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Benjamini—-Schramm and spectral convergence

Anton DEITMAR

Abstract. It is shown that under mild conditions, Benjamini—Schramm convergence of
lattices in locally compact groups is equivalent to spectral convergence. Next both notions

are extended to the relative case and then are expressed in terms of relative L?Z-theory.
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Introduction

The notion of Benjamini-Schramm convergence (BS-convergence) of graphs
[BS] can be extended to measured proper metric spaces. Roughly, a sequence
(Xn) of such spaces converges to X, if for any R > 0 the probability of a ball
in X, of radius R being isomorphic with a ball in X converges to 1 as n — oo.

In the paper [ABB™T], BS-convergence is used in the context of locally
symmetric Riemannian manifolds. These are Riemannian manifolds (M, g), on
which the reflection s, at a given point m € M, defined in a neighborhood
U of that point, is an isometry of the metric, see for instance [Hel]. Locally
symmetric manifolds can be classified as follows: A locally symmetric manifold
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M has a universal covering X, which is a globally symmetric space, i.e., the
local reflections s,,, m € M extend to global isometries on X . The isometry
group G of X is a Lie group and the fundamental group I' of M = T'\X is
a discrete subgroup of G. The space X is a product of Riemannian manifolds
X =R" x X, x Xp.. The compact part X, is a quotient of a compact Lie group
by a closed subgroup and its analysis is well understood. The interesting part is
Xne which has no compact or flat factors and which is of the form G/K where
G is a semi-simple connected Lie group with finite center and K a maximal
compact subgroup of G . Hence the most interesting locally symmetric spaces are
those of the form T'\G/K. It [ABB™] it is shown, among other things, that the
normalised spectral measures of a uniformly discrete sequence (I',) of lattices
in a connected semi-simple Lie group G without center, weakly converges to
the Plancherel measure, if the sequence of Riemannian manifolds I',\G/K is
BS-convergent to the symmetric space G/K, where K is a maximal compact
subgroup of G.

In the present paper, we define BS-convergence for sequences of discrete
subgroups of arbitrary locally compact groups. We show that in the special
case of semi-simple Lie groups the new notion of BS-convergence coincides
with the notion in [ABB*]. We then show that in this generalized setting BS-
convergence, together with uniform discreteness implies spectral convergence. We
also get a converse assertion, saying that if a sequence of subgroups satisfies
spectral convergence, it is BS-convergent.

We further generalize both notions to the relative case, i.e., the case when all
groups [, have a common non-trivial normal subgroup I',. We finally express
these notions in terms of L?-theory and in the last section we compute the limit
measure in a concrete example.

1. Plancherel sequences

Throughout the paper, G will denote a locally compact group. We once and
for all fix a Haar measure dx on G.

Definition 1.1. A lattice in G is a discrete subgroup I' C G such that the quotient
I'\G carries a non-zero, G -invariant Radon measure p with

uw(C\G) < oco.

If G admits a lattice, then G is unimodular, see Theorem 9.1.6 of |[DE]. A
discrete subgroup I', such that I'\G is compact, is a lattice, see Proposition 9.1.5
of [DE]. In this case, one speaks of a cocompact lattice.
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Let I be a cocompact lattice in G., We then write pur\g for the unique
invariant Radon measure which is the quotient of the Haar measure on G and
the counting measure on ["., i.e., the unique measure which satisfies

| rwax= [ S0

yel

for every f € L'Y(G). As ur\g is derived from the Haar measure in this way,
it causes no confusion when we write dx instead.

Definition 1.2. For any locally compact group G, there is a notion of test
functions, i.e., a space of functions CZ°(G) given by Bruhat [Bru], see also
[Tao] and [DvD]. For the sake of completeness, we shall repeat it here. First, if
L is a Lie group, then C2>°(L) is defined as the space of all infinitely differentiable
functions of compact support on L.

Next, suppose the locally compact group H has the property that H/HY is
compact, where H? is the connected component. Let A/ be the family of all
normal closed subgroups N C H such that H/N is a Lie group with finitely
many connected components. We call H/N a Lie quotient of H . Then, by [MZ],
the set A is directed by inverse inclusion and

H =2 liﬂ“ H/N,
N
where the inverse limit runs over the set A'. So H is a projective limit of Lie
groups. The space CS°(H) is then defined to be the sum of all spaces C°(H/N)
as N varies in N .

Finally to the general case. By [MZ] one knows that every locally compact
group G has an open subgroup H such that H/H® is compact, so H is a
projective limit of connected Lie groups in a canonical way. A Lie quotient of
H then is called a local Lie quotient of G. We have the notion C2°(H) and for
any g € G we define C>°(gH) to be the set of functions f on the coset gH
such that x — f(gx) lies in C°(H). We then define C>°(G) to be the sum
of all C°(gH), where g varies in G. Note that the definition is independent
of the choice of H, since, given a second open group /', the support of any
given f € C.(G) will only meet finitely many left cosets gH” of the open
subgroup H” = H N H’. This concludes the definition of the space C2°(G) of
test functions.

Remark 1.3. In the sequel, we shall use the trace formula, which we now briefly
explain. For an introduction to the trace formula see Chapter 9 of [DE]. Let G
be a locally compact group and let I' be a cocompact lattice in G. By G we
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denote the unitary dual of G, i.e., the set of isomorphy classes of irreducible
unitary representations of G. On the Hilbert space L2(I'\G) one has a unitary
representation of G given by right translations, so for each y € G we get

R(y) : LA(I'\G) — L*(I'\G),
R(y)p(x) = ¢(xy).

Since I'\G is compact, it turns out, Theorem 9.2.2 of [DE], that this representation
decomposes into a direct sum of irreducible representations,

(R, L*(T\G)) = @ Nr(x)x,
e G
where the sum is a direct Hilbert sum and each class = € G occurs with finite
multiplicity Nr(m) € Ny and only countably many =z € & satisfy Nr(w) # 0.
For f € C2°(G), integration defines an operator R(f) on the Hilbert space
L?(I'\G) by

R(/)$(x) = [G )Gy dy. ¢ e LXT\G).

The trace formula says that this operator is actually a trace class operator and
that its trace can be computed as

trR(f) :] Y fGTyx)dx =) vol(Ty\Gy) Oy ().
r\G
yel [v]
We explain the notation on the right hand side: The sum runs over all conjugacy
classes [y] in the group I'. For given y € I, the groups I, and G, are the
centralisers of y in I' and G respectively. Finally, O, (f) denotes the orbital
integral

O, (f) = fG LT

As the invariant measures are only unique up to scaling, to make sense of the
formula, one notes that it is part of the assertion of the trace formula that for
each choice of Haar measure on G, , the volume vol(I',\G,) is finite, the orbital
integral converges and the product vol(I',\G,)O,(f) does not depend on the
choice of the Haar measure. (The last assertion is easy to see, as the two factors
have reciprocal dependence on scaling of the Haar measure.)

The operator R(f) being trace class on L2(I'\G) immediately implies that
w(f) is trace class for each n € G with Nr(w) # 0. Hence the trace tr R( f)
can also be spectrally expressed in terms of the traces trz(f), so that the trace
formula finally reads

> Ne@un() = [ 3 60 dr = vl 0.

- \G yer bl
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The middle expression is usually omitted as it easily transforms into the right
hand side. We shall, however, make use of all three expressions in the sequel.
In order to apply the trace formula, one has to find suitable test functions f for
which at least one of the two sides is computable via other means. Finding such
test functions requires an additional amount of work and can be a tricky business.
In [DE] one finds applications of the trace formula to the Harmonic Analysis of
the Heisenberg group and the group SL,(R).

—~~

Definition 1.4. We say that the measure on G given by

is the spectral measure attached to I'.

Definition 1.5. Let (I',) be a sequence of cocompact lattices in G. We say that
the sequence is a Plancherel sequence, if for every f € C>°(G) we have

1

S TTRYE] fa f@)dfir, () — fe)

as n — oo, where f(zr) =TELTF )

If the group G is type I, then f(¢) = [ f()d Lpi(r), where 7ip is the
Plancherel measure on G , so that in this case the sequence (I',) is Plancherel
if and only if in the dual space of C°(G) one has weak-*-convergence

1 - o
7‘,0](”\(;) M Ty, M Pl

Remark 1.6. Assume that G is a finite product H?:l G;, where each G; is the
group of rational points of a linear reductive group G; over a local field F; of
characteristic zero. If a sequence (I°,) of lattices is a Plancherel sequence, then

1

vol(G/To) pr,U) — pmp(U)

for every open set U C G , which is Tp -regular and relatively compact. This
follows from the density principle of Sauvageot [Saul.

Example 1.7. Except for trivial examples like finite groups, for a sequence to
be Plancherel, it will be necessary that vol(G/I';) tends to infinity. This is not
sufficient, though, as we see by the example of G = R? and I', = n?Z x %Z.
Another example of this can be constructed in the group G = SL,(R), where
one chooses I', in the Teichmiiller space such that the hyperbolic manifold I',\H
has a very short closed geodesic, but big volume.



376 A. DEITMAR
2. Generalized Benjamini-Schramm convergence
For any subset S C G we write S* for the set S ~ {1}.

Definition 2.1. We say that a sequence (I';) of lattices in G is Benjamini—
Schramm convergent or BS-convergent to {1}, if for every compact set C C G
the sequence

PI‘,,\G({X e I\G :x_lf‘,:‘x NC # @})

tends to zero, where Pr,\¢ is the normalised invariant volume on I'y\G.

Next we check the compatibility of this definition with the definition of BS-
convergence in [ABB ™.

Definition 2.2. Let (M, g) be a complete Riemannian manifold and let x e M a
point. In Differential Geometry, one defines the exponential map at x as a map
exp, : TxM — M from the tangent space 7xM at the point x to the manifold as
follows: Every v € Tx M , which is not zero, defines a unique geodesic tangential
to v and starting at x. One follows that geodesic for the time |v[, to reach a
point one calls exp,(v). Finally, one sets exp,(0) = x. The injectivity radius of
M at the point x, denoted InjRad(x), is the supremum of all » > 0 such that
exp, is injective on the open ball {v € TN : vlly < r}. The injectivity radius
is > 0 for every point x € M .

Definition 2.3. Let G be a connected semi-simple Lie group with trivial center
and let (I';) be a sequence of lattices in G. Fix a maximal compact subgroup
K . Then the space G/K carries a natural G -invariant Riemannian metric given
by the Killing form on the Lie algebra of G, see [Hel]. In [ABB T | the sequence
of spaces I',\X is said to be Benjamini—Schramm convergent or BS-convergent
to X if for every R >0

Praur (b € T\ X s InRad) < R)

tends to zero, where InjRad(x) is the injectivity radius at the point x.

Proposition 2.4. Let G be a connected semi-simple Lie group with trivial
center and (I'y) a sequence of lattices in G. Then (I'y) is Benjamini—Schramm
convergent to {1} if and only if Ty\X is Benjamini-Schramm convergent to X .

Proof. Suppose that (I',) is BS-convergent to {I1} and let R > 0. Let By be
the closed ball around ¢K of radius R and let Ur C G be its pre-image under
G — G/K = X. Let x € G. The condition InjRad(xK) < R is equivalent to the
existence of uj,uy € Ugr with u; K # up; K such that



Benjamini—Schramm and spectral convergence 3714
Caxui K = Cyxuz K,

or xu; = yxuzk for some y eI'y, k € K, or

¥k =ik

So InjRad(xK) < R if and only if
xTyx NURKUR' # @.

Since UrKUg' is compact, it follows that T',\X is BS-convergent to X .
For the converse note that for every compact set C C G there exists R > 0
such that C C UrKUg". m

Definition 2.5. Let G be a locally compact group. A sequence (I',) of subgroups
is called uniformly discrete, if there exists a unit-neighborhood U such that
xTx MU = {1} holds for every n and every x € G.

In [ABB™] it is shown, that a sequence of cocompact lattices (I',) in a
semi-simple Lie group G is Plancherel, if it is uniformly discrete and I',\G/K
is Benjamini—-Schramm convergent to G/K. We shall generalize this result to
arbitrary locally compact groups and we shall also prove the converse statement.

Theorem 2.6. Let G be a locally compact group and let (I'y) be a sequence of
cocompact lattices which is uniformly discrete. Then the following are equivalent:
(a) (I'y) is BS-convergent to {1}.

(b) (') is a Plancherel sequence.

The implication (b)=> (a) even holds for any sequence of cocompact lattices, i.e.,
without the assumption of (I'y) being uniformly discrete.

In the case of a semi-simple Lie group the proof of this theorem, in the light
of Proposition 3.3, gives a new proof of Theorem 6.7 of [ABB* ] which avoids
the use of the Chabauty space.

Proof. We first show a lemma which is of independent interest. We shall use the
notation #M for the cardinality of a set M.

Lemma 2.7. Let (I'y) be a sequence of cocompact lattices which is uniformly
discrete. Then for any compact set C C G there exists a uniform bound r € N
on the cardinality as

#(x'IyxnC) < r

holds for all n e N and all x € G.
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Proof. Let @ # C C G be compact and let U be a relatively compact, open
unit-neighborhood such that x~'T,x N U = {1} for all n e N, x € G. Let V
be a symmetric open unit neighborhood with V2 c U. Then for all x,y € G,
n €N we have #(x~'I,x N yV) <1, since for two oy = yv; and 02 = yv; in
x7'TxNyV we have 0 =050 = vy'vy e x ' Tux NV2 Cx ™ 'TxNU = {1},
SO 01 = 03.

As C is compact, there are xi,...,x, € G such that

Ccx1VU---Ux,V.

Every group of the form x~'I',x intersects each x;V in at most one element,
hence intersects C in at most r elements. L]

Now for the proof of (a)=-(b) in the theorem: Let f € CX(G), let
C =supp(f) and let r € N be as in the lemma.
We have to show that the expression

|
~ vol(G/I'y) fa

tends to zero as n — oo. We now use the trace formula, see Remark 1.3. The

e (f)dpr, — f(e).

trace formula implies that

Aa] = fr L X ST PG

yeliy
<7 || flloo Prac ({x € Ta\G : x7' T x N C # 2}).

This tends to zero by assumption.
Finally for (b)=(a): Let C C G be a compact set and let f € C°(G) with
f >1¢c. Then A, — 0 with

Ay = [F o LSO 60

yery

2 [ #(x7'Tyx N C) dPr,\6(x)
I\G
> Proac ({x € Th\G : x7'Thx N C # a}). ]

Definition 2.8. For x € R set
| x >0,
sign(x) =49—-1 x <0,
0 X =0
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Proposition 2.9. (a) A given sequence (I'y) of cocompact lattices is Plancherel
if and only if for every compact set C C G the sequence

f #(x7'Tyx N C) dPr,\g(x)
Tn\G

tends to zero as n — 0o0.

(b) A given sequence (I'y) of cocompact lattices is BS convergent to {1} if and
only if for every compact set C C G the sequence

f sign (#(x~'T'yx N C)) dPr,\g(x)
T \G
tends to zero as n — oo.

Proof. (a) Let (I';) be a Plancherel sequence and let C C G be a compact set.
We want to show that B, = frn\G#(x_lF;x NC) dPr,\g(x) tends to zero as
n — oo. By enlarging C we can assume ¢ € C. Let f € C°(G) with f >1¢
and f(e) = 1. Then

7‘/0](“\(;) Z Nr(m) trm(f)

nEG

tends to f(e) =1 as n — co. By the trace formula we have
1<B,+1 =f #(x"'Ix N C) dPr,\g(x)
I \G

< fr D DR T LRI

yel"

= m Z Nr(m) e (f).

n'EG
As the latter tends to 1 for n — oo, we get B, — 0 as claimed.

For the converse direction assume that (I,) is a sequence of cocompact
lattices such that for any compact set C C G the sequence

[ #(x7'Irx N C) dPr,\g(x)
BNG
tends to zero as n — oo. Let f € CX and let C be its support. Further let

M > 0 be such that |f(x)] < M for every x € G. Then, again by the trace
formula,
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= | 3 N, () () — f(e)

f F () dRy, () — f(e)

vol(Fn\G) vol(Fn\G)
neG
_ -1
| vl(t\G) [r,,\(; y; T dx
1 -1
= m fI‘,,\G yEXF:* | f(x" yx)|dx

M
vol(I'y\G) Jr,\G

As this tends to zero we conclude the claim.
Part (b) follows from the definition. []

IA

#(x7'IyxNC) dx.

Example 2.10. To round things up, we give an example of a sequence (I';) of
cocompact lattices, which is Plancherel, but not uniformly discrete. The group G
will be PSL,(R), which we view as the group of orientation-preserving isometries
of the hyperbolic plane H. For given n € N fix a compact hyperbolic surface
['\IH whose shortest closed geodesic ¢y has length < % Let y; € I' be an
element in the homotopy class of c¢;, i.e., the deck transformation y; closes the
geodesic ¢y . Then there are y»,y3,...,y2, € I', where g is the genus, such that
I" is generated by yy,...,y2e with the only relation [yi, y2]- - [V2g—1,Y2¢] = 1.
The largest abelian quotient ' >~ H;(I'\H, Z) is freely generated by the classes
vil,. ... [v2el. Let p: ' = Z[y1]@®---® Z[y,e] be the quotient map. For N € N,
let

PV = p~ (2] & N (Zy2] @ - © Zlysg))).

For given R > 0 there exists Ny such that for all N > Ny the only closed
geodesics of length < 2R in I'(N)\H are multiples of ¢;. This implies that for
a given compact set C C G and N large enough the set of all x € G with
x I'I'(N)x N C # @ lies in the pre-image under x > I'(N)xK € I'(N)\H of a
tubular neighborhood of fixed size of the geodesic c¢;. Increasing N, one thus
gets

1
f #(X_IF(N)*X N C) dPrivG(x) < —.
C(N)\G h

Setting I', to be equal to this I'(N) gives the desired example.

3. The relative case and LZ2-theory

In this section we consider the following situation: (I';),en iS a sequence
of cocompact discrete subgroups of a locally compact group G, and 'y, is a
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common normal subgroup, i.e., ['x < ', for every n.

Definition 3.1. We say that the sequence (I',) Plancherel converges to I,

Pl
written I, — ', if for every compact set C C G the sequence
f #(x7' (In ~ Tew) x N C) dPr,\G(x)
I'»\G
tends to zero as n — oo. This definition is inspired by Proposition 2.9.

Definition 3.2. We say that the sequence (I',) Benjamini—Schramm converges to

BS
[, written T, —> [y, if for every compact set C C G the sequence

f sign (# (x_l Ty = Tea) x 00 C) ) dPr,\g(x)
T'w\G

tends to zero as n — oo.
In the special case I'oo = {1}, these notions coincide with the notion of the
previous section.

Theorem 3.3. Let (') be a sequence of cocompact lattices which is uniformly
discrete. Let T, be a common normal subgroup. Then the following are equivalent:

(a) (Ty) is BS-convergent to I's.
(b) (I'y) is Plancherel convergent to I's.

The implication (b)=>(a) even holds for any sequence of cocompact lattices, I.e.,
without the assumption of (I'y) being uniformly discrete.

Proof. (a)=>(b): Given a compact C C G, by Lemma 2.7 there exists r € N
such that
#(x_lrnxﬂC) < r

holds for all x € G and all n € N. Therefore
f #(x—l (T ~Too) x N c) dPy,\c(x)
Ta\G
st r/ sign (# (x ' (T ~Te) xNC) ) dPy\G(x),
p\G
which implies the claim. The converse direction is trivial. []

Definition 3.4. For a discrete subgroup I' C G a fundamental domain is an open
set F C G such that

e FNyF = holds for every y € I'*,
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e I'F = G, where F is the topological closure of F and

e Let 3F = F ~ F denote the boundary of F. Then the boundary is a local
null-set, i.e., for every compact set C C G the set C N I'dF has Haar
measure Zero.

Proposition 3.5. (a) For every locally compact group G and every discrete
subgroup T there exists a fundamental domain.

(b) If F is a fundamental domain for I'\G then for every 1 < p < oo the
natural map LP(I'\G) — L?(F) is an isomorphism of Banach spaces.

Proof. (a) We use the classification results on locally compact groups as cited in
Definition 1.2. First we consider the case of a Lie group G. Then any discrete
subgroup I' C G is countable. By Choosing an inner product on the tangent space
T.G we get a left-invariant Riemann metric on the smooth manifold G. Let d
denote the corresponding distance function. For any x € G and any R > 0 the
closed ball Bgr(x) of radius R around x then is compact and hence Bp(x) NI
is finite. Let
= {x €eG: :d(x,e)<d(x,y) Vyer*}.

A simple application of the triangle inequality yields

F=qx€G:dx,e)<dx,y) ¥V yer*
d(y.e)<3d(x,e)
So locally, only finitely many inequalities matter, which implies that F is open.
We claim that F is a fundamental domain. For each y € I'* the set

Sy ={x€G:d(x,e)=d(x,y)}

is the zero set of the function d(x,e)—d(x, y), which is smooth in a neighborhood
of each of its zeros. Therefore, the set S, is contained in a countable union of
sub-manifolds and hence of Haar measure zero. The closure of F equals

F={xeG:d(x,e) <d(x,¥) Vyer~)

and so dF is contained in the countable union of all §, and therefore is of
measure zero. As I' is countable, I'dF is a null-set as well. The properties
FNyF=@ for y#e¢ and T = G are easily verified. So F is a fundamental
domain.

Next we assume that G/G? is compact, where G° is the connected component
of G. Then G is the projective limit

G =1imG/N
N



Benjamini-Schramm and spectral convergence 383

of all its Lie quotients G/N . Note that in this projective system all structure
maps are continuous, surjective and open. An open set U C G is called pure, if
U = py'(V) for some open set V C G/N, where G/N is a Lie quotient of G
and p,s is the projection G — G/N. As G carries the projective topology, any
open set in G is a union of pure open sets. Let I' C G be a discrete subgroup.
Then there exists a pure open set F = pJQ(l)(V) such that I' N F = {e}. The
group I'ry, = paq(I) is a discrete subgroup of G/Ay. We can choose V to be
a fundamental domain with respect to I'a;, and we claim that then F is one
for I'. It is open and since I' N F = {e} the map I' — I', is injective. So let
y € I'*, then pu;(y) € I'y, and therefore V N pyy,(y)V = &. Taking pre-images
under py;, we arrive at F Ny F = &.

In order to show I'F = G we let x € G. Replacing x by yx for some y € I’
we may assume that py;,(x) € V, or x € pil (V). The latter set is closed and
contains F, therefore p,}(‘)(V) O F. As F is stable under A -translations, so
is F. Therefore

F = pr(l) (pN() (?))

and pp,(F) is a closed subset of G/N, which contains V, hence V and we
conclude F = py2 (V), which means we may assume x € F after a I'-translation,
so indeed I'F = G . By the same token we get d.F = p;f(‘)(BV). In the projective
limit topology, any set of the form pr(l)(C) is compact, when C C G/Nj is
compact. Hence the Haar measure on G induces a Haar measure on G/N, and
therefore dF is a set of Haar measure zero. This finishes the case of G/G° being
compact.

Finally let G be arbitrary. Then there exists an open subgroup H such that
H/H® is compact. Then G is a disjoint union of open H -cosets, G = Lljes i H -
Let 'y = I' N H, then, likewise, I' = | |;c; yi'w. We can assume / C J and
yi = gi for every i € I. Let Fy be a fundamental domain in H for the discrete
subgroup 'y . We get

I'Fy=| |viH =TH.
iel
Let ¢ € G be such that TgH # I'H. Then I'gH =T (gHg " )g =T F, .18,
where Fop,—1 C gHg™! is a fundamental domain for I“gHg_l(gHg_‘). Let
(ye)aca be a set of representatives of I'\(G ~T'H)/H , i.e,

G~TH=| |Ty.H.
a€A

Accordingly we set
F=ruul | (fyaHyal) Ve

acA

Then F is open, we have 'F = G and FNyF = @ for y € I'*. Finally,
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POF = ToFu u || (ToF,, uye ) v
a€A
The I"-orbits of boundaries on the right hand side of this formula are local null-
sets and as any given compact set C C G meets only finitely many H cosets,
the set C N I'dF is a null-set. The proof of part (a) is finished.

(b) Let f : I'\G — [0,00) be an integrable function. We can view f also as a
function on G, which is TI'-invariant. All we need to show is

TRy dx = f i
G F

Let p(F) denote the image of F in I'\G. Then clearly

[p(}_) Flx)dx = L_f(x) dx.

Let ¢ > 0 be a continuous function on G such that for every compact set C C G
the set of all y € I' such that ¢(yC) # {0} is finite and such that the continuous
I" -invariant function
$T () =) ()
yel

has no zeros in G. One way to construct such a function is to start with function
only satisfying the first requirement and then apply Zorns lemma on the support
of . Then 1/¢" is a continuous function and we set

¢ (x)
y(x) =5
¢l (x)
Then T = 1. Hence the function f is integrable on G. By Corollary 1.3.6 (d)

of [DE] the function fv is identically zero outside a o -compact open subgroup
H of G. In particular, the set

supp(f¢) N TaF
is a null-set. Let G° = G ~T"0F, then

()= (f¥)(yx)

yell

and hence

fr W= fr . yGZFQW)(yx) dx = fG FEOY () dx

= dx = d
[ feowedx= [ S rnods

yel

:fpm _f(x)dx:fff(x)dx

as claimed. ]
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Example 3.6. Consider the group G = PSL,(R) and let I' C G be a cocompact,
torsion free, discrete subgroup. Let g > 2 be the genus of the Riemann surface
I'\H, where H is the upper half plane, which can be identified with G/K,
where K = PSO(2). Then the greatest abelian quotient I'® of T' is isomorphic
with H () = Z28 . Let y : I' — Z?% — A be a surjective homomorphism to
some infinite, torsion-free, abelian group A. For any n € N let

Cw = x"'(nA).

Then the sequence (I7,) is uniformly discrete and converges, in the sense of
Theorem 3.3, to
Fos = Ket(¥)-

For each n, fix a fundamental domain F, C G for I',\G. Then there is a
canonical isomorphism L?(I',\G) = L?(F,). Fix a set V,, C I, of representatives
for Thf Fes, then Fus= Uuev,, vJF, is a fundamental set for I'n, and so we get
an isomorphism

L?*(Too\G) = L3(TW\G) ® €*(Tn/Two).

As I's is normal in I, the left translation yields a representation of [,/
on L?(I's,\G) by

Ly¢(Toox) = ¢(Fcy'x), ¢ € L*(T'\G).

Let A, C B (LZ(FOO\G)) be the von Neumann algebra defined as the commutant
of this action, i.e., A, = L(I',/Tx0)°.

Lemma 3.7. In the above isomorphism WV : L?>(I'px\G) — L2(I',\G)
® (2(Ty/Tw) the representation L transforms to the left translation action
on the factor €?(T'y/ o).

Proof. This is standard, but we include a proof for the convenience of the reader.
We need to make explicit the isomorphism above. For this note that for every
x € G there exists a unique o, € I', such that o, ,x € F,. Note that the map
G — Fn, X > 0, xx is ['y-invariant. We have

W(p) = Y v @6,

vely,

where ¢,(x) = ¢(vo, xx) for x € G and §,(yI's) =1 if yI'c = vIs and zero
otherwise. As ¢ is left invariant under 'y, the function ¢, does not depend on the
choice or v, i.e., the choice of V. Hence we can write W(¢) = > cr, /1., ¢y ®dy.
For yp € I';/ ' we have
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V(Lyp) = ), (Lyd)y ® 8y,

veln/Too

and (L]/()¢)}'(x) — LV()¢(yUn,xx) — ¢()/0—1)/0',,’XX) - ¢7y“—ly()C), so that

W(Lyp) = Z (¢)y ® 5)«))’

y€ln/Too

= Z (¢)V ® LV()5V'

v€ln/Too

The lemma implies that
Ay = B(L*(I'\G)) ® VN(I'y/ T'e),

where VN(I',/T's) is the group von Neumann algebra of I',/T'w, which is
defined as the commutant of the left translation on ¢2(I',/I's,) and is generated
by right translations

Ry f(x) = f(xy), [ € (Tn/Too).
Let 7, : VN(I',, /') — C,
rﬂ( Z CyRy) - Ce,
vely/Teo
where e is the neutral element of the group I',/T's. Then 1, is a finite trace

on VN(I',/Tso). Let try2p gy be the standard trace on B(L*(I',\G)). Then

@)
tr = tr
Diloo ~ Vol(T,\G) L2 Tn\G) ®Tn

is the normalised L?-trace on A, .
For [/ € C>(G) we write Rr,(f) for the induced operator on L?(I',\G)
given by

Rr, (f)p(x) = fG FG)(xy) dy.

Lemma 3.8. For f € C2°(G) the operator Rr,(f) lies in A,. It has a well-
defined L?-trace which equals

1
trg,),roo (Rreo () = vol(T,\G) > Vol (Tuy\Gy) Oy()),
. [¥]

I'n CFOO

where the sum runs over the Ty conjugacy classes [ylr, of elements y € I's.
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If there exists a lattice T" such that every Ty is a normal subgroup of 1", then

the expression tr%) e (Rro, (/) does not depend on n. In this case it equals

the L?-trace trﬂ,m (RFoo (f )) with respect to 1",

1
triﬁz}Oo (Rreo (f)) = W [y]Zcr vol (Ty\Gy) Oy (f).

Proof. For ¢ € L?>(I'sx\G) we have

Rro, (/)b (x) = fG FOIp(xy) dy = fG £ NS0 dy

= =l d
[Fw\G o faT vy ¢ dy

y€leo

=k (x,y)
=Y [ ke = [ 3 ko) ay.
veV, Y v7n Fn yev,
Now, as 'y, is normal,

kr(xoop)y= > Y fOTlyoy) =)0 D0 fxToyy) = ke x y),

veV, yel'eo veV, yel'eo
so that
Rroy (/) (x) = [ S k(o7 1) (o) dy.
Fn veVy

As the trace of an integral operator on L%(I',\G) is given by the integral over
the diagonal of the kernel (Proposition 9.3.1 of [DE]), we get

1
> . (Rroo(f)) = TG L kr(x,x)dx

> SO yx)dx

v€lso

_; -1,/
_VOI(FH\G)[}']rnZCF fl"n\G Z FE Y x)dx

Y Elviry,

I -
_vol(rn\G)[y]Z fm(} > f(ox)yox)dx

I'n Cleo o€l /Ty

1 ] 1
e S S yx) dx
vol(T,\G) I Clao 7 T0\G

1

TG, 2 o

1
vol(I',\G) /Fn\G

rnCFOO
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Now assume all I, are normal in some I'. Then

K 4 \G
W RN = Y Y MIne o)

(T,\G
liclo ol OITR\G)

[Ty : Tn,y] vol(T'y\G,)
= - O, (f)
[V]I’ZC:FOO [Y]F,,ZC[V]F [C: Tl vol(M\G) ™

= > #(ylr/Tw

[vIrClee

[Ty : Ta,y] vol(I'y\Gy)
[T:T,]  vol(I'\G) el
=i ]

Proposition 3.9. Let (I',) be a sequence of cocompact lattices. Let Iy be a

Pl s g3
common normal subgroup. Then 1,y —> Uy, if and only if the sequence

tr an (f) (2)

vol (F,,\G) - an,Foo RI‘oo(f)

tends to zero for every f € C°(G).
Proof. The difference % - trgﬂzn),roo Rr. (f) equals

1
D> vol(Twy\Gy) Oy ().

(T, \G
VO( n\ )[V]Fn C(Cp~Too)

The same computation as in the proof of Lemma 3.8 shows that this equals

l —1L., 7
vol(I',\G) > [FH\G > ST x)dx

[YIr, C(Tu~T) Y elylr,

Form here the claim is clear. ]

Theorem 3.10. Let (I',) be a sequence of cocompact lattices. Let T'ny be a
common normal subgroup and assume each Ty, 1 <n < oo, is normal in some
lattice T'. Then the following are equivalent:

(a) (I'y) is BS-convergent to I's.
(b) (I'y) is Plancherel convergent to I's.

(c) For each [ € C*(G) one has
C

tr Rr,, (f) e
s
vol(T,\G)

(Rr(f)).

as n — oQ.



Benjamini—-Schramm and spectral convergence 389

Proof. The equivalence (a) < (b) follows from Theorem 3.3, as the condition that
all T, lie in one lattice I' implies that the sequence (I',) is uniformly discrete.
(b) < (c) is Proposition 3.9 together with Lemma 3.8. []

Suppose now that G is second countable and type I. Then G acts on
L?(I'sx\G) and this action defines a unitary representation of G . Theorem 8.6.6
of [Dix] says that there are mutually singular measures fLr., 1, @r.,2,... and
I I'ey,00 ON the unitary dual G such that

LT\O) = @ £O) 8 [ Ldfine©),

I<j=<co

where £2(00) = ¢2(N) and the hats over the sum and the product refer to Hilbert
space completions. The measures p; are unique up to equivalence. We choose
representatives and write H(u;) for the Hilbert space of L?-sections of the
canonical Hilbert bundle over supp(u;). Then for every ¢ € L?(I's,\G) one has

2
lpl* = Z ||¢J‘”£2(j)§H(u,-)’

J €NU{oo}

where ¢ =}, ¢, is the above decomposition.

Definition 3.11. We say that

Bu= Y. ju

JeNU{oo}

is the spectral measure attached to H . Note that [iy is in general different
from the Plancherel measure of G, as the latter neglects multiplicities.

Let A be the von Neumann algebra acting on L2(I's,\G) defined as the com-
mutant of the left translation action of I'. Then A = B(L*(I'\G)) ® {*(I'/ I'o)
and the LZ-trace trgﬁz}w is defined on A. Let B C A be the von Neumann sub-
algebra acting on L?(I's,\G) which is generated by the right translation action
R(G) of G. Then B respects the direct integral decomposition of L2(I'n\G)
and there exist traces tr., n, 7 € G such that for f € CZ(G) one has

iy, (Re() = Y fa oo (T(f)) d B 1oy (7).

1<j=<oco

In the next section we shall compute the measure 7ir. ; in a special case.
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4. An example of a thin group

Let I' C G = PSL,(R) be a torsion-free, cocompact lattice. Let y : I' — Z
be a surjective group homomorphism. For n € N let

Ip = _l(nZ)

and set ' = ker(y). Then ' is a discrete subgroup which is not a lattice,
but still Zariski dense in G, i.e., a so called thin group [BO].

Let yo € I' be an element with y(yp) = 1, then I' is generated by Iy
together with yg.

For each A e T ={z e C:|z| = 1} we get a group homomorphism I"' — T,
y > AX0) | Let L%(I'\G, A) denote the space of all measurable functions (modulo
null-functions) f : G — C which satisfy

o flyx) =10 f(x),
° [ | f(x)]* dx < o0.
r'\G

Let R, denote the unitary representation of G given by right translation on the
Hilbert space L?*(I'\G,A). For any given f € C>°(G) the operator R(f) is
trace class [DE] and one has

rRA(f) = Y AP vol(T)\Gy) Oy ().
[v]

This is a finite sum of the form Z;V:_N cp A" for some coefficients ¢; independent
of A. Therefore the family (Rj);er depends continuously on A in the sense that
there is maps my,m3,... from T to G with the property that for each j the set
of K-types of m;(A) does not depend on A and the Casimir eigenvalue m;(1)(£2)
depends on A as a continuous function. In particular, the family (L*(I'\G, x)), .y
forms a Hilbert-bundle and one thus gets a unitary representation Rt of G on
the section space

57
f L2(T\G,A)dA,
T

where the integral is with respect to the normalised Haar measure dA on the
group T.

Theorem 4.1. As a unitary G -representation, the right translation representation
of G on L*(I'so\G) is isomorphic with the direct Hilbert integral

57
f L2(T\G, ) dA
-
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or, equivalently,

N [° A)dA
J_EPI[T@() .

Proof. We define a map @ : fj? L2(I\G, x3)dA — L*(T'x\G) by setting

d(s)(x) = /;1‘ sp(x)dA.

Then f = ®(s) is ' left-invariant and the so defined map @ is G -equivariant.
We show that & is an isometry. Fixing a fundamental set 7 for I we compute

|()I? = /F BCICE fr . fT sy

2
f s,l(y(‘;‘x) dA| dx
T

2
dx

2
f;\ku(x)dx dx:[ f lsa(0)|> dAdx = ||s|?,
T FJT

where in the last line we have used the Plancherel formula for the circle group T .
Finally we need to show that & is surjective. For this let f € L?(I';,\G) be
orthogonal to the image of ®. Then for any s € ffP L%(T'\G, y1)dA we have

0= (f, d(s))

= [ s [ mEdrds
oo \G T
= ZL.f(Y(I)cx)medldx

ke

- [ ¥ [ rofontata

T rez

We can prescribe s; to be A-independent on F. Then we get

0= L FOE) d.

On F we can choose s arbitrarily, so that we conclude f = 0. L]

We can get some more detailed information on the direct integrals occurring
in the theorem. For each A € T we define a line bundle E; over I'\G by

Ey = I'\(G xC),
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where T acts on G x C via y(x,z) = (yx,A™*Wz). The union E = |J, 1 Ex
can be viewed as a line bundle over T x (I"\G). As such, it has a natural analytic
structure given as follows: There exists f € C“(G) an analytic function on G
such that the sum

s2(0) = Y AT f(yx)

yell

converges absolutely in a neighborhood of T x G inside its complexification
C* x G¢. One gets such f for instance a Gaussian function in Iwasawa
coordinates. Sections of this kind also give local trivialisations of the line bundle
E. Note that under this trivialisation, the Casimir operator €2 turns into an
analytic family (2,);er of operators on L2(I'\G) given by

Qu(f) = 57 Qsa f).

Proposition 4.2. The sections m; : T — |J,ep L>(P\G,A) can be chosen to be
analytic. Then the Casimir eigenvalues A v 1w;(1)(2) are analytic maps on T .
For each j, the direct integral fqﬁa ;i (A)dA is either an infinite multiple of an
irreducible representation or does not have any irreducible sub-representation at
all.

Proof. After taking analytic local trivialisations as given above, the first assertion
follows from the theory of analytic families of operators as in [Kat]. As the map
n: A i(A)(2) is analytic, it is either constant, which yields the first case, or
it is nowhere constant and each value z € T has only finitely many pre-images,
i.e., n71(z) is a set of measure zero in T. L]

Question. If for a given j, any m;(A) is a discrete series representation, then
n; is the constant map and we are in the first case of the theorem. It is not clear
whether this is the only possibility, i.e., if for some A the representation m;(A)
is a principal series or complementary series, or a Steinberg representation, is it
true that m; is not constant?
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