Ziegler [Zie, pp. 4-5], and

define a polyhedron in 9d to be a finite intersection of closed half-spaces, which

may be unbounded, and a polytope in Rrf to be the convex hull of a finite set

of points; that is, a bounded polyhedron. Faces of dimensions 0, 1 and d — 1 of
a d -dimensional polyhedron are called vertices, edges, and facets, respectively.
We say that a polyhedron is pointed if it does not contain a full line. This paper
exclusively considers the 3-dimensional case R3.

A shadow of a (possibly unbounded) polyhedron P in R3 is the image of P

under an affine projection ity : R3 -* V onto a two-dimensional affine flat V.
The shadow number s(P) of P is the maximum number of vertices on the

boundary of one of its shadows. In this definition we may restrict ny to be

orthogonal projections onto a linear subspace V perpendicular to a given unit

vector v e S2, which we define to be the shadow in direction v. Alternatively,
the shadow number s(P) of P can also be interpreted as the maximal number of
1 -dimensional faces of the "cylinder" resulting from the Minkowski sum P +Rv,
varying over all directions v.

The n-vertex bounded shadow number Sb(n) and the n-vertex unbounded

shadow number su(n) are given by

Sb(n) := min{s(/>) : P is a bounded 3-polyhedron with n vertices},

su(n) : min{s(f) : F is a 3-polyhedron with n (bounded) vertices}.
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k

Figure 2.1

A shadow and a silhouette of a polytope

The definition of silhouette span of a bounded polyhedron P given in [CEG,
Section 5.3, p. 174], is an intrinsic definition as a subset of the boundary of P.
Here we use an alternative definition, equivalent as far as the bounded silhouette

span is concerned, that parallels the "cylinder" definition of shadow numbers and

is better suited for unbounded polyhedra.

For a (possibly unbounded) polyhedron P c M3 and a point p e K3

outside P, let

Cp(P) — {p + Av : x e P - p, A > 0}

be the closure of the cone with apex p spanned by P. A silhouette of P with

respect to p is a section of Cp(P) with a transversal plane (for example, a plane

separating p from P). The size of a silhouette is its number of vertices (in
bijection with the rays of the cone), and the silhouette span s*(P) is the size of
the largest silhouette of P.

In [CEG], Chazelle et al. define the silhouette of a bounded polytope P with

respect to a point p outside P as the collection of faces F of P that allow
a supporting plane FI of P such that p lies in H and F is in the relative

interior of P n H ; and measure its size as its number of vertices. To avoid

confusion, we may call this the pre-silhouette of P with respect to p (such

complexes are sometimes referred to as the shadow-boundary of P from p,
see for example [She3]). When p is not coplanar with any facet of P, the

pre-silhouette is a collection of edges and vertices in the boundary of P (but
otherwise it might also contains facets). In this case, central projection from p
maps the pre-silhouette bijectively to the boundary of the silhouette. Note that if
there is a 2-dimensional face in the pre-silhouette, at most two of its vertices can

be in the pre-silhouette (by the relative interior condition), and these remain in the

pre-silhouette even after a small perturbation of the point p. Hence, silhouettes

of maximal size can always be attained from points p that do not lie in any plane



484 J. C. Lagarias, Y. Luo and A. Padrol

A 2-dimensional unbounded polyhedron P as seen from a point p.
The cone with apex p spanned by P is not closed, one boundary edge

(dotted lines) is missing. Any transversal section of the closure of
this cone gives a silhouette, one example is the highlighted segment.

supporting a facet of P, and both definitions give exactly the same silhouette

spans.

However, this definition of pre-silhouettes is not well adapted for unbounded

polyhedra. If P is unbounded, we wish to consider also as part of the silhouette
those faces of the recession cone that are visible from p at infinity. Indeed,
silhouettes can be interpreted by projecting onto a canvas that separates P from
a viewer placed at p. Unbounded facets are seen as half-open polytopes, in
which part of the boundary may be missing, as it corresponds to limit directions

at infinity. An example with missing boundary is sketched in Figure 2.2 for the

planar case.

Our definition includes this extra boundary (this is why the closure is needed in

the definition of Cp(P)). In order to reformulate the definition of pre-silhouettes
to this set-up, one should consider also some extra unbounded edges of P in

the directions of the recession cone. To each such unbounded edge it adds a

"vertex at infinity". The silhouette size of P viewed from p would now count
the additional "vertices at infinity" included this way.

We now define the bounded silhouette span function as a min-max quantity.
The n-vertex hounded silhouette span number s£(«) and the n -vertex unbounded

silhouette span number s*(n) are given by

s*b(n) := min{s*(F) : F is a bounded 3-polyhedron with n vertices},

5*(«) := min{s*(F) : F is a is a 3-polyhedron with n (bounded) vertices}.

These four functions satisfy the following inequalities,
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s*b(n) > 5*(n)

IV IV

Sb(n) > su(n).

The two horizontal inequalities hold because the unbounded numbers minimize
over a larger set than the bounded numbers, for both the shadow problem and

the silhouette span problem. The vertical inequality between silhouette span
numbers and shadow numbers holds because silhouettes from light sources that

are sufficiently far away in the direction of a parallel projection have at least as

many vertices as shadows obtained by that parallel projection (see [CEG, pp. 174—

175] for the bounded case; a similar argument holds for unbounded shadows and

silhouettes).

As discussed in Section 2, the shadow number is bounded from above

by the silhouette span number, and hence the upper bound s/,(n) < s*h(n)

Ö (log(«)/log (log(n))) follows from the upper bound for the silhouette span

problem implied by Theorem 1 (originally from [CEG, Lemma 5.15]):

Corollary 3.1. The hounded n-vertex shadow number sb(n) for 3-dimensional

polytopes satisfies

For the proof in |CEG, Lemma 5.15], Chazelle et al. construct a polytope
with n vertices whose silhouette from each point of view has size at most

ö(log(n)/log (log(«))). Since shadows can be regarded as a special kind of
silhouettes, this is also an upper bound for the shadow number. However the

construction in [CEG, Section 5.2] is very involved, requiring some quite technical

steps. Constructing upper bound examples for the shadow number problem is

actually simpler. For completeness, in Appendix A we present an alternative
direct construction that establishes this upper bound.

To prove Theorem 2, it suffices hence to provide a matching lower bound

for the shadow number. To this end, we use a lower bound result for minimal
line span proved by Chazelle et al. [CEG, Lemma 3.2], Although they used it to

prove a lower bound for the silhouette span number, it actually serves to prove a

stronger result, a lower bound for the shadow number.

3. Moser's (bounded) shadow problem
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Proposition 3.2. The hounded n-vertex shadow number s/f») for 3 -dimensional

polytopes satisfies

,bM n I.
\log log(w))

Proof. Let P be a bounded polytope in R3 with n vertices. The intersection

of the normal fan of P with the unit 2-sphere S2 is a spherical polyhedral
subdivision V of §d into n regions (see [Zie, Section 7|).

Now, consider the central (gnomonic) projection y : S2 —> H that maps the

open lower hemisphere S2 := S2 (T {(x\,X2,xj) : x3 < 0} bijectively to the plane
H {(xi,X2,x3) : x3 - I}, by mapping v g S2 to the unique intersection

point of the line through 0 and v with H.
By rotating P if needed, we may assume that the lower hemisphere §2

intersects at least |~«/2] regions of V. In this case, the central projection of
the lower hemisphere induces a polyhedral subdivision of the plane into has

at least \n/2] regions. By [CEG, Lemma 3.2], there is a line I that stabs

G (log(«)/log log(«))) cells of this subdivision. Let Hy be the linear plane
that contains its preimage y~l(l). By construction, If intersects the interior of
f2 (log(«)/log log(n))) cells of V.

Let v be a normal vector to /f, and ny the orthogonal projection along v.
Then regions of V whose interior is intersected by If. give rise to vertices

of 7ty(P), the shadow of P in direction v. This follows essentially from [Zie,
Lemma 7.11], which shows that the normal fan of 7ty(P) coincides with the

restriction of the normal fan of P to Hy.
Thus P has a shadow with at least (log(«)/log (log(n))) vertices. Since

this can be done for each bounded 3-polytope with n vertices, we conclude

a (jJgLf.

4. Moser's unbounded shadow problem

In this section, we will determine the shadow number for unbounded polyhedra.
There are two results. In Proposition 4.1 we give a lower bound showing s(Pn) > 3

for n > 3. In Proposition 4.2 we will construct a sequence of unbounded polyhedra
Pn, for all n > 4, having n vertices and n faces and whose shadow number is

s(Pn) 3, giving an upper bound for su(n). 2 Both results together establish

Theorem 3.

2 We are grateful to an anonymous reviewer who suggested this example to improve our original
C>( 1) upper bound from 5 to 3.
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4.1. Unbounded shadow problem: Lower bound. The following proposition
gives a lower bound for the unbounded shadow number function.

Proposition 4.1. The unbounded n -vertex shadow number su (n) for 3 -dimensional

convex polyhedra satisfies

su(n) > 3

for all n > 3 {and s„(l) 1 and su{2) 2).

Proof Let P be an unbounded polyhedron with at least 3 vertices. Let p\ and

P2 be two vertices of P connected by an edge e, and p3 a third vertex. We

consider a vector u normal to a supporting plane for e, and a vector w normal

to a supporting plane for p3 that is not orthogonal to e. Finally, we take a vector

v orthogonal to u and w.
Recall that a face F of P is preserved under the orthogonal projection jty

along the vector v if one of the supporting planes for F has an outer normal

vector orthogonal to v (by preserved we mean that ny(F) is a face of ny{P)).
Hence, e is preserved, and therefore so are p\ and p2. Moreover the images

of pi and p2 under ny are different since v is not parallel to e. Moreover,

/73 is also preserved by construction. We conclude that the orthogonal projection
Ttv P has at least three vertices.

For n 1 and n 2, the proof is straightforward.

4.2. Unbounded shadow problem: Upper bound. The following construction

gives an upper bound for unbounded shadow number function.

Proposition 4.2. The unbounded n -vertex shadow number su(n) for 3 -dimensional

convex polyhedra satisfies

Su(n) < 3

for all n.

Proof. It suffices to show, for each n > 4, that there is an unbounded pointed
convex polyhedron with n vertices Pn whose shadow number s(Pn) is 3. For

n > 4, consider the convex polyhedral cone

Qn := [x e R3 : (x, wfo <0, for 0 < k < n — l}

where w/ç := (cos sin (j^y) — l) and (•, •) denotes the standard scalar

product. This is a cone over a regular {n — l)-gon. It has a single vertex at the

origin and n — 1 (unbounded) facets. Now we stack a vertex on top of each of
these n — 1 facets. That is, for each facet we add a point that is slightly beyond



Figure 4.1

An instance of Pn, for n 9

it and beneath the planes defining the remaining facets, and take the convex
hull. We obtain an unbounded polyhedron with n vertices (the origin plus n — 1

stacking points), and 3(n — 1) (unbounded) facets (see Figure 4.1). One explicit
realization is the following polyhedron Pn :

Pn := {x e M3 : (x, Wk) < 1 and (x, |u>£ + \^k± 1} 5 0; for 0 < k < n — l}.

The shadow number of Pn is at most 3. Indeed, let 7T : K3 -> M2 be a linear

projection. If n{Q„) does not cover the whole plane then it is a two-dimensional

cone pointed at the origin and bounded by the image of two of the rays of Qn,
which are also rays of Pn. Besides the origin, only the vertices of P„ stacked

to facets incident to these rays can appear as vertices of the shadow 7t(Pn).
Moreover, for each of the two sides, only one of the two neighboring stacked

vertices can be visible: They cannot lie both outside the shadow of Qn, as the

segment between both intersects the interior of Qn (because each ray of Qn is

preserved by the stacking operation).

5. The unbounded silhouette span problem

In this final section, we consider silhouettes of possibly unbounded polyhedra,
and determine the asymptotics of the unbounded silhouette span function s*(n).
We will show that the asymptotic growth rate of s(n) and s*b(n) are of the same

order by reducing the unbounded case to the bounded case using a projective
transformation.

As before, the proof of Theorem 4 will be split in two parts, by providing
matching upper and lower bounds. The upper bound follows from the trivial
inequality s*(«) <s*b{n) and Corollary 3.1:



Moser's shadow problem 489

Corollary 5.1. The unbounded n-vertex silhouette span number s*(n) for 3-
dimensional convex polyhedra satisfies

Proposition 5.2. The unbounded n-vertex silhouette span number s* in for 3-
dimensional convex polyhedra satisfies

Proof. This lower bound holds for polytopes by Proposition 3.2, so we concentrate

on unbounded polyhedra.
Let P be an unbounded polyhedron with n > 0 vertices (which is therefore

pointed). After a suitable rotation, we might assume that all its facets have a

normal vector with a negative third coordinate, and hence for M e I large

enough the plane H-m, defined by H-m {(x,y,z) : z — M), avoids P.
We will take some very large M » 0 with H-m n P 0 and consider the

projective transformation

sending H-m to infinity (see [Zie, Appendix 2.6] for a brief introduction to

projective transformations in the context of polyhedra).
It maps bijectively M 3 \ H-m to R3 \ Hm The closure of the image of the

polyhedron P is the (bounded) polytope Q bounded by the inequalities inherited

from P via f together with the new inequality z < M, which supports a face

F of Q. F is the image of the "face at infinity" of P, and 4>(P) — Q\ F.
By Proposition 3.2 we can find a direction v (vi,v2,v3) such that the

shadow of Q in direction v has at least Œ (log(«)/log log(«))) vertices. Since

small perturbations do not decrease the shadow number, we can assume that

v3 ^ 0.

When i>3 / 0, lines in direction v are mapped by </>~l to lines through
the point p —M). Consequently, lines in direction v through a

point of <p(P) Q \ F are mapped by f~l bijectively to lines through p and

a point in P. In fact, cp(Cp(P) \ p) is easily seen to be the one-sided cylinder
(<2 + vE) (T {z < M). Hence, the shadow of Q in direction v has the same

number of vertices as the silhouettes of P from p. This can be seen explicitly
by noting than the image of the silhouette Cp(P) (T H_m_ under the projective

fi : E3 \ H-m\ H-M R3 ^ HM
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transformation 0 is the polygon (Q + vR) n II-m together with the fact that

(admissible) projective transformations do not change the combinatorial type.

Thus, the silhouette span of P is Q (—'?s^ |.
\ log log(n)) J

A. On the upper bound for Moser's bounded shadow problem

This appendix is devoted to an alternative direct proof of Corollary 3.1, much

simpler than the one in [CEG, Section 5.2], but that applies only to the shadow

problem and not to the silhouette span problem. The proof will be based on a

construction that will be given in terms of polygonal subdivisions. A polyhedral
subdivision £ of Ud is a finite set of d -polyhedra (called regions), whose union
is Kd and such that the intersection of any two is a common face.

An important point in the proof is to be able to certify that the subdivisions

we use arise from a 3-dimensional polytope, which is the polytope we seek to

construct, in a way that reverses the procedure used in the proof of Proposition 3.2.

Definition 5. We say that a polyhedral subdivision £ with n regions is liftable
if it can be obtained from a polytope P with n vertices, by intersecting the

normal fan of P with the unit 2-sphere §2 and centrally projecting the open
lower hemisphere to the plane.

We will repeatedly use three operations. The first pair are classical, based on

Steinitz's A - Y operations, and correspond to the polytope operations of stacking
and truncating; the third is a combination of both these operations.

Figure A.l
Examples of truncating, stacking and unzipping. The shadowed

regions form the spine of the unzipping, which is of length 4.
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Definition 6. Let £ be polyhedral subdivision of R2.

(1) Let v be a degree-3 vertex with neighbors v\,v2, v3. Truncating v consists in

choosing a point v\ in the interior of each of the edges (v,i;,•) and adding
to £ the triangle with vertices v\ ,v'2,v'3 (and intersecting the remaining
regions with the closure of its complement).

(2) Let T be a triangular region with vertices vi,V2,vj. Stacking onto T
corresponds to adding a vertex v in the interior of T and substituting T
by the three triangles obtained by joining v with an edge of T.

(3) Let T be a triangular region with vertices vi,V2,v$. Unzipping T towards

Vi is an operation that consists in first stacking onto T and then successively

truncating the newly created vertex that is connected to u,. Its length is the

number of truncations, and the regions created with the truncations are the

spine.

See Figure A.l for an example.

Lemma A.l. Truncating and stacking, and hence also unzipping, preserve
liftability.

Proof. This is well known and we omit its proof, see [Zie, Section 4.2].

The whole construction will consist in successively applying these operations
in such a way that at each iteration the new cells are so small that their intersection

pattern with lines can be controlled.
We call a set of planar points in general position if no three are collinear.

Lemma A.2. Let S he a subset of the vertices of a subdivision of R2 that are
in general position. Then the vertices of S can be truncated in such a way that

no line intersects three of the newly created regions.

Proof. From the general position assumption there is some 8 > 0 such that any
line through two points in S stays at distance at least 8 from any third point.
Hence, there exists an e > 0 such that any line that goes through two points, each

at distance at most e from a different point of ,S', stays at distance at least e from
the remaining points of S. The claim follows from the fact that the truncation

regions can be arbitrarily small around the truncated points.

Lemma A.3. Let T be a triangular region of a subdivision, i a line through
one of its vertices v that intersects the interior of T, and e > 0 a real. Then T
can be unzipped towards v in such a way that for every line I' that intersects

at least three regions of the spine, the angle between I and I' is at most e.
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This can he done even when one forces the new vertices to he in general

position with respect to a given point configuration.

Proof. Start by stacking with a point v' on t. Notice that the truncations can

be made with very thin triangles, in such a way that the spine is sufficiently
close to the edge (v,v') in Hausdorff distance. If the pieces have a long enough
diameter with respect to the distance of the spine to the edge, then any vector
whose endpoints belong two non-consecutive pieces of the spine will form a very
small angle with (v.v'). In particular, the line spanned by these points can be

forced to be arbitrarily close to the line i.
The last claim follows from the freedom in the choice of the truncation points

(the starting line I might have to be perturbed before starting if the configuration
has points on it).

We are ready for the proof of Corollary 3.1.

Proof of Corollary 3.1. We will start by constructing a polyhedral subdivision

of the plane with n regions such that no line can intersect more than

Ö (log(«)/log (log(«))) of them. A sketch of the construction is depicted in

Figure A.2.
The starting point of the construction is a regular simplex, inscribed on the unit

sphere with one vertex at the south pole (0,0,-1). We consider the subdivision
£0 obtained by centrally projecting the lower hemisphere of the intersection of
its normal fan with §2. It consists of a bounded triangular region T0 and three

Figure A.2
A schema of the construction in the proof of Corollary 3.1, with
1 1 and k 2. Numbers indicate the level of the regions
(unnumbered regions are at level 2), and spine regions are shadowed.
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unbounded regions. We say that these 4 regions are at level 0. Note that £0 is

a liftable subdivision.

The triangle T0 will be unzipped at length t — 3, for some t > 5 that will be

defined later, in such a way that all the points are in general position. Then we
will truncate t of the 2t — 5 newly created vertices on the spine, in such a way
that that no line intersects three of the newly created regions, using Lemma A.2.
The new regions are at level 1 and 7b is their predecessor.

For i from 1 to k (k will also be defined later), we will repeat this operation
on all the triangles at level i (there are t of them for each triangle at level i — 1

This is done as follows. We process the triangles at level i one by one. First

we select a line through one of its vertices whose direction forms an angle of
at least 2s with all the lines chosen until now (in this and previous levels). This

can be done by choosing a set of well-separated candidate directions beforehand,

one for each region that will have to be unzipped, and setting s accordingly. We

apply then Lemma A.3 to unzip this triangle at length t — 3 in such a way that

any line through two of its non-consecutive spine regions must form an angle of
at most s with its line (and hence cannot intersect two non-consecutive spine

regions of one of the previous spines); while keeping all new vertices in general

position.

Except for the last iteration i — k, once this is done we choose t among
the new spine vertices in each triangle, and we truncate them in such a way that

no line intersects three of these newly created regions, using Lemma A.2. These

new triangular regions are at level i + 1 and their predecessor is the triangle at

level i that contained them.

Observe that, when unzipping, each triangle at level i is replaced by t new

regions at level i + 1 (t — 3 of which are spine regions and 3 are non-spine).
Then we create t triangles at level i + 1 by truncating the spine vertices (when
i < k). This way, the number of regions at level i is 3 for i — 0 and tl for

1 < i < k. That is, the total number of regions is

tk+1 _ i
n 2 4

t — 1

and therefore k < log,(n).
We compute now the maximal number of regions that can be intersected by

a line. By construction, if a line intersects more than 2 regions of a spine, then

it cannot intersect more than two regions from any other spine. Hence, except
for maybe one spine where it can go through at most t — 3 0(t) regions, it
intersects at most 2 regions from the remaining spines. We count these O(t)
separately and continue counting as if no line could intersect more than 2 regions
of any spine.
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Hence, for a triangle at level i, a line can intersect at most 3 non-spine
regions and 2 spine regions at level i + 1. Thus, for each triangle, there are at

most 5 regions that have it as predecessor that intersect any given line. For each

level i > 1, no line can intersect more than two triangles at level i (because we
used Lemma A.2). Since there are k levels > 1, this amounts for at most 10 -k
regions intersected by any single line. And there are at most 3 regions at level

0. These are ö(k) regions that can be intersected in addition to the at most 0{t)
regions in a single spine. Hence, a line crosses at most ö(t +k) 0(t +log,(«))
regions.

Taking t i»g(")

_
log log(n))

gives that at most

o('°g(")
I log (log(n)) I

regions are intersected by any line. Note that any large enough value of n

can be attained by this construction just by taking t — [log(«)/log log(n))J,
k — [log, («)], and adjusting the length at which the triangles are unzipped at

the last iteration.
We are ready to reverse the steps in the proof of Proposition 3.2 to construct

a polytope from the resulting subdivision Indeed, since all the operations
were liftable by Lemma A.l, we can lift £% to the sphere to obtain the lower

hemisphere of the normal fan of a 3-polytope with n vertices. There are only
three regions of the normal fan of P intersecting the upper hemisphere, from
the original simplex, and intersecting cells of the lower hemisphere with linear

planes is equivalent to intersecting with lines. Hence, no plane through the

origin can intersect more than Ö (log(«)/log log(«))) regions of the normal fan

of P, and hence the shadow number of P is at most

.(/)=oÇ '°gw x\ log iog<rt>) y
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