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Framing 3-manifolds with bare hands

Riccardo BenNeEpETTI and Paolo Lisca

Abstract. After surveying existing proofs that every closed, orientable 3-manifold is
parallelizable, we give three proofs using minimal background. In particular, our proofs do
not rely on spin structures, the theory of Stiefel-Whitney classes, nor the Lickorish—Wallace
theorem.
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1. Introduction

The aim of this note is to provide three proofs “with bare hands” of
the following primary result in 3-dimensional differential topology, originally
attributed to Stiefel [Sti] (1936):

Theorem 1.1. Every orientable, closed 3-manifold is parallelizable.

We realized by searching the literature that there are at least four modern
proofs of the above result, collected in [Gei, FM] in a very clean way. Each of
those proofs requires a somewhat robust mathematical background, so we asked
ourselves whether there might be a proof which uses minimal background.! By
asking the use of ‘minimal background’” we meant that such a proof should
(i) satisfy the qualitative constraint of adopting a minimal toolbox (the simplest
properties of cohomology and homotopy groups, the basic tools of differential
topology and transversality theory such as given, e.g., in [Mil] or [GP] and

! Essentially the same question was asked in the Mathematics StackExchange Forum, see
https://math.stackexchange.com/questions/1107682/

elementary-proof-of-the-fact-that-any-orientable-3-manifold-is-parallelizable, but
the answers given there until July 18, 2018 use the same tools employed in the proofs mentioned above.
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a few well-known facts about vector bundles and their Euler classes) and (ii)
be as self-contained as possible. Eventually we found three such proofs which,
contrary to some of the proofs present nowadays in the literature, do not rely on
spin structures, the theory of Stiefel-Whitney classes, nor the Lickorish—Wallace
theorem.?

Throughout the paper, M denotes an orientable, closed (i.e., compact without
boundary) smooth 3-manifold. It is not restrictive to assume that M is connected
as well. Recall that a combing of M is a nowhere vanishing tangent vector field
on M. Moreover, M is parallelizable if it admits a framing, that is a triple
F = (w,z,v) of pointwise linearly independent combings. The existence of a
framing is equivalent to the existence of a trivialization

tr: M xR > TM

of the tangent bundle of M. A framing incorporates an orientation of M and,
vice versa, if M is oriented and parallelizable, then there are framings inducing
the given orientation. We will always assume that M is oriented, with a fixed
auxiliary orientation.

The paper is organized as follows. In Section 2 we briefly recall the four proofs
collected in [Gei, FM] and we point out why they do not satisfy our minimal
background requirements. In Section 3 we fix some notation and we recall a
few well-known bare hands results. In each one of Sections 4, 5 and 6 we give
a different bare hands proof of Theorem I.1. The proof of Section 4 is purely
3-dimensional and could be regarded as a minimalistic version of the available
modern proof based on Stiefel-Whitney classes. The proofs provided in Sections 5
and 6 could also be regarded as minimalistic versions of available modern proofs
based on even surgery presentations and, respectively, 4-dimensional and purely
3-dimensional considerations. In particular, the proof of Section 6 could be viewed
as a simplification of the available modern proof mainly based on spin structures.

2. Available modern proofs of Theorem 1.1

Each of the four modern proofs we survey in this section argues that M
admits a quasi-framing, that is a framing F, of a submanifold My of M of the
form

My = M \ Int(B),

where B is a smooth 3-disk embedded in M. The quasi-framing Fy can be
extended with bare hands to a framing of the whole of M as follows. By the

2 Added in proof: After we put this note on arXiv, Durst, Geiges, Gonzalo Pérez and Kegel posted
the preprint [DGGK] with two new proofs of Theorem L1, both relying on the Lickorish—Wallace theorem.



Framing 3-manifolds with bare hands 397

uniqueness of disks up to ambient isotopy, the choice of B is immaterial. Hence,
we can assume that B is contained in a chart of M and looks standard therein.
Upon fixing an auxiliary metric on M and a trivialization of TM over B, the
restriction of Fy to §2 = dB is encoded by a smooth map

0: 8% > SO@).

Since the universal covering space of SO(3) = P3(R) is S3, we have
m2(SO0(3)) = m2(S3) = 0, therefore p can be extended over B and Fy to
M.

2.1. The three proofs presented in [Gei]. We refer the reader to [Gei, § 4.2]
for details. The first and third proofs presented in [Gei] use a certain mixture of
the theory of Stiefel-Whitney classes and spin structures to establish the existence
of a quasi-framing as follows. The first Stiefel-Whitney class w;(M) vanishes
because M is orientable, and the key point in both proofs is to show that w, (M)
vanishes as well. Using obstruction theory to define Stiefel-Whitney classes one
can argue that wy(M) = 0 implies the existence of a spin structure on M, and
therefore that M admits a quasi-framing.? The first and third proofs differ in the
way they establish the vanishing of w,(M).

The first proof, resting on several properties of Stiefel-Whitney classes, is
perhaps the one requiring the most sophisticated background. The so-called Wu
classes v; € H'(M;Z/27) can be characterized by the property that, for every
x € H(M;Z/27Z),

(Sq’ (x), [M]) = (v; U x, [M]),

where [M] denotes the fundamental class of M in Hs(M;Z/2Z) and Sq’ is
the i-th Steenrod square operation. It follows that v = 1 and, for dimensional
reasons, v; = 0 if i > 3 —i. Hence, the only potentially nonzero Wu classes are
vo and v;. Moreover, Wu classes and Stiefel-Whitney classes are related through
Wu’s formula:
wy(M) = > Sq' (v)).
i+j=q
Since Sq° is the identity map and Sq(x) = 0 when i > deg(x), by Wu’s formula
we have
0=wi(M) = Sq"(v1) + Sq' (vo) = v1.

By Wu’s formula again, the vanishing of v; implies w,(M) = 0.
The third proof given in [Gei, § 4.2] goes as follows: First, one shows [Gei,
Lemma 4.2.2] that if ¥ is a closed, possibly non orientable surface embedded

3 According to Pierre de la Harpe [dIHar| these facts were first noticed by André Haefliger [Hael.
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in M, then w,(E) = 0 where £ = E(X) is a tubular neighborhood of X in
M . The proof is elementary modulo the use of the basic Whitney sum formula
for Stiefel-Whitney classes of vector bundles. The conclusion is entirely based on
the theory of spin structures combined with some bare hands reasoning. It is a
slight simplification of the proof proposed by R. Kirby in [Kir2]. The argument
is by contradiction: if w;(M) # O then its Poincaré dual in H{(M;Z/27) is
represented by a knot K embedded in M . Then, the assumption implies that:

(a) M\ K carries a spin structure s which cannot be extended over any embedded
2-disk transverse to K ;

(b) there is a compact, closed surface ¥ embedded in M intersecting K
transversely in a single point xg.

By the general theory of spin structures, the vanishing of w,(£) implies that
the set of spin structures on E = E(X) is non-empty, and in fact it is an affine
space on

HYE;7/27) =~ HY(2;Z/27) =~ HY(Z \ {x0); Z/27).

It follows that the restriction of s to E \ K extends to the whole of E,
contradicting (b).

The second proof presented in [Gei, § 4.2] is less standard. It is based on
the following non-trivial fact due to Hilden, Montesinos and Thickstun [HTM]:
There exists a branched covering map m: M — S3 such that the branching locus
bounds an embedded 2-disk in M . Using this fact, it is relatively easy to lift
a framing of S3, which can be constructed directly, to a quasi-framing of M .
Although this proof is of a geometric-topological nature, clearly it does not use
minimal background.

Remark. The three proofs described above are quite demanding from our “bare
hands” point of view. The first proof, in particular, comes out of a relatively
obscure algebraic machinery — we would have a hard time deducing from such
a machinery a heuristic justification for the existence of framings on closed
3-manifolds.

2.2. The proof presented in [FM]. We refer the reader to [FM, §9] for details.
The starting point is the Lickorish—Wallace theorem |Lic, Wa|, stating that the 3-
manifold M can be obtained by surgery along a framed link L C S3. Equivalently,
the statement says that M is the boundary of a 4-manifold W constructed by
attaching 4-dimensional 2-handles to the 4-ball. Then, an argument essentially
due to Kaplan [Kap] shows that by applying Kirby moves to L., it is not restrictive
to assume that all the framings of L are even. By using this fact one shows that
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the 4-manifold W is parallelizable, hence that M = oW is stably-parallelizable
and eventually admits a quasi framing.

Remark. The proof presented in [FM] satisfies to a large extent the first minimal
background requirement from Section 1. In fact: the final portion of the argument,
which will be recalled in Section 5, is “bare hands”; Rourke’s proof [Rou] of the
Lickorish—Wallace theorem is completely elementary and constructive provided
one allows the use of Smale’s theorem [Sma] so that, for example, one can take
for granted that the operation of cutting and re-gluing a 3-ball does not change a
smooth 3-manifold up to diffeomorphisms; although Kaplan’s argument requires
the introduction of Kirby calculus, it does not use the hard part of Kirby’s
theorem [Kirl] on the completeness of the calculus. Everything considered, we
think that the proof presented in [FM] is not as self-contained as possible and
therefore it does not satisfy the second minimal background requirement from
Section 1.

3. Some notation and bare hands results

In this section we collect some notation and a few well-known facts that
we allow in our minimal toolbox. Let N be a closed, connected manifold of
dimension »n, and let

E:B—> N
be a vector bundle of rank k, considered up to bundle isomorphisms. According
to our bare hands constraints, in this generality the only allowable “characteristic”
class of & is the Poincaré dual w(£) of the class in H,_(N;Z/2Z) carried by
the transverse self-intersection of N viewed as the zero section of £ inside B.
Thus,
w(t) € HY(N;Z/22) =~ H,_ (N Z/27).

The class w(£) actually coincides with the k-th Stiefel-Whitney class wy (¢), but
we shall not need this fact. Moreover, we will not make use of any other Stiefel—
Whitney class. If both N and £ are oriented, the same construction defines an
integral class

e(§) € H(N:2),

sent to w(¢) by the natural map H¥(N;Z) — H*(N;Z/2Z). In both cases we
talk about the Euler class of &, referring to either w(§) or e(£) depending on
the context.

We will feel free to use the following facts, all of which are well-known
facts about vector bundles and can be established using basic tools of differential
topology and transversality theory.
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o if £ =& @& is the Whitney sum of two vector bundles then w(§) =
w(1) Uw(6);

e a line bundle A on N has a nowhere vanishing section if and only if
w(A) =0;

e If N is oriented, a rank-2 oriented vector bundle £ on N has a nowhere
vanishing section if and only if e(§) = 0;*

e if £ =1, & A, is the Whitney sum of two line bundles and n = A; ® A,
their tensor product, then

w(det§) = w(n) = w(do) + w(iy);

e W(T'N)e H"(N;7Z/27) and

(W(TN),[N]) = x(N) mod (2) € Z/2Z;

e N is orientable if and only if w(det7N) = 0;

e If N is oriented then

(e(TN),[N]) = x(N) € Z;

e let M be a closed, oriented 3-manifold and B € H?>(M;Z). Then, there
is an oriented, connected, closed 1-submanifold C € M which represents
the Poincaré dual of B. If B € H/(M;7Z/27) with 0 < j < 3, there
is a possibly non orientable, connected and closed (3 — j)-submanifold of
M which represents the Poincaré dual of f. Moreover, the cup product
of two cohomology classes B; and pB, can be represented by a transverse
intersection of submanifolds representing the Poincaré duals of g, and f;

e any closed 3-manifold M carries a combing.’

In the next section we shall use the fact that, given an auxiliary Riemannian
metric g on a closed 3-manifold M, by normalization any combing of M can
be made of unitary norm, and by the Gram-Schmidt process any framing of M
can be turned into a point-wise g-orthonormal framing. A unitary combing v
on M determines an oriented distribution of tangent 2-planes

Fy ={F,(x)} 4y CTM,

4'This item follows from the fact that P>°(C) is a K(Z,2) space and therefore that real, rank-2
oriented bundles are classified by their Euler classes. Similarly, the previous item follows from the fact
that P>°(R) is a K(Z/2%Z,1) space.

5This fact follows from (M) = 0 using the Poincaré-Hopf index theorem, clearly an allowable
tool, together with the fact that maps S? — S$2 are classified up to homotopy by their Z-degree.
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where F,(x) C TyM is the subspace g(x)-orthogonal to v(x). We assume
that, for each x € M, v(x) followed by an oriented basis of F,(x) gives an
oriented basis of 7yM . The restriction of the projection TM — M gives rise
to an oriented rank-2 real vector bundle F, — M whose isomorphism type is
independent of the choice of g and depends on v only up to homotopy. We
denote by

e(F,) e H*(M:7)

the Euler class of F,.

4. First bare hands proof of Theorem 1.1

In this section we provide the first bare hands proof of Theorem 1.1, resting
neither on the theory of spin structures nor on properties of Stiefel-Whitney
classes. Our tools consist of basic properties of cohomology groups, transversality
theory, and the facts collected in Section 3. We will also use the notation introduced
in Section 3.

The section is organized as follows. In Section 4.1 we give a bare hands proof
of the following proposition.

Proposition 4.1. M is parallelizable if and only if there is a combing v of M
such that w(F,) =0, in which case w(F,) =0 for every combing v.

Proposition 4.1 reduces the proof of Theorem 1.1 to showing that M carries a
combing v such that w(F,) = 0. Observe that, since every class in Hy(M ;7 /27)
can be represented by an embedded surface, for each combing v on M the
property w(F,) = 0 is equivalent to the fact that, for every closed, connected,
embedded surface ¥ ¢ M, we have

4.1) (W(F,), [B]) = (W(Fy|5), [E]) = 0 € Z/2Z.
We claim that Equation (4.1) is a consequence of the equation
4.2) W(Fy|s) =w(TX)+w(detTX) Uw(vy),

where vy C TM denotes the normal line bundle of X. In fact, if ¥ is orientable
then w(det7%¥) = 0 and by (4.2) we have w(Fy|x) = w(T X). Therefore,

(W(Fy|z), [Z]) = (W(TZ),[Z]) = x(£) mod (2) = 0 € Z/2Z.

If ¥ is non-orientable then ¥ is homeomorphic to a connected sum #'P2(R)
of h copies of the projective plane. Observe that det7TM |y = det(TXZ @ vy) =~
det7X ® vy, and since M is orientable det 7TM is trivial, therefore
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0=w(detTM|g) =w(detTE ® vy) = W(TX) + w(vy),

which implies that the normal line bundle vy is isomorphic to the determinant
line bundle det7%. Since P2(R) is non-orientable, the class

a:=w(detTP*(R)) € H'(P*(R); Z/2Z) = /27

is the only non-zero element. Thus, (¢ U«,[X]) = & and by Equation (4.2) we
have

(W(Fyl2).[Z]) = () mod (2) + (@ Ua,[S]) =2—h + hmod (2) =0 € Z/2Z.

Proposition 4.9 of Section 4.2 below contains a bare hands proof of (4.2), thus
concluding our bare hands proof of Theorem 1.1.

Before embarking in the bare hands proofs of Proposition 4.1 and 4.9 it seems
worth pointing out the existence of a short argument to prove w,(M) = 0 without
spin structures, yielding a simplification of the first and third proofs from [Gei,
§ 4.2]. More precisely, we prove Proposition 4.2 below using only the existence
of Stiefel-Whitney classes and the basic Whitney sum formula.

Proposition 4.2. Let M be a closed, oriented 3-manifold. Then, w(M) = 0.

Proof. Let v be a combing on M and ¥ C M a closed, connected, embedded
surface. Then, we have the Whitney sum decompositions

TM|zs =F)|s®e=TX® vy,

where € is the trivial line bundle generated by v. By the Whitney sum
formula for Stiefel-Whitney classes, the first decomposition gives {(w,(M), [X]) =
(wa(Fy), [X]), hence wy(M) = 0 if and only if wy(F,) = 0. The second
decomposition yields

wa (Fyle) = wa(X) + wi(X) U wi(vy),

which is analogous to Equation (4.2). An argument similar to the one above
showing (4.2) = (4.1) gives (wa(Fy),[X]) = 0 € Z/2Z, therefore we conclude
wz(Fv) = 0. L]

4.1. Combing and framing 3-manifolds. Our purpose in this section is to
achieve a bare hands proof of Proposition 4.1 above.

Lemma 4.3. M is parallelizable if and only if e(F,) = 0 for some unitary
combing v.



Framing 3-manifolds with bare hands 403

Proof. Let v be a unitary combing of M such that e(F,) = 0. Any nowhere
vanishing section of F, can be normalized with respect to ¢ to a unitary section
w of Fy,, extended to an oriented orthonormal framing (w, z) of F, and finally to
an oriented orthonormal framing (w, z, v) of M. Conversely, for any orthonormal
framing (w,z,v) of M we may view v as a combing of M and w as a section
of Fy. O]

The comparison class. We can associate to an ordered pair of unitary combings
(v,v") of M a smooth section v x v’ of F, as follows. At a point x € M where
v(x) # +v'(x), v xv'(x) € Fy(x) C TyM is the “vector product” of v(x) and
v'(x), i.e., the only tangent vector such that

2
g(x

e v xv'(x) is g(x)-orthogonal to v(x) and v'(x);

o oxv' ()2, =18, v)?%;

e (v(x),v'(x),vxv'(x)) is an oriented basis of T M .

At a point x € M where v(x) = +v'(x), we set v x v/(x) = 0.
If the two unitary combings v and v’ are generic, the section v x v’ of F,
is transverse to the zero section and the zero locus

C={xeM|vxvix)=0CM
is a disjoint collection of simple closed curves. Moreover, C = C4 U C_, where
Gi= {x eM | vix) = v'(x)} and C_ = {x eM | vix)= —v’(x)}.

By the very definition of e(F,), C can be oriented to represent the Euler class of
Fy. Indeed, let E(F,) denote the total space of F,, My C E(F,) the zero-section
and My, = v xv'(M) C E(Fy). Under the natural identification of M with M,
the submanifold C is identified with My N M,. Let py : TYE(F,) — Fy(x)
be the natural projection and N,(C) the fiber of the normal bundle of 7C
inside TM|c. Since p, maps (v x v')«(Nx(C)) isomorphically onto F,(x), the
given orientation on F,(x) can be pulled-back to N,(C) and, together with the
orientation of 7Ty M, it induces an orientation on 7,C in a standard way.

Definitions. An ordered pair of unitary combings (v,v’) of M such that v x v’
is a section of F, transverse to the zero section will be called a generic pair
of unitary combings. We define the comparison class a(v,v') € H*(M;Z) of
a generic pair of unitary combings as the Poincaré dual of the homology class
[C_], where C_ is oriented as described above.

Lemma 4.4. Let (v,v") be a generic pair of unitary combings of M . Then,

a(v,v) = —a@,v) and a,—v") =a@’, —v).
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Proof. For each x € C the equality F,(x) = F,/(x) holds, with the orientations
of Fy(x) and F,(x) being the same or different according to, respectively,
whether x € Cy or x € C_. We may choose a tubular neighborhood U = U(C)
such that the restrictions of the tangent plane fields F,|y and Fy|y are so
close that there is a vector bundle isomorphism ¢ : Fy|y herd Fy |y which is
the identity map on the intersections F,(x) N Fy(x), x € U, is orientation-
preserving near Cy = {x € M | v(x) = v'(x)} and orientation-reversing near
C_.={xeM | vx)=—-v(x)}. Since po(vxv) =vxv = —v' xv and
—v’xv is obtained by composing the section v’ xv with the orientation-preserving
automorphism of F,, given by minus the identity on each fiber, the orientation
on C_ as part of the zero locus of v xv' : M — F, is the opposite of its
orientation as part of the zero locus of v/ xv = —v xv': M — F, . This implies
a(v,v’) = —a(v’,v). Similarly, the orientation on C4 as part of the zero locus
of vx(—v'): M — F, coincides with its orientation as part of the zero locus of
—(v x (=v)) =v' x (—v) : M — Fy, which implies a(v,—v’) = a(@’,—v). O

Lemma 4.5. Let (v,v") be a generic pair of unitary combings of M. Then,

e(Fy) —e(Fy) = 2a(v,v).

Proof. According to the definitions we have
e(Fy) =a(,v)+a(v,—v") and e(Fy)=a(’, v)+a@, —v).
Taking the difference of the two equations and applying Lemma 4.4 we obtain
e(Fy) —e(Fy) =a(,v) +a,—v) —a@,v) —a®@,—v) =2a(,v). O
Pontryagin surgery. Let v be a unitary combing of M and C C M an oriented,

simple closed curve such that the positive, unit tangent field along C is equal to
v|c and there is a trivialization

j:DrxS'S U
of a tubular neighborhood of C in M such that

vo j = jx(3/9¢),
where ¢ is a periodic coordinate on the S!'-factor of D? x S'. Let (p,0) be
polar coordinates on the D?-factor. Following terminology from [BP], we say
that a unitary combing v’ is obtained from v by Pontryagin surgery along C
if, up to homotopy, v’ coincides with v on M \ U(C) and

;e d _ 0
Ve =J (— cos(mp) o — Sln(np)%)

on U(C).
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Remark. A basic fact not used in this paper is that any two combings of
M are obtained from each other, up to homotopy, by Pontryagin surgery [BP,
Theorem 6.2.2].

Lemma 4.6. Let v be a unitary combing of M and B € H?*(M;Z). Then,
possibly after a homotopy of v, there is a unitary combing v’ such that (v,v’)
is a generic pair of unitary combings and

a(v,v’) = B.

Proof. Let C C M be an oriented simple closed curve representing the Poincaré
dual of B and let j : D? x S! — U(C) be a trivialization of a neighborhood
of C. Without loss of generality we may assume that the pull-back j*(g) of
the auxiliary metric g on M is the standard product metric on D? x S!. After
a suitable homotopy of v the assumptions to perform Pontryagin surgery on
v along C are satisfied. Consider a normal disc Dy, = j(D? x {¢}) and let
p = Dg, N C. Then, T,Dy, coincides, as an oriented 2-plane, with F,(p) as
well as with the g(p)-orthogonal subspace of 7,C inside T,M. Let v’ be
a unitary combing obtained from v by first performing a Pontryagin surgery
on U(C) and then applying a small generic perturbation supported on a small
neighborhood of M \ U(C). Then, (v,v’) is a generic pair of unitary combings
and C = {x € M | v(x) = —v'(x)}. By the definition of a(v,v’), to prove the
statement it suffices to show that the given orientation of C coincides with its
orientation as part of the zero set of v x v’ : M — F,. Near C we have

. ) ) d . (sin(mwp) d d
0 x )0 j = i =sinGrp)g) = o (T (37— x77)).
where x = pcos@ and y = psinf are rectangular coordinates on the D?-factor
and d/d6 is the unit vector field tangent to the circles {p = const}. Observe that
J« sends the pair (d/dx,d/dy) to an oriented framing of F,. Using the resulting
trivialization of F, we can write locally the restriction of v x v/ to to the disc
Dy, followed by projection onto F;, as follows:

sin(7p)

v X Vg, : (X, ) = (v,—x) = w(y,—x) + higher order terms.

It is easy to compute that (v x v’). o j, sends d/dx to —md/dy and d/dy to
nd/dx, and since the matrix (_% 7) has determinant 72 > 0 this shows that the

- 0
restriction of (v x v’), to the normal bundle to C composed with the projection
onto F, is orientation-preserving along C, concluding the proof. [

We shall say that the Euler class e(Fy) is even if there exists B € H2(M;7Z)
such that e(Fy,) = 28.
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Lemma 4.7. M is parallelizable if and only e(F,) is even for every unitary
combing v.

Proof. If M is parallelizable, then M has a unitary framing (w,z,v) and the
class e(F,) = 0 is obviously even. Let v’ be an arbitrary unitary combing of
M . After possibly small perturbations of v’ and v which do not change e(F,)
nor e(F,), the pair (v’,v) becomes a generic pair of unitary combings and by
Lemma 4.5 we have

e(Fy) = e(Fy) —e(Fy) = 2a(v',v).

Therefore, e(F,) is even as well. Conversely, suppose that v is a unitary framing
with e(F,) = 28 € H?>(M:;Z). By Lemma 4.6, possibly after a homotopy of v
— which does not change e(F,) — there is a unitary framing v’ such that (v,v’)
is a generic pair and a(v,v’) = . Hence, by Lemma 4.5 we have

e(Fy) —e(Fy) = 2a(v,v") = 28,
which implies e(F,/) = 0, therefore M is parallelizable by Lemma 4.3. L]

Lemma 4.8. Let v be a unitary combing of M. Then, e(F,) is even if and only
if w(Fy) =0.

Proof. The implication e(F,) = 0 = w(F,) = 0 is trivial. We give two
arguments for the other implication. The first argument uses a little bit of
homological algebra. The short exact sequence of coefficients

05237 >7/27 -0

induces a long exact sequence in cohomology including the segment
S HAMZ) S HEMZ) S HE (M 2.)27) — -

where the map ¢ is reduction mod 2. Exactness yields the statement.

The second argument is more geometric. The Poincaré dual of e(F,) can be
represented by an oriented knot K € M. If w(F,) = 0 then K bounds an
embedded surface £ C M. If ¥ is orientable then [K] = 0, hence e(F,) = 0,
which is obviously even. If ¥ is non-orientable then there is a collection C of
simple closed curves in the interior of ¥ such that ¥ ~ C is orientable and a
tubular neighborhood U of C in ¥ is a union of Mobius bands. Orient ¥ ~ U/
so that K is an oriented boundary component and give dU the resulting boundary
orientation. Orient the cores of U so that the natural projection dU — C has
degree +2 on each component. Then, [K] = [0U] = 2[C], therefore e(F,) is
even. []

Proof of Proposition 4.1. The statement is an immediate consequence of Lem-
mas 4.7 and 4.8. L
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4.2. Proof of Equation (4.2). The purpose of this section is to give a bare hands
proof of Proposition 4.9 below, which establishes Equation (4.2). As explained
at the beginning of the present section, this concludes our bare hands proof of
Theorem 1.1.

Let v be a unitary combing of M and £ C M a closed, embedded surface.
At each point x € £ we have the splittings

(4.3) TxM = Fy(x) ®e(x) =Ty X ®vg(x),

where €(x) is the (oriented) line spanned by v(x), while vx(x) is the (unoriented)
line orthogonal to 7, X.

Proposition 4.9. Let v be a unitary combing of M and ¥ C M a closed,
embedded surface. Then,

(4.4) w(Fyly) =w(TX) + w(detTX) Uw(vy).

Proof. Let s : ¥ — F,|x be a generic section of the restriction F, to X. For
each x € X, the second splitting from (4.3) induces decompositions

s(x) = sz(x) +50(x),  v(x) = vz(x) + vy (x).

By transversality we may assume that:

(i) the zero set {s = 0} C ¥ consists of a finite number of points representing
w(Fy|x);

(ii) s, and v, are generic sections of vy, so that both their zero sets {s, = 0}
and {v, = 0} consist of smooth curves in X representing w(vy). Moreover,
{s, = 0} and {v, = 0} intersect transversely in X, so that the finite set
{vy =0} N{sy, = 0} represents w(v) Uw(v) = w(detT%)U w(v);

(iii) {s =0} and {v, = 0} are disjoint subsets of X;

(iv) sy is a generic section of 7%, so that {sy = 0} consists of a finite number
of points representing w(7'%).

Given a finite set X, denote by |X|, € Z/2Z the cardinality of X modulo 2.
Then, we have

(W(FU|E)7 [E]) = ‘{‘Y = O} 2 (W(TE)* [E]) = |{SZ = O}|2’
(w(det TE) U w(vg), [Z]) = [{v, = 0} N {s, = 0},

Therefore Equation (4.4) is equivalent to the following equality:

(4.5) [{s = 0}, = [{sz = 0}, + [{ws = 0} N {5, = 0},
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The finite set {syx = 0} can be tautologically decomposed as a disjoint union:
{sz =0} = ({fv, =0} N {sz = 0}) LI ({vy # 0} N {53 = 0}).

We claim that
{vy #0} N {sx =0} = {s = 0}.

In fact, by Assumption (iii) above we have

{8 =10} = i, s 0F M ds = 0}
and clearly
{vw 0} N{s =0} C{vy # 0} N {sz = 0}.
On the other hand, if x € {v, # 0} N {sx = 0} then s(x) = 0 because, since
vy(x) # 0, the projection F,(x) — T,X is an isomorphism. Thus, the claim is
proved. In order to establish Equality (4.5) it is now enough to check that

(4.6) ’{UU =0} N{sy = 0}‘2 = |{UU =0} N{sy = O}IZ'

Let C be the collection of smooth curves {v, = 0} C X. At each x € C we
have a splitting
Fy(x) = (Fv(x) n sz) ® vx(x),

therefore the restriction Fy|c splits as a sum of line bundles

Fylc = A @ vz|c,

where A = {F,(x) N TyX}rec. We claim that the line bundles A and vy|c
are isomorphic. In fact, along each component of C the bundle F, is trivial
because it is oriented, so the two line bundles are either both trivial or both
non-trivial. Thus, (w(4),[C]) = (w(vg|c),[C]), and Equality (4.6) follows from
the observation that the restriction of s and s, to C are generic sections of,
respectively, A and vyg|c. []

5. Second bare hands proof of Theorem 1.1

The aim of this section is to provide a genuine proof of Theorem 1.1 using
minimal background, employing some of the ideas we summarized in Section 2.2.
Let us first outline an elementary proof of the last portion of the proof presented
in [FM].

Lemma 5.1. Let N = x(S3, L) be a 3-manifold obtained by surgery along a
framed link L C S* such that all framings are even. Let W be the corresponding
4-manifold obtained by attaching 4-dimensional 2-handles to the 4-ball, so that
N = oW . Then, W is parallelizable.
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Proof. We refer the reader to [FM] for further details. For simplicity, assume that
L is a one-component link with even framing n. As we can assume that the
attaching tubes of the 2-handles are pairwise disjoint, this is not really restrictive.
Let N(L) C dD* be the attaching tube of the corresponding 2-handle attached
to D*. Both D* and D? x D? are parallelizable, so we have to show that
they carry some framings which match on N(L). Fix a reference framing %y
on TD*. Then, the restriction to N(L) of any framing F on the 2-handle
is encoded by a map p : N(L) — SO(4). Viewing S as the group of unit
quaternions one can construct a 2-fold covering map S3 x S? — SO(4) showing
that 7,(SO@)) = Z/27Z. As the solid torus N(L) retracts onto L =~ S!', p
determines an element p € Z/27Z which vanishes if and only if the two framings
coincide on N(L). It is easy to see that p is equal to n mod 2. ]

Corollary 5.2. If a 4-manifold W is parallelizable, then oW is stably-
parallelizable. In fact, the Whitney sum of the tangent bundle ToOW with a
trivial line bundle € is a product bundle.

Proof. By the existence of a collar of dW in W it is immediate that TOW @e =
TW |aw - m

Lemma 5.3. If a closed, connected, orientable 3-manifold N is stably-
parallizable, then it admits a quasi framing, hence it is parallelizable.

Proof. We reproduce the short bare hands argument of [KM, Lemma 3.4]. With
the usual notation, let No = N \ Int(B). Since TNy is oriented, a bundle
isomorphism TNy @ € = €* gives rise to a map from Ny to the Grassmannian
Gr(3,4) of oriented 3-planes in R*. Since Gr(3,4) =~ S3 and N, has a 2-
dimensional spine, by transversality any such map is not surjective up to homotopy,
hence it is homotopically trivial, therefore TNy is trivial. ]

The following lemma is trivial.

Lemma 54. Let M and M’ be closed, connected, oriented 3-manifolds. If
M#M’ is parallelizable, then both M and M’ admit a quasi framing, hence
they are parallelizable.

Proof. Let N = M#M’. Obviously M, embeds into N and TM, is the
restriction of TN to My. The same holds for M. ]

Combining Corollary 5.2 with Lemmas 5.3 and 5.4, to complete our second
bare hands proof of Theorem 1.1 we are reduced to providing a proof using
minimal background of the following proposition.
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Proposition 5.5. For every connected, closed, oriented 3-manifold M , there exists
another such 3-manifold M’ such that N = M#M’' is of the form N = y(S3,L)
for some framed link L C S> such that all framings are even.

Proof. We use some basic facts about Heegaard splittings of 3-manifolds. Let us
start with any Heegaard splitting of M of some genus g. Up to diffeomorphisms,
M, can be realized as follows. Given a handlebody §), of genus g, the orientable
surface X, = 0, contains a non separating system C = {ci,...,cg} of g
pairwise disjoint smooth circles. A tubular neighbourhood N(C) in X, is formed
by a system of pairwise disjoint attaching tubes for 3-dimensional 2-handles,
which, when attached to ), give 3-manifold M, . The closed 3-manifold M is
obtained by attaching a further final 3-handle. The union of the above 2- and
3-handles gives the second handlebody ), of the Heegaard splitting, glued to $,
along the common boundary X,. Fix any standard embedding of ), into S3,
so that the closure of S3\ §, is a handlebody as well. This embedding realizes
a genus-g Heegaard splitting of S>. The collection of curves C C 9§, C S°
becomes a link L in S3, with each component of L framed by a parallel curve
in 05, . Now we can apply the key basic Lemma 1 of [Rou], which has a bare
hands proof. In our situation, the lemma implies that

¥(S3, L) = M#M’

for some 3-manifold M’. It is an immediate consequence of the above description
of My and of the definition of surgery along a framed link that y(S3,L) is
obtained by gluing M, and M, along their spherical boundaries. Applying
Smale’s theorem [Sma] we can conclude that y(S?, L) = M#M'.

Now fix a complete system M = {my,...,mg} of meridians of §,. The
curves m; bound a system of disjoint 2-disks properly embedded into ($g, ;).
Denote by 7; the Dehn twist on X, along m;. Since every t; extends to a
diffeomorphism 7; of the whole §,, we can modify a given embedding of §,
into S by applying any finite sequence of such 7;’s. So we are reduced to show
that in this way we can obtain an embedding such that the framing of each ¢;
determined as above by the embedding in X, is even. This is the content of [BP,
Lemma 8.4.1] (proved therein to have a treatment with bare hands of Kaplan’s
result for the double D(M) = —M#M of M ). The proof of [BP, Lemma 8.4.1]
boils down to solving a certain Z/2Z -linear system. []

Remarks. (1) In the proof of Proposition 5.5 we refer to Smale’s theorem [Smal].
However, that is not really necessary. In fact, the description of y(S3,L) as
obtained by gluing together M, and M, along their spherical boundaries suffices.
Thus, Smale’s theorem can be discarded from the background of our second bare
hands proof of Theorem 1.1.
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(2) By [Wal], the Lickorish—Wallace theorem is bare hands equivalent to “Q3 = 0.
The proof via Rourke’s construction is the simplest one modulo Smale’s theorem
it the construction is performed within the category of smooth 3-manifolds.
Alternatively, one could use the so-called Alexander trick and rely on the
equivalence between smooth and PL 3-dimensional categories, which is indeed
a more demanding fact. A more basic proof that €23 = 0 could probably be
concocted by combining a bare hands proof that M is parallelizable with a
specialization of the elementary proof of a theorem by Thom given in [BH].

6. Third bare hands proof of Theorem 1.1

We shall make use of Lemma 6.1 below, which could be viewed as a ‘ground
zero’ fact about spin structures. Let N be an oriented 3-manifold, K C N an
oriented knot and n : K — TN|x a unitary normal vector field along K. The
orientation of K determines the unitary tangent vector field t : K — TN|g
and an orthonormal oriented framing 5, = (¢,n,h) of TN|x.Let F C N be a
smoothly embedded, oriented surface with dF = K. Since F retracts onto a one-
dimensional CW-complex, TF is trivial. Let (a,b) be any oriented, orthonormal
framing of TF and (a,b,c) the orthonormal framing of TN|r obtained by
adding the oriented unit normal vector field ¢ to F. From now on, we shall
implicitly use the framing (a,b,c) to identify, at any point of F, the set of
orthonormal framings of TN with SO(3) and the set of unit vectors of TN
with S2. Define the map ¢, : K — S by ¢,(x) = '@ where 0(x) is the
counterclockwise angle between c¢(x) and n(x) measured in the oriented normal
plane to K at x.

Lemma 6.1. The framing F, of TN |k extends to a framing of TN|r if and
only if deg(pn) is odd.

Proof. Let ¥, : K — SO(3) be the map given by v,(x) = F,(x). Clearly F,
extends to a framing of TN|f if and only if i, extends to a map F — SO(3),
which happens if and only if the image of [K] € H(K:Z/2Z) under the
induced map (V) : Hi(K;Z/27) — H1(SOQ3);Z/27Z) =~ 7 /27 is trivial.
Consider the S!-fibrations my,7m : SO3) — S? given by m(a’,b',¢") = d’
and mo(a’,b’,¢’) = b’ and homotope F, until there are two disjoint intervals
A,B C K such that n = ¢ on K\ A and t = a on K\ B. Then, setting

L= nl‘l((é)) and C’:= JTZ_]((?I))), it is easy to check that

()« ([K]) = x(F)[C] + deg(pa)[C'] € Hi(SO(3); Z/22).
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Since [C] = [C'] is a generator of H,(SO(3);Z/2%Z), we deduce that v, extends
to F if and only if y(F) + deg(¢g,) is even. But y(F) is always odd, therefore
the statement holds. ]

Fix a Heegaard splitting M = $,U%H, and let C = {c1,...,¢q} C 39, = 09,
be a complete system of meridians for ﬁfg. Consider a standard embedding of $,
in R and unit vector field n; along the curves ¢; C 38, , normal to 39, and
pointing towards $, . As in the proof of Proposition 5.5, using [BP, Lemma 8.4.1]
we can choose the embedding so that each n; defines an even framing of ¢; with
respect to the Seifert framing in R>. Note that, by Lemma 6.1, this is equivalent
to saying that the induced framing F,, of TR3|., does not extend to a framing
of TR? over a Seifert surface. The vector fields n; coincide with the unit normal
vector fields determined by collars of each curve ¢; in the corresponding 2-disk
D; properly embedded into (£,,3%,). Let B; C M be a 3-disk containing D; .
By Lemma 6.1 the framings F,,, regarded as framings of 7'B;|., , do not extend
to framings of 7'B;|p, . On the other hand, the restriction of the standard framing
F of R? to each ¢; is homotopic to a framing Fm; determined by a unit vector
field m; normal to ¢; and defining an odd framing with respect to the Seifert
framing. Again by Lemma 6.1, this means that 7 can be extended along each
D;, yielding a quasi-framing of M . This concludes the third bare hands proof
of Theorem 1.1.
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