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Rational approximation on quadrics:
A simplex lemma and its consequences

Dmitry KrLeinBock and Nicolas pE SaxcEt

Abstract. We give elementary proofs of stronger versions of several recent results on
intrinsic Diophantine approximation on rational quadric hypersurfaces X C P”(R). The
main tool is a refinement of the simplex lemma, which essentially says that rational points
on X which are sufficiently close to each other must lie on a totally isotropic rational

subspace of X.

Mathematics Subject Classification (2010). Primary: 11J13, 11J83; Secondary: 37A17.

Keywords. Intrinsic Diophantine approximation, quadratic forms, Schmidt games, Euclidean
lattices.

1. Introduction

The classical theory of Diophantine approximation studies the way points
x € R” are approximated by rational points g € Q", taking into account the
trade-off between the size of g and the distance between g and x; see [Cas5, Sch2]
for a general introduction. Sometimes x is assumed to lie on a certain subset of
R”, for example a smooth manifold X ; this leads to the theory of Diophantine
approximation on manifolds, in which there is no distinction between rational
points which do or do not lie in X (this is referred to as ambient approximation).

Let now X be a rational quadric hypersurface of R”, let x € X and let
g € Q" be such that the distance between x and g is less than v (gq), where
¥ is decaying fast enough, namely lim,_, .. 12y (z) = 0. Then g must lie on X
whenever ¢ is large enough! This elementary observation, due to Dickinson and
Dodson [DD] for n = 2 and more generally to Drutu, see [Dru, Lemma 4.1.1],
has in part motivated a new field of intrinsic approximation, which examines the
quality to which points on a manifold are approximated by rational points lying

on that same manifold.
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The paper [KMe] studies the case X = S"~!, the unit sphere in R”. Later
in [FKMSI] the results of [KMe] were significantly strengthened and extended
to the case of X being an arbitrary rational quadric hypersurface. An even more
general framework was developed in [FKMS2]. Roughly speaking, in order to
exhibit points on submanifolds X C R"” which are close enough to rational points
of X, one has to make use of the structure of X (indeed, in general it is not
even guaranteed that X N Q" is not empty). On the other hand, it is shown in
[FKMS?2] that to prove some negative results, that is, to show that many points
of X are not too close to rational points, one often does not need to know much
about X . The main tool on which the argument of [FKMS2] is based is the
Simplex Lemma originating in Davenport’s work [Dav]. The version presented in
[FKMS2, Lemma 4.1] is very general — it applies to any manifold embedded in
R" — and at the same time precise enough to yield some satisfying theorems in
the case of quadric hypersurfaces.

The purpose of this note is to show that in the special case where X is a
rational quadric hypersurface, one can give more elementary and more geometric
proofs of some results of [FKMS2]. This new approach will also yield more
precise theorems. The main point is that one can prove a version of the simplex
lemma with arbitrary hyperplanes replaced by Q -isotropic subspaces of X ; this,
in turn, yields refined information on the diophantine properties of X.

A detailed account of the results that are derived here is given in the next
section. After that, in §3 we prove the simplex lemma for quadrics, Lemma 3.1,
which is central in all the subsequent developments. Applications of the simplex
lemma to Diophantine approximation on quadrics are presented in §4. Those
results are proved along the same lines as the analogous statements for Diophantine
approximation in the Euclidean space R”, but the proofs are included to make
the paper self-contained. Finally, in §5 we discuss some open problems and
possible further directions for the study of intrinsic Diophantine approximation
on projective varieties.

2. General setting and main results of the paper

Since it will make the proofs more transparent, we shall from now on always
work in the projective setting. We denote by P”"(R) the n-dimensional real
projective space. The natural map from R”*! to P”(R) will be denoted by
X > [x]. We now endow R”*! with the standard Euclidean norm | - |, and
explain how this defines a distance on P”(R). The distance between two elements

x and y in P"(R) is equal to the sine of the angle between the two lines in
Rn-{—l :
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dist(x, y) := |sin(x, y)]|.

Equivalently, | |
Vi A Vy|

Ve lllvyll”

where v, and v, are any nonzero vectors on x and y respectively, vy AV, is
the exterior product of v, and v, , and the Euclidean norm is naturally extended
to AZ(R"*1) so that ||vy AV, is the area of the parallelogram spanned by v,
and v,.

If v=1[v] e P(Q), where v = (vy,...,U,41) iS an integer vector with
coprime coordinates, the height of v is simply

dist(x, y) =

H(v):= max |v;l.
1<i<n+1

Given a point x in P"(R) we want to study how well x is approximated by

points v in P*(Q).

Remark 2.1. In order to go back to the setting of Diophantine approximation in
R™, one can consider an affine chart from an open subset of P*(R) to R**!,

For example, if U = {[(x1,...,Xn+1)] : Xn41 # 0}, one can use the chart
U — R”,
[(X[,...,Xn+1)] ad (%,,%)

We consider a projective rational quadric X, given as the set of zeros of a
rational quadratic form Q in n + 1 variables. Namely, for such Q let us consider

2.1 X =[07'0)] = {x € P*(R) : x = [x] with Q(x) = 0}.

Let us say that a subspace E C R"*! is fotally isotropic if Q| =0.If E is
as above, the projection [E] C X of E onto P*(R) will be referred to as a
totally isotropic projective subspace. Recall that the Q -rank rkg X of the quadric
X is the maximal dimension of a totally isotropic rational subspace of R"*!.
If tkg X > 0, this is the same as the maximal dimension of a totally isotropic
rational projective subspace of X plus one. In particular, rkg X > 0 if and only
it X(Q) #@.

Given a point x in X, we shall be interested in the quality of rational
approximations v € X(Q) to x. The basic theory of such approximations has
been developed in [FKMSI]. In particular it was proved there [FKMSI, Theorem
5.1] that if

(2.2) rko X >0 and X is nonsingular
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(recall that a quadric hypersurface X is said to be nonsingular if the quadratic
form that defines it is nondegenerate, i.e., has nonzero discriminant'), then for
every x € X there exists Cy > 0 and a sequence (vg){° in X(Q) such that

X

H(vg)

(2.3) vy > x and  dist(vg, x) <

Thus if one defines the Diophantine exponent of x by
(2.4) B(x):=inf{>0]3c>0: Vve XQ),dist(x,v) > cH(v)™?},

then it follows that under the assumption (2.2), B(x) > 1 for all x € X.

On the other hand, it is shown in [FKMS2, Theorem 1.5] that the opposite
inequality f(x) <1 is true for Lebesgue-almost every x € X in the generality
when X is not just a rational quadric but an arbitrary non-degenerate hypersurface.

Moreover, the same is true if the Lebesgue measure is replaced by an absolutely
decaying measure (see §4.1 for definitions and more detail).

This naturally leads to a question of exhibiting other measures p on X such
that B(x) < 1 for w-almost all x € X. This is reminiscent to the subject of
Diophantine approximation on manifolds and fractals, which has been extensively
developed during recent decades for ambient approximation in R”, see [BD],
[KMa] and [KLW], for example. Measures satisfying the above property are
usually called extremal. We shall also say that a submanifold ¥ C X is extremal
if so is the Lebesgue measure on Y (by which we mean the restriction to ¥ of
the k-dimensional Hausdorff measure where k = dimY ).

Our first theorem, which is actually a special case of a more general result,
Theorem 4.2, refines [FKMS2, Theorem 1.5] for rational quadrics X as follows:

Theorem 2.2 (Extremality of submanifolds of large dimension). Let X be a
rational quadric hypersurface in P"(R), and let Y be a smooth submanifold of
X with dimY >r1kg X. Then B(x) <1 for Lebesgue-almost every x € Y.

In the case where X has Q-rank one, the above theorem provides a very
simple and satisfactory answer to the problem of Diophantine approximation on
submanifolds of X : any positive-dimensional submanifold ¥ C X is extremal.
Note that there is no non-degeneracy condition on the submanifold Y . This comes
in contrast to the case of approximation in R”, where one has to require that the
submanifold is not included in an affine subspace.

In view of Theorem 2.2, it is natural to ask, given a submanifold ¥ of X of
dimension at least rkg X and a fixed g > 1, how large the intersection Y N Wy
can be, where Wp denotes the set of points in X whose Diophantine exponent

"'This is also equivalent to X being nonsingular as a projective algebraic variety.
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is at least 8. Note that it was proved in [FKMSI, Theorem 6.4] that whenever X
satisfies (2.2), the Hausdorff dimension of Wjp is equal to "‘%1 Also in [FMS]
some upper estimates for the Hausdorft dimension of ¥ N Wy were obtained in
the case when Y supports an absolutely decaying and Ahlfors-regular measure
(see §4.2 for details). Our second application of the simplex lemma strengthens
the main result of [FMS]. Here is a special case of a more general result,

Theorem 4.6:

Theorem 2.3 (S -approximable points on submanifolds of large dimension). Let
X be a rational quadric hypersurface in P"(R), and let Y be a k-dimensional
smooth submanifold of X with k > rkg X. Then one has

dimgy (Y N Wp) <k —(k + 1 —rkg X)(1 — %).

As the third application of our simplex lemma, we study the winning property
of the set BAy of badly approximable points on X . Schmidt introduced games
in his landmark paper [Schl] in order to study the set of badly approximable
numbers in R”. He defined a winning property for subsets of R”, and showed
the following:

e Any countable intersection of winning sets is winning ;

e If S is winning and 7 : R"” — R” is a C!-diffeomorphism, then f(S) is
winning;

e If S C R” is winning then it has Hausdorff dimension n.

Then, Schmidt also showed that the set of badly approximable numbers in R” is
winning. Variants of the Schmidt game were subsequently studied in numerous
papers, among which [BFK™ ] is the most relevant for the present purposes.

In our setting, the set of badly approximable points on the quadric X is

(2.5) BAy :={xe€X |3c>0:VveXQ), dist(x,v) > cH(v)"'}.

We define in § 4.3 a version of Schmidt’s game, and show the associated winning
property for the set BAy. As a corollary of this isotropically winning property,
we get the following.

Theorem 2.4 (Thickness of BAy on submanifolds of large dimension). Let X be
a rational quadric hypersurface in P"(R). Then for any C' submanifold Y C X
of dimension at least tkg X,

dimy (BAx NY) = dimY.
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The properties of the set BAx have been studied in [FKMS2]. In particular,
it was shown [FKMS2, Theorem 4.3] that BAx is hyperplane absolute winning
(see §4.3 for the definition and more detail); this gave the conclusion of the above
theorem for ¥ = X . The refined version given above has the advantage that it is
optimal: indeed, if Y is any totally isotropic rational projective subspace of X
of dimension rkg X — 1, then BAy NY = &.

3. Diagonal flows and the simplex lemma

The purpose of this section is to derive a simplex lemma, Lemma 3.1, for
rational points on a rational quadric hypersurface X C R”*!. For the proof,
we shall relate good rational approximations to x € X to the behavior of some
diagonal orbit in the space of lattices in R" T,

Recall that the classical simplex lemma states that for each n € N there exists
¢ = c¢(n) > 0 such that if x is a point in R” and p € (0, 1), then there exists an
affine hyperplane containing all rational points with denominator at most cp_#
inside the ball B(x, p). The proof is based on the observation that any affinely
independent n + 1 rational points with denominators at most D define inside
B(x, p) a simplex whose volume can be bounded below by n'D++' Therefore,

one must have ——ior < Vol(B(X, p)) = vap", where v, is the volume of the

unit ball in R”, and hence D > (n!vn)_ﬁp*ffr_l. For a detailed proof, we refer
the reader to [KTV, Lemma 4]. The simplex appearing in the proof gave its name
to the lemma.

Here we consider a rational quadratic foom Q on R4 and study rational
points on X as in (2.1).

Lemma 3.1 (Simplex lemma for quadric hypersurfaces). Letr X be a rational
quadric hypersurface in P"(R). Then there exists ¢ > 0 such that for every ball
B, C X of radius p € (0,1) the set

B,N{veXQ)| Hv) <cp "}
is contained in a totally isotropic rational projective subspace of X .

Let Fp be the symmetric bilinear form associated to the quadratic form Q
defining X . The kernel of Q is defined by

kerQ = {x =[x] e P"(R) | Vy e R**', Fp(x,y) = 0}.

Assuming that X(Q)~ker Q is non-empty, we may write, in some rational basis
of R*+1,
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(31) Q(}Cl, - ,)Cn+1) = 2x1xn+1 + Q(XQ,. .. ,x,,),

where O is a quadratic form in n — 1 variables. Let G = SOp(R) be the
group of unimodular linear transformations of R™*! preserving the quadratic
form Q. The group G acts transitively on X ~ ker Q, which may be identified
with the quotient space X ~ P\G, where P is the stabilizer of the isotropic line
[e1] in the standard representation. In fact, for x € X ~ ker O, we may choose
Uy € GNO,1(R) such that u,x = [eq].

We shall consider the diagonal subgroup a, = diag(e™,1,...,1,€¢") in G,
and if x € X, let

i R |
gy = U, dilUy.

The lemma below is due to Kleinbock—Merrill [KMe] in the case of projective
spheres, and to Fishman—Kleinbock—Merrill-Simmons [FKMSI, Lemma 7.1] in
the general case. To make the paper self-contained, we provide a proof here.

Lemma 3.2 (Dani correspondence for quadric hypersurfaces). Let Q be as in
(3.1), and write X for the associated rational quadric hypersurface in P"(R).
With the above notation, there exists C > 0 such that for x € X and v € X, we
have, for all t € R,

lgXv|l < C max (e™* H(v), H(v)dist(x, v), e" H(v) dist(x, v)?),

where v € Z"t is a representative of v with coprime integer coordinates.

Proof. Fix Cy > 2 larger than maxywj=; |Q(W)|, so that for all w in R"71,
|Q(W)| < Collw|>.
With u, as above, write

UxV = V1€] + V2€ + - + Upt1€p41-
Letting w = voez +--- + vye,, we have

Uxgrv=e'vie; + W+ e vy ey,
and therefore, since u, is in O,41(R),

(3.2) g7 vl < 3max(e™ v, [Wl, ' [vn1])-

Now note that |v;| < H(v) and H(v) > n1+1 Iv]l, so

v+ TH () dist(x,v) > [u;'e; Av]| = [leg Auyv||

= et AW+ vpr1€p )| = |W+ vppr€np1| = ||W].

Moreover, Q(u,v) =0 yields
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_|OwW)| _ Collw|?
4] = = )
2|vq]| 2|vq]

so that, provided dist(x,v) < 5=,

Co H(v)dist(x,v)*

2 1 — dist(x,v)?
H(v)?2

< CoH (v)dist(x, v)?.

lvpg1| <

Of course, if dist(x,v) > ﬁ? we also have |v,41| < H(v) < CoH(v)dist(x, v)?,
because Cyp > 2. Going back to (3.2), we find the desired inequality, with

C = max(3Cy, v/n + 1). L]
We can now prove the simplex lemma.

Proof of Lemma 3.1. Let QO be a quadratic form defining the hypersurface X .
The result is obvious if X(Q) C ker @, so we may assume that X(Q) ~ker Q is
non-empty. Then, replacing Q if necessary by an integer multiple, we may find
an integer basis of R"*! in which O has the form (3.1).

Let C; = maxjy = |Q(v)|, so that for all v € R*"*!, |Q(v)| < Cy|v|?, and

let ¢ = C%/f where C is the constant given by Lemma 3.2. We need to show
that any family vq,..., vg of points in X(Q) N B(x, p) satisfying H(v;) <cp™!,
i = 1,...,5, generates a totally isotropic subspace. For each wv;, we take a

representant v; in Z"*! with coprime integer coordinates. It is enough to show
that for all i and j, Q(v;+v;) = 0, and since the quadratic form Q takes integer
values at integer points, it suffices to check that for all i and j, |Q(v; £v;)| is
less than 1.

Now, choosing ¢ > 0 such that ¢! = p~!, Lemma 3.2 shows that ||g¥v;|| < Cc.
Then, we write

4
Q(vi £ v)) = O(gvi + £7v)) = Cullg/vi £ g7V |? = 4C1(Co)” = 2.
This implies what we want. []

Remark 3.3. In the case when X = S""! is the (n — 1)-dimensional sphere,
identified with the subset of R" defined by the equation x7 +---+ x2 =1, one
can give a more direct proof of the simplex lemma. Indeed, if ' and P2 are

—1
two distinct rational points on S”~! of height at most £5—., we have

2
. 1
Pi P2 :2_1)1 Pz2 > 402,
g1 42 4192 q142
so that any open ball of radius p contains at most one rational point of height
—1
at most 25— . In fact, such a direct computation can also be made for a general

quadric hypersurface, but we chose to give a more geometric proof of Lemma 3.1.
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Remark 3.4. When the quadratic form Q has Q-rank one, the only isotropic
rational projective subspaces are points in X(Q). This makes the consequences
of the simplex lemma more spectacular in the particular case of Q-rank one.

4. Applications to Diophantine approximation

In this section, as before, X is a rational quadric hypersurface in P"(R)
defined by a rational quadratic form Q.

We are concerned with intrinsic Diophantine approximation on X, which is
the study of the quality of approximations of a point x in X by rational points v
lying on X . On that matter, the simplex lemma has several simple consequences,
which we now explain.

4.1. Extremality. Recall that the Diophantine exponent of a point x € X was
defined by (2.4). Our next theorem generalizes Theorem 2.2 using the following
definition.

Definition 4.1. Given a positive parameter «, a finite Borel measure g on
the quadric hypersurface X will be called «-isotropically absolutely decaying,
abbreviated as o -IAD, if there exists a constant C > 0 such that for every x € X
and every totally isotropic rational projective subspace L C X,

(4.1) Ve>0Vpe(0,1), u(Bx,p)NLE) < Ceu(B(x,p)),

where L7 denotes the neighborhood of size © of the set L. We shall say that
W is isotropically absolutely decaying (IAD) if it is a-IAD for some « > 0.

Theorem 4.2 (IAD measures are extremal). Let X be a rational quadric in
P"(R), and let i be an IAD measure on X . Then B(x) <1 for w-almost every
xeX.

Remark 4.3. Recall that a measure p is called «-absolutely decaying if (4.1)
holds for some C > 0, every x € X and every subspace L C P"(R), and
absolutely decaying if it is «-absolutely decaying for some o > 0. It follows
from [FKMS2, Theorem 1.5] that for any absolutely decaying measure p on X
one has B(x) <1 for p-almost every x € X. In fact it holds more generally
when X is not just a rational quadric but an arbitrary non-degenerate smooth
hypersurface.

Absolutely decaying measures are IAD but not vice versa. In particular, the
Lebesgue measure on a smooth proper submanifold ¥ of X with dimY > rkg X
is not absolutely decaying but «-IAD with ¢ = dim Y —rkg X +1; so Theorem 2.2
is a corollary from Theorem 4.2.
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Proof of Theorem 4.2. The argument follows the lines of the proof of [PV,
Theorem 1], see also [Wei] for a one-dimensional version. By the Borel-Cantelli
lemma, it is enough to check that for all & > 0,

k
Zu({xex v e x(@): 2 SH@ <2 })<oo.

dist(x, v) < 27k(1+8)
k>1

Fix k > 1. There exists an integer K such that we may cover X by a family
of balls B; = B(x,-,Z“k“*%)), i =1,...,N, so that any intersection of more
than K distinct balls is empty. By Lemma 3.1, for k large enough, for each 7,
the set of points v € X(Q) N B; satisfying 2% < H(v) < 2k*! is contained in a
totally isotropic rational subspace L;, and therefore, by the IAD property of u
for some C,« > 0 one has

k k+1 N .
/,L({XEBi dv e X(Q): 2 5 Hp) =2 })fu(BiﬂL(zk(l+)))

dist(x, v) < 27k(1+e) 4
Summing over all balls B;, and using the fact that the cover (B;);eny has
multiplicity at most K, we get

k k+1
/L({xGX Twex@): 2 =HW<2 })gkcz—ka%.

dist(x, v) < 2~k(1+e)
Since this last bound is summable in k&, this concludes the proof of the
theorem. W

< 27k (By).

Remark 4.4. When rkg(X) = 1, all the subspaces L appearing in Definition 4.1
are zero-dimensional, and isotropic absolute decay coincides with weak absolute
decay as defined in [BGSV]. Moreover, in the case where X is a sphere,
Theorem 4.2 can be viewed as a corollary of [BGSV, Theorem 2].

Remark 4.5. We could have stated a slightly stronger version of the theorem, in
the form of a Khintchine-type theorem: if u is «-IAD, and if ¥ : RT — R™T is
a non-increasing function satisfying

Y kT (k) < oo,

keN

then for p-almost every x in X, there exists ¢ > 0 such that
Vv € X(Q), dist(x,v) > cyr(H(v)).

The proof, based on the easy half of the Borel-Cantelli lemma, is essentially the
same as the one presented above.
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4.2. Hausdorff dimension and Diophantine exponents. As a complement to
the above study of the extremality problem, we explain here how the simplex
lemma can be used to give a simple proof of a recent result of Fishman-Merrill-
Simmons [FMS]. Once again, X denotes a rational quadric projective hypersurface
of dimension n. Given f > 0, we shall be concerned with the set

Wp={xeX | B =p}.

Given a subset K in X, our goal will be to bound the Hausdorft dimension of
the intersection K N Wp; we shall be able to do so if K is the support of a
sufficiently regular measure.

For § > 0, a Borel measure p on a metric space X is said to be Ahlfors-
regular of dimension § if we have, for some constant A > 0,

1
Vxe XVr €(0,1], er et ,u(B(x,r)) £ Arf.

We now present a short proof of a strengthening of [FMS, Theorem 1.2], using
LLemma 3.1.

Theorem 4.6. Let X be a rational quadric projective hypersurface. Let |v be
an Ahlfors-regular measure of dimension §6 on X, and let K = Supp . If wu is
a-IAD, then we have, for all p > 1,

4.2) dimg (K N Wﬁ)SS—a(l—%).

Remark 4.7. Under a stronger assumption that p is «-absolutely decaying (4.2)
is established in [FMS, Theorem 1.2]. However in our decay condition we only
have to consider totally isotropic subspaces. In particular, Theorem 4.6 covers the
case where K is a smooth submanifold of X of dimension at least rko(X), and
therefore generalizes Theorem 2.3.

The proof of Theorem 4.6 is a straightforward adaptation of that of [PV,
Theorem 2]. We shall use the easy Hausdorff—Cantelli lemma stated below.

Lemma 4.8 (Hausdorff—Cantelli). Let (Bj)i>o be a family of balls in a metric
space, and assume that ) ;. (diam B;)* < co.
Then,

dimg (limsup B;) < s.

Proof. Left as an exercise, see Bernik—-Dodson [BD, Lemma 3.10]. O]
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Proof of Theorem 4.6. 1If § = 1, there is nothing to prove, so we assume f > 1
and fix y € (1,8). For p >0, let

2P < H(v) < 2P!

FOEXDE  gitex ) <5

Apz{xeX

Taking a maximal 277 -separated subset {x;};<i<¢, of K N Ay, the collection
of balls €, = (B(xi.277)),_,, covers K N Ap and has multiplicity bounded
above by some constant C depending only on X . Using the Ahlfors regularity
of ., this implies ¢,277% < ACu(X) = AC, ie. ¢, < AC2P%.

Since y > 1, Lemma 3.1 shows that for p large enough, for each ball B € C,,
there exists a totally isotropic subspace Lp of X such that A, N B C L%TW)).
So the decay condition on p yields, up to multiplicative constants depending

only on X and p, that
(A, N B) « 2==Vep By = o= Pl+(r—Dal,

Next, take a minimal cover Dp = (B;)ier, of the set K N A, N B by balls of
radius 2777 centered on K N A, N B. Just as above, the Ahlfors regularity of u
shows that

#lp < 25J/PM(AP N B) < 2Py8y—pli+(y—1e]

Thus, we find for every s > 0,

Z Z (diam B;)* < P8y p(y—=1)(§—a)y—pys _ y—plsy—yi+ely—1)]

BeCp i€lp
If s >96 —a(l — %) then the family of balls (B;)iciy, Bec,, pen satisfies the
assumption of the Hausdorff—Cantelli lemma, and therefore, letting

,\'—>5—a(l—l)
Y

we find that dimg(limsup B;) < § — (1 — i) Now, since y < B, we have
K NWg C (limsup B;), hence letting y — f, we can conclude that the Hausdorft
dimension of K N Wp is not greater than § — (1 — ). O

In the case of (Q-rank one, any Ahlfors-regular measure of dimension &
is §-IAD, so we get the following corollary, which applies in particular when
X = S"71 is the unit sphere in R”:

Corollary 4.9. Let X be a rational quadric hypersurface of Q-rank one, and let
i be an Ahlfors-regular measure of dimension § on X. Writing K = Supp i,
we have, for every B> 1, dimy(K N Wp) < %
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4.3. Badly approximable points. Recall the definition (2.5) of the set BAy of
intrinsically badly approximable points in X. As was mentioned in Section 2, it
is known [FKMS2] to satisfy some winning properties in the sense of Schmidt’s
games. Our goal will now be to give a more elementary proof of a refinement
of the winning property, again using the simplex lemma.

We now explain the principles of our version of Schmidt’s game. As before, X
is a rational quadric hypersurface of P”*(R). There are two players, Alice and Bob,
and some parameter B € (0, %). To start, Bob chooses a ball By = B(x¢, po) in X.
Then, at each stage of the game, after Bob has chosen a ball B; = B(x;, p;), Alice
chooses a totally isotropic rational subspace L of X and deletes its neighborhood
of size £, with 0 <& < Bp;.

A set S is isotropically B-winning if Alice can make sure that

ﬂB,ﬂS;é@.

Finally, S is isotropically winning if it is isotropically B-winning for arbitrarily
small B > 0. Our game is inspired by Broderick, Fishman, Kleinbock, Reich and
Weiss [BFK ™ |, where the authors define the notion of k -dimensionally absolute
winning using exactly the same game, except that Alice is allowed to delete
neighborhoods of arbitrary k -dimensional subspaces. In particular, we have the
following properties of isotropically winning sets.

Proposition 4.10 (Properties of winning sets). Let X be a projective quadric
hypersurface in P"(R).

(1) If S is isotropically winning on X, then S is dense and dimpg S = dim X .

(2) If (Si)ien is a countable family of isotropically winning sets on X, then
Nien Si is isotropically winning.

Proof. Let k = rk X—1. Any isotropically winning set is k -dimensionally absolute
winning in the sense of [BFK T, page 323], so that the first item follows from the
analogous property for k -dimensional absolute winning [BFK *, Proposition 2.3].
Alternatively, one may adapt the proof of Schmidt [Schl, Theorem 2].

The proof of the second item is identical to the analogous statement for
k -dimensional absolute winning, see [BFK™]. O

Remark 4.11. We warn the reader that the image of an isotropically winning set
under a C! diffeomorphism of X may not be isotropically winning. However,
by [BFK*, Proposition 2.3.(c)], it will certainly be k-dimensionally absolute
winning, and therefore dense and with maximal Hausdorff dimension.

The following theorem is a refinement of [FKMS2, Theorem 4.3]:
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Theorem 4.12 (Badly approximable points on X are winning). Let X be a rational
quadric hypersurface in P"(R). Then the set BAx is isotropically winning.

Proof. Fix B € (0, %). Bob first picks a ball By = B(xg, pg). By Lemma 3.1, there
exists a constant ¢ > 0 depending only on X such that all rational points v in 2By
satisfying H(v) < cp,! are included in some totally isotropic rational subspace
Lo. Alice deletes Lf, PO) Similarly, once Bob has chosen a ball B; = B(x;, p;),
the rational points v € 2B; such that H(v) < cp; ! all lie on a hyperplane L;,
and Alice deletes Ll(ﬂp"). If there is no rational point of small height in B;, then
Alice can delete a ball of radius fp; around the center. This ensures that p; — 0.

We claim that this strategy forces ﬂjzo B; C BAy. To see this, let x € () B;

and v € X(Q). Choose i such that
(4.3) c,o[-__l1 < H(v) < cpl-_l.
If v ¢&2B;, then, using x € B;, we find

dist(x,v) > p; > Bpi_1 > BeH(v)™".
And if v € 2B;, then (4.3) implies that v € L;, and since x € B;+1,

dist(x, v) = Bp; = B*pi—1 = B*cH ()™

Taking co = cB?, we find

Yv e X(Q), dist(x,v) > coH()™",
SO x € BAy. O

As is the case with the k-dimensional absolute game, the advantage of the
isotropic game is the inheritance of winning properties to sufficiently regular
subsets. More precisely, given a compact subset K C X, we may consider the
isotropic game played on K. The rules are the same as before, but the ambient
metric space is now K: at each stage, Bob chooses a ball B(x;, p;) centered on
K, and Alice deletes the intersection of K with the neighborhood of size fp; of
a rational isotropic subspace. Naturally, we shall say that a set S is isotropically
winning on K if SN K is winning for the isotropic game on K.

Following Broderick, Fishman, Kleinbock, Reich and Weiss [BFK ™|, let us
say that a subset K C X is isotropically diffuse if there exists B, px > 0 such
that for every p € (0,pkx), x € K, and every totally isotropic rational subspace
L, the set

K N B(x,p)~ L¥»

is non-empty. This is a quantitative way to say that K is nowhere included
in a small neighborhood of a totally isotropic subspace. The next lemma is a
straightforward analogue of [BFK ™, Proposition 4.9].
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Lemma 4.13. Let X be a rational quadric hypersurface in P"(X). If L C K
are two isotropically diffuse subsets of X, and S C X is isotropically winning
on K, then S is isotropically winning on L.

The proof is very similar to the one presented in [BFK™], once one has
replaced the notions of k -dimensionally diffuse and k -dimensionally winning by
those of isotropically diffuse and isotropically winning. We refer the reader to
[BFK T, Section 4] for details.

It follows from the above lemma and Theorem 4.12 that BAy is isotropically
winning on any isotropically diffuse subset of X . This in particular applies
to smooth submanifolds ¥ of X of dimension not less than rkg(X), which
are isotropically diffuse. Furthermore, the Lebesgue measure on Y as above is
Ahlfors-regular of dimension equal to dimY . Therefore, in view of [BFKT,
Lemma 5.3], for every open subset U of X such that U NY # @, one has

dimg (¥ NBAx NU) =dimY,

which implies Theorem 2.4.

Remark 4.14. In the case of X = S"!, or more generally of a rational quadric
of @Q-rank one, the above shows that BAy is winning on any positive-dimensional
submanifold of X . This can be compared with a similar question for Diophantine
approximation in Euclidean spaces, for which it is still open, despite recent
progress of Beresnevich [Ber] and Yang [Yan].

S. Further directions and open problems

Khintchine’s theorem. It would be interesting to use the geometric observations
of this note to give an elementary proof of Khintchine’s theorem on quadric
hypersurfaces, due to Fishman, Kleinbock, Merrill and Simmons [FKMSI,
Theorem 6.3].

Singular points. Given a rational quadric X in P"(X), one may define, for
c >0,

ANy : VN > Ny 3v € X(Q) such that
Dley=1x€Xl gy <N and dist(x,v) < ——— [
v NH(v)

and call a point x € X singular if x € (.., D(c). If X has Q-rank 1, it
follows from Dani’s work [Dan] that x is singular if and only if x € X(Q). In
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fact, one can show that if X has Q-rank 1, D(c) = X(Q) for ¢ > 0 small
enough. This follows for example from the following strengthening of Lemma 3.1,
whose proof is identical up to some minor changes. See also [KMo, Theorem 3]
for an alternative proof.

Lemma 5.1 (A stronger simplex lemma for quadric hypersurfaces). Let X be a
rational quadric hypersurface in P"(R). Then there exists ¢ > 0 such that, for
every x € X and any p € (0,1), the set

{v e X(Q) ‘ Hw) <cp !, dist(x,v) < Hl(}v) }

is contained in a totally isotropic rational subspace L C X .

When the quadric X has Q-rank at least 2, it is natural to expect that there
exist some nontrivial singular points. It might then be interesting to compute the
Hausdorfl' dimension of the set of singular points on X, similarly to what has
been done in [Che, CC] for Diophantine approximation in the Euclidean space.

Extremality. In view of the definitive results in the area of Diophantine
approximation on manifolds and fractals obtained in [KMal], it is natural to attempt
to weaken the condition of isotropic absolute decay of w as in Theorem 4.2, and
conjecture that on a general quadric hypersurface, any analytic submanifold that
is not included in an isotropic subspace is extremal.

In fact, by analogy with [Kle], one can guess that an analytic submanifold on
a quadric hypersurface inherits its Diophantine exponent from the smallest totally
isotropic subspace in which it is contained.

Other projective varieties. One may wonder how general is the approach
presented here, and whether it can be used to study intrinsic Diophantine
approximation on varieties that are not quadric hypersurfaces.
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