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Framing 3-manifolds with bare hands

Riccardo Benedetti and Paolo Lisca

Abstract. After surveying existing proofs that every closed, orientable 3-manifold is

parallelizable, we give three proofs using minimal background. In particular, our proofs do

not rely on spin structures, the theory of Stiefel-Whitney classes, nor the Lickorish-Wallace

theorem.
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1. Introduction

The aim of this note is to provide three proofs "with bare hands" of
the following primary result in 3-dimensional differential topology, originally
attributed to Stiefel [StiJ (1936):

Theorem 1.1. Every orientable, closed 3 -manifold is parallelizable.

We realized by searching the literature that there are at least tour modern

proofs of the above result, collected in [Gei, FM] in a very clean way. Each of
those proofs requires a somewhat robust mathematical background, so we asked

ourselves whether there might be a proof which uses minimal background.1 By
asking the use of 'minimal background' we meant that such a proof should

(i) satisfy the qualitative constraint of adopting a minimal toolbox (the simplest

properties of cohomology and homotopy groups, the basic tools of differential

topology and transversality theory such as given, e.g., in [Mil ] or [GP] and

1 Essentially the same question was asked in the Mathematics StackExchange Forum, see

https://math.stackexchange.com/questions/1107682/
elementary-proof-of-the-fact-that-any-orientable-3-manifold-is-parallelizable, but
the answers given there until July 18, 2018 use the same tools employed in the proofs mentioned above.
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a few well-known facts about vector bundles and their Euler classes) and (ii)
be as self-contained as possible. Eventually we found three such proofs which,

contrary to some of the proofs present nowadays in the literature, do not rely on

spin structures, the theory of Stiefel-Whitney classes, nor the Lickorish-Wallace
theorem.2

Throughout the paper, M denotes an orientable, closed (i.e., compact without

boundary) smooth 3-manifold. It is not restrictive to assume that M is connected

as well. Recall that a combing of M is a nowhere vanishing tangent vector field

on M. Moreover, M is parallelizable if it admits a framing, that is a triple
T (w,z,v) of pointwise linearly independent combings. The existence of a

framing is equivalent to the existence of a trivialization

Xjr : M x R3 —> TM

of the tangent bundle of M. A framing incorporates an orientation of M and,

vice versa, if M is oriented and parallelizable, then there are framings inducing
the given orientation. We will always assume that M is oriented, with a fixed

auxiliary orientation.
The paper is organized as follows. In Section 2 we briefly recall the four proofs

collected in [Gei, FM] and we point out why they do not satisfy our minimal

background requirements. In Section 3 we fix some notation and we recall a

few well-known bare hands results. In each one of Sections 4, 5 and 6 we give
a different bare hands proof of Theorem 1.1. The proof of Section 4 is purely
3-dimensional and could be regarded as a minimalistic version of the available
modern proof based on Stiefel-Whitney classes. The proofs provided in Sections 5

and 6 could also be regarded as minimalistic versions of available modern proofs
based on even surgery presentations and, respectively, 4-dimensional and purely
3-dimensional considerations. In particular, the proof of Section 6 could be viewed

as a simplification of the available modern proof mainly based on spin structures.

2. Available modern proofs of Theorem 1.1

Each of the four modern proofs we survey in this section argues that M
admits a quasi-framing, that is a framing J"0 of a submanifold M0 of M of the

form

M0 — M \ Int(B),

where B is a smooth 3-disk embedded in M. The quasi-framing Jo can be

extended with bare hands to a framing of the whole of M as follows. By the

2 Added in proof: After we put this note on arXiv, Durst, Geiges, Gonzalo Pérez and Kegel posted
the preprint (DGGK] with two new proofs of Theorem 1.1, both relying on the Lickorish-Wallace theorem.
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uniqueness of disks up to ambient isotopy, the choice of B is immaterial. Hence,

we can assume that B is contained in a chart of M and looks standard therein.

Upon fixing an auxiliary metric on M and a trivialization of TM over B, the

restriction of J"0 to S2 — dB is encoded by a smooth map

p: S2 -* SO(3).

Since the universal covering space of 50(3) P3(M) is S3, we have

7t2(50(3)) n2{S3) 0, therefore p can be extended over B and Jo to

M.

2.1. The three proofs presented in [Gei]. We refer the reader to [Gei, § 4.2]
for details. The first and third proofs presented in [Gei] use a certain mixture of
the theory of Stiefel-Whitney classes and spin structures to establish the existence

of a quasi-framing as follows. The first Stiefel-Whitney class w\{M) vanishes

because M is orientable, and the key point in both proofs is to show that w2(M)
vanishes as well. Using obstruction theory to define Stiefel-Whitney classes one

can argue that w2{M) 0 implies the existence of a spin structure on M, and

therefore that M admits a quasi-framing.3 The first and third proofs differ in the

way they establish the vanishing of w2(M).
The first proof, resting on several properties of Stiefel-Whitney classes, is

perhaps the one requiring the most sophisticated background. The so-called Wu

classes vt //'(A/;Z/2Z) can be characterized by the property that, for every
x e H3^(M; Z/2Z),

(Sq'(x), [M]) (vi U [A/]),

where [M\ denotes the fundamental class of M in H3(M; Z/2Z) and Sq' is

the i -th Steenrod square operation. It follows that i>o 1 and, for dimensional

reasons, u(- 0 if i > 3 — /. Hence, the only potentially nonzero Wu classes are

i>o and v\. Moreover, Wu classes and Stiefel-Whitney classes are related through
Wu's formula:

wq(M)= J2 Sq'(vj).
i+j=Q

Since Sq° is the identity map and Sq' (x) 0 when i > deg(jt), by Wu's formula
we have

0 w\{M) Sq°(u1) + Sq1 (u0) tq.

By Wu's formula again, the vanishing of iq implies w2(M) 0.
The third proof given in [Gei, § 4.2] goes as follows: First, one shows [Gei,

Lemma 4.2.2] that if S is a closed, possibly non orientable surface embedded

3 According to Pierre de la Harpe IdlHarl these facts were first noticed by André Haefliger |Hae|.
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in M, then w2(E) 0 where E E(T,) is a tubular neighborhood of £ in

M. The proof is elementary modulo the use of the basic Whitney sum formula
for Stiefel-Whitney classes of vector bundles. The conclusion is entirely based on
the theory of spin structures combined with some bare hands reasoning. It is a

slight simplification of the proof proposed by R. Kirby in [Kir2|. The argument
is by contradiction: if w2(M) ^ 0 then its Poincaré dual in //|(A/;Z/2Z) is

represented by a knot K embedded in M. Then, the assumption implies that:

(a) M\K carries a spin structure s which cannot be extended over any embedded

2-disk transverse to K ;

(b) there is a compact, closed surface £ embedded in M intersecting K
transversely in a single point x0-

By the general theory of spin structures, the vanishing of w2(E) implies that
the set of spin structures on E EÇE) is non-empty, and in fact it is an atfine

space on

//'(£; Z/2Z) s /71 (E; Z/2Z) '= Hl{H \ {x0}; Z/2Z).

It follows that the restriction of s to E \ K extends to the whole of E,
contradicting (b).

The second proof presented in [Gei, § 4.2] is less standard. It is based on

the following non-trivial fact due to Hilden, Montesinos and Thickstun [HTM]:
There exists a branched covering map ir : M > S3 such that the branching locus

bounds an embedded 2-disk in M. Using this fact, it is relatively easy to lift
a framing of S3, which can be constructed directly, to a quasi-framing of M.
Although this proof is of a geometric-topological nature, clearly it does not use

minimal background.

Remark. The three proofs described above are quite demanding from our "bare
hands" point of view. The first proof, in particular, comes out of a relatively
obscure algebraic machinery - we would have a hard time deducing from such

a machinery a heuristic justification for the existence of framings on closed
3-manifolds.

2.2. The proof presented in [FM]. We refer the reader to [FM, §9] for details.

The starting point is the Lickorish-Wallace theorem [Lie, Wa|, stating that the 3-
manifold M can be obtained by surgery along a framed link L c s3 Equivalently,
the statement says that M is the boundary of a 4-manifold W constructed by

attaching 4-dimensional 2-handles to the 4-ball. Then, an argument essentially
due to Kaplan [Kap| shows that by applying Kirby moves to L, it is not restrictive
to assume that all the framings of L are even. By using this fact one shows that
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the 4-manitold W is parallelizable, hence that M — !)W is stably-parallelizable
and eventually admits a quasi framing.

Remark. The proof presented in |FM] satisfies to a large extent the first minimal

background requirement from Section 1. In fact: the final portion of the argument,
which will be recalled in Section 5, is "bare hands"; Rourke's proof [Rou] of the

Lickorish-Wallace theorem is completely elementary and constructive provided
one allows the use of Smale's theorem [Sma] so that, for example, one can take

for granted that the operation of cutting and re-gluing a 3-ball does not change a

smooth 3-manifold up to diffeomorphisms; although Kaplan's argument requires
the introduction of Kirby calculus, it does not use the hard part of Kirby's
theorem [Kirl] on the completeness of the calculus. Everything considered, we

think that the proof presented in [FM] is not as self-contained as possible and

therefore it does not satisfy the second minimal background requirement from
Section 1.

3. Some notation and bare hands results

In this section we collect some notation and a few well-known facts that

we allow in our minimal toolbox. Let ^ be a closed, connected manifold of
dimension n, and let

£ : B -* N

be a vector bundle of rank k, considered up to bundle isomorphisms. According
to our bare hands constraints, in this generality the only allowable "characteristic"
class of £ is the Poincaré dual w(£) of the class in Hn_k(N\Z/2Z) carried by

the transverse self-intersection of N viewed as the zero section of £ inside B.
Thus,

w(£) e Hk(N;Z/2Z) ^ Hn_k(N; Z/2Z).
The class w(f) actually coincides with the k-th Stiefel-Whitney class wk(Ç), but

we shall not need this fact. Moreover, we will not make use of any other Stiefel-
Whitney class. If both N and £ are oriented, the same construction defines an

integral class

e(£) e Hk(N\Z),

sent to w(£) by the natural map Hk(N\Z) —> Hk(N; Z/2Z). In both cases we

talk about the Eider class of Ç, referring to either w(£) or e(£) depending on
the context.

We will feel free to use the following facts, all of which are well-known
facts about vector bundles and can be established using basic tools of differential

topology and transversality theory.
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• if £ fi ® £2 is the Whitney sum of two vector bundles then w(£)
w(£,) U w(£2);

• a line bundle A on N has a nowhere vanishing section if and only if
w(A) 0;

• If N is oriented, a rank-2 oriented vector bundle Ç on N has a nowhere

vanishing section if and only if e(£) 0;4

• if Ç Ai ® A2 is the Whitney sum of two line bundles and rj Ai <g> A2

their tensor product, then

w(det£) w(/y) w(A0) + w(Ai);

• w(TN) e Hn{N ;Z/2Z) and

(w(7W), [A]} /(N) mod (2) Z/2Z;

• At is orientable if and only if w(det7TV) 0;

• If N is oriented then

(e(7W), [N]) X(N) e Z;

• let M be a closed, oriented 3-manifold and ß e H2{M\Z). Then, there

is an oriented, connected, closed 1 -submanifold C c M which represents
the Poincaré dual of ß. If ß e Z/2Z) with 0 < j < 3, there

is a possibly non orientable, connected and closed (3— /)-submanifold of
M which represents the Poincaré dual of ß. Moreover, the cup product
of two cohomology classes ß\ and /t2 can be represented by a transverse

intersection of submanifolds representing the Poincaré duals of ß\ and ß2',

• any closed 3-manifold M carries a combing.5

In the next section we shall use the fact that, given an auxiliary Riemannian

metric g on a closed 3-manifold M, by normalization any combing of M can

be made of unitary norm, and by the Gram-Schmidt process any framing of M
can be turned into a point-wise g -orthonormal framing. A unitary combing v

on M determines an oriented distribution of tangent 2-planes

Fv [Fv{x)}x&m C TM,

4'lhis item follows from the fact that P°°(C) is a K(Z,2) space and therefore that real, rank-2
oriented bundles are classified by their Euler classes. Similarly, the previous item follows from the fact
that P°°(M) is a KÇL/2Z,, 1) space.

'This fact follows from x(M) 0 using the Poincaré-Hopf index theorem, clearly an allowable
tool, together with the fact that maps S2 ->• S2 are classified up to homotopy by their Z -degree.
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where Fv(x) c TXM is the subspace g(x)-orthogonal to v(x). We assume

that, for each x e M, v(x) followed by an oriented basis of Fv(x) gives an

oriented basis of TXM. The restriction of the projection TM -» M gives rise

to an oriented rank-2 real vector bundle Fv —> M whose isomorphism type is

independent of the choice of g and depends on v only up to homotopy. We

denote by

e(Fv) e H2(M;Z)

the Euler class of Fv.

4. First bare hands proof of Theorem 1.1

In this section we provide the first bare hands proof of Theorem 1.1, resting
neither on the theory of spin structures nor on properties of Stiefel-Whitney
classes. Our tools consist of basic properties of cohomology groups, transversality
theory, and the facts collected in Section 3. We will also use the notation introduced
in Section 3.

The section is organized as follows. In Section 4.1 we give a bare hands proof
of the following proposition.

Proposition 4.1. M is parallelizable if and only if there is a combing v of M
such that w(Fv) 0, in which case w(Fv) 0 for every combing v.

Proposition 4.1 reduces the proof of Theorem 1.1 to showing that M carries a

combing v such that w(Fv) 0. Observe that, since every class in f/2(A/;Z/2Z)
can be represented by an embedded surface, for each combing v on M the

property w(Fv) 0 is equivalent to the fact that, for every closed, connected,
embedded surface EcM, we have

(4.1) (w(F„), [£]) (w(F„|s), [£]) 0 e Z/2Z.

We claim that Equation (4.1) is a consequence of the equation

(4.2) w(F„|e) w(E£) + w(detr£) U w(vs),

where C TM denotes the normal line bundle of £. In fact, if £ is orientable
then w(detEE) 0 and by (4.2) we have w)/7,;^) w(TT,). Therefore,

(w(F„|s), [£]) (w(EE), [£]) /(£) mod (2) 0 e Z/2Z.

If £ is non-orientable then £ is homeomorphic to a connected sum #AP2(R)
of h copies of the projective plane. Observe that det TMf det(7'£ © us) ^
detE£<8ivs, and since M is orientable det TM is trivial, therefore
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0 w(detTM|s) w(detTS <g> v-s) w(7"£) + w(us),

which implies that the normal line bundle us is isomorphic to the determinant
line bundle detTE. Since P2(M) is non-orientable, the class

a := w(detTP2(R)) e H1 (P2(K); Z/2Z) ^ Z/2Z

is the only non-zero element. Thus, (a U a, [£]) h and by Equation (4.2) we

have

(w(E„|e), [E]> /(S) mod (2) + {a U a, [£]) 2-h + h mod (2) 0 e Z/2Z.

Proposition 4.9 of Section 4.2 below contains a bare hands proof of (4.2), thus

concluding our bare hands proof of Theorem 1.1.

Before embarking in the bare hands proofs of Proposition 4.1 and 4.9 it seems

worth pointing out the existence of a short argument to prove w2(M) 0 without
spin structures, yielding a simplification of the first and third proofs from [Gei,
§ 4.2], More precisely, we prove Proposition 4.2 below using only the existence

of Stiefel-Whitney classes and the basic Whitney sum formula.

Proposition 4.2. Let M he a closed, oriented 3-manifold. Then, w2 M 0.

Proof. Let » be a combing on M and £ c M a closed, connected, embedded

surface. Then, we have the Whitney sum decompositions

TM |s F„|j;©e TE©V£,

where e is the trivial line bundle generated by v. By the Whitney sum
formula for Stiefel-Whitney classes, the first decomposition gives (w2{M), [£])
(w2(Fv), [S]), hence w2(M) 0 if and only if w2(Fv) 0. The second

decomposition yields

w2(Fv|E) w2(£) + ufi(£) U tui(vs),

which is analogous to Equation (4.2). An argument similar to the one above

showing (4.2) => (4.1) gives (w2(Fv), [£]) 0e Z/2Z, therefore we conclude

w2(Fv) 0.

4.1. Combing and framing 3-manifolds. Our purpose in this section is to

achieve a bare hands proof of Proposition 4.1 above.

Lemma 4.3. M is parallelizahle if and only if e( Fv) 0 for some unitary
combing v.
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Proof. Let t be a unitary combing of M such that e( Fv) 0. Any nowhere

vanishing section of Fv can be normalized with respect to g to a unitary section

w of Fv, extended to an oriented orthonormal framing (w. z) of Fv and finally to

an oriented orthonormal framing (w,z,v) of M Conversely, for any orthonormal

framing (w,z,v) of M we may view v as a combing of M and w as a section

of Fv.

The comparison class. We can associate to an ordered pair of unitary combings
(v, v') of M a smooth section ex»' of Fv as follows. At a point x e M where

v(x) ±v'(x), v x v'(x) e Fv(x) c TXM is the "vector product" of v(x) and

v'(x), i.e., the only tangent vector such that

• ||u x v'(x)\\2g(x) 1 ~g(v,v')2;

• vxv'(x) is g(x)-orthogonal to v(x) and v'(x);

• (v(x), v'(x), v x v'(x)) is an oriented basis of TXM

At a point x e M where v(x) — ±v'(x), we set v x v'(x) — 0.

If the two unitary combings v and v' are generic, the section v x v' of Fv

is transverse to the zero section and the zero locus

C := {x e M \ v x v'(x) ()} c M

is a disjoint collection of simple closed curves. Moreover, C =C+UC_, where

C+ — {x e M I v(x) v'(x)} and C- — [x e M \ v(x) —v'(x)}.

By the very definition of e(Fv), C can be oriented to represent the Euler class of
Fv. Indeed, let E(FV) denote the total space of Fv, M0 C E(FV) the zero-section
and v x v'(M) C E(FV). Under the natural identification of M with M0
the submanifold C is identified with M0 H M\. Let px : TXE(FV) Fv(x)
be the natural projection and NX(C) the fiber of the normal bundle of TC
inside TM\c- Since px maps (u x v')*(Nx(C)) isomorphically onto Fv(x), the

given orientation on Fv(x) can be pulled-back to NX{C) and, together with the

orientation of Tx M, it induces an orientation on TXC in a standard way.

Definitions. An ordered pair of unitary combings (v,v') of M such that vxv'
is a section of Fv transverse to the zero section will be called a generic pair
of unitary combings. We define the comparison class a(v,v') e H2(M:Z) of
a generic pair of unitary combings as the Poincaré dual of the homology class

[C_], where C_ is oriented as described above.

Lemma 4.4. Let (v, v') be a generic pair of unitary combings of M. Then,

a(v,v') — —a(v',v) and a(v,—v') a(v',—v).
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Proof. For each x e C the equality Fv(x) — Fv'(x) holds, with the orientations
of Fv(x) and Fv>(x) being the same or different according to, respectively,
whether x e C+ or x e C_. We may choose a tubular neighborhood U — U(C)
such that the restrictions of the tangent plane fields Fv\u and Fv/\u are so

close that there is a vector bundle isomorphism <p : Fv\u Fv>\u which is

the identity map on the intersections Fv(x) D Fv>(x), x e U, is orientation-

preserving near C+ — {x e M | v(x) u'(x)} and orientation-reversing near

C- {x M I v(x) —v'{x)}. Since p o (» x «') v x v' — —v' x v and

—v'xv is obtained by composing the section v'xv with the orientation-preserving
automorphism of Fvr given by minus the identity on each fiber, the orientation

on C- as part of the zero locus of v x v' : M -> Fv is the opposite of its

orientation as part of the zero locus of v' x v —v x r/ : M —» Fv>. This implies
a(v,v') —a(v',v). Similarly, the orientation on C+ as part of the zero locus

of v x (—v') : M -> Fv coincides with its orientation as part of the zero locus of
—(v x (—v1)) v' x (—v) \ M -x Fvr, which implies a(v, —v') — cc(v', —v).

Lemma 4.5. Let (v,v') be a generic pair of unitary combings of M. Then.

Proof. According to the definitions we have

e(F„) a(v, v') + a(v. -v') and e(Fv^) — a(v', v) + a(v',—v).

Taking the difference of the two equations and applying Lemma 4.4 we obtain

e(Fv) — e(Fv<) a(v, v') + a(v, —v') ~ a(v', v) — a(v', —v) — 2a(v, v').

Pontryagin surgery. Let v be a unitary combing of M and C C M an oriented,
simple closed curve such that the positive, unit tangent field along C is equal to

v\c and there is a trivialization

where f is a periodic coordinate on the S1-factor of D2 x Sl. Let (p. 6) be

polar coordinates on the D2 -factor. Following terminology from (BP|, we say
that a unitary combing v' is obtained from v by Pontryagin surgery along C

if, up to homotopy, v' coincides with v on M \ U(C) and

e(Fv) - e(Fv') 2a(v, v').

j : D2 xS1 -x U(C)

of a tubular neighborhood of C in M such that

V ° j j*{b/d(p).

on U(C).
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Remark. A basic fact not used in this paper is that any two combings of
M are obtained from each other, up to homotopy, by Pontryagin surgery [BP,
Theorem 6.2.21.

Lemma 4.6. Let v be a unitary combing of M and ß e H2(M; Z). Then,

possibly after a homotopy of v, there is a unitary combing v' such that (v, v')
is a generic pair of unitary combings and

a(v, v') ß.

Proof. Let C c M be an oriented simple closed curve representing the Poincaré

dual of ß and let j : D2 x S1 -> U(C) be a trivialization of a neighborhood
of C. Without loss of generality we may assume that the pull-back j*(g) of
the auxiliary metric g on M is the standard product metric on D2 x S1. After
a suitable homotopy of v the assumptions to perform Pontryagin surgery on

v along C are satisfied. Consider a normal disc — j(D2 x {^>o}) and let

p £>0O flC. Then, TPD^ coincides, as an oriented 2-plane, with Fv{p) as

well as with the g(/?)-orthogonal subspace of TPC inside TPM. Let v' be

a unitary combing obtained from v by first performing a Pontryagin surgery
on U(C) and then applying a small generic perturbation supported on a small

neighborhood of M \ U(C). Then, (v,v') is a generic pair of unitary combings
and C {x e M | v(x) — —i/(x)}. By the definition of a(v,v'), to prove the

statement it suffices to show that the given orientation of C coincides with its

orientation as part of the zero set of v x v' : M -» F„. Near C we have

/ /, • ^
d \ (sinOP) 3 'à \\./*( — S,n j.

where x p cos 0 and y — p sinö are rectangular coordinates on the I)2 -factor
and 3/30 is the unit vector field tangent to the circles {p — const}. Observe that

/* sends the pair (3/3x,3/3y) to an oriented framing of Fv. Using the resulting
trivialization of Fv we can write locally the restriction of v x ?/ to to the disc

/)0O followed by projection onto Fv as follows:

v x v'\Dd, (x,y) ^
^ ^\y,—x) jt(y,—x) + higher order terms.
p

It is easy to compute that (v x o /* sends 3/3x to —nd/hy and 3/3y to

7r3/3x, and since the matrix [j has determinant n2 > 0 this shows that the

restriction of (v x ?/)* to the normal bundle to C composed with the projection
onto Fv is orientation-preserving along C, concluding the proof.

We shall say that the Euler class e(Fv) is even if there exists ß e H2(M\Z)
such that e(Fv) 2ß.
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Lemma 4.7. M is parallelizable if and only e( Fv) is even for every unitary
combing v.

Proof. If M is parallelizable, then M has a unitary framing (w,z,v) and the

class e(Fv) 0 is obviously even. Let v' be an arbitrary unitary combing of
M. After possibly small perturbations of v' and v which do not change c( Fv>)

nor e(E„), the pair (v'.v) becomes a generic pair of unitary combings and by
Lemma 4.5 we have

e(/v) e(FV') - e(Fv) 2a(v', v).

Therefore, e(Fv<) is even as well. Conversely, suppose that v is a unitary framing
with e(Fv) 2ß e H2(M\Z). By Lemma 4.6, possibly after a homotopy of v

- which does not change e(Fv) - there is a unitary framing v' such that (v,v')
is a generic pair and a(v.v') ß. Hence, by Lemma 4.5 we have

e(Fv)-e(Fv>)= 2a(v,v') 2ß,

which implies e(/v) 0, therefore M is parallelizable by Lemma 4.3.

Lemma 4.8. Let v be a unitary combing of M. Then, e( Fv is even if and only

if w(F„) 0.

Proof The implication e(Fv) — 0 =7 w(Fv) 0 is trivial. We give two

arguments for the other implication. The first argument uses a little bit of
homological algebra. The short exact sequence of coefficients

0 Z Z Z -»• Z/2Z -> 0

induces a long exact sequence in cohomology including the segment

» H2(M\Z) H2(M; Z) Z- H2(M;Z/2Z) -> •••

where the map <p is reduction mod 2. Exactness yields the statement.
The second argument is more geometric. The Poincaré dual of e(Fv) can be

represented by an oriented knot K c M. If w( Fv) 0 then K bounds an

embedded surface S c M. If S is orientable then [/f] 0, hence e(Fv) 0,
which is obviously even. If S is non-orientable then there is a collection C of
simple closed curves in the interior of S such that S ^ C is orientable and a

o
tubular neighborhood U of C in S is a union of Möbius bands. Orient S ^ U
so that K is an oriented boundary component and give 3U the resulting boundary
orientation. Orient the cores of U so that the natural projection 3(7 -> C has

degree +2 on each component. Then, [AT] [3(7] 2[C], therefore e(Fv) is

even.

Proof of Proposition 4.1. The statement is an immediate consequence of Lemmas

4.7 and 4.8.



Framing 3-manifolds with bare hands 407

4.2. Proof of Equation (4.2). The purpose of this section is to give a bare hands

proof of Proposition 4.9 below, which establishes Equation (4.2). As explained
at the beginning of the present section, this concludes our bare hands proof of
Theorem 1.1.

Let D be a unitary combing of M and S c M a closed, embedded surface.

At each point x e £ we have the splittings

(4.3) TXM Fv(x) ® e(x) TXY ® vs(x),

where e(x) is the (oriented) line spanned by i>(x), while ve(x) is the (unoriented)
line orthogonal to Tx£.

Proposition 4.9. Lei v be a unitary combing of M and E c M a closed,

embedded surface. Then,

(4.4) wfE^ls) w(TS) + w(detTS) U w(vs).

Proof. Let s \ Y Fv | s be a generic section of the restriction Fv to £. For
each x e £, the second splitting from (4.3) induces decompositions

s(x) .vs(x) + ,Vy (x), v{x) vs(x) + vv{x).

By transversality we may assume that:

(i) the zero set {.s 0} C £ consists of a finite number of points representing

w(F„|s);

(ii) .s'y and vv are generic sections of r>£, so that both their zero sets {,Sy 0}
and {uy 0} consist of smooth curves in £ representing w(vs). Moreover,
{.Vy 0} and {vv — 0} intersect transversely in £, so that the finite set

{vv 0} fl {.Sy 0} represents w(v) U w(v) w(det TY) U w(u) ;

(iii) {.v 0} and {vv 0} are disjoint subsets of £;

(iv) .s's is a generic section of '/'£, so that {.s's 0} consists of a finite number

of points representing w(7'£).

Given a finite set X, denote by \X\2 e Z/2Z the cardinality of X modulo 2.

Then, we have

(w(Fy|s), [£]> \{s 0}|2, (w(7£), [£]) |{.vs 0}|2,

(w(det T£) U w(vs), [£]) |{vy 0} n {.s-y 0}|r

Therefore Equation (4.4) is equivalent to the following equality:

(4.5) |{x 0}|2 |{iS 0}|2 + |{uy 0} n {.S'y 0}|2-
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The finite set {,V£ 0} can be tautologically decomposed as a disjoint union:

te 0} ({«„ 0} n te 0}) II ({uv ^ 0} n te 0}).

We claim that

{vv / 0} n te - 0} - {.V - 0}.

In fact, by Assumption (iii) above we have

{.V - 0} {vv ± 0} n {.v 0},

and clearly
{vv ^ 0} n {s 0} c {uv ^ 0} n {,vs 0}.

On the other hand, if x e {vv ^ 0} n te 0} then s(x) 0 because, since

vv(x) ^ 0, the projection Fv(x) -» TX~E is an isomorphism. Thus, the claim is

proved. In order to establish Equality (4.5) it is now enough to check that

(4.6) |{Uy 0} 0 {.S'E 0}|2 |{Vy 0} n {.V y 0}|2.

Let C be the collection of smooth curves {uv 0} c XL At each x e C we
have a splitting

Fv(x) (Fv(x) n TXY) ® ueW,
therefore the restriction Fv\c splits as a sum of line bundles

Fv\c A ® ve|c-

where X ~ {Fv(x) (T Tx'Z}xec. We claim that the line bundles X and ve|c
are isomorphic. In fact, along each component of C the bundle Fv is trivial
because it is oriented, so the two line bundles are either both trivial or both

non-trivial. Thus, (w(A), [C]) (w(r>s|c)» [C]), and Equality (4.6) follows from
the observation that the restriction of sf and sv to C are generic sections of,

respectively, A and us|c- O

5. Second bare hands proof of Theorem 1.1

The aim of this section is to provide a genuine proof of Theorem 1.1 using
minimal background, employing some of the ideas we summarized in Section 2.2.

Let us first outline an elementary proof of the last portion of the proof presented
in [FMJ.

Lemma 5.1. Let N '/(S3, L) be a 3-manifold obtained by surgery along a

framed link L C S3 such that all framings are even. Let W be the corresponding
A-manifold obtained by attaching 4-dimensional 2-handles to the 4 -ball, so that
N <)W. Then, W is parallelizable.
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Proof. We refer the reader to [FM] for further details. For simplicity, assume that

L is a one-component link with even framing n. As we can assume that the

attaching tubes of the 2-handles are pairwise disjoint, this is not really restrictive.
Let N(L) c BD4 be the attaching tube of the corresponding 2-handle attached

to D4. Both D4 and D2 x D2 are parallelizable, so we have to show that

they carry some framings which match on N(L). Fix a reference framing Jh
on TD4. Then, the restriction to N(L) of any framing T on the 2-handle
is encoded by a map p : N(L) -> 50(4). Viewing 53 as the group of unit

quaternions one can construct a 2-fold covering map 53 x 52 -* 50(4) showing
that 7ri(50(4)) Z/2Z. As the solid torus N{L) retracts onto L ^ 51, p
determines an element ~p e Z/2Z which vanishes if and only if the two framings
coincide on N(L). It is easy to see that p is equal to n mod 2.

Corollary 5.2. If a A-manifold W is parallelizable, then 3W is stably-
parallelizable. In fact, the Whitney sum of the tangent bundle TdW with a

trivial line bundle e is a product bundle.

Proof. By the existence of a collar of 3W in W it is immediate that Ti)W ©e
TW\m.

Lemma 5.3. If a closed, connected, orientable 3 -manifold N is stably-

parallizable, then it admits a quasi framing, hence it is parallelizable.

Proof. We reproduce the short bare hands argument of [KM, Lemma 3.4]. With
the usual notation, let N0 N \Int(ß). Since TN0 is oriented, a bundle

isomorphism 7TVo ©e s e4 gives rise to a map from N0 to the Grassmannian

Gr(3,4) of oriented 3-planes in M4. Since Gr(3,4) ^ S3 and N0 has a 2-
dimensional spine, by transversality any such map is not surjective up to homotopy,
hence it is homotopically trivial, therefore 7W0 is trivial.

The following lemma is trivial.

Lemma 5.4. Let M and M' be closed, connected, oriented 3 -manifolds. If
M#M' is parallelizable, then both M and M' admit a quasi framing, hence

they are parallelizable.

Proof. Let N M#M'. Obviously M0 embeds into N and TM0 is the

restriction of TN to M0. The same holds for AT'.

Combining Corollary 5.2 with Lemmas 5.3 and 5.4, to complete our second

bare hands proof of Theorem 1.1 we are reduced to providing a proof using
minimal background of the following proposition.
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Proposition 5.5. For every connected, closed, oriented 3 -manifold M, there exists

another such 3 -manifold M' such that N M#M' is of the form N /LS'3, If
for some framed link L c S3 such that all framings are even.

Proof. We use some basic facts about Heegaard splittings of 3-manifolds. Let us

start with any Heegaard splitting of M of some genus g. Up to diffeomorphisms,
M0 can be realized as follows. Given a handlebody f)g of genus g, the orientable
surface Xg df)g contains a non separating system C {ci ,cg} of g
pairwise disjoint smooth circles. A tubular neighbourhood N(C) in £g is formed

by a system of pairwise disjoint attaching tubes for 3-dimensional 2-handles,
which, when attached to Sjg give 3-manifold M0. The closed 3-manifold M is

obtained by attaching a further final 3-handle. The union of the above 2- and

3-handles gives the second handlebody F>'g of the Heegaard splitting, glued to fjg
along the common boundary Eg. Fix any standard embedding of Sjg into S3,

so that the closure of S3 \Sjg is a handlebody as well. This embedding realizes

a genus-g Heegaard splitting of S3. The collection of curves C c 4f)g c S3

becomes a link L in S3, with each component of L framed by a parallel curve
in Bf)g. Now we can apply the key basic Lemma 1 of [Rou], which has a bare

hands proof. In our situation, the lemma implies that

X(S3, L) M#M'

for some 3-manifold M'. It is an immediate consequence of the above description
of M0 and of the definition of surgery along a framed link that /(S3,L) is

obtained by gluing M0 and Mg along their spherical boundaries. Applying
Smale's theorem [Sma] we can conclude that /(.S3,L) M#M'.

Now fix a complete system M {mi, mgj of meridians of fjg. The

curves m, bound a system of disjoint 2-disks properly embedded into (fjg,Sg).
Denote by r,• the Dehn twist on Eg along mi. Since every r, extends to a

diffeomorphism r, of the whole we can modify a given embedding of fjg
into S3 by applying any finite sequence of such r, 's. So we are reduced to show

that in this way we can obtain an embedding such that the framing of each c,-

determined as above by the embedding in is even. This is the content of [BP,
Lemma 8.4.1 J (proved therein to have a treatment with bare hands of Kaplan's
result for the double D(M) -M#M of M). The proof of [BP. Lemma 8.4.11

boils down to solving a certain Z/2Z-linear system.

Remarks. (1) In the proof of Proposition 5.5 we refer to Smale's theorem [SmaJ.

However, that is not really necessary. In fact, the description of as

obtained by gluing together M0 and Mq along their spherical boundaries suffices.

Thus, Smale's theorem can he discarded from the background of our second hare

hands proof of Theorem 1.1.



Framing 3-manifolds with bare hands 411

(2) By [Wa], the Lickorish-Wallace theorem is bare hands equivalent to "£23 0".
The proof via Rourke's construction is the simplest one modulo Smale's theorem

if the construction is performed within the category of smooth 3-manifolds.

Alternatively, one could use the so-called Alexander trick and rely on the

equivalence between smooth and PL 3-dimensional categories, which is indeed

a more demanding fact. A more basic proof that Q3 0 could probably be

concocted by combining a bare hands proof that M is parallelizable with a

specialization of the elementary proof of a theorem by Thorn given in [BH].

6. Third bare hands proof of Theorem 1.1

We shall make use of Lemma 6.1 below, which could be viewed as a 'ground
zero' fact about spin structures. Let N be an oriented 3-manifold, K c N an

oriented knot and n : K ->• TN\k a unitary normal vector field along K. The

orientation of K determines the unitary tangent vector field t : K ^ TN\k
and an orthonormal oriented framing Tn — (t,n,b) of TN\k- Let F c N be a

smoothly embedded, oriented surface with 3F K. Since F retracts onto a one-
dimensional CW-complex, TF is trivial. Let (a,b) be any oriented, orthonormal

framing of TF and {a.h.c) the orthonormal framing of TN\f obtained by

adding the oriented unit normal vector field c to F. From now on, we shall

implicitly use the framing (a.h.c) to identify, at any point of F, the set of
orthonormal framings of TN with SO(3) and the set of unit vectors of LA
with S2. Define the map ipn : K -»• S1 by ipn(x) e'0(-x\ where 9(x) is the

counterclockwise angle between c(x) and n(x) measured in the oriented normal

plane to K at x.

Lemma 6.1. The framing Tn of TN\k extends to a framing of TN\p if and

only if Aeg((pn) is odd.

Proof. Let fn : K —»• 5*0(3) be the map given by f„(x) Tn{x). Clearly Tn
extends to a framing of TN\f if and only if fn extends to a map F —> 5*0(3),
which happens if and only if the image of [A*] e Hi(K\Z/2Z) under the

induced map (fn)* Fli(K;Z/2Z) —> //i(50(3);Z/2Z) Z/2Z is trivial.
Consider the 51-fibrations Jti,n2 : SO(3) —> S2 given by 7t\(a',h',c') a'
and Jt2(a', b', c') — b' and homotope Tn until there are two disjoint intervals
A, B C K such that n c on K \ A and t a on K \ B. Then, setting

C := and C' := Tt2 it is easy to check that

X(F)[C] + deg(^)[c/] g Hx(SO(3);Z/2Z).
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Since [C] [C] is a generator of Hi (SO (3); Z/2Z), we deduce that ijrn extends

to F if and only if /(F) + deg(i^„) is even. But /(F) is always odd, therefore

the statement holds.

Fix a Heegaard splitting M F>gUSj'g and let C {c\, cg) c 8Sjg 8Sjg

be a complete system of meridians for fj' Consider a standard embedding of Sjg

in R3 and unit vector field «, along the curves c, c 8Sjg, normal to 8Sjg and

pointing towards fjg As in the proof of Proposition 5.5, using [BP, Lemma 8.4.1]

we can choose the embedding so that each n,- defines an even framing of c,- with

respect to the Seifert framing in R3. Note that, by Lemma 6.1, this is equivalent
to saying that the induced framing Tni of FR3 |C; does not extend to a framing
of FR3 over a Seifert surface. The vector fields «,• coincide with the unit normal

vector fields determined by collars of each curve ct in the corresponding 2-disk
Di properly embedded into ($)'g, dfi'g). Let Bt c M be a 3-disk containing £>,.

By Lemma 6.1 the framings Tni, regarded as framings of TB, \Ci, do not extend

to framings of FZ?, |o;.. On the other hand, the restriction of the standard framing
T of R3 to each c,- is homotopic to a framing Tmj determined by a unit vector
field mi normal to c, and defining an odd framing with respect to the Seifert

framing. Again by Lemma 6.1, this means that T can be extended along each

Di, yielding a quasi-framing of M. This concludes the third bare hands proof
of Theorem 1.1.
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