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Rational approximation on quadrics:
A simplex lemma and its consequences

Dmitry Kleinbock and Nicolas de Saxcé

Abstract. We give elementary proofs of stronger versions of several recent results on

intrinsic Diophantine approximation on rational quadric hypersurfaces X c P"(R). The

main tool is a refinement of the simplex lemma, which essentially says that rational points

on X which are sufficiently close to each other must lie on a totally isotropic rational

subspace of X

Mathematics Subject Classification (2010). Primary: 11J13, 11J83; Secondary: 37A17.

Keywords. Intrinsic Diophantine approximation, quadratic forms, Schmidt games, Euclidean

lattices.

1. Introduction

The classical theory of Diophantine approximation studies the way points
x e R" are approximated by rational points f e Q", taking into account the

trade-off between the size of q and the distance between | and x; see [Cas5, Sch2]
for a general introduction. Sometimes x is assumed to lie on a certain subset of
M", for example a smooth manifold X ; this leads to the theory of Diophantine
approximation on manifolds, in which there is no distinction between rational

points which do or do not lie in X (this is referred to as ambient approximation).
Let now A be a rational quadric hypersurface of R", let x e X and let

E e Q" be such that the distance between x and E is less than f(q), where

f is decaying fast enough, namely lim^oo t2-f(t) — 0. Then | must lie on X
whenever q is large enough! This elementary observation, due to Dickinson and

Dodson I DD] for n 2 and more generally to Dru(u, see [Dru, Lemma 4.1.1],

has in part motivated a new field of intrinsic approximation, which examines the

quality to which points on a manifold are approximated by rational points lying
on that same manifold.
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The paper |KMe] studies the case X §n_1, the unit sphere in R". Later
in [FKMS1| the results of |KMe] were significantly strengthened and extended

to the case of X being an arbitrary rational quadric hypersurface. An even more

general framework was developed in [FKMS2]. Roughly speaking, in order to
exhibit points on submanifolds X c 1" which are close enough to rational points
of X, one has to make use of the structure of X (indeed, in general it is not

even guaranteed that XflQ" is not empty). On the other hand, it is shown in

[FKMS2] that to prove some negative results, that is, to show that many points
of X are not too close to rational points, one often does not need to know much

about X. The main tool on which the argument of [FKMS2] is based is the

Simplex Lemma originating in Davenport's work |Dav]. The version presented in

[FKMS2, Lemma 4.1] is very general - it applies to any manifold embedded in

R" - and at the same time precise enough to yield some satisfying theorems in

the case of quadric hypersurfaces.

The purpose of this note is to show that in the special case where I is a

rational quadric hypersurface, one can give more elementary and more geometric
proofs of some results of | FKMS21. This new approach will also yield more

precise theorems. The main point is that one can prove a version of the simplex
lemma with arbitrary hyperplanes replaced by Q -isotropic subspaces of X ; this,
in turn, yields refined information on the diophantine properties of X.

A detailed account of the results that are derived here is given in the next
section. After that, in §3 we prove the simplex lemma for quadrics, Lemma 3.1,

which is central in all the subsequent developments. Applications of the simplex
lemma to Diophantine approximation on quadrics are presented in §4. Those

results are proved along the same lines as the analogous statements for Diophantine
approximation in the Euclidean space R", but the proofs are included to make

the paper self-contained. Finally, in §5 we discuss some open problems and

possible further directions for the study of intrinsic Diophantine approximation
on projective varieties.

2. General setting and main results of the paper

Since it will make the proofs more transparent, we shall from now on always
work in the projective setting. We denote by P"(R) the n-dimensional real

projective space. The natural map from R'!+1 to P"(R) will be denoted by

x o [x]. We now endow R"+1 with the standard Euclidean norm || ||, and

explain how this defines a distance on P"(R). The distance between two elements

x and y in PM(R) is equal to the sine of the angle between the two lines in

R"+1 :
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dist(x, y) := | sin(x, y)|.

Equivalently,

a- w x ll^x A \y II

diafc,)=MW'
where \x and \y are any nonzero vectors on x and y respectively, \x a \y is

the exterior product of \x and vy, and the Euclidean norm is naturally extended

to a2(R'î+1) so that |vx a \y || is the area of the parallelogram spanned by vx
and yy

If v — [v] g P"(Q), where v (iq u„+i) is an integer vector with

coprime coordinates, the height of v is simply

H(v):= max |u,-|.
l<i<n+l

Given a point x in P"(M) we want to study how well x is approximated by

points v in P"(Q).

Remark 2.1. In order to go back to the setting of Diophantine approximation in

M", one can consider an affine chart from an open subset of P"(R) to R"+1.
For example, if U — {[(xi *n+i)] : x„+\ 7^ 0}, one can use the chart

U M",

X„+ 1)] ^ ^)-
We consider a projective rational quadric X, given as the set of zeros of a

rational quadratic form Q in n + 1 variables. Namely, for such Q let us consider

(2.1) X [ö-1(0)] {x P"(M) : x [x] with 0(x) 0}.

Let us say that a subspace £cl"+l is totally isotropic if Q\e 0. If E is

as above, the projection [E] c X of E onto P"(R) will be referred to as a

totally isotropic projective subspace. Recall that the Q -rank rkQ X of the quadric
X is the maximal dimension of a totally isotropic rational subspace of M"+1.

If rkQ X > 0, this is the same as the maximal dimension of a totally isotropic
rational projective subspace of X plus one. In particular, rkQ X > 0 if and only
if *(Q) ^ 0.

Given a point x in X, we shall be interested in the quality of rational

approximations v e X(Q) to x. The basic theory of such approximations has

been developed in [FKMS1], In particular it was proved there [FKMS1, Theorem

5.1] that if

(2.2) rkQ X > 0 and X is nonsingular
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(recall that a quadric hypersurface X is said to be nonsingular if the quadratic
form that defines it is nondegenerate, i.e., has nonzero discriminant1), then for

every x e X there exists Cx > 0 and a sequence in 2f(Q) such that

Cx
(2.3) Vk > x and dist(ujt, jc) < /H(vk)

Thus if one defines the Diophantine exponent of x by

(2.4) ß(x) := inf {ß > 0 | 3c > 0 : Vue 2f(Q), dist(x, v) > cH(v)~^},

then it follows that under the assumption (2.2), ß(x) > 1 for all x e X.
On the other hand, it is shown in [FKMS2, Theorem 1.5] that the opposite

inequality ß{x) < 1 is true for Lebesgue-almost every x e X in the generality
when X is not just a rational quadric but an arbitrary non-degenerate hypersurface.

Moreover, the same is true if the Lebesgue measure is replaced by an absolutely
decaying measure (see §4.1 tor definitions and more detail).

This naturally leads to a question of exhibiting other measures p on X such

that ß(x) < 1 for p-almost all x e X. This is reminiscent to the subject of
Diophantine approximation on manifolds and fractals, which has been extensively
developed during recent decades for ambient approximation in R", see [BD],
|KMa| and [KLW], for example. Measures satisfying the above property are

usually called extremal. We shall also say that a submanifold Y c X is extremal

if so is the Lebesgue measure on Y (by which we mean the restriction to Y of
the &-dimensional Hausdorff measure where k dimf).

Our first theorem, which is actually a special case of a more general result,
Theorem 4.2, refines [FKMS2, Theorem 1.5] for rational quadrics X as follows:

Theorem 2.2 (Extremality of submanifolds of large dimension). Let X be a

rational quadric hypersurface in P" (R), and let Y be a smooth submanifold of
X with dim Y > rkQ X. Then ß(x) < 1 for Lebesgue-almost every x e Y.

In the case where X has Q-rank one, the above theorem provides a very
simple and satisfactory answer to the problem of Diophantine approximation on

submanifolds of X : any positive-dimensional submanifold Y c X is extremal.
Note that there is no non-degeneracy condition on the submanifold Y This comes
in contrast to the case of approximation in R", where one has to require that the

submanifold is not included in an affine subspace.

In view of Theorem 2.2, it is natural to ask, given a submanifold Y of X of
dimension at least rkQ X and a fixed ß > 1, how large the intersection Y IT Wß

can be, where Wß denotes the set of points in X whose Diophantine exponent

1 This is also equivalent to X being nonsingular as a projective algebraic variety.
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is at least ß. Note that it was proved in [FKMS1, Theorem 6.4 ] that whenever X
satisfies (2.2), the Hausdorif dimension of Wß is equal to Also in [FMS]
some upper estimates for the Hausdorff dimension of Y (T Wß were obtained in

the case when Y supports an absolutely decaying and Ahlfors-regular measure

(see §4.2 for details). Our second application of the simplex lemma strengthens
the main result of [FMS], Here is a special case of a more general result,
Theorem 4.6:

Theorem 2.3 ß -approximable points on submanifolds of large dimension). Let
X be a rational quadric hypersurface in P" (P), and let Y be a k -dimensional
smooth submanifold of X with k > rkQ X. Then one has

dimh(Y O Wß) <k-(k+ 1 -rk<Q A)(l - j-).

As the third application of our simplex lemma, we study the winning property
of the set BAx of badly approximable points on X. Schmidt introduced games
in his landmark paper [Sehl 1 in order to study the set of badly approximable
numbers in M". He defined a winning property for subsets of R", and showed

the following:

• Any countable intersection of winning sets is winning ;

• If S is winning and / : R" —> R" is a C1 -diffeomorphism, then f(S) is

winning;

• If S c R" is winning then it has Hausdorff dimension n.

Then, Schmidt also showed that the set of badly approximable numbers in R" is

winning. Variants of the Schmidt game were subsequently studied in numerous

papers, among which [BFK + | is the most relevant tor the present purposes.
In our setting, the set of badly approximable points on the quadric X is

(2.5) BAx := {x e X | 3c > 0 : Vue A(Q), dist(x, v) > cH{v)~l}.

We define in § 4.3 a version of Schmidt's game, and show the associated winning
property for the set BAx. As a corollary of this isotropically winning property,
we get the following.

Theorem 2.4 (Thickness of BAx on submanifolds of large dimension). Let X be

a rational quadric hypersurface in P"(R). Then for any C1 submanifold Y Cl X

of dimension at least rk(j X,

dim//(BAx D Y) — dim Y.
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The properties of the set BA^ have been studied in [FKMS2]. In particular,
it was shown [FKMS2, Theorem 4.3] that BA^ is hyperplane absolute winning
(see §4.3 for the definition and more detail); this gave the conclusion of the above

theorem for Y X. The refined version given above has the advantage that it is

optimal: indeed, if Y is any totally isotropic rational projective subspace of X
of dimension rk<Q X — 1, then BA* IT Y — 0.

3. Diagonal flows and the simplex lemma

The purpose of this section is to derive a simplex lemma, Lemma 3.1, for
rational points on a rational quadric hypersurface X c R'!+1. For the proof,
we shall relate good rational approximations to x e X to the behavior of some

diagonal orbit in the space of lattices in R"+1.
Recall that the classical simplex lemma states that for each iieN there exists

c c(n) > 0 such that if x is a point in R" and p e (0, 1), then there exists an

affine hyperplane containing all rational points with denominator at most cp~"+1
inside the ball B(x, p). The proof is based on the observation that any affinely
independent n + 1 rational points with denominators at most D define inside

B(x, p) a simplex whose volume can be bounded below by n, Jn+l Therefore,

one must have
n\D" +1 — Vol(Z?(x, p)) vnp", where vn is the volume of the

unit ball in R", and hence D > {id.VnY7^ p^"^. For a detailed proof, we refer
the reader to |KTV, Lemma 4], The simplex appearing in the proof gave its name

to the lemma.

ffere we consider a rational quadratic form Q on Rrf and study rational

points on X as in (2.1

Lemma 3.1 (Simplex lemma for quadric hypersurfaces). Let X be a rational
quadric hypersurface in P"(R). Then there exists c > 0 such that for every hall
Bp C X of radius p e (0, 1) the set

Bpn{ve X(Q) I H{v)<cp'x}

is contained in a totally isotropic rational projective subspace of X.

Let Fq be the symmetric bilinear form associated to the quadratic form Q

defining X. The kernel of Q is defined by

ker Q {x [x] e P"(M) | Vy e R"+1, /^(x,y) — ()}.

Assuming that A(Q) \ ker <2 is non-empty, we may write, in some rational basis

of R"+1,
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(3.1) Q(x i,...,xn+i) 2xixn+l + Q(x2,...,xn),

where Q is a quadratic form in n — 1 variables. Let G SOg(M) be the

group of unimodular linear transformations of R"+1 preserving the quadratic
form Q. The group G acts transitively on Ts ker Q, which may be identified
with the quotient space X ~ P\G, where P is the stabilizer of the isotropic line

[ei] in the standard representation. In fact, for x e X \ ker Q, we may choose

ux e G n 0„+i(R) such that uxx [ei].
We shall consider the diagonal subgroup at — diag(e~',l \,e') in G,

and if x e X, let

gf u~la,ux.

The lemma below is due to Kleinbock-Merrill [KMe] in the case of projective
spheres, and to Fishman-Kleinbock-Merrill-Simmons [FKMS1, Lemma 7.1] in
the general case. To make the paper self-contained, we provide a proof here.

Lemma 3.2 (Dani correspondence for quadric hypersurfaces). Let Q be as in

(3.1), and write X for the associated rational quadric hypersurface in IP" (R).
With the above notation, there exists C > 0 such that for x e X and v e X, we

have, for all let,
||gfv|| < C max (e~' H(v), H{v) dist(x, u), e' H(v) dist(x, v)2),

where v e Z"+1 is a representative of v with coprime integer coordinates.

Proof. Fix C0 > 2 larger than max||w||=i |ö(w)|, so that for all w in M"_1,

Iö(w)I < C0||w||2.
With ux as above, write

uxy niei + V2^2 H + ^n+ie«+i-

Letting w r>2e2 + • • • + vnen, we have

uxgf\ e~'v\£\ + w + e'vn+1en+1,

and therefore, since ux is in 0„+i(R),

(3.2) ||g?v|| < 3max(e_'|ui|, ||w||,e*|v„+i|).

Now note that |ui| < H(v) and H(v) > ^2L_||v||, so

sfn + I H(v) dist(x, v) > ||r/~'ei A v|| ||ei A ux\\\

||ei a (w + uB+1e„+i)|| ||w + u„+1e„+11| > ||w||.

Moreover, Q(ux\) 0 yields



466 D. Kleinbock and N. de Saxcé

lö(w)| C0 H w II

Vn + l I <
2|ui| 2\v

so that, provided dist(jc, u) < ^,
C0 H(r) dist(x, v)2 2|v«+i| < — -, < C0//(v)dist(x, v)

A Jist(x,u)2
H(v)2

Of course, if dist(jc,u) > ^, we also have |u„+i| < H(v) < C0H(v) dist(x, v)2,
because Co > 2. Going back to (3.2), we find the desired inequality, with
C max(3C0, V» + 1).

We can now prove the simplex lemma.

Proof of Lemma 3.1. Let Q be a quadratic form defining the hypersurface X.
The result is obvious if X(Q) C ker0, so we may assume that X(Q) ^ker0 is

non-empty. Then, replacing Q if necessary by an integer multiple, we may find

an integer basis of K"+1 in which Q has the form (3.1).
Let C\ max||v||=1 |0(v)|, so that for all v 6 K"+l, |<2(v)| < Ci||v||2, and

let c c where C is the constant given by Lemma 3.2. We need to show

that any family tq vs of points in 2f(Q) (T B(x,p) satisfying //(«,-) < cp-1,
i 1 v, generates a totally isotropic subspace. For each v,, we take a

représentant v,- in Zn+1 with coprime integer coordinates. It is enough to show

that for all i and j Q(\, ±Vy) 0, and since the quadratic form Q takes integer
values at integer points, it suffices to check that for all i and j, [ 0(v,- ±yj)I is

less than 1.

Now, choosing t > 0 such that el p~l, Lemma 3.2 shows that ||gfv,-1| < Cc.
Then, we write

Q(\i ± \j) Q(gf\i ± gf\j) < Ci \\gf\i ± gxt\j\\2 < 4C,(Cc)2

This implies what we want.

Remark 3.3. In the case when X S"_1 is the (n — 1)-dimensional sphere,

identified with the subset of E" defined by the equation x\ -I + x2 1, one

can give a more direct proof of the simplex lemma. Indeed, if and are

two distinct rational points on S"_I of height at most we have

2

— 2- ELlPi > _L > 4p2
qic/2 q i</2

so that any open ball of radius p contains at most one rational point of height

at most In fact' such a direct computation can also be made for a general

quadric hypersurface, but we chose to give a more geometric proof of Lemma 3.1.

Pi P2

q\ qi
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Remark 3.4. When the quadratic form Q has Q-rank one, the only isotropic
rational projective subspaces are points in A((Q>). This makes the consequences
of the simplex lemma more spectacular in the particular case of Q -rank one.

4. Applications to Diophantine approximation

In this section, as before, X is a rational quadric hypersurface in P*(M)
defined by a rational quadratic form Q.

We are concerned with intrinsic Diophantine approximation on X, which is

the study of the quality of approximations of a point x in X by rational points v

lying on X. On that matter, the simplex lemma has several simple consequences,
which we now explain.

4.1. Extremality. Recall that the Diophantine exponent of a point x e X was

defined by (2.4). Our next theorem generalizes Theorem 2.2 using the following
definition.

Definition 4.1. Given a positive parameter a, a finite Borel measure p on
the quadric hypersurface X will be called a -isotropically absolutely decaying,
abbreviated as a -IAD, if there exists a constant C > 0 such that for every x e X
and every totally isotropic rational projective subspace L c X,

(4.1) Ve > 0 Vp e (0, 1), p(B(x, p) n L(ep)) < Ceap(B(x, p)),

where L(T> denotes the neighborhood of size r of the set L. We shall say that

p is isotropically absolutely decaying (IAD) if it is a-IAD for some a > 0.

Theorem 4.2 (IAD measures are extremal). Let X be a rational quadric in

P"(IR), and let p be an IAD measure on X. Then ß(x) < 1 for p -almost every
x eX.

Remark 4.3. Recall that a measure p is called a-absolutely decaying if (4.1)
holds for some C > 0, every x e X and every subspace L c P"(K), and

absolutely decaying if it is «-absolutely decaying for some a > 0. It follows
from [FKMS2, Theorem 1.5] that for any absolutely decaying measure p on X
one has ß(x) < 1 for p-almost every x e X. In fact it holds more generally
when X is not just a rational quadric but an arbitrary non-degenerate smooth

hypersurface.

Absolutely decaying measures are IAD but not vice versa. In particular, the

Lebesgue measure on a smooth proper submanifold Y of X with dim Y > rk<Q X
is not absolutely decaying but a-IAD with a dim Y — rk<Q X + \ ; so Theorem 2.2

is a corollary from Theorem 4.2.
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Proof of Theorem 4.2. The argument follows the lines of the proof of [PV,
Theorem 1], see also [Wei] for a one-dimensional version. By the Borel Cantelli

lemma, it is enough to check that for all e > 0,

x e X w 2k < H(v) <2k+1 |\

Fix k > 1. There exists an integer K such that we may cover X by a family
of balls Bj B(xi, 2^fc(1+3)), i 1 N, so that any intersection of more
than K distinct balls is empty. By Lemma 3.1, for k large enough, for each i,
the set of points v e V(Q) (1 ß, satisfying 2k < H(v) < 2k+l is contained in a

totally isotropic rational subspace Li, and therefore, by the IAD property of /x

for some C, a > 0 one has

li\{x e Bi
2k < H(v) < 2k+1 )\ / r /2-A.-(i+t))N

3 v e X(Q) :

^ £ 2_*(1+B) J j < ^ (ä,- n Li
y

< C2-kaT-ii(Bi).

Summing over all balls ß,, and using the fact that the cover (ß;);eN has

multiplicity at most K, we get

Ii I IxeX Ilot2^'.»—

Since this last bound is summable in k, this concludes the proof of the

theorem.

Remark 4.4. When rkQ(A) — 1, all the subspaces L appearing in Definition 4.1

are zero-dimensional, and isotropic absolute decay coincides with weak absolute

decay as defined in [BGSV], Moreover, in the case where X is a sphere,

Theorem 4.2 can be viewed as a corollary of [BGSV, Theorem 2],

Remark 4.5. We could have stated a slightly stronger version of the theorem, in

the form of a Khintchine-type theorem: if /i is a-IAD, and if i/r : R+ R+ is

a non-increasing function satisfying

J2ka~l^(k)a < oo.
jfceN

then for fi-almost every x in X, there exists c > 0 such that

Vu e X(<Q), dist(x, v) > ex//(H(v)).

The proof, based on the easy half of the Borel-Cantelli lemma, is essentially the

same as the one presented above.
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4.2. Hausdorff dimension and Diophantine exponents. As a complement to
the above study of the extremal ity problem, we explain here how the simplex
lemma can be used to give a simple proof of a recent result of Fishman-Merrill-
Simmons [FMS]. Once again, X denotes a rational quadric projective hypersurface
of dimension n. Given ß >0, we shall be concerned with the set

Given a subset K in X, our goal will be to bound the Hausdorff dimension of
the intersection K IT Wß ; we shall be able to do so if K is the support of a

sufficiently regular measure.

For 8 > 0, a Borel measure /x on a metric space X is said to be Ahlfors-
regular of dimension 8 if we have, for some constant A > 0,

We now present a short proof of a strengthening of [FMS, Theorem 1.2], using
Lemma 3.1.

Theorem 4.6. Let X be a rational quadric projective hypersurface. Let ji be

an A hljors- regular measure of dimension 8 on X, and let K Supp/x. If /x is

a -IAD, then we have, for all ß > 1,

Remark 4.7. Under a stronger assumption that /x is a-absolutely decaying (4.2)
is established in [FMS, Theorem 1.2]. However in our decay condition we only
have to consider totally isotropic subspaces. In particular, Theorem 4.6 covers the

case where A" is a smooth submanifold of X of dimension at least rkq(X), and

therefore generalizes Theorem 2.3.

The proof of Theorem 4.6 is a straightforward adaptation of that of [PV,
Theorem 2], We shall use the easy Hausdorff-Cantelli lemma stated below.

Lemma 4.8 (Hausdorff-Cantelli). Let (ß,),>o be a family of balls in a metric

space, and assume that ^_j;>o(diam Bff < oc.

Wß {x e X | ß(x) > ß).

Vx e X Vr e (0,1], -rs < p(B(x,r)) < Ars.

(4.2)

Then,

dim//(lim sup ß,) < s.

Proof Left as an exercise, see Bernik-Dodson [BD, Lemma 3.10].
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Proof of Theorem 4.6. If ß — 1, there is nothing to prove, so we assume ß > 1

and fix y e (l, ß). For p > 0, let

Ap — \ x G X v,~ 2p < H{v) < 2P+1
Ve 1

dist(x,u)<2-VP

Taking a maximal 2~p-separated subset {xj}i<i<ip of KC\AP, the collection
of balls Cp — (B(xi, 2~p))l<i<( covers K D Ap and has multiplicity bounded

above by some constant C depending only on X. Using the Ahlfors regularity
of p, this implies ip2~p& < ACp(X) — AC, i.e. tp < AC2pS.

Since y > 1, Lemma 3.1 shows that for p large enough, for each ball B e Cp,
(2~vp)there exists a totally isotropic subspace Lb of X such that Ap n B c LB

So the decay condition on p yields, up to multiplicative constants depending

only on X and p, that

p{Ap n B) « 2-^~l)app(B) x 2-p[S+(y~1)a].

Next, take a minimal cover T>b (Bi)ijB of the set K n Ap n B by balls of
radius 2~yp centered on K n Ap n B. Just as above, the Ahlfors regularity of p
shows that

#IB « 2Sypp{Ap n B) « 2pyS2-p[s+(y-x)a].

Thus, we find for every .v > 0,

Xl(diam Bi)S « 2pS2p{y-1)(S-a)2-pys 2-^sy-yS+a(y~1^

Becp i e /«

If s > 8 — a( 1 — ^), then the family of balls (ß,)ie/ß,5ecp,/76N satisfies the

assumption of the Hausdorff-Cantelli lemma, and therefore, letting

s —> 8 — a 1K)
we find that dim//(limsup ß;) < 8 - a(l — ^). Now, since y < ß, we have

K fl Wß C (limsup Bi), hence letting y ß, we can conclude that the Hausdorff
dimension of K fl Wß is not greater than 8 — a(l — j)

In the case of Q-rank one, any Ahlfors-regular measure of dimension 8

is S-IAD, so we get the following corollary, which applies in particular when

X — S"-1 is the unit sphere in M" :

Corollary 4.9. Let X be a rational quadric hypersurface of Q -rank one, and let

p be an Ahlfors-regular measure of dimension 8 on X. Writing K Supp p,
we have, for every ß > 1, dim//(K n Wß) < j.
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4.3. Badly approximable points. Recall the definition (2.5) of the set V>f\x of
intrinsically badly approximable points in A. As was mentioned in Section 2, it
is known |FKMS2] to satisfy some winning properties in the sense of Schmidt's

games. Our goal will now be to give a more elementary proof of a refinement

of the winning property, again using the simplex lemma.

We now explain the principles of our version of Schmidt's game. As before, X
is a rational quadric hypersurface of P"(E). There are two players, Alice and Bob,
and some parameter ß e (0, |). To start, Bob chooses a ball B0 B(xo, po) in X.
Then, at each stage of the game, after Bob has chosen a ball B, B(xi.pi), Alice
chooses a totally isotropic rational subspace L of X and deletes its neighborhood
of size £, with 0 < s < ßpi.

A set S is isotropically ß-winning if Alice can make sure that

p| ß/flS/0.
Finally, S is isotropically winning if it is isotropically ß -winning for arbitrarily

small ß > 0. Our game is inspired by Broderick, Fishman, Kleinbock, Reich and

Weiss [BFK+], where the authors dehne the notion of k-dimensionally absolute

winning using exactly the same game, except that Alice is allowed to delete

neighborhoods of arbitrary k -dimensional subspaces. In particular, we have the

following properties of isotropically winning sets.

Proposition 4.10 (Properties of winning sets). Let X be a projective quadric
hypersurface in P"(M).

(1) If S is isotropically winning on X, then S is dense and dim// S dim X.

(2) If (S;)iN is a countable family of isotropically winning sets on X, then

HjsN ,,s isotropically winning.

Proof. Let k — rk X — 1. Any isotropically winning set is k -dimensionally absolute

winning in the sense of |BFK+, page 323], so that the first item follows from the

analogous property for k -dimensional absolute winning [BFK+, Proposition 2.3],

Alternatively, one may adapt the proof of Schmidt [Sehl, Theorem 2],
The proof of the second item is identical to the analogous statement for

k -dimensional absolute winning, see [BFK+ |.

Remark 4.11. We warn the reader that the image of an isotropically winning set

under a C1 diffeomorphism of X may not be isotropically winning. However,

by [BFK+, Proposition 2.3.(c)], it will certainly be k-dimensionally absolute

winning, and therefore dense and with maximal Hausdorff dimension.

The following theorem is a refinement of [FKMS2, Theorem 4.3]:
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Theorem 4.12 (Badly approximable points on X are winning). Let X be a rational
quadric hypersurface in P"(R). Then the set BAx is isotropically winning.

Proof. Fix ß e (0, |). Bob first picks a ball ß0 B(x0,pa). By Lemma 3.1, there

exists a constant c > 0 depending only on X such that all rational points v in 2B0

satisfying H(v) < cpT1 are included in some totally isotropic rational subspace

L0. Alice deletes L0 ° Similarly, once Bob has chosen a ball Bj B(xi,pi),
the rational points v e 2B, such that H(v) < cpf1 all lie on a hyperplane L,-,

and Alice deletes L^p'\ If there is no rational point of small height in Bt, then

Alice can delete a ball of radius ßpt around the center. This ensures that p, -»• 0.
We claim that this strategy forces Hoo Bi C BA*. To see this, let i e f] Bt

and v e X(Q). Choose i such that

(4.3) cp~\ < H(v) < cpf1.

If v $ 2 Bj, then, using teSj, we find

dist(x,w) > pi > ßpi—\ > ßcH(v)~l.

And if v e 2Bt, then (4.3) implies that v e Li, and since x e B,-+i,

dist(x, v) > ßpt > ß2pi-1 > ß2cH(v)~1.

Taking c0 cß2, we find

V v e X(Q), dist(x, v) > c0H(v)~l,

so x; e BAx.

As is the case with the k -dimensional absolute game, the advantage of the

isotropic game is the inheritance of winning properties to sufficiently regular
subsets. More precisely, given a compact subset K c X, we may consider the

isotropic game played on K. The rules are the same as before, but the ambient

metric space is now K : at each stage, Bob chooses a ball B(xj,pi) centered on

K, and Alice deletes the intersection of K with the neighborhood of size ßpi of
a rational isotropic subspace. Naturally, we shall say that a set S is isotropically
winning on K if S (T K is winning for the isotropic game on K.

Following Broderick, Fishman, Kleinbock, Reich and Weiss [BFK+], let us

say that a subset K c X is isotropically diffuse if there exists ß,pK > 0 such

that for every p e (0,px), x e K, and every totally isotropic rational subspace

L, the set

K n B(x,p)^Lißp)

is non-empty. This is a quantitative way to say that K is nowhere included
in a small neighborhood of a totally isotropic subspace. The next lemma is a

straightforward analogue of [BFK+, Proposition 4.91.
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Lemma 4.13. Let X be a rational quadric hypersurface in Pn(X). If L c K
are two isotropically diffuse subsets of X, and S c X is isotropically winning
on K, then S is isotropically winning on L.

The proof is very similar to the one presented in [BFK+], once one has

replaced the notions of k -dimensionally diffuse and k -dimensionally winning by
those of isotropically diffuse and isotropically winning. We refer the reader to

[BFK+, Section 4] for details.

It follows from the above lemma and Theorem 4.12 that BAx is isotropically
winning on any isotropically diffuse subset of X. This in particular applies
to smooth submanifolds Y of X of dimension not less than rkQ(Y), which
are isotropically diffuse. Furthermore, the Lebesgue measure on Y as above is

Ahlfors-regular of dimension equal to dim Y. Therefore, in view of [BFK+,
Lemma 5.3], for every open subset U of X such that U H Y f 0, one has

dim#(y D BAx IT U) — dim Y,

which implies Theorem 2.4.

Remark 4.14. In the case of X S"-1, or more generally of a rational quadric
of Q-rank one, the above shows that BAx is winning on any positive-dimensional
submanifold of X. This can be compared with a similar question for Diophantine
approximation in Euclidean spaces, for which it is still open, despite recent

progress of Beresnevich [BerJ and Yang [YanJ.

5. Further directions and open problems

Khintchine's theorem. It would be interesting to use the geometric observations

of this note to give an elementary proof of Khintchine's theorem on quadric
hypersurfaces, due to Fishman, Kleinbock, Merrill and Simmons [FKMS1,
Theorem 6.3].

Singular points. Given a rational quadric X in P"(Y), one may define, for
c > 0,

D(c) x eX
3 N0 : VJV > iV0 31> e A(Q) such that

H(v) < N and distfx, v) <
y/NH(v)

and call a point x e X singular if x e Hoo^fc)- ^ X has Q-rank 1, it
follows from Dani's work [Dan] that x is singular if and only if x e X(Q). In



474 D. Kleinbock and N. de Saxcé

fact, one can show that if X has Q-rank 1, D(c) X(Q) for c > 0 small

enough. This follows for example from the following strengthening of Lemma 3.1,

whose proof is identical up to some minor changes. See also [KMo, Theorem 3]

for an alternative proof.

Lemma 5.1 (A stronger simplex lemma for quadric hypersurfaces). Let X he a

rational quadric hypersurface in P"(R). Then there exists c > 0 such that, for
every x e X and any p e (0, 1), the set

is contained in a totally isotropic rational suhspace L c X.

When the quadric X has Q-rank at least 2, it is natural to expect that there

exist some nontrivial singular points. It might then be interesting to compute the

Hausdorff dimension of the set of singular points on X, similarly to what has

been done in [Che, CC] for Diophantine approximation in the Euclidean space.

Extremality. In view of the definitive results in the area of Diophantine
approximation on manifolds and fractals obtained in [KMa], it is natural to attempt
to weaken the condition of isotropic absolute decay of /x as in Theorem 4.2, and

conjecture that on a general quadric hypersurface, any analytic submanifold that

is not included in an isotropic subspace is extremal.

In fact, by analogy with [Kle], one can guess that an analytic submanifold on

a quadric hypersurface inherits its Diophantine exponent from the smallest totally
isotropic subspace in which it is contained.

Other projective varieties. One may wonder how general is the approach

presented here, and whether it can be used to study intrinsic Diophantine
approximation on varieties that are not quadric hypersurfaces.
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