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Planar tropical cubic curves of any genus,
and higher dimensional generalisations

Benoit BErTrRAND, Erwan BrucaLLE and Lucia LopEz pE MEDRANO

A la mémoire de notre ami Jean-Jacques Risler,
a qui nous n’avons pas eu le temps de raconter ces incongruités.

Abstract. We study the maximal values of Betti numbers of tropical subvarieties of a given
dimension and degree in T P"”. We provide a lower estimate for the maximal value of the
top Betti number, which naturally depends on the dimension and degree, but also on the
codimension. In particular, when the codimension is large enough, this lower estimate is
larger than the maximal value of the corresponding Hodge number of complex algebraic
projective varieties of the given dimension and degree. In the case of surfaces, we extend
our study to all tropical homology groups. As a special case, we prove that there exist

planar tropical cubic curves of genus g for any non-negative integer g.

Mathematics Subject Classification (2010). Primary: 14T05, 14F45; Secondary 52B20),
52B05.

Keywords. Topology of tropical varieties, tropical Hodge numbers, tropical homology, floor

composition
Contents

1 INEHOAECHON = « 5 5 s sisi 50 5 5 » 58 5 5 8 5 5 3 3 5 8 5 8 5 8 8§ 8 5§ 8 5 8 3 416
LE IBEVER: 660 o o i o 5 505, % 5. % % 5.5 & 5 5 6 K % & 5 % R & R F ¥ F & 416
1.2 Higher dimensions . . . . . . . ... ... ... ... ... 419
1.3 Comparison with algebraic geometry . . . ... ... ... ... .. 422

2 Upper estimates . . . . . . . . . v it e e e e e 424
2.1 Finitenessof Boltd.d) + o « « 2 « v 55 8588 888535888 424
22 Aunxibary StAEmEnIS . . o s o s 5 ¢ 5 5 8 5 8 6 5 8 8 8 v o0 5 b 6 & & 426
23 Proof of Theotem L2 . o ¢« s ¢ 5 5 5 ¢ 5 ¢ s 5 5 ¢ 8 5 58 85 38 5 5 s 430

3 Floor composition . : : = ¢ s s s ¢ s 5 5 5 5 8 8 8 38 8 88 55§83 : 888 431



416 B. BErTRAND, E. BRUGALLE and L. LorPEz DE MEDRANO

3.1 Tropical birational modifications . . . . ... ... ... ...... 431
32 Floor composed VATIBHES & « s v w s w5 # w5 5 5 5 9 5 5 5 8 4 o & @ 433
4 LOWSr esliifiites + « c s v s s s s s s s sis s s M a W K S TR HF & & 0 & & 438
4.1 Curves in R" . . .. . . 438
4.2 Higher dimensional tropical varieties in R" . .. ... ... ... 442
4.3 Proof of Theorem 1.5 . . . . ... ... ... ... ... ... A
5 Tropical homology of floor composed surfaces . . . ... ... ..... Fe4
5.1 Tropical homology of tropical ruled varieties . . . . . . ... ... 445
5.2 Tropical homology of birational tropical modifications . . . . .. 449
5.3 Back to tropical surfaces . . ... .. ... ... ... ... ..., 451
54 Proof of Theorem 1.7 . . . . ... ... ... ... ........ 454
References . . . . . . . . . . e e e 455

Throughout the text, we fix a field K. The jth Betti number b;(X) of a

topological space X is the dimension of the jth homology group H;(X;K)
of X with coefficients in K. Otherwise stated, we refer to [BIMS] for precise
definitions of notions from tropical geometry needed in this text.

1. Introduction

1.1. Curves. A tropical curve C in R" is a piecewise linear graph with finitely
many vertices such that (see for example [BIMS, MR]):

e cach edge e of C is equipped with an integer weight w, € Z-o, and has
a directing vector in Z";

e at each vertex v of C, adjacent to the edges ep,---,e;, the following
balancing condition is satisfied:

!
Z We, Ue; = 0,

i=1

where wu,, is the primitive integer directing vector of ¢; pointing away
from v.

Some examples of tropical curves in R? are depicted in Figure 1. A tropical
curve is said to be of degree d it

d = Zlue max;'zzl{ow ue,j}v
e
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— "/

A tropical line A tropical conic A tropical cubic Another tropical cubic

FiGure 1
Examples of tropical curves in R?. All unbounded edges have integer direc-
tion (—1,0), (0,—1), or (1,1) toward infinity, and all edges have weight 1.

where the sum ranges over all unbounded edges e of C, and u, = (U1, , Ue,n)
is a primitive integer directing vector of e pointing toward infinity, see [BIMS].
Tropical curves appeared in several mathematical and physical contexts [AH, Ber,
BG, Vir, Mik3], in particular in relation with complex and non-Archimedean
amoebas [GKZ, Mikl, EKL].

Figure 1 suggests a relation between the topology of tropical curves and of
plane algebraic curves. Indeed by [Mik2, Proposition 2.10], the first Betti number
of a tropical curve in R? of degree d is at most

(d—=1)-(d =2)
5 ;

and equality holds in the case of so-called non-singular tropical curves (i.e.
tropical curves in R? of degree d with exactly d? vertices). It is standard that
the same is true regarding the geometric genus of an algebraic curve of degree d
in the projective plane, see for example [Sha, Chapter III 6.4]. Such similarity led
to use the expression “genus of a tropical curve” in place of “first Betti number
of a tropical curve”.

Using linear projections, one easily sees that the above upper bound for the
geometric genus of an algebraic curve in the projective plane is also an upper
bound for the geometric genus of an algebraic curve of degree d in any projective
space. The starting observation of this paper is that analogous statement does not
hold in tropical geometry: there exist tropical curves of degree ¢ in R”, with
n > 3, with genus greater than the upper bound for tropical curves in R?. The
first example is the tropical cubic curve of genus 2 in R* depicted in Figure 2.
Moreover, this curve is contained in a polyhedral complex L of dimension 2:
one vertex from which emanate fours rays in the directions (—1,0,0), (0,—1,0),
(0,0,—1), and (1,1,1), and six faces of dimension two generated by each pair
of rays. It turns out that L is a tropical plane in R, i.e., a tropical surface of
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Ficure 2
A tropical cubic curve of genus 2 in R?. All unbounded edges have inte-
ger direction (—1,0,0), (0,—1,0), (0,0,—1), or (1,1,1) toward infinity;
all edges have weight 1, except the one with weight 3 indicated close to it.

degree 1 (see below). Hence Figure 2 exhibits a rather surprising (to us) example
of a genus 2 tropical cubic in a tropical plane. We generalise this observation in
next Theorem, where a tropical curve in R” is called planar if it is contained in
a tropical plane.

Theorem 1.1. For any integers d > 1 and n > 2, there exists a planar tropical
curve of degree d in R" with genus

(d—-1)-(d—-2)
: . _

(n—1)

Generalising Figure 2, there exists therefore a planar tropical cubic curve
of any given genus g > 0. Note that Theorem 1.1 disproves in particular [Yu,
Conjecture 4.5].

T. Yu proved in [Yu, Proposition 4.1] that a tropical curve of degree d in R"
has no more than 2d? - (n — 1) vertices, which implies that the genus of such
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tropical curve is bounded from above by a constant depending only on d and n.
Nevertheless, to our knowledge the following question remains open in general.

Problem. What is the maximal possible genus of a tropical curve of degree d
in R*?

In the case of planar tropical curves in R*, we can “almost” prove that
Theorem 1.1 is optimal.

Theorem 1.2. If C C R3 is a planar tropical curve of degree d with 4d
unbounded edges, then C has genus at most (d —1)-(d — 2).

Note that a tropical curve C of degree d in R? has at most 4d unbounded
edges, and that there is equality if and only if C has exactly d unbounded edges
of weight 1 in each of the outgoing direction

(—1,0,0), (0,—1,0), (0,0,—1), (1,1, 1).

We believe that Theorem 1.2 still holds without the assumption on unbounded
edges of C, and that a (quite technical) adjustment of our proof should work. It is
nevertheless not so clear to us how to generalise our proof in higher dimensions.

1.2. Higher dimensions. Tropical curves generalise to tropical varieties in R”
of any dimension. These are finite polyhedral complexes in R” such that all faces
have a direction defined over Z, all facets (i.e., faces of maximal dimension) are
equipped with a positive integer weight, and which satisfy a balancing condition
at each face of codimension 1. We refer to [BIMS, Section 5] for a precise
definition of tropical subvarieties of R"”. By convention, a tropical variety will
always be of pure dimension: every face is contained in a facet.

There is also a notion of degree of a tropical variety X in R”, based on
stable intersections defined in [RGST, Mik4]. Recall that a standard fan tropical
linear space of dimension k in R” is a polyhedral fan with a vertex from which
emanate n + 1 rays in the directions

(_..‘]’07... 1O)a(05_1505"' 30)7”' ,(0,"' ,O,_l),(l,],"‘ 11)’

and having (”‘;l) additional faces of dimension / € {2,--- ,/} generated by each

subset of [ of the n+ 1 rays. The degree of a tropical variety X of codimension
k in R” is defined as the stable intersection number of X with a generic standard
fan tropical linear space of dimension k.

The aim of this paper is to study the topology of tropical varieties. To
this purpose, it is more convenient to deal with compact tropical varieties, and
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to consider projective tropical varieties, i.e. tropical subvarieties of the tropical
projective space T P™". This latter is defined as the quotient of ([—oo; +oo[)" 1\
{(—o00,--- ,—00)} by the equivalence relation

(X0, Xn) ~ (fo + A, X +4) A ER,

see for example [MR, Section 3.3]. The tropical projective space T P" is the
union of finitely many copies of R¥ with k € {0,--- ,n} defined by

Ry ={[xo:-+:xp] | x; = —occ if and only if i € 1}

where I < {0,--- ,n}. A tropical variety in T P" is the union of the topological
closure of finitely many tropical varieties contained in some R;. The notion of
degree of a tropical variety extends to projective tropical varieties, see [MR,
Section 5.2].

Now we are ready to state the main problem studied in this paper, as well as
our main results. We define the numbers

B;j(m,k,d) = sup{h;(X)} € N U {+o0},
X

where X ranges over all tropical subvarieties of dimension m and degree d in
T pmtk,

Problem. Estimate the numbers Bj(m,k,d).

Generalising what we saw in the case of curves, the values of the numbers
Bj(m,1,d) are well known by [Mik2, Proposition 2.10]: for m = 0, By(0,1,d) =
d and for m > 1 and d > 1,

B()(m,l,d)zl, Bl(m,l,d):---:Bm_l(m,l‘d):0, and

d—1
Bm(m,l,d):(m_i_l )

This follows from the existence of the dual subdivision of a tropical hypersurface.
Determining the exact value of B;(m,k,d) for k > 1 seems more difficult, and
it is even not clear a priori that this number is finite. Our main result is the
following.

Theorem 1.3. Let d,m and, k be three positive integers. Then the number
Bj(m,k,d) is finite for any j, and one has

Bn(m,k,d)>k-Bn(m,1,d).
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Corollary 1.4. For any integers m > 1 and d > m + 2, we have

lim B,(m,k,d)= +oc.
k—+o00

From our proof that B;(m,k,d) is finite, it is possible to extract explicit upper
bounds. Nevertheless these bounds seem far from being sharp (for example we
did not succeed to obtain a better upper bound than T. Yu in the case of curves).
The lower bound in Theorem 1.3 is obtained by constructing explicit examples.
To do so, we use a method of construction of tropical varieties that we call floor
composition (see Section 3), and which originates in the floor decomposition
technique introduced by Brugallé and Mikhalkin ((BM2, BM3, BMI]), and in the
tropical modifications introduced by Mikhalkin in [Mik4]. It is worth noting that
the floor composed varieties we construct are actually projective hypersurfaces,
thus generalising Theorem 1.1.

Theorem 1.5. Let d,m and k be three positive integers. Then there exist a tropical
linear space L of dimension m + 1 in T P"%% and a tropical hypersurface X
of degree d in L such that

In connection to algebraic geometry, it seems also interesting to determine
the maximal value of Betti numbers of tropical hypersurfaces of degree d of a
given tropical linear space. At this time, we are not aware of any generalisation
of Theorem 1.2 to tropical varieties of higher dimension.

Remark 1.6. All tropical varieties we construct in our proof of Theorem 1.5 are
singular as soon as k > 2. It may be interesting to study bounds on Betti numbers,
and more generally on tropical Hodge numbers, of non-singular tropical projective
varieties of a given dimension, codimension, and degree. In particular, we do not
know if there exist universal finite upper bounds which do not depend on the
codimension. For example, it follows from the tropical adjunction formula [Sha3,
Theorem 6] that the upper bound given by Theorem 1.2 can be refined to the
classical bound %(a’ — 1) - (d —2) under the additional assumption that C is
locally of degree 1 in L (i.e. C is a non-singular tropical subvariety of L).

Homology groups of a tropical variety X are special instances of its tropical
homology groups (we refer to [MZ2, BIMS, KSW] for the definition of tropical
homology for locally finite polyhedral complexes in T P"). More precisely,
the group H;(X:;R) is canonically isomorphic to the tropical homology group
Hy,; (X;R). Our proof of finiteness of the numbers B;(m,k,d) in Theorem 1.3
also implies finiteness of the numbers
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sup { dim Hp 4 (X,R)} € N U {+o0},
X

where X ranges over all tropical subvarieties of dimension m and degree d
in T P™t%_ In the case of surfaces, we compute all tropical homology groups
of the tropical surfaces constructed in the proof of Theorem 1.5. Let us denote
by hg’q(d,m) the dimension of the (p,q)-tropical homology group of a non-
singular tropical hypersurface of degree d in T P™*!. By [IKMZ, Corollary 2],
this number does not depend on a particular choice of a tropical hypersurface,
and is equal to the (p,q)-Hodge number of a non-singular complex algebraic
hypersurface of degree d in CP™*! 1In particular we have

(d—1)-(d —2)-(d —3) 4d® —12d? + 14d
6 6 '

A tropical surface in T P" is called spatial if it is contained in a tropical linear
space L of dimension 3.

hSo(d,2) = and h{,(d.2) =

Theorem 1.7. Let k and d be two positive integers. Then there exist a spatial
tropical surface X of degree d in T P*Y* with the following tropical Hodge
diamond

k . hg,()(d’ 2) hsl(d’ 2) = (k—l)-(d—l)s(2d2—7d+9) k . hg,o(d, 2)
k—1)-(d—1) 0
|

where we use the convention that hg g is the topmost number and h; o the leftmost
one.

Hence as soon as d > 2, the quantities h; ;(X) and hy ;(X) are not bounded
from above among spatial tropical surfaces of degree d . Our proof of Theorem 1.7
generalises the computation by K. Shaw of tropical homology groups of floor
composed surfaces in T P? [Shal]. We point out that the technique developed
to prove Theorem 1.7 also applies to study tropical Hodge numbers of floor
composed tropical varieties of any dimension. Nevertheless computations become
a bit tedious starting from dimension 3, so we restricted ourselves to the case of
surfaces.

1.3. Comparison with algebraic geometry. To a great extent, the tremendous
development of tropical geometry the last fifteen years has been motivated by its
deep relations to algebraic geometry. There exists several procedures that associate
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a tropical variety X to a family of projective complex algebraic varieties (X;).
For such a realisable tropical variety, the tropical Hodge numbers may be bounded
from above in terms of the Hodge numbers of a general member of the family
(X:), see for example [HK, Corollary 5.8], [KS, Corollary 5.3], and [IKMZ,
Corollary 2].

Hence it is reasonable to compare our main results stated above to what is
known about Hodge numbers of projective complex algebraic varieties. As usual, in
the case of hypersurfaces (and more generally of complete intersections) in T P",
both series of geometric invariants coincide: it follows from [IKMZ, Corollary 2]
that the tropical Hodge numbers of a non-singular tropical hypersurface equal the
Hodge numbers of a non-singular complex algebraic hypersurface of the same
dimension and degree!.

Given two positive integers m and d, the Hodge number #79(X) of a
projective complex algebraic variety X' of degree d and dimension m is bounded
from above by some constant that only depends on m and d, see [Mil, Har].
For example, it is well known that a cubic curve in CP" has genus at most [,
whatever the value of n is. Corollary 1.4 and Figure 2 show that the situation is
drastically different in tropical geometry, where such an upper bound independent
on the codimension does not exist. In particular, for k£ large enough with respect
to some fixed m and d, the tropical varieties whose existence is attested by
Theorem 1.5 are not the tropicalisation of any family of projective varieties of the
same dimension and degree.

In a somewhat similar direction, Davidow and Grigoriev studied in [DG] the
possible numbers of connected components of intersections of tropical varieties.
They proved in particular that this number can also be much larger than the bound
in algebraic geometry given by Bézout Theorem.

Organisation of the paper. Section 2 is devoted to showing the finiteness of
Bj(m,k,d) and proving Theorem 1.2. In Section 3 the floor composition method
is introduced and we explain how to compute Betti numbers of the obtained
varieties. In Section 4, we first prove Theorem 4.3 which contains Theorem 1.1.
We then give lower estimates of B;(m,k,d) in general using Theorem 4.3 as
induction basis, and floor composition to recursively construct the varieties of
Theorem 1.5. Section 5 is dedicated to the computation of tropical Hodge numbers
of floor composed tropical surfaces and to the proof of Theorem 1.7.

' Note however that this correspondence only concerns dimension of the corresponding vector spaces.
There is no canonical isomorphism between tropical homology groups and Hodge groups in general.
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2. Upper estimates

In this section, we prove the finiteness of the numbers B;(m.,k,d), and
Theorem 1.2. The main ingredient is tropical intersection theory, for which we
refer to [AR, Sha2, BS] for more details.

2.1. Finiteness of Bj(m,k,d). Our strategy to prove the finiteness of B;(m, k,d)
is to reduce to the case of hypersurfaces by a suitable projection universal for all
tropical subvarieties of dimension m and degree d in T P™**_ We denote by
Gr(m, 7™ %)y c Gr(m,R™%¥%) the space of subvector spaces of dimension m of
R™+k that are defined over Z.

Lemma 2.1. Let V(d,m,k) be the set of elements of Gr(m,Z™Y%) that are
the direction of a facet of a tropical variety of dimension m and degree d in
T P™tE. Then V(d,m.,k) is a finite set.

Proof. The usual Pliicker embedding of Gr(m,R™%¥) lifts to an injection

¢ Grim, 2"%  —s AT (ZT) HL1)

Span(vy, -+ ,vp) +—> VIA AUy
where (vy,--+,vm) € (Z™T*)™ is a basis of the lattice Span(vy,--- , v,)NZ"HE,
In the standard coordinates of A™ (Zm+k) , the coordinates of ¢(Span(vy,---,Um))
are given by all m x m minors of the matrix (vy,---,vn).
Suppose now that V € V(d,m,k), and choose a basis (vy,---,v,) of
V N Z"™tk Let (up,--- ,umyxr) denote the canonical basis of R™*X_  Then by

the tropical Bézout Theorem, one has

ldet(ul']al.‘ aul‘k’ula“' ,Um)’ = d
for any subset {iy,---,ix} C {1,---,m + k}. All these determinants are precisely
the m>m minors of the matrix (vi,---,v,). Hence we deduce that ¢(V(d,m, k))
is a finite set, and so is V(d,m, k). ]

Proposition 2.2. Given any integers m,k,d > 0 and j > 0, the number
Bj(m,k,d) is finite.

Proof. Without loss of generality, we only consider tropical subvarieties of T P”"
with no irreducible component contained in T P” \ R". Then the number of faces
of dimension ;j of a tropical hypersurface in R" is equal to the number of faces
of dimension n — j in its dual subdivision. Any tropical hypersurface of degree
d in T P" has a Newton polytope included in the simplex with vertices
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(03“' 7O)s (d,0,0,"' 70)1 (Ovdaoy.“ 70)5 Tt (Oa'.' 10ad10)v (07... ,0,0,d).

Hence the proposition holds true in the case of hypersurfaces, i.e., when k = 1.

In the case when k > 2, we prove the proposition by induction on m, the
case m = 0 holding trivially. Note that a tropical subvariety of T P" carries a
canonical polyhedral decomposition when it is either a curve or a hypersurface,
however this is no longer the case in higher dimensions and codimensions (think
for example of the union of the two 2-planes with equations x; = x, = 0 and
x3 = x4 = 0 in R*). Given any couple (V, V') of distinct elements of V(d,m, k),
we fix a vector uy,y» € V' \ V, and we define

W=A{V®Ruyy | (V,V')€eV*(d,m,k) and V # V'}.

By Lemma 2.1, both sets V(d,m,k) and W are finite, and there exists a vector
space W e Gr(k — 1,Z™**) such that

WnvV={0  VYVeVdmkUW.

Let 7 : T P™tk — T pm+1 be the tropical map induced by the linear projection
along W in R™t%_ Note that for any tropical variety X of dimension m and
degree d in T P™t%, the degree of m(X) in T P™*! is bounded from above
by (and generically is equal to) a constant D(d, W) that only depends on d
and W. Since W NV = {0} for any V € V(d,m,k), the dimension of m(F)
equals the one of F for any facet F of X . The condition that W NV = {0} for
any V € W guaranties that different elements of V(d,m, k) have distinct images
under 7. From now on, we consider the lift to X of the canonical polyhedral
decomposition of 7(X). By construction, the preimage 7~!(F) of any open facet
F of m(X) is the disjoint union of open facets of X.

Let W’ be any element of Gr(k,Z™ k) which contains W and such that
W' 'Nnv = {0} for any V € V(d,m,k). The tropical map =’ : X — T P™ induced
by the linear projection along W' is finite. Furthermore the tropical degree of x’
is bounded from above by (and generically is equal to) a constant D'(d, W’) that
only depends on d and W’'. By the tropical Bézout Theorem, the fibre 7/~1(x)
contains at most D’(d, W’) points for any point x in T P™. Since each fibre of
mx is contained in a fibre of n’, there are at most D'(d, W’) points in yrl}l (x)
for any x € n(X). Hence, we deduce that the number of facets of X, and so
the number B, (m,k,d), is at most

D'(d,W')-K(m,D(d,W)) < +oo,

where K(m, D(d,W)) is the maximal number of facets of a tropical hypersurface
of degree D(d,W) in R™*t! TThis proves the proposition when j = m.
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We prove the results for j < m by induction on m. Let us denote respectively
by Sk™~'(X) and Sk™ '(n(X)) the closure in T P7™tk and T P™*! of the
(m — 1)-skeleton of X NR™* and 7(X)NR™*!. The stable self-intersection of
m(X)NR™*! in R™*! provides positive integer weights on Sk™ ! (7 (X)), turning
this latter into a tropical subvariety of T P™*! of degree at most D(d, W)?.
In its turn, the stable intersection of X NR™*% with 7~1(X) N R™* provides
positive integer weights on Sk™~!(X), turning it into a tropical subvariety of
T Ptk whose degree is bounded by a number D(d, W) which only depends
on d and W. Since X is obtained from Sk™ 1(X) by attaching m-cells, we
have

Bj(m.k,d) < Bj(m—1,k +1,D(d, W)).

Since by assumption the number B; (m—1,k+1, D, W)) is finite, the proposition
is proved. []

2.2. Auxiliary statements. The proof of Theorem 1.2 requires the following
several auxiliary lemmas that will be combined in Section 2.3. Given a tropical
plane L in T P3, we denote by Sk?(L) the closure in T P3 of the union of all
faces of dimension i of L NR3.

Until the end of this section, we denote by L, the tropical plane in T P3
defined by the tropical polynomial “x 4+ y +z + 0”.

Lemma 2.3. Theorem 1.2 holds if every edge of C is either disjoint from
SkY(L)\ Sk°(L) or contained in Sk'(L).

Proof. Denote by Cr the intersection of C with a facet F of L. By assumption,
one has

bi(C) = hi(Cr),
F

where the sum runs all over the facets of L. Let o be the number of the
directions (0,0,—1), (0,—1,0), (—1,0,0), and (1,1,1) along which L is not a
cylinder, and let s be one of these four directions. The projection along s defines
a degree one tropical map ny : L — T P2, and by assumption, one has

T — 1) (d =
;hucn:bl(mcns( e

where the sum runs over all facets of L not containing the direction s. Considering
all possible directions s, each Cg contributes to the first Betti number of exactly
two projections w3 (C), so we get
d-D@d-2) Wl -2

2 - 2
which is the desired result. UJ

28(C) <o
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Given a tropical curve C in TP" and p € C, we denote by val,(C) the
valency of C at p, and by Edge,(C) the set of edges of C adjacent to p (viewed
as a vertex of C). We also define C* =C NR” and C® = C N (T P"\ R").
If C is furthermore contained in a tropical plane L, we denote by Edge*(C)
the set of edges of C that are not contained in Sk'(L). The tropical curve C
is called a fan tropical curve with vertex v if the support of C is the closure in
T P3 of rays in R? all emanating from v.

The proofs of next Lemmas and of Theorem 1.2 extensively use tropical
intersection theory of tropical curves in tropical surfaces, for which we use the
presentation given in [BS, Section 3] and [BIMS, Section 6.2]. For the reader
convenience, we recall informally the definition of the local self-intersection sz
at a point p of a tropical curve C in Ly with no irreducible components in
T P3\ R3. Recall that each facet F of L, contains a unique corner point (i.e.
with coordinates (—oo, —o00) in an affine tropical chart [—oo; 4+00[?) that we
denote by gr. There are several cases to consider to define C;, depending on
the location of the point p in Ly:

e p is contained in C®\ Sk!(Lg): the tropical plane L, is then locally
given at p by the affine tropical chart R?, and C7 is defined as the stable
intersection of C at p in Ly [RGST];

e p is contained in Sk'(Lg)\ Sk®(Lo): the curve C can be deformed in L
locally at p into a tropical curve C intersecting C in Lg \ Sk'(Lg), see
Figure 3; we define sz as the sum of the tropical intersection multiplicity
of intersection points of C and C that are close to p (depicted in black
dot points in Figure 3b, note that C2 = 0 if p € C™);

(a) (b) (c)
peC'NSk'(Lo)\ Sk°(Lo) peC™

Ficure 3
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e p = gr for some facet F' of Ly: in an affine tropical chart of Ly at g,
the tropical curve C is defined by a tropical polynomial P(x, y); denoting
by A, (C) the Newton polygon of P(x,y), by A, (C) the convex hull of
Ay (C)U{(0,0)}, and by I'y,.(C) = KqF(C) \ Ay (C), we define

qup = Area(FqF (C))

where Area stands for twice the Euclidean area;

e p is the origin in R3: denote by C the fan tropical curve that coincide
with C in a neighborhood of p, and by d the degree of C; we define

2 _ g2 =)
Cr=d~ ) C.
F facet of L,

Note that we have C p2 > (0 whenever p is not the origin. Next lemma provides
a lower bound for C02. Recall that each edge e¢ of a tropical curve is equipped
with a weight w, € Z~y.

Lemma 2.4. Let C C Ly be a fan tropical curve of degree d with vertex the
origin. Then one has

Co+ D (we—1)—valy(C) > —d* +2d — 4.
ecEdge*(C)

Proof. Let C be a perturbation of C outside a neighbourhood of the origin into
a tropical curve of degree d such that

e C is still contained in Ly;

e any vertex v of C° distinct from and not adjacent to the origin (resp.
connected to the origin by an edge ¢) is trivalent and

CZ=1 (resp. C2 = w,).

e C NR? has unbounded edges only in the standard directions (0,0,—1),
0,-1,0), (-1,0,0), and (1,1,1).

Such perturbation C exists: it suffices to perturb C in a neighborhood of each
point g according to any convex triangulation of I'y,.(C) such that each edge of
Iy (C)NAL(C) is the edge of a triangle, and containing the maximal number of
triangles among all triangulations satisfying this condition. An elementary Euler
characteristic computation gives

(1) 2(C) = ) (valy(C)—2) +2-|C™|.

veCo
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Next, by [BS, Definition 3.6] we have

ci=a2- Y ¢

veCo\{0}
=d>~ ) (ah(€)=2)— Y (we—1)
veCO\{0} ecEdge?(C)

from which we deduce that

> (valy(C)—2) =d*~Cq— ) (we— 1)+ valp(C) —2.

veCo ecEdge?(C)

Just as C, the tropical curve C satisfies to the hypothesis of Lemma 2.3. Hence
combining this latter identity together with Lemma 2.3 and equation (1), we
obtain
d>—C§— ) (we—1)+valg(C) — [C*| < 2d> — 6d + 4.
e€Edge?(C)

Now the result follows from the fact that |C>| < 4d . ]

Lemma 2.5. Let L C T P3 be a tropical plane, and let C C L be a fan tropical
curve with vertex vy contained in Sk'(L)\ Sk°(L). Then one has

C2 > val,,(C) —3.

vo

Proof. The lemma is true if vy is a trivalent vertex of C since in this case
Cv20 = 0. If vy is not a trivalent vertex of C, then we perturb C as depicted in
Figure 3a and b, into a tropical curve C such that

e C is contained in L&
e C and C have the same directions of unbounded edges;

e C intersects Sk'(L) in a single trivalent vertex .

We have
2 £
Cv() - Z Cv‘
veCY

Furthermore if v # vy and v is not a 2-valent point of C, it follows from Pick

Formula that
C’v2 z Z we = 2.
e€Edge, (C)
Furthermore we have
Cc2

vo

0 = valg, (C) — 3,

and the result follows. L]
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2.3. Proof of Theorem 1.2. Let us denote by L C TP? a tropical plane
containing C, and by a the number of vertices of C which are contained in
SkY(L)\ Sk°(L). We claim that

(2) > (valy(C)—2) <2d* —2d +2.
veC?
Assuming that this inequality holds, we have
26(C) = ) (valy(C) —2) +2—|C™|
veC?

<2d*—6d +4

<2(d—-1)-(d —2).
Hence it remains to prove Inequality (2). Suppose first that C does not pass
through Sk°(L).

The self-intersection of C in L is equal to d?, hence it follows from Pick
Formula and Lemma 2.5 that

d*= Y ¢}

veCv

> > (X we-2)+ Y (val(©)-3)
veC\Sk!(L) e€cEdge,(C) veCONSk1(L)

> 3 (valy(C)—2) —a.
veCl

Since a < d, we have d? +a < 2d? —2d + 2 and Inequality (2) holds.
Suppose now that C passes through Sk°(L). Again, it follows from Pick
Formula and Lemma 2.5 that

>= > Cl+ > CZ+Cy
veCO\SkI(L) veCONSk! (L)\{0}
= Y (X w-2)+ > (al(©)-3)+C
veCO\SkI(L) ecEdge,(C) veCONSk! (L)\{0}
> Z (val,(C)—2) —a + Z (we — 1) + C§
veCN\{0} eEEdge(z,(C)
> Y (valy(C)—=2)—a+ > (we—1)+C§ —valo(C) + 2.

veCo ecEdged(C)

Denoting by do the local intersection number of C and Sk!(L) at the origin,
it follows from Lemma 2.4 that
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Z (val,(C) —2) <d?+dj —2dp +2 +a.

veC?
Since the total intersection number of C and Sk!(L) is equal to &, and that
each local intersection multiplicity on Sk!(L) \ {0} is positive, we deduce that
do <d—a and a < d —1. In particular we have dj —2dy < (d —a)*—2(d —a),
and

Y (valy(C)—2) <2d” -2d +2+a-(a—2d +3)
veC?

<2d?-2d +2,

i.e., Inequality (2) holds in this case as well. Ll

3. Floor composition

We describe a method of construction of tropical varieties which we will
use in Section 4 to exhibit tropical varieties with large top Betti numbers. This
method originates in the floor decomposition technique introduced by Brugallé and
Mikhalkin ([BM2, BM3, BMI]), whose roots can in their turn be traced back to
earlier ideas by Mikhalkin. A floor composed tropical variety is a m-dimensional
tropical variety in R”*! which is built out of the data of a collection of m-
dimensional varieties in R” together with some effective divisors on elements
of this collection. In the case when the varieties and the divisors involved are
homology bouquets of spheres, we express the Betti numbers of the floor composed
variety in term of those of the construction’s data.

3.1. Tropical birational modifications. Here we slightly generalise the notion
of tropical modifications introduced in [Mik4] and further developed in [BLdM,
Shal, Sha2, BMa, CM16]. Let X be a tropical subvariety in R”. Recall (see for
example [BIMS, Section 5.6] or [MR, Section 4.4]) that to a tropical rational
function f : X — R corresponds its divisor divy(f) which is a codimension
one tropical cycle on X. We denote I'r(X) C X xR C R” xR the graph of
f with weights inherited from X. Given a closed polyhedron F in R” x R
equipped with a weight wg, we denote by F~ (resp. F1) the polyhedral cell
F —Rx0(0,---,0,1) (resp. F +Rxo(0,---,0,1)) equipped with the weight wp .

Definition 3.1. Let X be a tropical variety in R”, and f : X — R be a tropical
rational function. Suppose that there exist two effective tropical divisors D, and
D_ on X such that divy(f) = Dy — D_. The tropical variety X in R"H!
defined by

X =r1px) | rppp)” | rroo)?
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is called a birational tropical modification of X along the divisor Dy — D_. If
D_ = @, then X is called a tropical modification of X along D..

Our definition of tropical modification coincides with the definition from
[Mik4, Shal, Sha2, BIMS].

Example 3.2. The tropical line L in R? defined by the tropical polynomial
“x +y + 07 is a tropical modification of R along 0. The tropical plane in R3
defined by the tropical polynomial “x + y + z 4 0” is a tropical modification of
R? along the line L. More generally, any tropical linear space of dimension m
in R” can be obtained from R™ by a sequence of tropical modifications along
tropical linear spaces of dimension m — 1.

Example 3.3. The tropical surface in R3 defined by the tropical polynomial
“(y 4+ 0)z + x 4+ 0” is a birational tropical modification of R? along L4 — L_,
where Ly (resp. L—) is the tropical line in R? defined by the tropical polynomial
“x +0” (resp. “y +07), see Figure 4. This surface may be thought as an open
part of the blow-up of T P? at the point (0,0), the line (0,0) xR corresponding
to an open part of the exceptional divisor.

FiGure 4
The tropical birational modification of R? along the divisor div“x+()n(]R2) —
div“y_,_()”(Rz). The line (0,0) x R is contained in the tropical surface.
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Given a tropical variety X in R” and a divisor D on X, it is not true
in general that there exists a tropical rational function f : X — R such that
divy (/) = D. Nevertheless the following proposition shows that this is true when
X is a tropical linear space. This is an immediate generalisation of [Sha2, Lemma
2.23] which treats the case of fan tropical linear spaces. The proof from [Sha2,
LLemma 2.23] is based on the following two facts:

e any fan tropical linear space of dimension m in R” is obtained from R"™
by a sequence of tropical modifications along fan tropical linear spaces of
dimension m — 1;

e any tropical divisor in R™ is the divisor of a tropical rational function.

Since the first point extends to tropical linear spaces which are not necessarily
fans, the proof of [Sha2, Lemma 2.23] extends immediately as well.

Proposition 3.4. Let L be a tropical linear space in R". Then any tropical
divisor D in L is the divisor of some tropical rational function f :L — R.

3.2. Floor composed varieties. A construction patternis aset K = {X,---, Xy,
DO'-'” ’Ddi.f19”. ’fd} where

e X; is a m-dimensional connected tropical variety in R";

e D;_; and D; are effective tropical divisors on X;, and f; : X; - R is a
tropical rational function such that divy,(f;) = D; — Di—1;

e D; is non-empty for i € {I,---,d — 1};
o fi(p) > fi+1(p) for any p e D;.

Note that the above varieties X; are not disjoint since D; C X; N X;j4;. Given
such a construction pattern K, we construct a tropical variety Xg of dimension
m in R**1 as follows. For any i € {1,---,d —1}, we define W; as the polyhedral
complex

Wi =Ty (D))" Ny, (DY

equipped with weight inherited from D;. We also define
Wa =Tr,(Dg)” and Wy =Ty (Do)*

equipped with with weight inherited from D, and D, respectively. Finally we
define Xg as follows

d
Xk =Wou | (T, (X)) uwy).

i=1

Note that Xx C Ule X; xR by construction.
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Definition 3.5. The tropical variety Xk in R"*' is called the floor composed
tropical variety with pattern K.

Example 3.6. A classical use of the above construction is with a construction
pattern K where each X; is R™, each divisor D; is a hypersurface defined
by a tropical polynomial P; of degree i in R™, and f; = “P;/P;i—1”. In this
case Xk is a tropical hypersurface of degree d in R™™!. An example of such
a construction pattern and the corresponding floor composed tropical cubic curve
in R? is depicted in Figure 5.

.....................

FiGURE 5
A floor composed cubic tropical curve in R?. For each
X; = R, we depicted D; — D;_; and T’y (R) UW;.

Our main construction in Section 4.2 uses a generalisation of the previous
example with an arbitrary tropical linear space in place of R”. Given a tropical
linear space of dimension m in R” and a surjective linear projection = : . — R™
to a coordinate m-plane, we denote by U, C R" the set of points whose preimage
by 7 consists of a single point (it is the complement in R of an arrangement
of at most n — m tropical hyperplanes).

Definition 3.7. Let L be a tropical linear space of dimension m in R" and
f : L — R a tropical rational function. The function f is said to have degree
at most d if for any surjective linear projection w : L. — R™ to a coordinate
m-plane, the function f on~':U, — R is the restriction to U, of a tropical
polynomial P, of degree at most d in R™. It is of degree d if it is of degree
at most d, and not at most d — 1 (i.e. when at least one of these polynomials
has degree d).

Note that with the above definition, not any tropical rational function
f : L — R has a degree. This is the case if and only if f restricts to a
tropical polynomial on every facet of L.
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Example 3.8. Let L be the tropical hyperplane in R> defined by the tropical
polynomial “x 4+ y + z 4+ 0”. The tropical rational function

Cx4y)-(z4+0 7
x+y+z40
has degree 1 on L. Indeed, by symmetry it is enough to consider the projection

w(x,y,z) = (x, ), and in this case fox~'(x,y) = “x+ y”. Note that divy(f)
is the line R(1,1,0), see Figure 6.

J(x,y,2) =

FiGure 6

Lemma 3.9. Let L be a tropical linear space in R", and X a tropical subvariety
in L of codimension I and degree d . Then there exists a tropical rational function
f L —>R of degree d such that X = divp(f).

Proof. Denote by m the dimension of L, and let = : L — R™ be a surjective
linear projection to a coordinate m-plane. For any direction x; which is not
contracted by &, we have

173 -1 »
o
(3) 2 o~ = f_ _
Xi X
Hence we may assume without loss of generality that the tropical rational
function f has a well defined degree but that “f/x;” does not for any index i.



436 B. BerTrRAND, E. BRUGALLE and L. LorEz bE MEDRANO

Suppose now that there exists a projection my as above such that the tropical
polynomial f omy' has degree at least d + 1. Since mo(X) has degree d, it
follows that there exists a direction x; which is not contracted by my and such
that “fomy!'/x;” is still a tropical polynomial. But then it follows from (3) that
“fom~!/x;” is a tropical polynomial for any projection 7 that does not contract
the direction x;. Hence the tropical rational function “f/x;” has a well defined
degree in contradiction with our assumptions. L]

Next proposition generalises Example 3.6.

Proposition 3.10. Let L be a tropical linear space in R"™, let ho,hy, -, hg
be tropical rational functions on L such that h; is of degree i, and let
fi = “hi/hi=1” If fi(p) > fix1(p) for any p € divy(h;), then the tropical floor
composed variety Xk with pattern K = {L,---, L, divy(hg),--- ,divy(hg), f1,
oo, fa) is of degree d in R"Y, and is contained in the tropical linear space
L xR.

Proof. The only thing we have to prove is that Xg is of degree d. We denote

by m the dimension of L. Let I1 be a tropical linear space of dimension n —m
d

in R” which intersects L in a single point and away from U divy (h;). Hence
=1

[T x R is a tropical linear space in R"™! which intersects Xg in exactly d

points, all of them of tropical multiplicity 1. The condition that s; and h;4, have

degree differing by 1 ensures that the closures of Xg and T xR in T P"t! do

not intersect in T P” \ R”, and the proposition is proved. L]

An m-dimensional tropical variety X is called a homology bouquet of spheres
if
ho(X) =1 and hi(X)=0 Vjell,---,m—1}.

Note that any connected tropical curve is a bouquet of sphere.

Proposition 3.11. Let K = {Xy,---, X4, Do,---, Dy, f1,---, fa} be a construc-

tion pattern where the tropical varieties Xy,---,Xq are homology bouquets
of spheres of dimension m. Suppose that fi(p) > [fi(p) for any i < j and
p (S Xi m Xj .

If m =1, then we have

d d—1
bi(Xk) =Y bi(X) + Y (ho(Di) —1).
i=1

i=1
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If m > 2 and if the tropical varieties Dy,---,Dg are homology bouquets of
spheres, then the floor composed tropical variety Xk is also a bouquet of spheres
and

d d—1
bm(Xk) =D bm(Xi) + Y bm1(Di).

i=1 i=1

Proof. 'This is an elementary application of the Mayer—Vietoris long exact

sequence. We prove the proposition by induction on d. The case d = 1
is clear since in this case X; is a deformation retract of Xg. Let K' =
{X1,--+,Xq-1,Dg,--- ,Dg—1, f1,--+, fa—1} and let us assume that the proposition
holds for Xkg-.

Defining

Fg =W,aUTy, (Xq) UWy_,4 and Xgr = Xk \ Ffd(Dd—l)_a

we have

Figure 7 illustrates the above sets on an example. Since Dy (resp. Xg, Xg/)
is a deformation retract of W;_; (resp. Fz, Xg’), the Mayer—Vietoris long exact
sequence applied to the decomposition Xg = Fz U X§¢, gives

4) --— Hj(Dg—1) — Hj(Xq) ® Hj(Xx’) — H;(Xg) —

— Hy1(Dgy) —> -

(a) (b) (©) (d)

L (R) Wi ALY w2
(e) ® (2) (h)
XK/ X?{/ F2 XK

FIGURE 7
Examples of sets defined in the proof of Theorem 3.11 with
K ={RR,@ {1, 1},{=2,2},“l +x + x~17,« 22525

and K’ ={R, @, {—1,1},“1 +x + x~1"}.
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Since X; and Xk are connected, and D;_; is non-empty, we deduce that the
map Hy(Dg_1) - Ho(Xy) & Ho(Xk’) has rank one. This proves the result if
m=1.

If m> 2, since Dy_; and Xy are homology bouquet of spheres, as well as
Xk by induction hypothesis, the long exact sequences (4) gives

Ho(Xk) ~ Z, Hi(Xk) = -+ = Hp-1(Xg) =0,
and
0 — Hn(Xq) ® Hn(Xk') — Hm(Xk) — Hm-1(Dg—1) — 0.
So the proposition follows by induction on d. L]

4. Lower estimates

The main goal of this section is to prove Theorem 1.5. We first study subvarieties
in R”, the case of curves in Section 4.1, from which we deduce a construction
of higher dimensional tropical varieties by floor composition in Section 4.2. Then
we prove Theorem 1.5 in Section 4.3.

Recall that the recession cone R(X) of a tropical cycle X in R" is the
tropical fan defined by

R(X)=lim¢ - X.
t—>0
4.1. Curves in R”. Theorem 1.1 is contained in Theorem 4.3 below. In the proof
of this latter, we will need the auxiliary families of curves constructed in the next
two lemmas. The conditions regarding intersections in Lemmas 4.1 and 4.2 will
be used in Section 5 in the proof of Theorem 1.7.

The multiplicity of a vertex of a tropical curve in R? is twice the Euclidean
area of the polygon dual to this vertex. Such a vertex is said to be non-singular
if it has multiplicity 1. An intersection point p of two tropical curves C; and
C> in R? is said to be tropically transverse if p is a vertex of multiplicity 2 of
C; U C,. Here we denote by Lg the tropical line in R? defined by the tropical
polynomial “x + y 4+ 0.

Lemma 4.1. There exists a family of tropical curves (éd)dzl in R? satisfying
the following properties (see Figure 8 for d = 2,3):
o C1=1Ly;
o C; is of degree d and genus W,’
o Cy has an infinite edge e~ of weight d in the direction (—1,0), which is
contained in the line {y = 0};
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(a) (W) ©

FiGure 8

e cach vertex of Cy not adjacent to ey Is non-singular;

e C; and Cy_; intersect in exactly 1 unbounded segment and (d —1)? points,
all of them being tropically transverse intersection points;

e Cyq and Ly intersect in exactly 1 unbounded segment and d —1 points, all
of them being tropically transverse intersection points.

° ﬂ Cq contains one unbounded segments in the direction (—1,0);
d>1

e R(Cy)=d- L.

Proof. The proof is by induction on d. For C,, we choose the tropical conic
depicted in Figure 8a. To construct the curve Cj, we perturb the union of
Cq_1 with Lo, keeping an edge of multiplicity ¢ . Each non-singular vertex of
C‘d_l gives rise to a transverse intersection point of (:‘d and (:‘d_l. This gives
(d —1)-(d —2) such points. Similarly, each tropically transverse intersection
point of Cy_, and Lg gives rise to a non-singular vertex of Cy, a transverse
intersection point of C; and Lg, and a transverse intersection point of C; and
Cy_,. In each case this gives d — 2 such intersection points. The vertex of
L gives rise to a transverse intersection point of C; and L, hence we have
d —1 tropically transverse intersection points of C; and L as stated. The vertex
adjacent to ey, is perturbed as depicted in Figure 8c, which adds one additional
transverse intersection point of C; and C,y_;. The curve C; is depicted on
Figure 8b.

To ensure the last condition, we choose C‘d such that the distance between
the vertex of Lo and every vertex of C; is bounded uniformly with respect
to d. ]
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The proof of next lemma is similar to the proof of Lemma 4.1 and is left to

the reader.

Lemma 4.2. There exists a family of tropical curves (Cg)a4=1 in R? satisfying
the following properties (see Figure 9 for d = 2,3):

51 = LO;

Cy is of degree d and genus (11—1)2&;

Cy4 has an infinite edge eo of weight d in the direction (—1,0), which is
contained in the line {y = 0};

C, has an infinite edge el of weight d in the direction (1,1), which is
contained in the line {x = y};

each vertex of Cy4 not adjacent to e, oF el is non-singular;

Cy and C4_, intersect in 2 segments and (d —1)-(d —2) points, all them
being tropically transverse intersection points;

C4 and Ly intersect in exactly 2 segments and d —2 points, all of them
being tropically transverse intersection points.

MNa=1 C, contains 2 unbounded segments in directions —(1,0) and (1,1);
R(Cy)=d - Ly.

Lo

(a) (b)

FiGure 9

Theorem 4.3. For any positive integer k, there exists a tropical plane Ly in
R*¥*1 and a family of tropical curves (Cy 4)a=1 in Ly such that (see Figure 2
for k =2 and d = 3):
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o Cy4 is tropical curve of degree d and genus k - W,’

o the intersection Cyg N Cx gy consists of exactly (d — 1) - [Z(d —1)
+k—-2)-(d — 2)] transverse intersection points and k — 1 segments;

e R(Ckq) is d times the fan tropical line with one unbounded ray in each
of the directions

(—1,0,0, -+ ,0), (0, —1,0,++ ,0), -+, (0,--+,0,—1), (1,....1).

Proof. The case k = 1 is well known, and can be proved for example by
perturbing the curves constructed in Lemma 4.1. For k > 2, we use the following
Gluing construction routine. We say that a tropical curve C of degree d in R”
is right-degenerate (resp. left-degenerate) if C has an unbounded edge of weight
d in the direction (1,1,---,1) (resp. (—1,0,0,---,0)) and passing through the
origin. Finally, we denote by H,_; the tropical hyperplane in R"” defined by the
tropical polynomial “x; +--- 4 x, +07.

Gluing routine
INPUT
e a tropical linear plane L in R”;
e a right-degenerate tropical curve C; of degree d in L;
e a left-degenerate tropical curve C, of degree d in R2.
OUTPUT
e a tropical linear plane L in R"*';
e a tropical curve C of degree d in L.
DO

Let ¢; be the edge of C; passing through the origin. Since the multiplicity
of intersection at the origin of H,_; (resp H;) and C; (resp. Cy) is d,
we deduce that C; N H,—; C ey (resp. Co N Hy C ez). We denote by C 1
(resp. C 2) the topological closure of C; \ H,—; (resp. C2 \ Hy).

We embed C, and C, in R"*! in such a way that the union of the
images is a tropical curve. The embeddings are given by the two following
linear maps:

Ya(X1,00+ , Xn) = (X1,+++ , X, 0) € R+

and
y(x,y) = (x,-+,x,y) € R**1,

We define C to be the union of the images of C, and C, by yx and
y respectively, equipped with the weights inherited from C 1 and C 2.
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By construction C is a tropical curve of degree d contained in R"*!.
Furthermore, the tropical curve C is contained in the tropical modification
L of the tropical plane L along the function "x; +--- + x, + 0".

END

Note that if C is the result of Gluing(L, C;, C5), the genus of C is clearly the
sum of the genera of C; and C,.

Let p = (xp,0) € R? (resp. ¢ = (x4,%,) € R?) be a point that is
contained in ey, (resp. ¢/) of all tropical curves Cy; and Cy (resp. Cy)
from Lemmas 4.1 and 4.2. For u € R" we denote by 7, the translation in R”
by the vector u. Given d > 1, we define the families of tropical linear spaces
(L} )k=1 and of tropical curves (C;é,d)kzl of degree d recursively as follows:

o Let 6:1 be the tropical curve which is the image of C; under the map
r:(x,y)r (—x,y—x), and translated so that r(p) is mapped to the origin;
set Ly =R? and C] , = Cj;

® (Liy,-Cpyyy) is the translation of Gluing(L;(,C,:’d,Lp(Ed)) by the

k+1°
vector (xp — Xg,+++ ,Xp — Xg,—Xq).
We define (Lg.,Ck4) as the output of Gluing(ch_l,C,;_l,d, r_péd).

% , the tropical

Since the tropical curves C; and C; are of genus
curve Ci 4 is of genus k- (—d_”éﬂ. Each call to Gluing yields one (bounded)
segment in Cyg g N Cg4—1, which thus contains k& — 1 segments. All other
intersections are tropically transverse. By Lemmas 4.1 and 4.2, the number
of tropically transverse intersection points of Cyy4 and Cy4z—y is equal to
(k—2)-(d —1)-(d —2) 4+ 2(d — 1)?. By construction, the recession fan R(Cr.q)
is as stated. (]

4.2. Higher dimensional tropical varieties in R”. We describe in this section
an inductive construction of tropical varieties in R” with large Betti numbers,
using the curves whose existence is attested by Theorem 4.3 as the initial step.
We first need the notion of recession cone of a rational tropical function on a
tropical linear space. Note that if L is a tropical linear space in R"”, then there
is a canonical one to one correspondence F +— F° between faces of R(L) and
unbounded faces of L.

Lemma 4.4. Let L be a tropical linear space in R", and f : L — R be a
tropical rational function. Let u € R(L), and denote by S(u) the union of all
Jaces of R(L) containing u, by S°°(u) the union of the corresponding unbounded
faces of L, and by S§°(u) the set of points p in S°(u) such that the half-line
p + Rxou is contained in S*°(u) \ divy(f). Then the function p v df,(u) is
constant on Sg°(u).
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Proof. Let py and p, be two points in S3°(u). Hence there exists a path from
p1 to pa in S§°(u) which crosses divy (/) only along its facets containing the
direction u. By definition of div (f), the value of df,(u) does not change when
crossing such a facet. ]

As a consequence, there is a well defined map

R(f): R(L) — R
u > dfp(u)

where p is any point in S§°(u). The map R(f) is called the recession map of

/-

Theorem 4.5. For any positive integers m and k, there exist a tropical linear
space Ly i of dimension m + 1 in R™X  a tropical linear space L . of
dimension m in R™Yk and a family of tropical hypersurfaces (Xm.k,d)as1 in
Ly i such that for any d > 1,

® Xpka is of degree d;

® Xpka is a homology bouquet of spheres and

bm(Xm,k,d) =k- By (m, l,d);
® R(Xm,k,d) =d- L;n,k’

Proof. We fix k and we proceed by induction on m. The case m = 1 holds by
Theorem 4.3.

Suppose now that L, ., L;n,k, and the family (X,,4.4)d>0 have been
constructed. By Lemma 3.9, for any d > 0, there exists a tropical rational
function hy : L, x — R of degree d such that divy,,  (hg) = Xmi,a. The
recession cone R(X,, x.d — Xmk,d—1) = L;n,k does not depend on d, hence the
recession map of “hy/hg—1” is of degree 1 and does not depend on d. In
particular, there exists a sequence (ag)g>0 of real numbers such that for any
sequence (aq)g>0 of real numbers satisfying ayz4; <ayg —ay, we have

“agir-hg1/ha(p)” <“aq -hg/hg—1(p)” Yp € Ly x.
Hence we obtain that the set
Kmgd = {Lem* oLk Xmb0s Xmp1s " Xkl f1.5%% 2 [}

is a construction pattern, where f; = “ag - hg/hq—1” with (ag)qg>0 as above.
We denote by X,,+14.4 the floor composed tropical variety of dimension m + 1
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d—1

. B
m+ 1 ) Y
Proposition 3.11, the tropical variety X,,41 x4 is @a homology bouquet of spheres
and we have

in R™K+1 with pattern K, x4. Recall that B,(m,1,d) = (

d—1
bt mpiga) = ¥ Bul%on )

i=1

:iilk'(;;;ll)

i=1

d —
:k'(m—I-lZ)

=k By (m +1,1,d).

Furthermore, by Proposition 3.10, X,,+1 4 has degree d and is contained in the
tropical linear space L,y x = Lmi x R. Since the recession map of f; is of
degree one and does not depend of d, the recession fan R(Xp,4+14,4) 1S d times
a fan tropical linear space L’ in R™*1 which does not depend on d . Hence

m+1,k
the tropical linear spaces L4 % and L:n+l,k’ and the family (X411 4.4)a>0
have been constructed, and the Theorem is proved. L]

4.3. Proof of Theorem 1.5. Let d,m and k be three positive integers. We
choose L (resp. X ) to be the closure in T P" of the tropical linear space L,,
(resp. the tropical variety X, s 4) from Theorem 4.5. Since X \ X, x4 is a
polyhedral complex of dimension at most m — 1, we have

bm(X) > bm(Xm,k,d)a

and the theorem is proved. In the case m = 1, we furthermore have b,(X) =
b1(X k,q) since the recession fan R(X) is d times the fan tropical line with
unbounded edges in standard directions. L]

Theorem 1.5 together with Proposition 2.2 prove Theorem 1.3 from the
introduction.

5. Tropical homology of floor composed surfaces

In this section we explicitly compute tropical homology of the floor composed
surfaces constructed in the proof of Theorem 1.5. We refer to [MZ2, BIMS, KSW]
for the definition of tropical homology for locally finite polyhedral complexes in
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the standard projective space T P". All tropical homology groups are considered
with coefficients in R. This section partially generalises results from [Shal].

We first start by computing tropical homology of simple tropical bundles,
and apply these results to floor composed surfaces. Recall that the Mayer—
Vietoris Theorem holds for tropical homology [Shal, Proposition 4.2], and that
an irreducible compact trivalent? tropical curve of genus g has the following
tropical Hodge diamond:

g g

5.1. Tropical homology of tropical ruled varieties. We denote by A, the
standard unimodular simplex in R”, and by A:; the convex polytope in R”
which is the convex hull of the union of i-A,_; x {0} and A,_; x {1}. The
corresponding algebraic toric variety is

P (O¢pn1() ® Ocpn-1) = P(Ocpni(~i) ® Ocpni).

We denote by T&, the corresponding tropical toric variety. The faces i-A,_; x{0}
and A,—q x {1} of Afi correspond to two divisors of TA; , respectively denoted
by E_ and E,, that are contained in the boundary of TA! . Note that both
E_ and E; are equal to T P"~!. Furthermore, there are two natural projections
T4 TAL — E4, which are tropical morphisms, and whose fibre over any point
is TP!.

Example 5.1. The standard tropical Hirzebruch surface TF; of degree i is
defined as TA;. Note that the divisor E. is tropically linearly equivalent (see
for example [Mik4, Section 4.3] or [MR, Section 6.3]) to the divisor E_ + iF,
where F is any fibre of my.

Definition 5.2. Let X be a tropical variety in T P" identified with E_ C TA;.

o The cylinder ¥ = n="(X) over X in 11‘5; is called a T P'-bundle over
X . The intersection of ¥ with Ey is denoted by Xi.

o The tropical varieties ¥_ = X\ X4 and 4 = X\ X_ are called tropical
line bundles over X .

e The tropical variety 3°° = 3_N X4 is called a T* -bundle over X .

2 An irreducible tropical curve C in T P” is said to be trivalent if val,(C) < 3 for every point
pecC.
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This is a rather restrictive notion of T P!/line/T* bundles, however it will
be sufficient for our purposes. We refer for example to [MZI, All] for a more
general definition of tropical line bundles.

A TPl-bundle ¥ over a projective tropical variety X comes naturally
equipped with two natural tropical projections w4+ : ¥ — X4 with a section
t+: X > Xy CX.

We compute, in the following lemmas, tropical homology groups of T P!,
line and T bundles.

Lemma 5.3. Let X1 be a tropical line bundle over a tropical variety X . Then
for any pair (p,q), the inclusion 1y induces an isomorphism

tin: Hpg(X) ~ Hpy(S4).

Proof. The morphism (4, is injective since it is clearly a section of the morphism
H,,(X+) — Hp,(X) induced by the projection w4 .

Equip X4+ with any locally finite polyhedral subdivision compatible with its
tropical structure. Recall that the cellular tropical homology of X4 is isomorphic
to the singular tropical homology of X4, and is thus independent of the chosen
subdivision [MZ2, Proposition 2.2]. A (p,q)-cell o in X4 is called vertical if
74+ (o) has dimension strictly less than ¢. A (p,q)-chain in X4 is called vertical
if every cell in its support is vertical. Any (p,q)-chain in X1 is homologous
to the sum of a (p,q)-chain with support in X4 and a vertical (p,q)-chain.
Since no vertical chain in X4 can be closed, we obtain that any (p,q)-cycle in
3+ can be represented by a (p,q)-cycle in X4. In other words, the map ¢4«
is surjective and is thus an isomorphism. L]

Let ¥ be a T P'-bundle over a tropical variety X , and let u_ be the primitive
integer vector generating the kernel of dz_ and pointing away from X_ (there
is a unique choice of such a vector in each tropical tangent space of X). To a
(p—1l.,g—1)—cell 0 = fo-Q in X, with Q a (¢—1)-dimensional face of X and
Bo € Fp—1(Q), we associate the (p,q)-cell k(o) = (u— A Bg) - 7-1(—(Q)) in
¥, where the orientation of 7~!(:_(Q)) is induced by the orientation on (_(Q).
This induces a linear map

K Hp—l,q—I(X) — Hp,q(E).

that we call a tropical Gysin map. Note that the tropical Gysin map is the same
if one defines it using the section ¢ instead of (—. Furthermore it maps straight
classes (i.e., classes induced by tropical cycles) of X to straight classes of X.
The inclusion map ¢+ : X — X induces a linear map H, ,(X) — H, 4(X) that
we still denote by ¢4, to avoid additional notations. This slight abuse of notation
is justified in particular by next lemma.
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Lemma 5.4. For any T P'-bundle ¥ over a tropical variety X, and for any
pair (p,q), the maps (—, and k induce an isomorphism

(tes. k) 2 Hp g(X) X Hp—1,4-1(X) = Hp 4(X).

Proof. 'The map t_, is injective since it is a section of 7_,. As X and X are both
compact, we choose their polyhedral subdivision induced by the tropical structure
on X. As in the proof of Lemma 5.3, any (p,q)-chain o in £ is homologous
to the sum of a (p,q)-chain o— in X_ and a vertical (p,q)-chain o,.

Suppose that o is a (p,g)-cycle in 2. The cellular boundary of any vertical
cell of ¥ intersects X which is disjoint from X_. Hence the vector u_ divides
the framing of each cell contained in the support of o,, that is to say o, = «(09)
with ap a (p—1,9 — 1)-chain in X . In turn, this implies that the support of do,
is disjoint from X_, from which we deduce that

do—. = dog =1,

This proves that the map (_, X K is surjective.
Conversely, suppose that o’ and o” are respectively (p,q) and (p—1,9—1)-
cycles in X such that

L_x(0") + k(0" = Iy.

As above, we have (_,(0’) = dy_ and «(0”) = 0y, = k(dyp), which further
implies that both o’ and ¢” are null homologous. Hence the map t—, x k is
injective, and the lemma is proved. ]

The map « does not depend on which section :(— or ¢4 we choose to define
it, however the inclusion H,,(X) — Hp,(X) does. Let

be the linear map obtained by the following compositions

Lt (**’ )_]
Hyo(X) ——— Hp o(S) — 5 Hp ((X) x Hpey g1 (X) ——

—_— Hp—l,q—l(X)7

where the last map is the projection on the second factor. Note that v,, is the
zero map if and only if (y+« = (_«. The image of vgim x,dimx 1S called the first
Chern class of the tropical line bundle ¥_ (and so it is minus the first Chern
class of the line bundle X.).
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Example 5.5. Consider the tropical Hirzebruch surface TIF; of degree i. Recall
that the divisor E. is tropically linearly equivalent to the divisor E_+iF, where
F is the divisor of TIF; corresponding to the side [(0,0);(0,1)] of A;. Hence
the corresponding straight classes satisfy

[E4] = [E-] +i[F]

in H;(TF;). In particular, the first Chern class of TIF; \ £+ is i times the
class of a point.

More generally, let £ C A’ be a T P'-bundle over a compact tropical curve
of degree d in E_. It follows from the balancing condition that the first Chern
class of ¥_ is equal to i -d times the class of a point.

Next we turn to tropical homology of T*-bundles.

Corollary 5.6. For any T P'-bundle ¥ over a tropical variety X, and for any
pair (p,q), one has the isomorphism

Hp g (2°°) =~ Ker vp g X (Hp—1,4(X)/Im vpqi1).

Proof. 'The Mayer—Vietoris Theorem applied to the triple (X, X_, X;) gives the
long exact sequence

(5) ...— Hpy(E%) — Hpy(3_) X Hpy(T4) —> Hpq(X) —

s Hp {59 — ..,

By Lemma 5.3, we have canonical isomorphisms (4 : Hj, 4(X) — Hp 4(2+). By
Lemma 5.4, we have an isomorphism (_x« : Hp o (X)xHp_1 g1(X) = Hp4(X).
With these identifications, the image of the map

Hp g(Z_) x Hy 4(24) — Hp 4(2)

is precisely H, ,(X)xIm v, ,. Hence the long exact sequence (5) splits into the
short exact sequences

0 —> Hp_1 4(X)/Im vy 41 — Hpo(£°°) —> Ker vpq —> 0,

and the result follows. (]

Example 5.7. In the extremal cases when p = dimX 4+ 1, or p = 0, or
q = dim X + 1, Corollary 5.6 gives

Hiimz,4(2°°) = Haimx,¢(X), Hpaimz(X?°) =0, and Hy4(E°) = Hpq(X).
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Example 5.8. Suppose that X is a compact trivalent tropical curve of genus g.
Then Corollary 5.6 gives the following tropical Hodge diamond for X£°° (as in the
introduction, by convention, /g is the topmost number and %, the leftmost):

1
g+e g
g 2+ 8 0

0

where ¢ = 0 if the first Chern class of ¥_ does not vanish, and ¢ = 1 if it
does. Note that this example corrects a small mistake in [Shal, Lemma 4.3ii)].

5.2. Tropical homology of birational tropical modifications. The method we
used in Section 5.1 also allows the computation of tropical homology of a birational
tropical modification of a tropical variety. Recall that 7_ : TAl — E_ isa T P!-
bundle over E_ = T P" !, As in Section 5.1, we denote by u_ the primitive
integer vector generating the kernel of dn_ and pointing away from E_. If Y
is a tropical variety in TA;, we denote by Y4 its intersection with the divisor

Ey, and by Yf the tropical variety m_(Y4).

Definition 5.9. A tropical variety Y in TAL is called a birational tropical
modification of X C E_ along the divisor Y_ — Yf if Y NR" is a birational
tropical modification of X NR"™ along the divisor (Y- —Y{)NR"™, and if
Y is the topological closure of Y NR" in TAL.

If Yy = @, then Y is called a tropical modification of X along the divisor Y_.

Given such a birational tropical modification ¥ of X, we still denote by
n_ the restriction of n_ to Y. We emphasise that in the next proposition, it
is not assumed that the tropical prevariety Y_ N Yf is a tropical variety (recall
that a tropical variety is defined as the set-theoretic intersection of some tropical
varieties, see [RGST, Section 3]).

Lemma 5.10. Let Y C TA; be a birational tropical modification of X C E_
along the divisor Y_ — Yf . Then for any pair (p,q), one has

Hp o (¥) == Hp g (X) 3 Hp -4 (Y- N TYT).
Proof. Since all tropical varieties involved are compact, we choose their polyhedral

subdivision induced by their tropical structure. The map n_ : ¥ — X induces a
map on the chain groups

s : Cq(Y,Fp) = Cy(X, Fp)
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that commutes with the boundary map. We denote by Y the union of all faces
of Y on which dn_ is injective, i.e., Y is the union of faces of ¥ on which
the restriction of m_ is a bijection. We denote by t the inverse map of -

We start by constructing a section s of the map w_y : H, ,(Y) — H, ,(X).
Given a (p,g)-cell o in X, choose a facet F, of X containing the support
of o. Then o induces via t|f, a (p,q)-cell 74(0) in Y. Note that a different
choice (if any) of F, gives rise to a different (p,g)-chain, differing from t.(o)
by a framing divisible by wu_; this will not be important in what follows. By
linearity, we obtain a linear map

v 1 Cg(X, Fp) — Cy(Y, ).

If o isa (p,q)-cycle in X, then by construction dt.(0) has support contained in
a-'(Y_UY!) and has a framing divisible by u_. Hence (o) is the boundary
in Y of a vertical (p,q)-chain o,, and we define

s(a) = 14(0) — ay.

The map s is a section of the map m,, in particular it is injective. In the rest of
the proof we identity H,,(X) and its image by s in H,,(Y).

Next, the same construction than the construction of the tropical Gysin map
in Section 5.1 provides a linear map

K : Hp—l,q—l(y— n Y_f) —> Hp’q(Y).

With a proof analogous to the proof in Lemma 5.4 that the map ¢4 X k is an
isomorphism, we obtain that the linear map sx« : Hp o (X)xHp 1,41 (Y_-NY]) -
Hp4(Y) is also an isomorphism. []

Applying LLemma 5.10 in the particular case when Y, is empty, we recover
the result by Shaw that tropical homology groups are invariant under tropical
modifications.

Corollary 5.11 (Shaw, [Sha3, Theorem 4.13]). Letr Y C T Aﬁlﬂ be a tropical
modification of X C E_. Then for any pair (p,q), the linear map

is an isomorphism.

Any tropical linear space of dimension m in T P" is obtained from T P™
by a finite sequence of tropical modifications along linear tropical divisors, hence
they have the same tropical Hodge diamond. There are many ways to compute
tropical homology groups of T P™ (see for example [BIMS, Example 7.27] and
[IKMZ, Corollary 2]), with which we obtain the following well-known statement.
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Corollary 5.12. Let L be a tropical linear space of dimension m in T P". Then
one has

hpp(L)y=1 ¥Yp=0,1,...,n, and hpq(L) = 0 otherwise.

5.3. Back to tropical surfaces. Now we specialise results from Sections 5.1 and
5.2 to the case of floor composed tropical surfaces. Throughout the whole section,
we consider the family of tropical curves (Cy g)g>; in T P*+1 we constructed in
Theorem 4.3, and the tropical plane Lj; which contains them. We denote by ¥ 4
the T P'-bundle over Cy 4 in ’H“A,{H_Z, and by Ly 44— the birational tropical
modification of Ly along Ci 4 — Cikg—1.

Lemma 5.13. For any integer k > 1 and d > 2, the tropical Hodge diamond of
Lz,d,d—1 = Li.ad—1 \ E+ is the following

k-g(Cra—1) k-ld-(d—1)+g(Cra-n)]+*k—-1)-2d-3) 0
k—1 0
0

Furthermore, both natural maps Hz,o(zz’odml) — H2,0(Lz,d,d—1) and

Hl,l(Eif’d_l) — Hl,l(Lz,d,d—Q are injective.

Proof. The case p = 0 is clear since Hy 4 (L’,‘;,d,a,_l) = Hq(Lz,d,d—l; R) and that
Lz’ did—1 is contractible. The non-vanishing tropical Hodge numbers of a segment
in R” are precisely Ao = h1,0 = 1. Hence Ly 441 has the following tropical
Hodge diamond by Lemma 5.10 and Theorem 4.3

1

0 k-[l+d-(d—=1)]—=2(k—=1)-(d—1) 0
k—1 0
1

The first Chern class of i ; is non-null by Example 5.5. We consider the
decomposition of Lg 44— into the union of Lz, Lo and of a connected and
simply connected neighbourhood of Cggz—; in Lg44-1. The Mayer—Vietoris
sequence together with Lemma 5.3 and Example 5.8 give that H (L} , , ) =0,
and the following long exact sequences
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(6) 0— Hap(L{ 44 1) — H22(Liga—1) — H1,1(Crg—1) —
—> Ha 1 (L} g 4_1) — H21(Ligaa—1) —

— H1,0(Cra—1) — Hao(Ly 4 4-1) — 0
and

(7) 0— Ho1(Cra—1) —> Hi1(Cra—1) x Hin(Ly 4 4-1) —
— Hia(Lgaa-1) — Hi10(Cra—1) —

—> H1,0(Cr,a—1) X Hio(Ly g g4_y) — 0

The map Hy»(Lig.4-1) — Hi,1(Crg—1) is an isomorphism, so we obtain
HZ,Z(LI{;,d,d—l) = 0 from (6). Next, the map Hy 1 (Lid,d—1) — H1,0(Cka—1)
is the zero map, since the support of the image of any cycle is contained
in disconnecting edges of Cg4—;. Hence we obtain statement concerning
H2,1(Lz,d,d—1) and Hz,o(LZ,d,d_l) from (0).

The map Hy,0(Cka—1) = Hi1,0(Cra—1) X Hl»O(LZ,d,d—l) is the identity on
the first factor, so we obtain from (7) the statements about hjo(L7 , ,_,) and
hl,l(Lz,d,d—1)° Since the map Ho,1(Cg g—1) — H1,1(Ck q—1) is the zero map, we
obtain the injectivity of the map Hy 1(X9°;) — Hi1(Lgq,qa—1) from (7). ]

For simplicity, we denote by (X 4)4>1 rather than (X3 4)g>1 the family of
floor composed tropical surfaces constructed in the proof of Theorem 4.5 out of
the family (C é‘ )a=1 of tropical curves contained in the tropical plane Lj . Since
the tropical surface Xy ; is a tropical plane, it has the following tropical Hodge
diamond by Corollary 5.12:

Proposition 5.14. For any integers k > 1 and d > 2, the tropical surface X 4
has the following tropical Hodge diamond:

hoo(Xka—1)+k-g(Cra1) hia(Xk.a) ho2(Xka 1) +k-g(Cra 1)
ho 1 (Xka—1)+k—1 0
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where

hi1(Xea) = hi,1(Xea—1) + k- [d - (d —1) +2¢(Cyg—1) — 1]
2k —1)-(d —2).

Furthermore for any d > 1, the natural map H;1(Xk,q4) — H1,0(Crq) is the
zero map.

Proof. Since H»1(Xy ;) = 0, the map H1(Xg 1) — Hi9(Cg,q) is clearly the
zero map. We do not compute the tropical Hodge numbers with ¢ = 0 here, since
they correspond to Betti numbers and have already been computed in Theorem 3.11.
We denote by X ,‘g 4 the tropical surface Xy 4 from which we remove the copy
of the curve Ci 4 located on the boundary. Let d > 2, and suppose that the
proposition is true for ¢ — 1. Since the map Hj (Xg4-1) = Hi1,0(Crg—1) is
the zero map, by the same computation performed in the proof of Lemma 5.13
we obtain that XP , | has the following tropical Hodge diamond:

1

hao(Xk,a—1)+8(Cr.a—1) hia(Xe,a—1)— 1+ g(Ck,a—1) hoo2(Xk.a—1)
ha 1 ( Xk .a—1) 0
0

We consider the same decomposition of Xy 4 as in the proof of Proposition 3.11.
By the Mayer—Vietoris Theorem together with Lemmas 5.3 and 5.13 and Exam-
ple 5.8, we obtain that h; o(Xg 4) = 0, and the following long exact sequences
®) 00— Haa(Xg,a) — H1,1(Ca—1) —> Ha i (Lg 4 41) ¥ Han (X 4 ) —
— Hy1(Xk,a) —> H1,0(Cra—1) —> Hao(LY 4 4_1) X H2,0(X{ 4_)) —

—> Hy 0(Xg,q) — 0
and
9) 0— Hi2(Xk,a) — Hon(Crg—1) — Hia(Ly 4 4-1) < Hia(Xg 4 ) —
— H1,1(Xx,0) — Hy1,0(Crg-1) — 0

The map H>»(Xg 4) — H1,1(Ck q) is clearly an isomorphism. Furthermore the
map Hy o(Cx,a—1) —> H20(Ly 4 4_) %X H2,0(X{ ;_,) is injective by Lemma 5.13,
hence we obtain from (8) that
ha1 (Xia) = haa(Ly g 4-1) +h21 (X 4 1)
= h2,1(Xg,a-1) +k — 1
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and

ha 0(Xk,a) = ha,o(X{ 4_1)
= ha,0(Xk,d-1) + &(Cr,a—1)-

The map Ho,1(Cra—1) —> Hi(Ly 4 4_1) % Hl,l(ng_l) is injective by Lemma
5.13, hence we obtain from (9) that h; (X% 4) = 0 and

hia(Xka) = hia(Lg g qq) + R (X 4 p)
= h1(Xkg—1) + k- [d-(d = 1) + g(Cra-1)]
—(k— 1} -2d —3) —1 + #lCsd—1)
= h1,1(Xka—1) + k- [d-(d —1) +2g(Cpg—1) — 1]
—2(k—1)-(d —2).

With the exact same proof of Lemma 5.13, we obtain that the natural map
Hy 1(Lk,d.d—1) — Hi,0(Ck,q) is the zero map. Hence the map

Hy 1(Xk,a) = Hai(Lig.ga—1) x Ha 1 ( Xk a—1) — H1,0(Ciq)

is the zero map, since the above Mayer—Vietoris sequence also implies that the
map Hr (X g—1) = H1,0(Ck q) is the zero map. L]

5.4. Proof of Theorem 1.7. We prove the theorem by choosing X = Xj 4, and
by computing its tropical homology groups recursively on d using Proposition
5.14. The theorem holds for & = 1 by [Shal], and so for all numbers /%, ,(X)
with (p,q) # (1,1). Since we have

hia(Xe,) = k-, (1,2) = (k — 1),
we obtain

hia(X)=k-h$ (d,2)—(k—1)-(d =1)-(d—2)— (k- 1)
(k—1)-(d—=1)-(2d*>—=7d +9)
3

= hi.(d.2) +

as announced. (]
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