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Boundary effects on the magnetic Hamiltonian dynamics
in two dimensions

Tho Nguyen Due, Nicolas Raymond and San Vü Ngoc

Abstract. We study the Hamiltonian dynamics of a charged particle submitted to a pure

magnetic field in a two-dimensional domain. We provide conditions on the magnetic field

in a neighbourhood of the boundary to ensure the confinement of the particle. We also

prove a formula for the scattering angle in the case of radial magnetic fields.

Mathematics Subject Classification (2010). Primary: 70H05; Secondary: 37N05.
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1. Introduction

1.1. Magnetic Hamiltonian dynamics. This article is concerned with the

dynamics of a charged particle in a smooth bounded domain £2 c R2 in the presence
of a non homogeneous magnetic field B. The motion of a particle of charge e

and mass m under the action of the Lorentz force can be expressed by Newton's

equation

(1.1) mq eq x B

where q {q\,q2,q-i)T e R3. To simplify our discussion, we assume that e 1

and m 1. The vector field B, defined on £2, is assumed to be smooth and to

satisfy the Maxwell equation V-B 0. For our target problem in two dimensions,

we suppose that B is perpendicular to the plane R2, i.e., B(<7) (0,0, h(q)). This

assumption forces particles lying in the M2 plane and whose initial velocities are

in the plane to stay in this same plane for all time. Since a vector field in R3 can
be identified with a 2-form, we write the magnetic field as B b(q)dq\ Adq2.
Then, if there is a l-fbrm A A\dqi + A2dq2 such that dA B, we can

write (1.1) in Hamiltonian form. Consider, for all (q, p) eR2xI2,
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(1.2)

where ||.|| denotes the Euclidean norm on M2.

The matrix representing the right cross product with B in the canonical basis

is

Mb JI - JA

where J\ is the Jacobian matrix of A. Hence Newton's equation (1.1) becomes

q MRq

so that

~(q + A(q)) JTKq.

By introducing the momentum variable p — q + A(q), we see that H(q. p)

\ \\q\\2 is the kinetic energy of the system, and (q,p) evolves according to the

Hamiltonian flow associated with U:

(1.3)
\q dpU{q,p)
I p -dqH(q,p)

We shall always assume that q i->- b(q) is locally Lipschitz-continuous, ensuring
that the system 1.3) has a unique local maximal solution, thanks to the Cauchy-
Lipschitz theorem. Then, the vector potential A will always be chosen to be

C1 -smooth.

1.2. Two questions. From now on, we call h the magnetic field and it is identified
with the 2-form

b{quq2)dqi A dq2 d^dr/, + A2dq2)

This article addresses two classical dynamical problems: confinement and scattering.

- Confinement. Consider a charged particle in the magnetized region Q. A
natural question is the following: "Will the particle reach the boundary in

finite time?" We will provide a precise answer to this question, depending

on the behaviour of the magnetic field at the boundary and on the initial
conditions. Our results will improve recent results by Martins in [Mar|.
In particular, we will see that, even if the magnetic field is infinite at the

boundary, some trajectories can escape from Q. This kind of (open) problems
is mentioned in [CVT. Section 1.4].
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- Scattering. Consider a charged particle outside the magnetized region f2.

Before it reaches the region £2, the trajectory is a straight line. If it enters

the region Q, does the particle escape from it in finite time? And, if it does

so, what is the deviation angle between the ingoing and outgoing directions?

We will explicitly answer these questions in the case of radial magnetic fields

and when £2 is a disc. In this case, the angular momentum commutes with
the Hamiltonian and allows a reduction to a one degree of freedom system.

For both problems, we provide numerical illustrations of our results.

These questions have intrinsic physical motivations. Their answers allow a

better understanding of the classical dynamics of charged particles in magnetic
fields. The description of the classical trajectories has also many applications, for

instance, at the quantum level. The quantum aspect of the trapped trajectories can

be related to the essentially self-adjoint character of the magnetic Laplacian (see

[CVT, NN1, NN2, RS]). It is also a key point to describe the spectrum/resonances

of magnetic Laplacians. As far as the authors know, whereas the description of the

magnetic dynamics has allowed to estimate the spectrum of magnetic Laplacians
(see [RN, HKRN]), no result seems to exist to estimate their resonances near the

real axis. Investigating the trapped trajectories is a necessary step in this direction.

In the regime of large magnetic field and small energy, a special treatment of
the confinement problem can be done and takes advantage of the near-integrable
structure of the Hamiltonian dynamics, either via Birkhoff normal form [RN], or
KAM theorems [Cas]. On the contrary, our results here will give more explicit
initial conditions and allow regimes where the guiding center motion is not

necessarily meaningful.

1.3. Organization of the article. The article is organized as follows. In Section 2,

we state our main results about confinement and scattering. Section 3 is devoted

to the proofs.

2. Statements

2.1. Confinement problem.

2.1.1. Tubular coordinates. In order to state our results, it is convenient to

introduce tubular coordinates near the boundary of £2, following the analysis

of [Mar],
We assume that the connected components of 3 £2 are C2 -smooth closed

curves without self-intersections. Let C be a connected component of 3£2. It can

be parametrized by its arc length y : R/LZ > C where L is the length of C.
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(2.1)

There exists 8 > 0 such that

((0,3) x M/LZ -* Oc(3)
ifr : <

(n,s) i-> y(s) + n N(s) q

is a smooth difFeomorphism. N(s) denotes the inward pointing normal at y(,v)

and

Oc(3) {q e O : d (x,C) < 3}.

Note that

(2.2) B b(q)dqi A dq2 — b{xj/(n,s)){\ — nic(s))ds A dn

where k(,v) is the signed curvature of C at y(s). In these coordinates, we can

write
A A„(n,s)dn + TiS.(/?, ,v)d.v

with An,As defined on (0,3)xR/LZ such that

(2.3) Yn ~~Ys~ =' B(n,S) —«))(! -riK(sj)

Via the tubular coordinates, we can define the symplectic change of coordinates

(0, 8) x K/LZ xl2^ Oc(3) xl2
(n,s, pn, Ps) (f(n,s), {(df)(n\s))T(pn, ps)^j (q, p)

(2.4) :

where we have explicitly p (l — nic(s))
'

pxy'(s) + pnN(s).
The Hamiltonian takes the form (see Lemma A.l):

1 \2 (ps-As{n,s))
(2.5) H(n,s,p„,ps) -(pn - A„(n,s)) + 21 2(1 — K(s)n)

2.1.2. General confinement theorems. We can now state our confinement
results. Our first theorem provides a sufficient condition on B so that no trajectory
can escape from 0.

Theorem 2.1. For every connected component C of 302, we assume that

rSc rLc
(2.6) lim

n-*-0

r°c rL

Jn Jo
BfnY)dÇdq Too.

and that there exists Mc > 0 such that, for all (n,s) e (0,3c) x M/LcZ,
-Lc

(2.7) B(n,s)--j— f B(n,Ç)d£
Lc Jo

< Mq

Then the magnetic Hamiltonian dynamics is complete (i.e., no solution of (1.3),

starting in Q, reaches 3Q in finite time).
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Of course, given a starting point q e £!, only the components C that bound

the connected component of q in Q need to be taken into account. Actually,
there is a more quantitative version of the previous theorem.

Theorem 2.2. Consider a connected component C of 9 f2. Let

K= sup |<c(s)|, K' sup |k'(,v)|.
jeM/LZ

We assume that, for some e e (0,1), 5 satisfies 0 < 8 < e/K. We assume that
there exists M > 0 such that, for all (n,s) G (0,5) x RjLZ,

(2.8) B(n,s) ~ fQ < M

Consider T > 0 and q(t) xf(n(t),s(t)) a trajectory contained in Oc(5) for
t G [0, 7"] with energy Hq Let

1
S Li

fin) -y / f B(ti,Ç)dÇdri
L Jn J0

limjnf |./"(«) | > C(T,q(0),q(0)),

(2.9)

and assume that

(2.10)

where

C(T,q{0),m) i(0)[l -4v(0))«(0)] + [' [L B(q,ij)dljdr,
Jn(0) J0

/ / 2 H0K'8\
+ V2«ô(l + e) + M sfïïû +

_ j T

Let g1 he a continuous and strictly decreasing function such that

lim g(n) liminf |/(n)|, g <\f\ on [0,5].
«-»•o «->•o

Then, g takes the value C(T,q(0),q(0)) and, for all t e [0,7"),

(2.11) n(t)> g-l(c(T,q(0),q(0))y

1 Such a function g always exists.
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Remark 2.1. Theorems 2.1 and 2.2 are improvements of [Mar, Theorems 1&2].

They tell us that a particle in £2 never reaches the boundary of Œ. In [Mar|, it
is assumed that dsB is integrable:

rN
(2.12) sup / \dsB(m,s)\dm < +oo,

seC Jo

and the question of removing this assumption was explicitly mentioned as

important (op. cit., Section 3). Our theorems give a partially positive answer to
this question, thus allowing for magnetic fields having wilder tangential behaviors.

- Theorem 2.1 generalizes [Mar, Theorem 1] by replacing the integrability
assumption by (2.7). This allows in particular to consider a magnetic field

(on the unit disc) of the form

a x
1

•

B(n,s) —h sin
n

fxOç
V »

where / is a smooth function supported in (—n, re) such that /'(()) ^ 0

and /(()) 0. For this magnetic field, it is easy to check that (2.12)
is not satisfied. In fact, the C°° smoothness is actually not required; in

order to draw Figure 1, we took, for simplicity, a small perturbation of
/(s) — arcsin (sin(.v)).

Figure 1

A trajectory obtained with a magnetic field on
the unit disc that is strong near the boundary

with a non-integrable tangential derivative:

B(q)= •_+sin(-=^L)+ 5^-7^2.
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Figure 2

A trajectory obtained with a magnetic field on the

unit disc that strongly oscillates near the boundary:
A — sin ,1

B(q) 2 + ^q]-2qf-\0qj.
(] - ï+li)

- An explicit lower bound tor the escaping time of a magnetized region is

given in [Mar, Theorem 2] in the case when

M
(2.13) B(n,s) 1- h(n,s), a > 1

na

where M ^ 0 and h is bounded and smooth in £2C(<5), and so that (2.12)
holds. Theorem 2.2 implies |Mar, Theorem 2], and also provides an explicit
lower bound for magnetic fields that are not in the form (2.13), see Figure 2

where the magnetic field changes sign infinitely many times.

- Note that, at the quantum level, a magnetic field (on the unit disc D) like

2 -b sin s /
(2.14) B(n,s) ——, n — X — ^q^+q^, seR/27rZ,

is confining (i.e., the magnetic Laplacian acting on Cfi°(D) is essentially

self-adjoint), see [CVT], Nevertheless, this magnetic field does not satisfy
our assumption (2.7) and thus we can not establish the classical confinement
with our method.

2.1.3. Confinement results in the radial case. When Q — D(0, 1) and when
B is radial, the dynamics is completely integrable, and hence can be entirely
described by a one degree of freedom Hamiltonian; concerning the confinement

problem, this of course leads to stronger results.
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Proposition 2.3. Let q{t) — (q\(t). qjL)) be a solution to (1.3) starting at t — 0

from inside the unit disc. If the initial data (q(0),q(0)) satisfies either (HI) or
(H2) below:

(HI)

(H2)

(2.15)

(2.16)

and

(2.17)

lim inf
r->i-

lim inf
r—>1 —

2tï IJII.ll?(0)||<lkl|<r
B{q)dq - det (<y(0), q(0))

-Î- [ B(q)dq -det(q(0).q(0))
271 7||?(0)||<|k||<r

> ll<7(0)||

114(0)11,

lim sup
r-»l~

2jt f\2n J||g(0)||<||9||<r B(q)dq-det(q(0),q(0)} - ||?(0)||

r — 1
<0,

then the solution exists for all t > 0, and there exists ij e [0, 1) such that

(2.18) W>0, \\q(t) \\<q.

One can find situations where none of the hypothesis of Proposition 2.3 hold
and the trajectory can be arbitrarily close to the boundary (see Figure 3: this

unusual behavior can be explained by a critical point of the radial Hamiltonian
at r 1, see (2.21)).

If the magnetic field is L1-integrable near the boundary of f2, we can prove
that there exist trajectories escaping from O in finite time. In particular, even if
the magnetic held is infinite at the boundary, the confinement is not ensured.

Figure 3

B(r) e-r - 3
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Proposition 2.4. When

361

(2.19) lim sup /
r^\~ \JD(S),r)

B(q)dq < +oo,

there exists a trajectory starting in Q and reaching the boundary in finite time.

Of course, even under assumption (2.19), some trajectory may be confined,

depending on initial conditions (see Figure 4 where the simulations are performed
with B(r) In2( 1 - r)).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 O.f -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 4

B(r) ln2(l — r): The particle is confined or not.

2.2. Scattering in the radial case. Let us now describe our scattering result in

the radial case. We assume that B|q admits a locally Lipschitz extension in a

neighbourhood of f2.
In polar coordinates, we have

B B(r)rdr a dd d(G(r)d0),

where

G(r)= f xB(r)dr.
Jo

Via the symplectic change of coordinates

Ml x M/2ttZ xl2^(0\ {0}) x M2

(r, 9, pr, pe) xa (r cos 0, r sin 0, cos 6pr — pe, sin 9pr + ——pe}

(0. P),
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the Hamiltonian becomes

zoom ü t n r Pr (PO ~ G^)f
(2.20) H(r,6,pr,pg) — + —
In particular, the angular momentum pg is constant along the How and we
consider the reduced one dimensional Hamiltonian on L*M*

(2.21) H(r, Pr) := y + V{r), V(r) := ^
where V e C'CE^). We notice that (see, for example, Lemma A.l)

Vr Pr Vg r_1 (pg - G(r))

where vr and vg are the classical radial and tangential components of the

velocity v.
We consider a charged particle with energy H0 arriving into the disk with

velocity r>i. In particular, H0 |||ri||2. If the particle escapes from the disc

with velocity v2 (see Figure 5), we have ||u2|| Hfoll, and a natural question is

to compute the (scattering) angle between these two vectors. Let co e be

the oriented angle between and v2-

Figure 5

The scattering arrows
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Theorem 2.5. Consider a trajectory starting on 302, with velocity V\ 0 and

entering £2. This means that either vr < 0, or vr 0 and < — 1. We define
8 as the angle between the inward pointing normal and ui.

We also assume

(i) either that the equation V(r) Ho has a solution for r e (0, 1) and that
the closest solution to 1, denoted by r*, satisfies V'(r*) < 0.

(ii) or, only when pe 0, that the equation V(r) H0 has no solution.

Then the trajectory escapes from £2 in finite time with velocity i>2, and we can

compute the scattering angle co mod 2n :

(i) either the trajectory does not pass through the origin and

co a — 7t + 28

where

Pe ~G(r)

^2Hor^-(pg-G{rjf

(ii) or the trajectory passes through the origin (in this case p$ — 0) and

co a + 28

where

-G(r)
•y/2 //0r2-G(r)2"

(2.22) a 2 f1 dr,
Jr*

(2.23) a 2 f — "y\ =dr.
Jo

3. Proofs

3.1. Proof of Theorems 2.1 and 2.2. To reach the boundary, the particle has to
be close to a connected component C of 3£2. Thus, we can assume that, for all

t [0,7),
q(t) e Qc(8).

Modifying the vector potential corresponds to a symplectic transformation of the

form (q, p) \-y (q, p + dS(q)), tor some smooth function S, and hence does not

modify the trajectory of the particle. Thus, we consider the function

a(n, s) y f ß(«,£)d£-/ B{n,Ç)dÇ
^ Jo Jo

Notice that a(n,-) is L-periodic. Recalling (2.9) and letting A a(n,s)dn +
f(n)ds, we have B dA.
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By (2.5), the corresponding Hamiltonian is

{pn-a(«,.v))2 (Ps-f(n))2
H(n,S, pn, ft) + —

2 2(1 — k(S)H)

Concerning Hamilton's equations, we have in particular

2 '

h pn — a(n,s). 6, s- (P* -/("))B(n,s)n - -j/c (s)n
(l-'c(.v)«)

where
1

B(n,s) — — f ß(ra,£)d£-B(n,s).
^ J o

We recall that, for all t e [0,7), H(n(t),s(t), pn(t), ps(t)) H0. We get

l«l <

Ips - /(«)I < v/2//o(l + <0

2H0K'8
(3.1)

(ft-/(«))
(,v)n

(I -K(s)n)
1 -e

where in the last estimates we have used the notation of Theorem 2.2 and in

particular \ic\n < K8 < e. With our assumption (2.8) on B{n,s), we find, for all

t [o, n,
2H0K'8S

\ps(t)\ < b,(0)| + -y—j r,
and thus

(3.2) |/(«(0)1 < I ft (01 + Ift(0-/(«(0)| < C(T,q(0),m),

with

C(T,q(0),q(0)) |ft(0)| + y/ÏH0{\ + e) + /Üf0 + T.

If the trajectory reaches the boundary at t T then

lim n(t) 0.
/—>T

This, with (3.2) and (2.6), gives a contradiction. This proves Theorem 2.1.

Now, consider a function g as in Theorem 2.2. We have, for all t e [0, T),

g(n(tj) < |/(«(0)| < C(T,q(0),q(0)).

From (2.10), we have lim„-^og(«) > C (T,q(0),q(0))', hence g must take the

value C (T,q{0),q(0)) and the conclusion follows.
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3.2. Proof of Proposition 2.3. Let us recall (2.21). The assumptions of Proposition

2.3 can be written in terms of V.

(HI) If

(3.3) lim inf V(r) > H0
r-> 1

we consider rj sup{x e (0,1) : V(x) — H0} e (0,1). Consider a trajectory

(q(t),p(t)) with <7(0) e D(0,1). We can assume that q(0) ^ 0. Let T be

the maximal time of existence in D(0,1). By energy conservation, we have,

for all 1 e [0, T),

V(r{t j) < H0,

so that r(t) < rj.

Note that (3.3) means

lim inf |G(r) — pg\ > y/2H0

Using the usual complex coordinate in the plane 1R2, we can write

q (r + iÙr^j >
\ ew and thus

det(q(t),q(t)) r2(t)d(t) pe - G(r(t)).

Finally, we notice that ||^(0)|| s/2H0 and write

G(r) -pe G(r) - G(r(0)) - [pg - G(r(0))],

which gives (2.15).

(H2) If

(3.4) lim inf V(r) — Hq
r-*-1~

and

V(r)-H0hm sup < 0,
r—» 1- r- 1

then we must again have

sup {x e (0,1) : K(x) H0) < 1,

and we can proceed as above.
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3.3. Proof of Proposition 2.4. Consider pg — 0. Let V\^ := supr6(01)|K(r)|.
By assumption, |L|oo < +oo.

Let r(0) e (0,1) and choose pr(0) > 0 such that p2(0) 2 (| Lj.^ — L(r(0)))+
v2, with v > 0. Since, for all t e [0, T),

3.4. Proof of Theorem 2.5. We distinguish between the cases pg 0 and

Pe 7^ 0.

3.4.1. Case when pg ^ 0. In this case, limr^0V(r) +oo; hence, due to

energy conservation, the trajectory does not approach the origin.

(i) Assume that pr(0) < 0. We have L(l) < H0 and we can consider the right
most turning point r* e (0,1). By definition V(r*) H0, and necessarily

V'(r*) < 0.

If V'(r*) < 0, it is easy to check that r reaches r* in finite time, say

t t*. This time is given by

dp+vm=m+v(m),
we get r(t) prU) > v so that

r(t) >vt -\- r(0).

The escape time is at most t

er>- 9(0) f"= fJo > Jo r Pr

so that

r pg - G{r)
'r* r^2(H0~V(r))

By symmetry, we have
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Figure 6

B(r) e~r - f

If V'{r*) 0, (r*,0) is a critical point of the Hamiltonian and we get that

r reaches r* in infinite time (see Figure 6).

(ii) Assume that pr (0) 0 Then V( I //0. By assumption (the trajectory

enters D(0,1)), we have V'{\) > 0, i.e., (pg —G(l))Z?(l) + (p0 — G(l))2 < 0.

If V\\) 0, the particle sits at a fixed point of the Hamiltonian system,
and hence r(t) 1 is constant. If V'(\) > 0, it enters D(0,1) and the

discussion is the same as previously.

3.4.2. Case when pg 0. In this case, since G(0) 0, V(r) ^jG(r)2
admits a continuous extension at r — 0.

(i) Assume that pr(0) < 0. We have V( 1 < H0. The existence of r* such that

V(r*) H0 is not ensured. If V(r) < H0 on [0, 1], the particle reaches

r 0 in finite time t — t*:

If there exists r* e (0,1) such that V(r*) — H0, the trajectory does not
reach the origin and the discussion is the same as in the case pg ^ 0.

(ii) Assume that pr(fi) 0. The discussion is the same as when pg ^ 0.

We get, by symmetry,
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3.4.3. Scattering angle. We can now end the proof of Theorem 2.5. In terms

of complex numbers, we can write

Vl (ur(0) + ive(0))e,dl v2 - vr(0) + ivd(0))e'°2

The scattering angle is

n f\ A {-Vr(0) + tVo(0)\
fe-e'+ArH.v(0)+ /,.»(»)]

Since 8 is the argument of ~vr(0) + ivg{0), the scattering angle is

02 - 6i - 7i + 28

A. Tübular coordinates

Lemma A.l. We write A Ajdf/i + A2dq2. With (2.1), we have

A Andu + Asds Ä (An, As)[ (df)T(A{, A2)r

We have

(A.l) H(n,s, pn, ps) Ho ty(n,s, pn,ps)

_
(pn - An(n,s))2

+
(ps - As{n,s)f

2 2(1 — K(s)n)2

Moreover, vn p„ —A„(n,s) and vs (l —hk(s)) l(ps — As) are the normal
and tangential component of v.

Proof. We write

2H(q, p) \\p - A\\2 Widf-'fip - À)\\2

((d^_1)(diA"1)T(p - À), p - Ä),

with p (pn, ps)T. Note that

(A.2) (df~l)T [/V(,v) (1 - nK(s))y'(s)}.

We get

(dt/f_1)(di/f_1)T \-2^
>V

\0 (1 -tlK{s)) 2)

which gives (A.l). Concerning the velocity v, since q y(s) + nN(s) and thanks

to the Frenet-Serret formula N'(.s) —ic(s)y'(s), we have

v .v( 1 — nK(s))y'(s) + t)N(s) =: vsy' + vnN

and thus we get the result from (A.l) by using the Hamilton equations

s (1 - K(s)n) (ps - ^) and h — pn - An.
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