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Boundary effects on the magnetic Hamiltonian dynamics
in two dimensions

Tho NGuyen Duc, Nicolas Raymonp and San Vi Ncoc

Abstract. We study the Hamiltonian dynamics of a charged particle submitted to a pure
magnetic field in a two-dimensional domain. We provide conditions on the magnetic field
in a neighbourhood of the boundary to ensure the confinement of the particle. We also

prove a formula for the scattering angle in the case of radial magnetic fields.

Mathematics Subject Classification (2010). Primary: 70H0S; Secondary: 37N0S5.
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1. Introduction

1.1. Magnetic Hamiltonian dynamics. This article is concerned with the dy-
namics of a charged particle in a smooth bounded domain © C R? in the presence
of a non homogeneous magnetic field B. The motion of a particle of charge e
and mass m under the action of the Lorentz force can be expressed by Newton’s
equation

(1.1) mi = eqg x B,

where ¢ = (¢1.42,93)7 € R3. To simplify our discussion, we assume that ¢ = 1
and m = 1. The vector field B, defined on 2, is assumed to be smooth and to
satisfy the Maxwell equation V-B = (. For our target problem in two dimensions,
we suppose that B is perpendicular to the plane R?, i.e., B(q) = (0,0, b(q)). This
assumption forces particles lying in the R? plane and whose initial velocities are
in the plane to stay in this same plane for all time. Since a vector field in R? can
be identified with a 2-form, we write the magnetic field as B = bh(¢)dg, A dg>.
Then, if there is a 1-form A = A;dg; + A»dg, such that dA = B, we can
write (1.1) in Hamiltonian form. Consider, for all (¢, p) € R? x R?,
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p—A@|?
(1.2) H(g, p) = ﬂz—”
where |.|| denotes the Euclidean norm on RZ.

The matrix representing the right cross product with B in the canonical basis
is
Mg =JI —Jx,

where Jj is the Jacobian matrix of A. Hence Newton’s equation (1.1) becomes
4 = Mgpq .

so that

d
T(a+A@) = {3

By introducing the momentum variable p = g + A(g), we see that H(q, p) =
% Ig||* is the kinetic energy of the system, and (g, p) evolves according to the
Hamiltonian flow associated with #:

q = pH(q, p)

(1.3) .
p=—0d4H(q, p)

We shall always assume that g + h(g) is locally Lipschitz-continuous, ensuring
that the system (1.3) has a unique local maximal solution, thanks to the Cauchy—
Lipschitz theorem. Then, the vector potential A will always be chosen to be
C!-smooth.

1.2. Two questions. From now on, we call b the magnetic field and it is identified
with the 2-form

b(q1,492)dq, A dgy = d (A1dg + Axdgy) .

This article addresses two classical dynamical problems: confinement and scatter-
ing.

— Confinement. Consider a charged particle in the magnetized region 2. A
natural question is the following: “Will the particle reach the boundary in
finite time?” We will provide a precise answer to this question, depending
on the behaviour of the magnetic field at the boundary and on the initial
conditions. Our results will improve recent results by Martins in [Mar].
In particular, we will see that, even if the magnetic field is infinite at the
boundary, some trajectories can escape from 2. This kind of (open) problems
is mentioned in [CVT, Section 1.4].
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— Scattering. Consider a charged particle outside the magnetized region 2.
Before it reaches the region €2, the trajectory is a straight line. If it enters
the region €2, does the particle escape from it in finite time? And, if it does
so, what is the deviation angle between the ingoing and outgoing directions?
We will explicitly answer these questions in the case of radial magnetic fields
and when  is a disc. In this case, the angular momentum commutes with
the Hamiltonian and allows a reduction to a one degree of freedom system.

For both problems, we provide numerical illustrations of our results.

These questions have intrinsic physical motivations. Their answers allow a
better understanding of the classical dynamics of charged particles in magnetic
fields. The description of the classical trajectories has also many applications, for
instance, at the quantum level. The quantum aspect of the trapped trajectories can
be related to the essentially self-adjoint character of the magnetic Laplacian (see
[CVT, NNI, NN2, RS]). It is also a key point to describe the spectrum/resonances
of magnetic Laplacians. As far as the authors know, whereas the description of the
magnetic dynamics has allowed to estimate the spectrum of magnetic Laplacians
(see [RN, HKRN]), no result seems to exist to estimate their resonances near the
real axis. Investigating the trapped trajectories is a necessary step in this direction.

In the regime of large magnetic field and small energy, a special treatment of
the confinement problem can be done and takes advantage of the near-integrable
structure of the Hamiltonian dynamics, either via Birkhoff normal form [RN], or
KAM theorems [Cas]. On the contrary, our results here will give more explicit
initial conditions and allow regimes where the guiding center motion is not
necessarily meaningful.

1.3. Organization of the article. The article is organized as follows. In Section 2,
we state our main results about confinement and scattering. Section 3 is devoted
to the proofs.

2. Statements

2.1. Confinement problem.

2.1.1. Tubular coordinates. In order to state our results, it is convenient to
introduce tubular coordinates near the boundary of €2, following the analysis
of [Mar].

We assume that the connected components of 92 are CZ-smooth closed
curves without self-intersections. Let C be a connected component of 0€2. It can
be parametrized by its arc length y : R/LZ — C where L is the length of C.
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There exists § > 0 such that
@D ‘ (0,8) x R/LZ — Qc(8)
' ' (n,s) = y(s) +nN(s) =gq

is a smooth diffeomorphism. N(s) denotes the inward pointing normal at y(s)
and
Qe(d) = {q e:dx,0) < 3}.

Note that
(2.2) B = b(q)dg1 A dga = b(Y(n,s))(1 —nk(s))ds Adn,

where «(s) is the signed curvature of C at y(s). In these coordinates, we can

write
A = Ay(n,s)dn + Ag(n,s)ds

with A4,, A; defined on (0,8) x R/LZ such that
04 04,

o - = B(n,s) = —b(¥(n,9))(1 —nk(s)).
Via the tubular coordinates, we can define the symplectic change of coordinates
0,8) x R/LZ x R? — Q¢ (8) x R?
g T "
(n,8, pn, ps) > (1/’(”, s), ((m/’)(nl,s)) (Pn ps)) = (g, p)

(2:3)

2.4) W

where we have explicitly p = (1 — n;c(s))_lpsy’(s) + paN(s).
The Hamiltonian takes the form (see Lemma A.l):
(ps - As(nvs))z
2(1— .'c(s)n)2

1
(2.5) H(n,s, pn, ps) = E(p,, — An(n,s))2 -

2.1.2. General confinement theorems. We can now state our confinement
results. Our first theorem provides a sufficient condition on B so that no trajectory
can escape from 2.

Theorem 2.1. For every connected component C of 052, we assume that

/ - [ “ B, e)dedn

and that there exists Mc > 0 such that, for all (n,s) € (0,8¢) x R/LcZ,

(2.6) lim

n—0

= +00,

2.7) < M.

Le
B(n,s)— LLC fo B(n, &)d&

Then the magnetic Hamiltonian dynamics is complete (i.e., no solution of (1.3),
starting in 2, reaches 02 in finite time).
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Of course, given a starting point g € €2, only the components C that bound
the connected component of ¢ in 2 need to be taken into account. Actually,
there is a more quantitative version of the previous theorem.

Theorem 2.2. Consider a connected component C of dS2. Let

K= sup |k(s)|, K' = sup |«'(s)].
seR/LZ seR/LZ

We assume that, for some € € (0,1), & satisfies 0 < § < ¢/K. We assume that
there exists M > 0 such that, for all (n,s) € (0,6) x R/LZ,

l L
(2.8) B(n,s)— zfo B(n,&)dE| < M .

Consider T > 0 and q(t) = y(n(t),s(t)) a trajectory contained in Qc(8) for
t € [0, T] with energy Hy. Let

29) ro =1 [ [ Borgasan
and assume that
(2.10) lim inf | f(n)| > C(T.q(0),4(0)),
where
8 L
C(T.4(0),4(0)) = [{O[1 ~ k(s)n ()] + [ B(n, §)ddr|
n(0) JO
+ V2Ho(1 + €) + (M 2H, + 2’;{"_[28) T.

Let g' be a continuous and strictly decreasing function such that
lim g(n) = liminf| f(n)|, g <|f| on]0,§].
n—0 n—0

Then, g takes the value C(T,q(0),q(0)) and, for all t € [0,T),

@.11) n(t) > g_l(C(T,q(O),cj'(O))).

'Such a function g always exists.
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Remark 2.1. Theorems 2.1 and 2.2 are improvements of [Mar, Theorems 1&2].
They tell us that a particle in € never reaches the boundary of 2. In [Mar], it
is assumed that dg B is integrable:

N
(2.12) Sup[ |35 B(m, s)|dm < +o0,
0

seC

and the question of removing this assumption was explicitly mentioned as
important (op. cit., Section 3). Our theorems give a partially positive answer to
this question, thus allowing for magnetic fields having wilder tangential behaviors.

— Theorem 2.1 generalizes [Mar, Theorem 1] by replacing the integrability
assumption by (2.7). This allows in particular to consider a magnetic field
(on the unit disc) of the form

B(n,s) = l + sin (&) \
n n
where y is a smooth function supported in (—m,7) such that y'(0) # 0
and x(0) = 0. For this magnetic field, it is easy to check that (2.12)
is not satisfied. In fact, the C® smoothness is actually not required; in
order to draw Figure 1, we took, for simplicity, a small perturbation of
x(s) = arcsin (sin(s)).

Ficure 1

A trajectory obtained with a magnetic field on
the unit disc that is strong near the bound-
ary with a non-integrable tangential derivative:
B(g) = —— +sin (HS2) 4 543 74,

1—/a?+43 1—\ai+a3
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ISR >
0.2 : \V'!/‘ i l‘:{l‘
‘t@f%@,‘ e

z@g

-1 08 06 04 .02 4 0.2 0.4 0.6 0.8 1

FIGURE 2
A trajectory obtained with a magnetic field on the
unit disc that strongly oscillates near the boundary:

1_g 1
5 hm(]_ '—q%+q§)
2
(o +a2)

B(q) = +10q1 —247 — 1043 .

— An explicit lower bound for the escaping time of a magnetized region is
given in [Mar, Theorem 2] in the case when

M
(2.13) B(n,s) = —a-l-h(n,s), o >1.
n

where M # 0 and h is bounded and smooth in Q.(6), and so that (2.12)
holds. Theorem 2.2 implies [Mar, Theorem 2], and also provides an explicit
lower bound for magnetic fields that are not in the form (2.13), see Figure 2
where the magnetic field changes sign infinitely many times.

— Note that, at the quantum level, a magnetic field (on the unit disc D) like
2 1 Ky
Q1) B =30 a=1- i vad seR/mz,
is confining (i.e., the magnetic Laplacian acting on Cg°(D) is essentially
self-adjoint), see [CVT]. Nevertheless, this magnetic field does not satisfy

our assumption (2.7) and thus we can not establish the classical confinement
with our method.

2.1.3. Confinement results in the radial case. When Q2 = D(0,1) and when
B is radial, the dynamics is completely integrable, and hence can be entirely
described by a one degree of freedom Hamiltonian; concerning the confinement
problem, this of course leads to stronger results.
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Proposition 2.3. Let g(t) = (¢1(¢),qg2(t)) be a solution to (1.3) starting at t =0
from inside the unit disc. If the initial data (q(0),q(0)) satisfies either (Hl) or
(H2) below:

(HI)

(2:15) liminf

r—1—

> 4O,

1
Pl B(q)dg — det (q(0). (0
2 [Hq(O)IIsIIqIISr (1)dq - det{4(0).4(0)

(H2)

(2.16) lim inf

r—1 715

1
= f B(q)dq — det (q(O),c;m))‘ — 14O
lg=<lgli<r

and

<0,

A o<to<r B@)dg —det (4(0).4(0))] — 14(0)]
217)  limsup 2 jilq(O)II_IIQII_ ( )‘ |

r—>1— =1
then the solution exists for all t > 0, and there exists n € [0,1) such that

(2.18) V=0, g <n.

One can find situations where none of the hypothesis of Proposition 2.3 hold
and the trajectory can be arbitrarily close to the boundary (see Figure 3: this
unusual behavior can be explained by a critical point of the radial Hamiltonian
at r =1, see (221)).

If the magnetic field is L!-integrable near the boundary of €, we can prove
that there exist trajectories escaping from 2 in finite time. In particular, even if
the magnetic field is infinite at the boundary, the confinement is not ensured.

FiGure 3
Bir)y=e -2
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Proposition 2.4. When

(2.19) lim sup

r—>1—

< 400,

f B(g)dg
D(0,r)

there exists a trajectory starting in 2 and reaching the boundary in finite time.

Of course, even under assumption (2.19), some trajectory may be confined,
depending on initial conditions (see Figure 4 where the simulations are performed
with B(r) = In*(1 — r)).

B S & L x )
1 -1 08 06 -04 02 ¢] 02 04 06 08 1

FiGure 4
B(r) =In*(1 = r): The particle is confined or not.

2.2. Scattering in the radial case. Let us now describe our scattering result in
the radial case. We assume that Big admits a locally Lipschitz extension in a
neighbourhood of 2.

In polar coordinates, we have

B = B(r)rdr ndf = d(G(r)dG) ,

where

p
G(r) = f TB(1)dr.
0
Via the symplectic change of coordinates

R* xR/277Z x R* — (D \ {0}) x R?

sin 6 cos 6
(r,0, pr, pg) — (r cos O, rsinf,cos8p, — —— pg,sinfp, + pg)
r r

= (g, p)
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the Hamiltonian becomes

= = —G(r))°
(2.20) (0. pr. oy = 22 4 22— GO

2 2r2
In particular, the angular momentum pg is constant along the flow and we

consider the reduced one dimensional Hamiltonian on T’"R"‘+
2
(po — G(r))
2r? ’
where V € C‘(Ri). We notice that (see, for example, Lemma A.l)

p2
2.21) Hip) =221 v@), V)=

Ur = Pr, v =1""(pe — G(r)),
where v, and vy are the classical radial and tangential components of the
velocity v.

We consider a charged particle with energy H, arriving into the disk with
velocity vy. In particular, Hy = %“vlnz. If the particle escapes from the disc
with velocity v, (see Figure 5), we have |v2| = ||vi|l, and a natural question is
to compute the (scattering) angle between these two vectors. Let w € (—m, ] be
the oriented angle between v; and v,.

FiGure 5
The scattering arrows
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Theorem 2.5. Consider a trajectory starting on 902, with velocity vy # 0 and
entering 2. This means that either v, <0, or v, =0 and %:) < —1. We define
3 as the angle between the inward pointing normal and v .

We also assume

(i) either that the equation V(r) = Hy has a solution for r € (0,1) and that
the closest solution to 1, denoted by r*, satisfies V'(r*) <0.

(ii) or, only when pg = 0, that the equation V(r) = Hy has no solution.

Then the trajectory escapes from 2 in finite time with velocity v,, and we can
compute the scattering angle @ mod 27 :

(i) either the trajectory does not pass through the origin and
w=a—1w+25,
where

po — G(r)

[ ry[2Hor? = (pg — G(r))’

(ii) or the trajectory passes through the origin (in this case pg = 0) and

(2.22) @ =2 dr,

w=o0-+25,
where
1
-G
(2.23) @ =2 f ) dr .
0 r\/2H0r2 —G(r)?

3. Proofs

3.1. Proof of Theorems 2.1 and 2.2. To reach the boundary, the particle has to
be close to a connected component C of d€2. Thus, we can assume that, for all
tel0,T),

q(t) € Qc(8).

Modifying the vector potential corresponds to a symplectic transformation of the
form (¢, p) — (¢.p + dS(q)), for some smooth function S, and hence does not
modify the trajectory of the particle. Thus, we consider the function

: L 5
aln,s) = %fo B(n,g)dg—/o B(n, £)dE .

Notice that «(n,-) is L-periodic. Recalling (2.9) and letting A = «a(n,s)dn +
f(n)ds, we have B = dA.
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By (2.5), the corresponding Hamiltonian is

(pn —a(n,s)) . (ps — f(m)°

H(n,s, pn, ps) =

2 2(1 —K(S)ﬂ)z .
Concerning Hamilton’s equations, we have in particular
7
~ — f(n
n= p,—an,s), ps = B(n,s)n — MK’(‘Y)” )
(l — K(.\‘)I’l)

where

" 1 L
Bin.s) = —/ B(n,&)dE — B(n,s).
L Jo
We recall that, for all 1 € [0,T), H(n(r),s(t), pa(t), ps(t)) = Hy. We get

|n] < 2Hy
G.1) |ps — f(n)] < V2Ho(1 + ¢€)
3. ‘ 5
— f(n 2HyK'S

(Ps S ))3 K’(.S‘)n < 0

(1 —x(s)n)
where in the last estimates we have used the notation of Theorem 2.2 and in
particular |k|n < K§ < ¢. With our assumption (2.8) on B(n,s), we find, for all
tel0,T),

’

| —€

125O] < 1P (0)] + (M 2y + 2”0_12’5) -
and thus
(3.2) |/ (n(0)] < |ps@)] + | ps(0) = £ (n())| < C(T.4(0), 4(0))
with
C(7.q(0),4(0)) = | ps(O)] + V2Ho(1 + €) + (M T Zflfo_li’a)

If the trajectory reaches the boundary at +t = T , then
li t) =0.
fi (@)

This, with (3.2) and (2.6), gives a contradiction. This proves Theorem 2.1.
Now, consider a function g as in Theorem 2.2. We have, for all ¢ € [0,T),

g(n() < |f(n@)] = C(T.q(0),4(0)).

From (2.10), we have lim,—¢g(n) > C(T,q(O),c](O)); hence ¢ must take the
value C(7,¢(0).¢(0)) and the conclusion follows.
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3.2. Proof of Proposition 2.3. Let us recall (2.21). The assumptions of Propo-
sition 2.3 can be written in terms of V.

(H1) If

(3:3) lim }nf V(r) > Hy,
r—1—

we consider n = sup{x € (0,1) : V(x) = Hp} € (0,1). Consider a trajectory
(g(t), p(1)) with g(0) € D(0,1). We can assume that ¢(0) # 0. Let 7 be
the maximal time of existence in D(0, 1). By energy conservation, we have,
for all t € [0,7T),

V(r(1)) < Ho,

so that r(t) <n.

Note that (3.3) means
lim }nﬂG(r) — pol > VvV2H)y.
r—1—

Using the usual complex coordinate in the plane R?, we can write
= (f - iér) ¢'? and thus

det (¢(1).4(1) = r*(1)0(1) = pg — G(r(0)) -
Finally, we notice that ||¢(0)|| = v/2H, and write
G(r)— pg = G(r) — G(r(0) — [pe — G(r()],

which gives (2.15).

(H2) If
(3.4) liminf V(r) = Mo,
and

imaup =L <0

then we must again have
sup {x € (0,1): V(x) = Ho} < 1,

and we can proceed as above.
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3.3. Proof of Proposition 2.4. Consider py = 0. Let |V]so := sup,¢o,1)|V(r)|-
By assumption, |V < +00.

Let r(0) € (0, 1) and choose p,(0) > 0 such that p?(0) = 2 (|V|e — V(r(0)))+
v2, with v > 0. Since, for all ¢+ €[0,7T),

Pi() p7(0)
2 2

+V(r@) = + V(r(0)),

we get 7(t) = p,(t) > v so that

r(t) = vt +r(0).

1—r(0)

The escape time is at most = —;

3.4. Proof of Theorem 2.5. We distinguish between the cases py = 0 and
po # 0.

3.4.1. Case when pg # 0. In this case, lim,_o V(r) = 4+o00; hence, due to
energy conservation, the trajectory does not approach the origin.

(i) Assume that p,(0) < 0. We have V(1) < Hy and we can consider the right
most turning point r* € (0, 1). By definition V(r*) = Hj, and necessarily
Vi(r*) <0.

If V/(r*) < 0, it is easy to check that r reaches r* in finite time, say
t = t*. This time is given by

Pt = fl ar :
r* J2(Ho — V(1))

By symmetry, the escape time is 2¢*. Since 0 = Pﬁ;—?”’, we have
t* - t* . G .
2 2
0 r 0 r=pr
_/’*_ (po — G(r))F
0 r2 2(H0 — V(r))

so that

1
r

dr.
r* 12 [2(Hy — V(r))

By symmetry, we have
po —G(r)

dr.
r2\/2(Ho — V(1))

1
0(2t*) — 6(0) = 2/
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-1 08 -06 04 02 Q g2 0.4 66 08 1

FiGure 6
B(r)y=¢T-— %—

If V/(r*) =0, (r*,0) is a critical point of the Hamiltonian and we get that
r reaches r* in infinite time (see Figure 0).

(ii) Assume that p,(0) = 0 Then V(1) = Hy. By assumption (the trajectory
enters D(0,1)), we have V/(1) > 0, i.e., (pg—G(1))B(1)+(pg—G(1))* <0.
If V/(1) = 0, the particle sits at a fixed point of the Hamiltonian system,
and hence r(t) = 1 is constant. If V'(1) > 0, it enters D(0,1) and the
discussion is the same as previously.

3.4.2. Case when py = 0. In this case, since G(0) = 0, V(r) = ”%G(rf
admits a continuous extension at r = 0.

(i) Assume that p,(0) < 0. We have V(1) < Hy. The existence of r* such that
V(r*) = Hy is not ensured. If V(r) < Hy on [0, 1], the particle reaches
r = 0 in finite time r =t*:

e dr
t _[0 ,/2(H0—V(r))'

We get, by symmetry,
—G(r)

r2J2(Ho — V(1))

If there exists r* € (0,1) such that V(r*) = Hy, the trajectory does not
reach the origin and the discussion is the same as in the case pg # 0.

dr + 7.

1
0(2t*) — 6(0) = 2[
0

(ii) Assume that p,(0) = 0. The discussion is the same as when pg # 0.
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3.4.3. Scattering angle. We can now end the proof of Theorem 2.5. In terms
of complex numbers, we can write
v = (v,(0) +ivg(0))e™® | vy = (— v, (0) + ivg(0))e'® .

The scattering angle is

- +Arg(—vr(0)+iv9(0)) |

vr(0) + ivg(0)
Since ¢ is the argument of —v,(0) + ivg(0), the scattering angle is

92*91—71,'%—28.

A. Tubular coordinates

Lemma A.1. We write A = A1dqg, + Aydg,. With (2.1), we have

A = A,dn + Agds, A= (Ap, As)T = (dy)T (44, 42)T.
We have
(A.1) H(n,s, pn, ps) = HoW(n,s, pa, ps)
_ (o= An9)” | (py— An9)
2 2(1- IC(S)I’!)2 '

Moreover, v, = p, — An(n,s) and vy = (1 —n/c(s))_l(ps — Ag) are the normal
and tangential component of v.

Proof. We write
2H(q, p) = |p - AI* = |@y™HT(5 - A
= ((dy ")y HT(p — A), p — A),
with p = (pn, ps)T. Note that

(A.2) (dy™H)" = [N(s) . (1 = nic()y' ()]
We get
@y " = (! v
0 (l—nic(s))_2 '

which gives (A.1). Concerning the velocity v, since ¢ = y(s)+nN(s) and thanks
to the Frenet—Serret formula N'(s) = —«(s)y’(s), we have

i = S'(l — nlc(s))y'(s) +aN(s) =: vgy' + v N,

and thus we get the result from (A.1) by using the Hamilton equations
§= VK(.\‘)n)_z(pS — Ag) and 7 = p, — Ap. |
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