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An elementary and unified proof
of Grothendieck's inequality

Shmuel Friedland, Lek-Heng Lim and Jinjie Zhang

Abstract. We present an elementary, self-contained proof of Grothendieck's inequality

that unifies the real and complex cases and yields both the Krivine and Haagerup

bounds, the current best-known explicit bounds for the real and complex Grothendieck

constants respectively. This article is intended to be pedagogical, combining and streamlining

known ideas of Lindenstrauss-Pelczynski, Krivine, and Haagerup into a proof that need

only univariate calculus, basic complex variables, and a modicum of linear algebra as

prerequisites.

Mathematics Subject Classification (2010). Primary: 47A07; Secondary: 46B28, 46B85

Keywords. Grothendieck inequality, Grothendieck constant, Krivine bound, Haagerup

bound.

We will let F R or C throughout this article. In 1953, Grothendieck proved

a powerful result that he called "the fundamental theorem in the metric theory
of tensor products" [Gro]; he showed that there exists a finite constant K > 0

such that for every l,m,n e N and every matrix M (My) e Fmx",

where (•, •} is the standard inner product in F', the maximum on the left is

taken over all xi,yj g F' of unit 2-norm, and the maximum on the right is

taken over all 8j e F of unit absolute value (i.e., e, ±1, 8j ±1 over

R; si e'e> 8j e1^' over C). The inequality (1) has since been christened

Grothendieck's inequality and the smallest possible constant K Grothendieck's

1. Introduction

m n m n

(i)
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constant. The value of Grothendieck's constant depends on the choice of F and

we will denote it by Kf
Over the last 65 years, there have been many attempts to improve and simplify

the proof of Grothendieck's inequality, and also to obtain better bounds for the

Grothendieck constant Kf, whose exact value remains unknown. The following
are some major milestones:

(i) The central result of Grothendieck's original paper [Gro] is that his

eponymous inequality holds with 7r/2 < AT® < sinh(7r/2) « 2.301 and

1.273 «a 4/jr < Kf.. Grothendieck relied on the sign function for the real

case and obtained the complex case from the real case via a complexification
argument.

(ii) The power of Grothendieck's inequality was not generally recognized until the

work of Lindenstrauss and Pelczyriski [LP| 15 years later, which connected the

inequality to absolutely p -summing operators. They elucidated and improved
Grothendieck's proof in the real case by computing expectations of sign
functions and using Taylor expansions, although they did not get better

bounds for Kf..

(iii) Rietz [Rie] obtained a slightly smaller bound AT® < 2.261 in 1974 by

averaging over M" with normalized Gaussian measure and using a variational

argument to determine an optimal scalar map corresponding to the sign
function.

(iv) Our current best known upper bounds for AT® and Kff are due to Krivine
[Kri ], who in 1979 used Banach space theory and ideas in [LP) to get

AT« < ^ - 1.78221;
21og(l+V2)

and Haagerup |Haa], who in 1987 extended Krivine's ideas to C to get

where xo e [0, 1] is the unique solution to:

(v) Our current best known lower bounds for AT® and Kff are due to Davie

[Davl, Dav2], who in 1984 used spherical integrals to get
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where

p{x) V ~x2/2, f{x) := ~e~xl
71

+pW[,_yi£V'2'2</,];
and

where
i r r°° 2

9(x) - 1 — e~~x~ + x J e~' dt

~
1 poo -> ~i r 9

—

g(x) := -(l-e~x~)+ / e~'~ dt + 6{x) 1 (l-e~x)
x Jx X

(vi) Progress on improving the aforementioned bounds halted for many years.

Believing that Krivine's bound is the exact value of AT®, some were spurred

to find matrices that yield it as the lower bound of A'® [Konl], The belief
was dispelled in 2011 in a landmark paper (Bra], which demonstrated the

existence of a positive constant s such that AT® < jr/(21og(l + V2)) — s but

the authors did not provide an explicit better bound. To date, Krivine's and

Haagerup's bounds remain the best known explicit upper bounds for AT®

and Kq respectively.

(vii) There have also been many alternate proofs of Grothendieck's inequality
employing a variety of techniques, among them factorization of Hilbert spaces

[Mau, Jam, Pisl], absolutely summing operators [DJT, LP, Pis2], geometry
of Banach spaces [AK, LT], metric theory of tensor product [DFS], basic

probability theory [Ble], bilinear forms on C* -algebra [Kai].

In this article, we will present a proof of Grothendieck's inequality that unifies

both the (a) real and (b) complex cases; and yields both the (c) Krivine and (d)

Haagerup bounds [Kri, Haa]. It is also elementary in that it requires little more
than standard college mathematics. Our proof will rely on Lemma 2.1, which is

a variation of known ideas in [LP, Haa, Jam]. In particular, the idea of using the

sign function to establish (1) in the real case was due to Grothendieck himself
[Gro] and later also appeared in [LP, Kri]; whereas the use of the sign function
in the complex case first appeared in [Haa]. To be clear, all the key ideas in our

proof were originally due to Lindenstrauss-Pelczynski, Krivine, Haagerup, and

König [LP, Kri, Haa, Kon2], our only contribution is pedagogical - combining,
simplifying, and streamlining their ideas into what we feel is a more palatable

proof. To understand the proof, readers need only know univariate calculus, basic

complex variables, and a small amount of linear algebra. We will use some
basic Hilbert space theory and tensor product constructions in Section 4 but both

notions will be explained in a self-contained and elementary way.
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2. Gaussian integral of sign function

Throughout this article, our inner product over C will be sesquilinear in the

second argument, i.e.,

(x,y):=y*x for all x, y e C".

For zeF =1 or C, the sign function is

(2) sgn(z)

and for z e F", the Gaussian function is

G^(z)
(2ji)~"/2 exp(—||z|||/2) if F

7i " exp(—||z|||) if F

Lemma 2.1 below is based on [Jam, Haa]; the complex version in particular
is a slight variation of [Haa, Lemma 3.2], It plays an important role in our
proof because the right side of (3) depends only on the inner product (u,v)
and not (explicitly) on the dimension n. In addition, the functions on the right
are homeomorphisms and admit Taylor expansions, making it possible to expand
them in powers (u,v)d, which will come in useful when we prove Theorem 4.1.

Lemma 2.1. Let u,v e F" with ||w||2 ||v||2 1. Then

(3) f sgn(w,z) sgn(z, v)G^(z) dz
JF"

2
— arcsin(w, v) if F R,
it

1

f71 '2 cos^ t
(u,v) / 7j—rzrc/t if F C.

Jo (1 — \{u, v)\2 sin21)1/2

Proof Case I: F R. Let arccos(w,i;} 6, so that 9 e [0,it] and

arcsin(u, v) 7r/2 — 8. Choose a, ß such that 0 < ß - a < it and define

E(a, ß) {(r cos 9, r sin 9, x3,... ,xn) : r > 0,a < 9 < ß).

The Gaussian measure of a measurable set A is the integral of (If (x) over A.

Upon integrating with respect to x$,...,xn, the following term remains:

1 r \ c ß c
— I e~ï(xi+x^ dx\ dx2 — / d6 I re~ïr2 dr (ß — a)/2n.
2Tt JE(ot,ß) 27T Ja Jo
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Hence the Gaussian measure of E(a,ß) is (ß—ct)/2n. Since there is an isometry
T of E" such that Tu — e\ and Tv — (cos 9, sin 0,0 ,0), the left side of
(3) may be expressed as

I sgn(7u, x) sgn(x, Tv)G^(x) dx.
JR"

The set of x where (Tu,x) > 0 and (Tv,x) > 0 is E(9 — n/2, n/2), which
has Gaussian measure (n — 9)/2n\ ditto for (Tu,x) < 0 and (Tv,x) < 0. The

set of x where (Tu,x) < 0 and (Tv,x) > 0 is E(n/2,9 + n/2), which has

Gaussian measure 9/2n\ ditto for (Tu,x) > 0 and (Tv,x) < 0. The set of x
where (Tu,x) 0 has zero Gaussian measure. Hence the value of this integral
is (it — 9)/2n + (n — 9)/2n — 6/2n — 9/2n — 2arcsin(u, v)/n.
Case II: F C. We define vectors a,ß e E2" with a2i~\ Re(w(),

a2i Im(i/(), ß2i—i Re(u(), ß2i Im(t;(), i — 1 — ,n. Then a and ß

are unit vectors in E2" For any z (z1,..., zn) e C", we write

a; (Re(zi), Im(zi),..., Re(z„), Im(z„)) e E2".

Then,

n n

Re((w,z)) ^Re(ui~Zi) ^(Re(u,) Re(z,) + Im(M,) Im(z;))
i 1 i' l
(a,x) — (x,a),

and likewise Re((z, v}) {x,ß). By a change-of-variables and Case I, we have

/ sgn(Re(u, z)) sgn(Re(z, v))G^(z) dz / sgn(A,a)sgn (x, ß)Gfn(x) dx
JC" JK2"

2 2
(4) — arcsin(a, ß) — — arcsin (Re(u, v}).

n h
It is easy to verify that for any z e C,

I C2n
(5) sgn(z) - / sgn (Re(e~'ez))c'e d9.

4 Jo

By (4), (5), and Fubini's theorem,

J sgn(w, z) sgn(z, v)G„ (z) dz

(Re ((z, e-"f>v))yi(d+,p)G^(z) dz d9 dtp

16

sgn

I f2n p2jt

J J arcsin (Re ((e ieu,e"pv))^jel(e+'pKl9 dtp
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Case 11(a): (u,v) e K. The integral above becomes

I r2jtr r2lt
— \ arcsin (cos(0 + <p){u, v))e,^e+^ dO
'K J0 Uo87r

I p2rc r r-2n+<p
I I arcsin ((m, v) cos f)c" dt

J0 Uv
I r2n r r2n

— — / / arcsin ((m, v) cos t)e" dt
Jo Uo

/»2n
/ arcsin ((m, v) cos t)elt dt.

Jo

Since arcsin ((n, v) cost) is an even function with period 2n,

/>2jt
/ arcsin ((m, v) cost) sint dt 0,

Jo

dtp

dtp

dcp

1 r2n
(6) —

the last integral in (6) becomes

] r2n/»ZJI

/ arcsin ((m, u) cost) cost Jt,
Jo

and as arcsin ((m, v) cos t) cost is an even function with period n, it becomes

çiz/2 çn/2
/ arcsin ((m, v) cost) cost dt / arcsin ((m, v) sin t) sin t dt,

Jo Jo

which, upon integrating by parts, becomes

"nl2 cos21

(1 — \{u, u)|2 sin2 t)
(7) {U'V) L ti m2^2 a1/2

dt'

Case 11(b): (u,v} M. This reduces to Case 11(a) by setting ce C of unit
modulus so that c(u,v) |(m,v)| and (cm, v) e K, then by (7),

/ sgn(u, z) sgn(z, v)G^(z) dz c / sgn(cM,z) sgn(z,u)Gf (z) dz
Je Je

-it/2 cos21fc{cu,v) / ——pr dt
Jo (1 - I (cm, u)|2 sin21)

n/2

(1 — |(m, m)|2 sin2 t)'
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We will make a simple but useful observation1 about the quantities in (1) that

we will need for the proof of Corollary 2.3 later.

Lemma 2.2. Let F R or C and d,m,n e N. For any M e Fmx", we have

(8)

and far any xi,

max yi yi My si 8j

i=17=1

Xm,y 1 Jn e Frf,

max
kl=|«yl=i

yi MijSi&j
1=17=1

(9) max
l|x, |l<l, lbyll<l i=1y=l

max
ll*,-ll=IM=i

j2Y,Mij(xi>yj)
i 1 7 1

Proof. We will start with (8). Suppose there exists M e Fmx" such that the left-
hand side of (8) exceeds the right-hand side. Let the maximum of the left-hand
side be attained by e* s^ and <5*, 8*. By our assumption, at least one
s* or 8* must be less than 1 in absolute value and so let Kl < 1 without loss

of generality. Fix e,- — s*, i —2 m and 8j —8*, j 1, n, but let £i

vary with |êi| < 1 and consider the maximum of the left hand-side over s\.
Since max{|a£i + b\ : |ei| < 1} is always attained on the boundary |ei| I for

any a, h e F, this contradicts our assumption. The proof for (9) is similar with
norm in place of absolute value.

In the corollary below, the inequality on the left is the "original Grothendieck

inequality", i.e., as first stated by Grothendieck2 in [Gro], and the inequality on

the right is due to Haagerup [Haa].

Corollary 2.3. Let F M or C and d,m,n e N. For any M e Fmx" with

(10)
Ie/1=

any x\,..., xm, y\,..., yn e Wd of unit 2-norm, we have

max
|e/Hfyl=l

y, y, ^ij si 8j

i=17=1

EE»« arcsin(x,-, yj)
1=17=1

JT
< - f F~ 2

J2J2M»H((x'>yj})
1=17=1

<1 if F C,

where Fl denotes the function on the right side of (3) for F C.

1 This of course follows from other well-known results but we would like to keep our exposition
self-contained.

2The better known modern version (1) is in fact due to Lindenstrauss and Petczynski in |LP|.
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Proof. The condition (10) implies that

m n

EE", sgn(jc,-,jc) sgn(jy,x)G^(z)\ < G^(z),
i=iy=i

m n

EE«» sgn(z,x,)sgn(z, j>y)G^(z) < G^(z),
i=iy=i

for any x z e Cd respectively. Integrating over Wl or Cd respectively
and applying Lemma 2.1 give the required results. Note that we have implicitly
relied on (8) in Lemma 2.2 as the sgn function is not always of absolute value

Corollary 2.3 already looks a lot like the Grothendieck inequality (1) but the

nonlinear functions arcsin and H are in the way. To obtain the Grothendieck

inequality, we linearize them: First by using Taylor series to replace these functions

by polynomials; and then using a 'tensor trick' to express the polynomials as

linear functions on a larger space. This is the gist of the proof in Section 4.

We will need to make a few observations regarding the functions on the right
side of (3) for the proof of Grothendieck's inequality. Let the complex Haagerup

function of a complex variable z be

and the real Haagerup function h as the restriction of H to [—1,1] ç M. Observe

that h : [—1,1] -» [— 1, 1] and is a strictly increasing continuous bijection. Since

[—1,1] is compact, h is a homeomorphism of [—1,1] onto itself. By the Taylor

expansion

one and may be zero.

3. Haagerup function

(l-x2sin2r) 1/<2 x2k sin2fc t, |x| < 1, 0 < t < jt/2,rr (2Â;)!!

and

thus we get

2fc+1, x e [—1,1].
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Since h is analytic at x — 0 and h'(0) ^ 0, its inverse function h 1
:

[— 1,1] -> [— 1, 1] can be expanded in a power series in some neighborhood of 0

OO

(12) h~X{x) J2h2k+iX2k + i

k=0

One may in principle determine the coefficients using the Lagrange inversion
formula:

] r ,l2k / \ 2k+l-
bik+ï lim2lc+1

(2k + 1)! t^o

d2k t \
dt2k \h(t))

For example,

4 1 / 4 \ 3
_

1 / 4 \7
1 ~~ — ' 3 — (~) ' b5 — 0, hi — — •

n 8 V 7T / 1024 V n /
But determining ^2yt+i explicitly becomes difficult as k gets larger. A key step
in Haagerup's proof [HaaJ requires the nonpositivity of the coefficients beyond
the first:

(13) b2k+\ < 0, for all k > 1.

This step is in our view the most technical part of [HaaJ. We have no insights on
how it may be avoided but we simplified Haagerup's proof of (13) in Section 5

to keep to our promise of an elementary proof - using only calculus and basic

complex variables.

ft follows from (13) that h (z) := b\z — h~x(z) has nonnnegative Taylor
coefficients. Pringsheim's theorem implies that if the radius of convergence of
the Taylor series of h (z) is r, then h(z), and thus has a singular
point at z r. As h'(t) > 0 on (0,1) and /?( 1 1, we must have r > 1. It
also follows from (13) that h~l(t) < J2k=o bzk+it2k+1 for any t e (0,1) and

Ne N. So \bik+i\t2k+l < b\t —h~x(t) for any t e (0, 1) and Ne N. So

Ljfcli \h2k+\ \ <b\-\ for any iVeN and we have \b2k+i \ < 2èi -1. As
h~x(1) 1 we deduce that YlT=o^2k+i h~x{ 1) 1, and therefore

OO

(14) J2 \b2k+i\ 2bi-\.
k=0

We now turn our attention back to the complex Haagerup function. Observe that

\H(z)\ h(\z\) for all z e D {z e C : |z| < 1} and arg (H(z)) — arg(z)
for 0 / z e f). So H : D -» D is a homeomorphism of D onto itself. Let
H~x : D -> D be its inverse function. Since H(z) — sgn(z)Ä(|z|), we get

(15) H 1

(z) sgn(z)// 1(|z|) sgn(z)^è2Ar+1|
k=0

z\2k+x.
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Dini's theorem shows that the function <p(x) := J2T=o \^2k+t \x2k+x is a strictly
increasing and continuous on [0,1], with <p(0) 0 and <p( 1) Y^=o \^2k+i \

—

b\ 4/n > 1; note that (p( 1) is finite by (14). Thus there exists a unique

c0 e (0,1) such that (p(c0) 1. So

oo „
1 <p(c0) V \b2k+\\clk+l cQ h~^(c0),

k=0 ^

where the last equality follows from b\ 4/n and (13). Therefore we

obtain /!-1(c0) 8c0/n — 1, and if we let x0 /;_l(c0) e (0,1), then

h(x0) — tt(x0 + l)/8 0. From the Taylor expansion of h(x), the function
a: f» h(x) - tt(x + 1 )/8 is increasing and continuous on [0, 1], Hence x() is the

unique solution in [0, 1] to

(16) h(x) - + 1) 0

and Co n(xo + 1 )/8.
As Corollary 2.3 indicates, the Haagerup function H plays the analogue of

arcsin in the complex case. Unlike arcsin, H is a completely obscure function,3
and any of its properties that we require will have to be established from scratch.

The goal of this section is essentially to establish (11 )—( 16), which we will need

later.

4. A unified proof of Grothendieck's inequality

In this section we will need the notions of (i) tensor product and (ii) Hilbert

space, but just enough to make sense of T(F") where F M or
C. In keeping to our promise of an elementary proof, we will briefly introduce
these notions in a simple manner. For our purpose, it suffices to regard the tensor

product of k copies of IF", denoted

(F")®* F" 0 • • ® F",
k copies

as the F -vector space of k -dimensional hypermatrices,

(F«)®* := {\ah..,k] : ait..,k e F, h,..., ik e {1,...,«}},

where scalar multiplication and vector addition of hypermatrices are defined

coordinatewise. Also, we let (F")®° := F. For k vectors x,y,...,z e F", their
tensor product is the k -dimensional hypermatrix given by

3 We are unaware of any other occurrence of H outside its use in Haagerup's proof of his bound
in |Haa|.
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x®y®---®z := [x/,yi2 e (F")®fe.

We write
x®k := x ® • ® x

k copies

If (•, is an inner product on F", then defining

(17) (x ® y ® ® z,x' ® y' ® ® z') (x,x')(y, y') (z,z')

and extending bilinearly (if F M) or sesquilinearly (if F C) to all of (F")®*
yields an inner product on the k -dimensional hypermatrices. In particular we
have

{x®k,y®k) (x,y)k.

If {ei,..., e„} is the standard orthonormal basis of F", then

(18) {eh ®---®eik e (Fn)9k : iu... ,ik e {1 «}}

is an orthonormal basis of (F")®fc. For more information about hypermatrices
see [Lim] and for a more formal definition of tensor products see [FA],

If an F -vector space H is equipped with an inner product (•, •) such that

every Cauchy sequence in H converges with respect to the induced norm
||v|| \(v, v)\1!2, we call H a Hilbert space. Hilbert spaces need not be finite-
dimensional; we call H separable if there is a countable set of orthonormal
vectors {ej e TL : j c- J}, i.e., J is a countable index set, such that every v e H
satisfies

(19) IH2 Z>'<7>I2-
j&j

Let be the inner product on (F")®* as defined in (17), || • \\k be its induced

norm, and be the orthonormal basis in 18). Let n e N. The tensor algebra
of F" is the F -vector space4

(20)
oo

T(F") := 0(F")®* - {(w0,vi,i;2)...) : vk e (F")®fc, Er=ol|Vfc|1^ < °°}
k=0

equipped with the inner product
OO

(21) (w, u)* ^2{uk,vk)k.
k=0

It is a separable Hilbert space since (Jitlo is a countable set of orthonormal

vectors satisfying (19). We write || • ||* for the norm induced by (21).

4 The direct sum in (20) is a Hilbert space direct sum, i.e., it is the closure of the vector space
direct sum.
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Theorem 4.1 (Grothendieck inequality with Krivine and Haagerup bounds). Let
F R or C and l,m,n e N. For any M e Fmx", any x\ xm,y\ yn e

F' of unit 2-norm, we have

(22) max
IM lly/ll=i

1 17=1

< Kf max VVm,7ê,^
|e,-|=|Ä7|=l —' Z—/

1=17=1

where

Kk := — and Kc :=
2 log( 1 + *Jl)

'

n(x0+ 1)

are Krivine's and Haagerup's hounds respectively. Recall that xo is as defined
in (16).

Proof As we described at the end of Section 2, we will 'linearize' the nonlinear

functions arcsin and H in Corollary 2.3 by using Taylor series to replace these

functions by polynomials, followed by a 'tensor trick' [Jam, Kri| to express

polynomials as linear functions on an infinite-dimensional space.

Case I: F R. Let c := arcsinh(l) log(l + a/2). Taylor expansion gives

00 c2k+\
(23) sin {c{xi,yj)) £(-!)* (xi^j)2k+l

oo 2k+\

Ei i\k c /„®(2*+l) ,,®(2*+l)\
U

(2k + 1)!\ ,yi Ik
k=0 v

For any / e N, let T(M') be as in (20), and S, T : Rl -> T(R') be nonlinear

maps defined by

S(x) := (Sk(x))~=o' S2k(x):= 0, S2k+fx) := (~l)kJ— x^2k+l\
2k+1

/ r2k + l
T(x) := (Tk(x))=0, T2k(x) := 0, T2k+l(x) := ^+0,
for any xel'. To justify that S and T are indeed maps into T(R'), we need

to demonstrate that ||5(x)||», j|T(x)||* < oo but this follows from

00 00 r2k+\ 00

l|5(x)||2, \\Sk(x)\\l £ n,llx||2(U+1) X] l|7U*)ll* \\T(x)\\l
k=0 k=0 k=0

and
oo 2k-{-1

J2 ni -L
n,Hxll2(2fc+1) sinh (cll^H2) < oo

k=o
^ ''
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for all tel'. Note that
°o 2/fc + l

(S(x),T(y)U E^T^TT .Jx,y)2k+1 =sin{c(x,y)),to W + 1)!

which is the essence of the 'tensor trick'. Hence (23) becomes:

sin (c{xi,yj)) {S(Xi),T(yj))* or c(xi,yj) arcsin(S(*,-), T(yj)}*.

Moreover, since x,- and y7 are unit vectors in Rl, we get

||S(xj)||2 sinh(c||x, ||2) 1 and ||T(yj)\\2 sinh(c||y, ||2) 1.

As the m + n vectors 5"(xi) S(xm),T(yi), T(yn) in T(Rl) span a

subspace S ç T(M') of dimension d < m + n; and since any two finite-
dimensional inner product spaces are isometric, S is isometric to Rd with the

standard inner product. So we may apply Corollary 2.3 to obtain

m n
j

m n

EEm'/ (xi,yj)\ - Ieem" arcsin(S(x,), T(yj))„
ci=\j=i i=\j=\

ix
< —_ 2c'

which is Krivine's bound since jt/2c 7r/(2 log( 1 + V2)) KR.

Case II: F C. Let c0 e (0,1) be the unique constant defined in (16)
such that <p(c0) 1. By the Taylor expansion in (15) and noting that
sgn(z)|z|2*+1 zkzk+l,

(24) H \c0{xi,yj)) sgn (c0<x(-, y,)) ^h2k+l\c0[xi,yj)\ 2k+\

k=0
oo

E b2k+vt+1 (xi •yj)k (xi <yj)k+1
k=0

oo

E hik+\cf+1 {xi, yj)k(xi, yj)k+l
k=0

oo

k=0

For any / e N, let £>/ {x e Cl : ||x|| < 1} be the unit ball, let T(C') be as

in (20), and let S, T : D/ -» T(C') be nonlinear maps defined by

S(x) (5fe(x))~ 0, S2k(x) := 0,

S2k+i(x) := sgn(b2k+1)J\b2k+l\c%k+l xm) <g>x®(fe+1),

T(x) (Tk(x))=0, T2k(x) := 0,

T2k+i(x) := y/\b2k+i\c%k+i -x®{lc) ®x®(fc+1),
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for any x e D/. Then S and T are maps into T(C') since

\\s(x)\\i E wskwwl E\b2k+i kofe+1 \\x\\2(2k+1) E117*willii*
£=0 fc=0 & 0

II^WIIÎ

and, as /?i > 0 and />2*+i 5 0 f°r all k > 1 by (13),

OO

ElW|c02fe+1|W|2(2*+1) 2ft1c0||x||2 - //-'(collxf) < oo.

fc=o

As in Case I, the 'tensor trick' allows us to rewrite (24) as

H~l(c0{xi,yj» (SC*,-), CCvy)^ or c0{xi,yj) H((S(x,-), T(yj))*).

Moreover, since x,- and are unit vectors in Cl, we get

CO

||S(x,-)||2 E \h2k+l\Cok+1 <p(co) 1,

k=0

and similarly ||T(.y/)|| 1. So we may apply Corollary 2.3 to get

m n jEE"ij{xi>yj) I —EI*»
i i y i

Co
1 17 1

<
Co'

which is Haagerup's bound since l/c0 8/7r(x0 + 1) K.

5. Nonpositivity of b2k+\

To make the proof in this article entirely self-contained, we present Haagerup's
proof of the nonpositivity of b2k+\ that we used earlier in (13). While the main
ideas are all due to Haagerup, our small contribution here is that we avoided

the use of any known results of elliptic integrals in order to stay faithful to our
claim of an elementary proof, i.e., one that uses only calculus and basic complex
variables. To be clear, while the functions

pn/2 çiz/2
(25) K(x) / (1 — x2 sin2 t)~X dt, E(x) := / (1 - x2 sin2 t)x^2 dt

Jo Jo

do make a brief appearance in the proof of Lemma 5.1, the reader does not
need to know that they are the complete elliptic integrals of the first and second

kinds respectively. Haagerup had relied liberally on properties of K and E that
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require substantial effort to establish [Haa], We will only use trivialities that

follow immediately from definitions.

Our point of departure from Haagerup's proof is the following lemma about

two functions h\ and h2, which we will see in Lemma 5.2 arise respectively
from the real and imaginary parts of the analytic extension of the real Haagerup
function A : [—1,1] —>- [—1,1] to the upper half plane.

Lemma 5.1. Let h\,h2 : [Loo) —> M be defined by

m/2
hi(x) := V1 — x~2 sin21 dt,

J0

n/2 cîn2
h2(x) := (1 — x 2) / =dt,

Jo y/\ — (1 — x~2) sin21

which are clearly strictly increasing functions on [l,oo) with

hi( 1) 1, lim h\(x) it/2, h2{\) — 0, lim h2(x) 00.
X—>OQ X^-OO

Then

(26) (x>\{x) x(hi(x)h'2(x) — h\(x)h2{x)) — ~ for x > 1,

(27) co2(x) := x(h\(x)h\(x) + h2(x)h'2(x)) > 2h\{V2)h2(s/2) > ^
for \ < x < V2.

Proof. We start by observing some properties of h\ and h'2. As

1 fn/2 sin21 1 rn/2 sin21
h\(x) — / dt — /

x Jo Vl — x 2 sin t x Jo s/x2 sin21
: dt,

h\ is strictly decreasing on (l,oo). As f^2 cos 11 dt 00, limJC_î.1+ h\{x) —

00. Clearly lirn^oo h\(x) 0. Furthermore, when x > 1, since Vx2 — sin21 >
s/x2 — 1, we have

(28) 0 < h\ (x) <
U

for x > 1.
4x2 Vx2 — 1

It is straightforward to see that the functions E and K in (25) have derivatives

given by

(29) E\y)=X-{E(y)-K{y)), K'{y) [ (E(y) - (1 - y2)K{y)).

Clearly, h2(x) K(y) — E{y), where y y(x) V1 — x-2. So by chain rule,
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d 1 F"/2 I/,
h'2{x) y'(x) — (K - E)(y(x)) — - / (l - (1 — x~2) sin21) dt.

dy x Jo

Hence h'2 is strictly decreasing on [l.oo), h'2(\) — rr/2, and lim^^ooh2(x) 0

To show (26), observe that

h\(x) E( 1/x), xh\(x) — K(\/x) — E(\/x),
h2(x) K(y) - E{y), xh'2(x) E{y),

where again y Vi — x-2. Hence

(Oi(x) E(\/x)E(y) - [K(\/x) - E(\/x)][K(y) - E(y)\

E(\/x)K(y) + K(\/x)E(y) - K(l/x)K{y).

Computing a>'l we see from (29) that =0. So is a constant function. By
(28), lim^] h'l(x)(\—x~2) 0, and so limx^i <wi(x) jr/2. Thus tt>i(x) 7r/2
for all jc > 1 and we may set «i(l) it/2.

We now show (27) following Haagerup's arguments. Note that

co2(x) E(l/x)(K(\/x) - E(\/x)) + E(y)(K(y) - E{y)).

Let g(x) := E(*Jx)(K(y/x) - E(*/x)). A straightforward calculation using (29)
shows that

\ Ejy/x)
_

A-(V3Ö ^ g(VT)
\ — X X

>0, x e [0, 1],

So g is convex on [0,1]. Hence g(f — x) is also convex on [0,1]. Let

f(x) := g(x) + g(l — x). Then / is convex on [0,1] and /'(1/2) 0.
Therefore fix) > /(1/2) > 2g(l/2). This yields the first inequality in (27):
<x>2(x) > 2h\is/2)h2i\[2) for x [1, V2].

The Taylor expansions of h\ and h2 may be obtained as that in (11),

(30)

(31)

hi(x) y
k=0

oo

hi(x) ^
k=0

(2k)!
"

_22kik\)2

(2k)l
22kik\)7

1

-2k
1 - 2k

2k

2k - 1

(1 -x-2)-2\k

Approximate numerical values of hi and h2 at x — V2 and 4 are calculated5

to be:

5 For example, using www. wolframalpha. com, which is freely available. Such numerical calculations
cannot be completely avoided - Haagerup's proof implicitly contains them as he used tabulated values
of elliptic integrals.
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(32) Äi(\/2) « 1.3506438, h2(y/ï) sa 0.5034307,

h\(4) sa 1.5459572, h2{4) sa 1.7289033.

The second inequality in (27) then follows from 2h\(y/2)h2(y/2) sa 2x 1.35064 x
0.50343 > 7T/4.

In the next two lemmas and their proofs, Arg will denote principal argument.

Lemma 5.2. Let /z : [—1,1] —> [—1, 1] be the real Haagerup function as defined in
Section 3. Then h can be extended to a function h+ : IIII —> C that is continuous

on the closed upper half-plane 1 (z e C : Im(z) > 0} and analytic on the

upper half-plane H {z e C : Im(z) >0}. In addition, h+ has the following
properties:

(i) Im(/z+(z)) > Im (/z+(|z|)) for all z e H n {z e C : |z| > 1} and h+(z) f 0

for all z e H\{0}.

(ii) For x e [1, oo),

Re(/t+(x)) hi(x), Im (/t+(x)) h2{x),

where h\,h2 are as defined in Lemma 5.1.

(iii) For all k e N and all real a > 1,

2
(33) b2k+1

k + [ ^ Im^(/t+(x))"(2fc+1)^ dx + rk(a)

where

a / (2fc+i)
(34) kfc(o?)| - 2k + x

(im (/t+(Q!))j

Proof Integrating by parts, we obtain

pn/2 pn/2
h(x) / cost • r/(arcsin(x sinf)) / sint arcsin(x sint) dt, x e [—1,1].

Jo Jo

The analytic function sinz is a bijection of [—n/2,n/2] x [0, oo) onto H and

it maps the line segment {t + ia : —nil < t < n/2) onto the half ellipsoid
{z e H : |z — 11 + |z + 11 2 cosh a}. Let arcsin+ be the inverse of this mapping.
Then arcsin+ is continuous in H and analytic in H. In addition, we have:

Iarcsinx
if x e [—1,1],

j sgnx + i arccosh |x| if x 6 (—oo, —1) U (1, oo),

Im(arcsin+ z) arccosh^-(|z — 11 + |z + 1 |)j, zeH.
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If we define

pit/2
h+(z) := / sin/arcsin+(zsin/)dt, zeH,

Jo

then h+ is a continuous extension of h to H and is analytic in

(i) Since arccosh is increasing on [l,oo), we have

Im(arcsin+ z) arccosh^(|z — 1| + |z + 1|)^ > I
arccosh \z | if M > 1.

0 if \z\ < 1.

Therefore for z e H n {z e C : \z\ > 1},

fit/2pn/z
Im(/z+(z)) I sin/• Im (arcsin+(z sin/)) dt

Jo

pit/2
I sin/ arccosh (|z| sin/) dt 1m (/7+(|z|)).

•/arcsinO/lzl)
>

/arcsin(l/|z|)

As lm(arcsin+ z) > 0 on H, we have Im (/î+(z)) > 0 on H. For x e [-1.1],
h+(x) h(x) is zero only at x 0. For x e (—oo,~l) U (l,oo),

pit12

Im (h+(x)) I sin/arccosh (|x| sin/) dt > 0.
Jarcsin(l/|jc|)

Hence /?+ has no zero in Ht\{0}.

(ii) Let x e (l,oo). Integrating by parts followed by a change-of-variables
sin u — x sin / in the next-to-last equality gives us:

r»arcsin(l/x) r>n/2/»arcsin^i/x; ^ rir/z
(/;_!_(x)) / sin / arcsinfx sin /) dt 4— / sin t dt

Jo 2 Tarcsin(l/x)

/•arcsin(l/x) ^2 f pit/2
— x / —^^== dt — I v 1

To V1 — x2 sin2 / To
— x-2 sin2 u du

a/1 — x2 sin2 / To

/zi(x).

A change-of-variables sinw (1 — x-2)-1/2cos/ in the next-to-last equality
gives us:

pit/2 pit/2 COS2 /
Im(/z+(x))= / sin/arccosh(xsin/)J/= x / —

Tarcsin(l/x) Tarcsin(l/x) VX2 sin2 / — 1

dt

— (1 — x 2) / Ju h2(x).L
it/2 „jn2sin u

v/l - (1 - x~2) sin2 u
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(iii) The power series (11) shows that h defines an analytic function h(z) in the

open unit disk that is identically equal to h+(z) on {z e C : |z| < 1} n H.
Since h(0) 0 and h'{0) ^ 0, we can find some S0 e (0, 1] such that h(z)
has an analytic inverse function (12) in {z C : \z\ < 50}. For 0 < 8 < 80,

let Cg be a counterclockwise orientated circle with radius 8. It follows that

h(Cg) is a simple closed curve with winding number +1. Integrating by

parts with a change-of-variables, we have

J2t+1 — / f \tW(z)iz.2ni Jh(Cs) z 2jri JCn h(z)2k+2

Note that b2k+i e IS and

f zh'(z) f 1 f d
~(2k + 1} Jcg hïz)^ dZ +

Jcs Jcs d~z

Then we get

h{z)2k+l
dz 0.

2»(2* + I) /c,*W"<2t+" dz

2,(2i
+ l)/c,'m<"<Z'"<2t+"><'Z

2

n(2k + 1) J Im (A(z)-(2*+1)) dz
-8

where C'& is the quarter circle {8e'° : 0 < 6 < n/2}. Since h(z)
identically equals h+(z) on C{. and h+(z) has no zeros in the set

{z e C : 8 < \z\ < a, 0 < Argz < jt/2} by (i), Cauchy's integral formula

yields

blk+l — —ZTr TTTn(2k + 1)
[ h+(z)-{2k+1) dz + [ h + (z)-(2k+1) dz

Js Jc'a

pi8

+ /. '

Jia
h+{z)~{2k+l) dz

Ha

Moreover, since h+(z) is real on [5,1] and its real part vanishes on the

imaginary axis, we are left with

b2i+i —
jt(2k + 1) J \m{h+(z)-(2k+V) dz

Im f h+(z)
JCL

—(2/c+l)

jt(2k + 1)

By (i), h+(z) > Im(/î+(z)) > Im (A+(|z|)). Thus

ita / \-(2fc+i)

dz

\[ h+(z)^2k+l)dz
I Jc'

<- 2
/ / \-^+g

- (Im (A+(<*)))
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The integral expression of h2k+1 in (33) will be an important ingredient in
the proof that h2k+1 < 0 for k > 1. We establish some further approximations
for this integral in the next and final lemma.

Lemma 5.3. Let a 4 throughout.6 Let 0(x) := Arg (h+(x)) for x e [l,oo).
Then 9 : [l,oo) -» [0,2tt] is strictly increasing on for x > 1, 0(1) 0, and

lim^oo 9{x) n/2. In addition, we have the following:

(i) Let p := [(2k + l)0(a)/jrj. Let

2 ç0{x)=nr/(2k+l)
Ir :=

n(2k + 1) Je(x)=n(r-l)/(2k+l)

for r 1,2, p, and

2

pv\x)=7irj y£K-\-1
/ \h+(x)\~^2k+l">\ sin ((2k + l)0(x))| dx

J0(x)=7i(r—l) /(2k+\)

J :=
J[(2k + 1) J0(x)=7ip/(2k+\)

Then

2

faI |/7+(x)r(2A'+1)| sin {(2k + l)0(x))| dx.
J 6(x)=izp/(2k+l)

n(2k + 1) J Im (Mx)-(U+1)) dx -h + h-... + (-1 )pIP + (-1 )P+1J.

(ii) Let k > 4. Then p >2 and I\ > I2 > • > IP > J

(iii) Let k > 4 and c \h+(s/2)\e~d^^^2. Then I\ > 0.57C~l2k+L/(2k + l)2
and I2 < 0.85/i.

Proof Since 0(x) arctan {h2(x)/h i (x){, by (26), we get

d0(x) hi(x)h'2(x) -h\(x)h2(x)
<35) ^ kTMF >a x>h

So 9(x) is strictly increasing on for x > 1. It is clear that 0(1) 0. By Lemma 5.1,

lirn^ooh\(x) n/2 and lim^o0h2(x) +oo, so \imx^.oo0(x) — n/2.

(i) This follows from dividing the interval of the integral [l,a] into p + 1

subsets:

2 f Im(h+(x)H2k+l)) dx
n(2k + 1) J i

-n(2k + l) / l/' + Wr(2fc+1) sin {(2k + l)0(x)) dx

-h+l2-... + (-\)pIp + (-1 )P+1J.

6To avoid confusion, wc write 'a' tor the upper limit of our integrals instead of '4' as the same
number will also appear in an unrelated context 'k >4.'
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(ii) We write x x(9), 9 e [0, tv/2), for the inverse function of 9 9(x).
By (35), we have

4 nnr/(2k+ \)

'r= 2/ x(9)\h+{x(9))\ 2k+11 sin ((2k + 1 )0)| d9,
7t2(2k + 1) Jx(r-\)l(2k+ l)

a r0(a)
J= 2/ x(9)\h+(x(9))\ I sin ((2k + 1)0)| <70.

jr2(2k + 1) Jnpi(2k+i)
1

By Lemma 5.1, h\{x) and h2(x) are strictly increasing function of x e

[l.oo), therefore, so is |/7+(x)|2 h\(x)2 + h2(x)2. With this, we deduce

that x\h+(x)\~2k+l is strictly decreasing on [l,a] for k > 4 as

2i+1)

11 \ I "I" 1
I

^
\ i \ I—2Ä:—1 ^

I » x 12

|A+(x)| + |A+W| — |A+W|

|/t+(x)|
2k 1

^|/7+(x)|2 — (2k — \)x(h\(x)h\(x) + h2(x)h'2(x))^

< \h+(x)\~2k~X (\h+(x)\2 - (2k - 1)0

< |/7+(x)|"2fc_1(|/7+(a)|2 - ^0 « -0.1187 < 0,

where we have used the fact that \h+(x)\2 is increasing on [l,a] in the

next-to-last inequality and the numerical value is calculated from those of
/?i (4) and h2(A) in (32). Since | sin((2A: + 1)0)| is periodic with period
7t/(2k + 1), we obtain I\ > I2 > > Ip. In addition,

A r9((x)

J= / x(@)\h+(x(9))\ \ sin {(2k + 1)0)| d9
71 (2k -f- 1) Jytp/(2k+l) '

4 /•0(a)-jr/(2fc+l)
< 2n, ^ n / x(9)\h + {x(9))\ I sin ((2k + \)9)\d9

Jt2(2k + 1) J(p-i)n/(2k+l)

< Ip-

Finally, we have 0(a) arctan (li\(a)/h2(a)) ss 0.8412 > 7r/4 arctan(l),
and so p [(2k + l)0(a)/;rj > [90(a)/7rJ 2 for k > 4.

(iii) Since x(9) > 1 tor 9 e [0, ;r/2), we have

4 rn/(2k+l)
h >

n2(2k + i)J0 X(9)\h+(x(9))\ I sin ((2k + 1)0)| <70.

Recall that 0 9(x) and x — x(9) are inverse functions of one another.

For 0 e [O,0(V2)],
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^log|M*(ö)H I^log|M*)|2.(^)
1

hi(x)h'l(x) + h2(x)h'2(x) m2(x) 1

h\(x)h'2(x) - h\(x)h2(x) <ui(x) 2'

for x e [\,s/2], where we have used (26), (27), and the fact that 0(x)
is strictly increasing for x > 1. Hence fog \h+{x(9))\ < fog |A+(V2)| —

(0(V2) — 6)/2 which is equivalent to

\h+(x(6))\<ce0/2, 9e[0,0(V2)]

where c |h+(V2)\e-e^'2 « 1.2059 and 0(V2) > tt/9, using values of
/ii(V2) and h2(«J\2) in (32).

It follows that for k >4, we have

a riz/(2k+l)

2/t7TTT\ / (ce ^2)_ sin ((2k + 1)0) d6
tt (2k + 1) Jo

4-,-2fc+ l riz4C / e-»-1/2)e/(2fe+1)sin0J0
Jo

/i >

>

ir2 (2k + l)2
4c-2fe+i

TV2 (2k + l)2 fJ o

e"0/2 sin 0 J0

/2c\2l+e~7r/2 c"(2<:+1)
^

0.57c"(U+1)
1 + 1/4

'
(2k + l)2

>
(2k + l)2

Since fog |/z+(x(0))| > 1/2, we get

/i+(x(0 + 7i/(2k + 1))) ~U+1< g-(fc-i/2)jr/(2fc+i)|/î+ (x(0))|_2i+1

Moreover, since 0(5/^) > 27r/9, we know that x(0) < 5/V3 on [0,27r/9].
Hence for k > 4, it follows from the above results that

4 5 r2n/(2k+l)
Ir / x(0)|A+(x(0))| I sin ((2k + 1)0)| dO

Jn/(2k+l)

4 5

jr2(2k H- 1) \/3

4 5

ji2(2k H- 1) a/3

4 5

jr2(2k 4- 1) V31

rit/(2k+l)
J x(9) h+(x{9 + it/(2k + l))j

sin {(2k + 1)0) d9

pit / (2k+1)
/ x(0)|A+(x(0))|

Jo

-2k+l

,<n/(2k+l)
~(k-\/2)izl(2k + l) / wml/, (y(n\\r2k+ l

sin ((2k + 1)0) d9

< ~^e~l7t/lsIi < 0.85/j.
V3
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The fact that x\h+(x)\~2k+1 is strictly decreasing on [1,4] for k > 4,
established in the proof of (ii) above, is a crucial observation for establishing the

nonpositivity of b2k+i f°r & > 4. Observe that since \h + (x)\ is strictly increasing
for x > 1, it is enough to show that x\h+(x)\ 1 is strictly decreasing on [1,4],
which is what we did. Note that for a fixed k > 1, x\h+(x)\~2k+l is increasing
for large enough x, as \h + (x)\ behaves like Clogx for x 1.

Theorem 5.4. Let the Taylor expansion of h~l(x) he as in (12). Then h2k+\ < 0

for k > 1.

Proof Let k > 4 and let I\, I2 IP. J be as defined in Lemma 5.3. By (33)
with a — 4 and Lemma 5.3(i) and (ii), we have

—h2k+i — h — h + • • + (— ï)p '
Ip + (—1Y J — r2k+1(5\/2)

> 11 — I2 — r2k+1 (5x/2).

By (34) and Lemma 5.3(iii) with c rs 1.2059 (established in its proof), we get

h~h> (^(L206r(U+1)' ^+l(4)l - ^TT(1-728)"("+1)

Since -h2k+1 > I\ - h - r2k+i(4-), we get h2k+1 < 0 for k > 9. Direct

computation using the Lagrange inversion formula gives us b3,h5, fi17 < 0,

proving nonpositivity for k < 8.
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