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An elementary and unified proof
of Grothendieck’s inequality

Shmuel FriepLanp, Lek-Heng Lim and Jinjie ZHANG

Abstract. We present an elementary, self-contained proof of Grothendieck’s inequality
that unifies the real and complex cases and yields both the Krivine and Haagerup
bounds, the current best-known explicit bounds for the real and complex Grothendieck
constants respectively. This article is intended to be pedagogical, combining and streamlining
known ideas of Lindenstrauss—Pelczynski, Krivine, and Haagerup into a proof that need
only univariate calculus, basic complex variables, and a modicum of linear algebra as

prerequisites.

Mathematics Subject Classification (2010). Primary: 47A07; Secondary: 46B28, 46B85

Keywords. Grothendieck inequality, Grothendieck constant, Krivine bound, Haagerup
bound.

1. Introduction

We will let F =R or C throughout this article. In 1953, Grothendieck proved
a powerful result that he called “the fundamental theorem in the metric theory
of tensor products” [Gro]; he showed that there exists a finite constant K > 0
such that for every I,m,n € N and every matrix M = (M;;) € ™",

m n m n
DD Mij{xi.y;) > Mijes;
1j=1

i=1j=1 s

< K max
lej =167 1=1

(1) max
Ixill=ly;ll=1

where (-,-) is the standard inner product in F!, the maximum on the left is
taken over all x;,y,; € F! of unit 2-norm, and the maximum on the right is
taken over all ¢;,8; € F of unit absolute value (i.e., & = 1, §; = £1 over
R: & = €%, §; = ! over C). The inequality (1) has since been christened
Grothendieck’s inequality and the smallest possible constant K Grothendieck’s
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constant. The value of Grothendieck’s constant depends on the choice of F and
we will denote it by Kg.

Over the last 65 years, there have been many attempts to improve and simplify
the proof of Grothendieck’s inequality, and also to obtain better bounds for the
Grothendieck constant K%, whose exact value remains unknown. The following
are some major milestones:

(i)

(i1)

(iii)

(iv)

(v)

The central result of Grothendieck’s original paper [Gro] is that his
eponymous inequality holds with z/2 < Kg < sinh(w/2) ~ 2.301 and
1.273 ~ 4/ < Kg. Grothendieck relied on the sign function for the real
case and obtained the complex case from the real case via a complexification
argument.

The power of Grothendieck’s inequality was not generally recognized until the
work of Lindenstrauss and Petczynski [LP] 15 years later, which connected the
inequality to absolutely p-summing operators. They elucidated and improved
Grothendieck’s proof in the real case by computing expectations of sign
functions and using Taylor expansions, although they did not get better
bounds for K 5.

Rietz [Rie] obtained a slightly smaller bound K% < 2.261 in 1974 by
averaging over R” with normalized Gaussian measure and using a variational
argument to determine an optimal scalar map corresponding to the sign
function.

Our current best known upper bounds for K% and K g are due to Krivine
[Kri], who in 1979 used Banach space theory and ideas in [LP] to get

T
KR < ~ 1.78221;
@ 2log(1 4+ v/2)

and Haagerup [Haa], who in 1987 extended Krivine’s ideas to C to get

8
KS < ———— ~ 1.40491,
m(xo + 1)

where xo € [0, 1] is the unique solution to:

/2 cos? ¢
X dt = Z(x + 1).
0o 1 —x2sin?¢ 8
Our current best known lower bounds for K “GQ{ and K g are due to Davie
[Davl, Dav2], who in 1984 used spherical integrals to get
] _—
KB > sup P 1 676%,

xe(0,1) Max (P(X), f(x))
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where
2 2 8 [
px) = \ﬁxe_xz/z, Fa)y= =™ +p(X)[l -y _[ il dt}
g /A T Jx
and
1 -6
K& > sup 1290 133807,
x>0 &
where

0= 31— [Tt ]
00 2
glx) = [1(1 —e™) +[ e dt} + H(x)[l ~2a —e—xz)].
X X X

(vi) Progress on improving the aforementioned bounds halted for many years.
Believing that Krivine’s bound is the exact value of K R some were spurred
to find matrices that yield it as the lower bound of Kg [Konl]. The belief
was dispelled in 2011 in a landmark paper [Bra], which demonstrated the
existence of a positive constant & such that K&R </ (2 log(1 + «/i)) —e¢ but
the authors did not provide an explicit better bound. To date, Krivine’s and
Haagerup’s bounds remain the best known explicit upper bounds for K§
and Kg respectively.

(vii) There have also been many alternate proofs of Grothendieck’s inequality
employing a variety of techniques, among them factorization of Hilbert spaces
[Mau, Jam, Pisl], absolutely summing operators [DJT, LP, Pis2], geometry
of Banach spaces [AK, LT], metric theory of tensor product [DFS], basic
probability theory [Ble], bilinear forms on C*-algebra [Kai].

In this article, we will present a proof of Grothendieck’s inequality that unifies
both the (a) real and (b) complex cases; and yields both the (¢) Krivine and (d)
Haagerup bounds [Kri, Haa]. It is also elementary in that it requires little more
than standard college mathematics. Our proof will rely on Lemma 2.1, which is
a variation of known ideas in [LP, Haa, Jam]. In particular, the idea of using the
sign function to establish (1) in the real case was due to Grothendieck himself
[Gro] and later also appeared in [LP, Kri]; whereas the use of the sign function
in the complex case first appeared in [Haa]. To be clear, all the key ideas in our
proof were originally due to Lindenstrauss—Pefczyniski, Krivine, Haagerup, and
Ko6nig [LP, Kri, Haa, Kon2], our only contribution is pedagogical — combining,
simplifying, and streamlining their ideas into what we feel is a more palatable
proof. To understand the proof, readers need only know univariate calculus, basic
complex variables, and a small amount of linear algebra. We will use some
basic Hilbert space theory and tensor product constructions in Section 4 but both
notions will be explained in a self-contained and elementary way.
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2. Gaussian integral of sign function

Throughout this article, our inner product over C will be sesquilinear in the
second argument, i.e.,

{x,9) == y"x for all x,y € C".
For z e F =R or C, the sign function is

zf|z| ifz #0,

2 —
2) sgn(z) {0 i

and for z € F”, the Gaussian function is

@m)™"2exp(—|z[3/2) ifF =R,

GE(z) =
(2} {n—" exp(—|z|12) if F = C.

Lemma 2.1 below is based on [Jam, Haa]; the complex version in particular
is a slight variation of [Haa, Lemma 3.2]. It plays an important role in our
proof because the right side of (3) depends only on the inner product (u,v)
and not (explicitly) on the dimension n. In addition, the functions on the right
are homeomorphisms and admit Taylor expansions, making it possible to expand
them in powers (u,v)?, which will come in useful when we prove Theorem 4.1.

Lemma 2.1. Let u,v € " with |ull2 = ||v|2 = 1. Then

(3) fn sgn{u, z) sgn(z, v)G,]f(z) dz

2
— arcsin(u, v) if F=R,
/s

= /2 cos? ¢
u, dt if F =C.
( ”)fo =l oEsmzyz ¥

Proof. Case I. I = R. Let arccos{(u,v) = €, so that 6 € [0,7] and
arcsin{u,v) = n/2 — 6. Choose «,f such that 0 < § —a < 7 and define

Ela; B) = {(rcos@,rsin@,x3,...,xn) r> 0 <0< ﬁ}

The Gaussian measure of a measurable set A is the integral of Gﬁlf(x) over A.
Upon integrating with respect to xs,..., X,, the following term remains:

1

1,.2,.2 1 B 00 1.2
. e 2%y dx, = —f d9[ re 2" dr=(B—a)/2x.
27 JE@.B) 21 Jo 0
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Hence the Gaussian measure of E(«, ) is (B —«)/2x . Since there is an isometry
T of R” such that Tu = e¢; and Tv = (cos@,sin@,0,...,0), the left side of
(3) may be expressed as

f sgn{Tu, x) sgn(x, Tv)fo (x)dx.
R7

The set of x where (Tu,x) > 0 and (Tv,x) > 0 is E(0 —nx/2,7/2), which
has Gaussian measure (w — 0)/2x; ditto for (Tu,x) <0 and (Tv,x) < 0. The
set of x where (Tu,x) <0 and (Tv,x) > 0 is E(n/2,0 4+ n/2), which has
Gaussian measure 6/2m; ditto for (Tu,x) > 0 and (Tv,x) < 0. The set of x
where (Tu,x) =0 has zero Gaussian measure. Hence the value of this integral
is (mr—0)/2n + (x —0)/2n — 0/2n — /27w = 2arcsin{u,v)/m.

Case II: F = C. We define vectors «,f € R?" with a1 = Re(u;),
az; = Im(u;), Bri—1 = Re(v;), B2i = Im(v;), i = 1,...,n. Then « and B
are unit vectors in R?". For any z = (zq,...,z,) € C", we write

x = (Re(z1),Im(zy), ..., Re(z,), Im(z,)) € R*".
Then,

n

Re ((u,z)) = > Re(u;z;) = Y _(Re(u;) Re(z;) + Im(u;) Im(z;))
=1

i=1
= (o, x) = (x, @),

and likewise Re((z,v}) = (x, B). By a change-of-variables and Case I, we have
fcn sgn(Re(u, z)) sgn(Re(z,v))Gy (z) dz = /Rzn sgn(x,a) sgn(x, BYGR (x) dx
(€)) = %arcsin(a,ﬁ) = %arcsin (Re(u, v)).
It is easy to verify that for any z € C,

27
(5) sgn(z) = %/ sgn (Re(e%2))e'? do.
0

By (4), (5), and Fubini’s theorem,

f sgn(u, z) sgn(z, v)Gf(z) dz

= 1]_6 02” f()z”[" sgn(Re ((e_ieu,z)))

sgn (Re ({z, e——iwv)))ei(eJr"’)G;C (z2)dzdOdy

1 2 2w

_ b . —if ip i(0+9)
=% ) arcsm(Re((e u,e v)))e do dy
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Case Il(a): (u,v) € R. The integral above becomes

1 2n 1 p2m )
e [ arcsin (cos(0 + @) (u, v))e' @) d9:| do
8 0 | JO
1 2 p2n+@ '
e [ arcsin ((u, v) cost)e' dt:| dy
87 0 | Jo
1 2n [ p2w )
= — arcsin ((u, v) cost)e' dr] de
81 0 | JO

| =* ;
6 = Zf arcsin ((u, v) cost)e' dr.
0

Since arcsin ((u,v) cost) is an even function with period 27,

2m
[ arcsin ((u, v) cost)sint dt =0,
0

the last integral in (6) becomes
1 2w

7 arcsin ((u, v) cost) cost dt,
0

and as arcsin ((u,v)cost)cost is an even function with period =, it becomes
/2 /2
f arcsin ((u, v) cost)cost dr = [ arcsin ({u, v) sint) sint dt,
0 0
which, upon integrating by parts, becomes

/2 2
7 (0, ) [O ( cosT dt.

1 — [{u,v)|? sin? t)l/2

Case II(b): (u,v) ¢ R. This reduces to Case II(a) by setting ¢ € C of unit
modulus so that ¢{u,v) = |(u,v)| and (cu,v) € R, then by (7),

[Sgn(u,z)sgn(z,v)Gf(z)dz:E/ sgn(cu,z)sgn(z,v)GS(z)dz

n

T2 05 1
= €{CiL, 1) ¢ dt
.2 1/2
0 (I —|{cu,v)|?sin’1)

T cos? t
z(u,v)/ = 1/2dt.
0 (1 —|{u,v)|?sin®1)
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We will make a simple but useful observation' about the quantities in (1) that
we will need for the proof of Corollary 2.3 later.

Lemma 2.2. Let F =R or C and d,m,n € N. For any M € F"™", we have

m n
ZZMUS, = max ZZMUS,'SJ
=1

i =16 1=1] = -
and for any xi,... xm,yl,.. s Vi eF4,
m
ZZMu (xi ;) ZZ (% 3)
=1,j=1

Proof. We will start with (8). Suppose there exists M € [F™*" such that the left-
hand side of (8) exceeds the right-hand side. Let the maximum of the left-hand
side be attained by e],...,e), and 67,...,8;. By our assumption, at least one
e; or 87 must be less than 1 in absolute value and so let le]] < 1 without loss
of generality. Fix & =&, i =2,....m and §; = 8}‘, j=1,....n, but let &
vary with |e¢;| < 1 and consider the maximum of the left hand-side over ¢;.
Since max{|ae; + b| : |e1] < 1} is always attained on the boundary |g;| =1 for
any a,b € I, this contradicts our assumption. The proof for (9) is similar with
norm in place of absolute value. L]

(8) max
lei <1, |67 1=<1|

9)

llxi |I<1 IIyJ I=<1]? llxz II—Iny =1

*

In the corollary below, the inequality on the left is the “original Grothendieck
inequality”, i.e., as first stated by Grothendieck? in [Gro], and the inequality on
the right is due to Haagerup [Haa].

Corollary 2.3. Let F =R or C and d,m,n € N. For any M € F"™" with

(10) ) ZZMUSI <1,

aRY X1is.-:3Xms Yissnss ¥n e 4 of unit 2-norm, we have
m
ZZMU arcsin(x;, y;)| < % if F=R,
i=1j =1
m n
ZZMUH((XLJ’J‘))\ <1 if F=C,
i=1,=1

where H denotes the function on the right side of (3) for F = C.

1'This of course follows from other well-known results but we would like to keep our exposition
self-contained.
2'The better known modern version (1) is in fact due to Lindenstrauss and Pefczyrski in [LP].
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Proof. 'The condition (10) implies that

ZZMU sgn(x;, x)sgn(y;, x )Gf}(z) < G[}R(z),
i=1j =1
m n
Y > My sgn(z, %) sgn{z.¥,)GS (2)| < GS(2),

i=1j=1

for any x € RY, z € C? respectively. Integrating over RY or C? respectively
and applying Lemma 2.1 give the required results. Note that we have implicitly
relied on (8) in Lemma 2.2 as the sgn function is not always of absolute value
one and may be zero. ]

Corollary 2.3 already looks a lot like the Grothendieck inequality (1) but the
nonlinear functions arcsin and / are in the way. To obtain the Grothendieck
inequality, we linearize them: First by using Taylor series to replace these functions
by polynomials; and then using a ‘tensor trick’ to express the polynomials as
linear functions on a larger space. This is the gist of the proof in Section 4.

3. Haagerup function

We will need to make a few observations regarding the functions on the right
side of (3) for the proof of Grothendieck’s inequality. Let the complex Haagerup
Junction of a complex variable z be

e cos? ¢
H(z) ::zf 172 dt, |z| <1,
o (I —|z[*>sin*t)

and the real Haagerup function h as the restriction of H to [—1,1] € R. Observe
that s : [—1,1] — [—1,1] and is a strictly increasing continuous bijection. Since
[—1,1] is compact, h is a homeomorphism of [—1, 1] onto itself. By the Taylor
expansion

2k — !
(1—x%sin?1)~V2 = Z((Zk)”) x*sin®* ¢, |x|<1,0<t<mn/2,
k=0

w/2 —_ 1)
f cos?tsin?k ¢ dt = il (2% l)”,
L Atk +1) (k)

and

thus we get

R @2k — DT spua
(11) hix) = |: i| 2+ xe[-1,1).
24(1( + L @
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Since h is analytic at x = 0 and A'(0) # 0, its inverse function h~! :
[—1,1] — [~1, 1] can be expanded in a power series in some neighborhood of 0

o0
(12) Bl x) =Y bogyx 2L
+
k=0

One may in principle determine the coefficients using the Lagrange inversion
formula:
] dzk t 2k+1
b2k+1 - lim .
(2k + 1)! t—o| dt2k \ h(t)
For example,

b=t py = —1(-‘5)3, bs =0, b= —ﬁ(%)?

But determining by, explicitly becomes difficult as k gets larger. A key step
in Haagerup’s proof [Haa] requires the nonpositivity of the coefficients beyond
the first:

(13) bog+1 <0, for all k > 1.

This step is in our view the most technical part of [Haa]. We have no insights on
how it may be avoided but we simplified Haagerup’s proof of (13) in Section 5
to keep to our promise of an elementary proof — using only calculus and basic
complex variables.

It follows from (13) that E(z) = byz — h~'(z) has nonnnegative Taylor
coeflicients. Pringsheim’s theorem implies that if the radius of convergence of
the Taylor series of ?;(z) is r, then %(z), and thus A~'(z), has a singular
point at z = r. As A'(t) > 0 on (0,1) and A(1) = 1, we must have r > 1. It
also follows from (13) that h='(r) < Y., boxy 122! for any r € (0,1) and
N eN.So SN | |haxs1]t?*+! < bit—h~'(z) for any ¢ € (0,1) and N € N. So
SN |baks1] <bi—1 for any N € N and we have Y52 |bogs1] < 2by —1. As
h~1(1) =1 we deduce that Yz hox+1 =h (1) =1, and therefore

.}

(14) > lbokga| = 2b1 — 1.
k=0

We now turn our attention back to the complex Haagerup function. Observe that
|H(z)| = h(|z]) for all z € D :={z € C: |z| < 1} and arg(H(z)) = arg(z)
for 0#ze D. So H: D — D is a homeomorphism of D onto itself. Let
H™': D — D be its inverse function. Since H(z) = sgn(z)h(|z]), we get

(15) H™'(z) = sgn(z)h~"(|z]) = sgn(z) D) _ boxqr]z]*H1.
k=0
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Dini’s theorem shows that the function @(x) := Y522, |hox1]|x2*t! is a strictly

increasing and continuous on [0, 1], with ¢(0) =0 and ¢(1) = Y22, |b2k+1] =
by = 4/m > 1; note that ¢(1) is finite by (14). Thus there exists a unique
co € (0,1) such that ¢(cg) = 1. So

o0

8
I =¢(co) = ) Ibakyleg™" = =co— b~ (co),
k=0 &
where the last equality follows from b; = 4/x and (13). Therefore we

obtain h~'(cy) = 8co/m — 1, and if we let xy := h~!(cy) € (0,1), then
h(xg) — m(xg + 1)/8 = 0. From the Taylor expansion of h(x), the function
x > h(x) —m(x + 1)/8 is increasing and continuous on [0, 1]. Hence xq is the
unique solution in [0, 1] to

(16) h(x)—%(x+1):o

and ¢y = T[(.)C() + ])/8

As Corollary 2.3 indicates, the Haagerup function f plays the analogue of
arcsin in the complex case. Unlike arcsin, H is a completely obscure function,?
and any of its properties that we require will have to be established from scratch.
The goal of this section is essentially to establish (11)—(16), which we will need
later.

4. A unified proof of Grothendieck’s inequality

In this section we will need the notions of (i) tensor product and (ii) Hilbert
space, but just enough to make sense of 7 (F") = EB;O:O(F")@”‘ where F = R or
C. In keeping to our promise of an elementary proof, we will briefly introduce
these notions in a simple manner. For our purpose, it suffices to regard the tensor
product of k copies of F", denoted

(F")®k — " ® - ®]Fn,
—————
k copies
as the IF-vector space of k-dimensional hypermatrices,
(F")®* = {las i ] i Giyeiy €F, i1,.. ig €{1,...,0}},

where scalar multiplication and vector addition of hypermatrices are defined
coordinatewise. Also, we let (IF”)‘X’0 :=F. For k vectors x,y,...,z € F", their
tensor product is the k-dimensional hypermatrix given by

3We are unaware of any other occurrence of H outside its use in Haagerup’s proof of his bound
in [Haal.
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X®@Y®-®z =[xy, Vi ZiyIfy gy ipmr € (FT)®E

We write
y Bk =X®---Qx.
e
k copies

If {-,-) is an inner product on F”, then defining
a7 x®y® - ®z,x®y ® -®z) = (x,x)Ny,y) (2,2}

and extending bilinearly (if F = R) or sesquilinearly (if F = C) to all of (F")®*
yields an inner product on the k-dimensional hypermatrices. In particular we
have

(x®, y®) = (x, y)*.

If {e1,...,e,} is the standard orthonormal basis of ", then
(18) lei ® - ®@e;, € M tig, . ig € {l,...,n}}

is an orthonormal basis of (F")®% . For more information about hypermatrices
see [Lim] and for a more formal definition of tensor products see [FA].

If an [F-vector space H is equipped with an inner product (-,-) such that
every Cauchy sequence in H converges with respect to the induced norm
|| = [(v,v)|'/?, we call H a Hilbert space. Hilbert spaces need not be finite-
dimensional; we call H separable if there is a countable set of orthonormal
vectors {¢; € H: j € J}, i.e,, J is a countable index set, such that every v € H
satisfies

(19) lvl* =" [(v,e;)]

jeJ

Let {-,-)x be the inner product on (F”)®* as defined in (17), | - ||z be its induced
norm, and B be the orthonormal basis in (18). Let n € N. The tensor algebra
of IF" is the IF-vector space*

(20)

o0
TE™ = @(]Fn)o;k {(vo,vl,vz,- )z vk € (F™)®, Zkz()”vk“i < oo}
equipped with the inner product

(21) Z U, Vi )k

It is a separable Hilbert space since | Ji—, Bx is a countable set of orthonormal
vectors satisfying (19). We write |- ||« for the norm induced by (21).

4'The direct sum in (20) is a Hilbert space direct sum, i.e., it is the closure of the vector space
direct sum.
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Theorem 4.1 (Grothendieck inequality with Krivine and Haagerup bounds). Let
F=R or Cand Il,m,n e N. For any M € F"™", any x1,...,Xm, V1+-..,Vn €
L of unit 2-norm, we have

m
(22 M;j(xi, y;) max M;ie:d:],
lxill= Ily,II IZZ A |e| 18/1= IZ;Zn v
where .
T
E® = and KC ==
2log(1 + v/2) m(xg + 1)

are Krivine’s and Haagerup’s bounds respectively. Recall that x is as defined
in (16).

Proof. As we described at the end of Section 2, we will ‘linearize’ the nonlinear
functions arcsin and H in Corollary 2.3 by using Taylor series to replace these
functions by polynomials, followed by a ‘tensor trick’ [Jam, Kri] to express
polynomials as linear functions on an infinite-dimensional space.

Casg I: F = R. Let ¢ := arcsinh(1) = log(1 + +/2). Taylor expansion gives

- k 2k 2k+1

(23) bln( (.xzayj)) };)(_ ) (Zk T I)'( iyyj)
i o241 (x@(ng) y@(2k+1)>
= (Zk + D T k

For any [ € N, let 7(R!) be as in (20), and S, T : R/ — T(R!) be nonlinear
maps defined by

2k+1
S() = (Sk))prye Sak(x) =0, Speqr(x) = (—DF ‘/m  x®Ck+D).
T} = (Telad)s Toe(x) =0, Topyr(x) = e L ®Ck+1)
k=0 72 ok 2k + 1)! ’

for any x € R'. To justify that S and T are indeed maps into 7 (R!), we need
to demonstrate that ||S(x)|«, |7(x)||«+ < oc but this follows from

2k+1 o0
ISWI2 = 3 18I - Zmn X|PEED =B T g = 1T
k=0 k=0

and
c2k+1

E e [[6]] @k+1) = sinh (C ||X”2) <
]
l 2k + 1)!
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for all x € R!. Note that
2k+1

(mnTw*—Z}JQ;+WuJW“=mwa»

which is the essence of the ‘tensor trick’. Hence (23) becomes:
sin (c(xi, p;)) = (SCa). T())e  or  clx,y;) = aresin{S(x;), T(y;)) -
Moreover, since x; and y; are unit vectors in R!, we get
IS(xi)I* = sinh(c|lx; 1) =1 and  |T(y;)|I = sinh(c|ly;[|*) = 1.

As the m + n vectors S(x1),....S(xm), T(y1),...,T(yn) in T(R!) span a
subspace S C T(Rl) of dimension d < m + n; and since any two finite-
dimensional inner product spaces are isometric, S is isometric to R¢ with the
standard inner product. So we may apply Corollary 2.3 to obtain

Z 5" My arcsin{S (). 7). <

11]1

which is Krivine’s bound since 7/2¢ = /(2log(l + v/2)) = K&.

U J’J

i=1j=1

Case II. F = C. Let ¢o € (0,1) be the unique constant defined in (16)
such that ¢(cp) = 1. By the Taylor expansion in (15) and noting that
sgn(z)|z|2k+1 _ Zkzk-i-l
(e @]
24)  H '(co(xi.y;)) = sgn (co(xi. ¥;)) Y baxri|colxi. yy)
k=0

|2k+1

2k+1 k k+1
bok+1¢5 T (xi, i) (xi, yi )T

o

x~
I
<

U+l =, < \k k+1
DapaCy T s Ta) W )T

M

=
Il
=

p”13

b2k+162k+1( ®k®x (kH),y ® y; (k+l)> .

j k

=
I
<

For any [ € N, let D; = {x € C' : ||x|| <1} be the unit ball, let 7(C!) be as
in (20), and let S, 7 : D; — T(C') be nonlinear maps defined by

S(x) = (Sk(x))pegr Sak(x) = 0,

Sok+1(x) i= sgn(bagy1) v/ |bars1|cZxH! - £2E) @ xB&+D)

T(x) = (Ti(x)) ey Tor(x) =0,

Top41(x) = W -®(k) Q x@(k»H)’
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for any x € D;. Then S and T are maps into 7(C’) since

o0 o0 o0
ISCONZ = D 1Sk CF = D bascraleg® H x2EHD =3 " | T (x) 13
k=0 k=0 k=0
= T3

and, as by > 0 and by <0 for all kK > 1 by (13),
o0
D ok leg T PR = 2byeq|lx ] — H ™ (collx]1) < oo
k=0

As in Case I, the ‘tensor trick’ allows us to rewrite (24) as

H™ (colxi, yj)) = (S(x). T(y;)), or  colxi, ;) = H{{S(x:), T(¥;))+)-

Moreover, since x; and y; are unit vectors in C! , we get
[e @]
2 2k+1
ISGDI? =Y Ibaks1leg™™ = @(cy) = 1,
k=0

and similarly [|7(y;)|| = 1. So we may apply Corollary 2.3 to get

0> Mij{xi.y))

i=1j=1

[ 1
- DD M H((S(x). T(3j))4)| < -

i=1j=1

which is Haagerup’s bound since 1/co = 8/m(xg + 1) = K©. O]

5. Nonpositivity of bax41

To make the proof in this article entirely self-contained, we present Haagerup’s
proof of the nonpositivity of by that we used earlier in (13). While the main
ideas are all due to Haagerup, our small contribution here is that we avoided
the use of any known results of elliptic integrals in order to stay faithful to our
claim of an elementary proof, i.e., one that uses only calculus and basic complex
variables. To be clear, while the functions

/2

/2
(25) K(x) :=f (1 — &2 sinZ6~Y2 di. E(x) ::[ (1 — xZsin% )2 ds
0

0

do make a brief appearance in the proof of Lemma 5.1, the reader does not
need to know that they are the complete elliptic integrals of the first and second
kinds respectively. Haagerup had relied liberally on properties of K and E that
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require substantial effort to establish [Haa]. We will only use trivialities that
follow immediately from definitions.

Our point of departure from Haagerup’s proof is the following lemma about
two functions h; and h,, which we will see in Lemma 5.2 arise respectively
from the real and imaginary parts of the analytic extension of the real Haagerup
function 4 : [—1,1] — [—1, 1] to the upper half plane.

Lemma S5.1. Let hy,hy : [1,00) — R be defined by

/2
hy(x) = f V1 —x"2sint dt,
0

/2 i 2
ha(x) = (1 —x_z)/ st dt,
0 \/1

— (1 —x"2)sin?¢

which are clearly strictly increasing functions on [1,00) with
hi(ly =1, lim hy(x) = 7/2, ha(1) =0, lim hy(x) = oo.
X—>00 X—>00
Then

26)  oi(x) = x(h1 ()R, (x) — hy (x)ha(x)) = Jor x = 1,

o

@7 ©2x) = x(ha (O () + ha(OH5(0) = 201 (VDIha(V2) >
for1 <x <2

Proof. We start by observing some properties of k| and hj. As

/2 sin? ¢ 1 /2 sin? t

1
H(x) = — dt = — S L 7
: x3 Jo V1 —x"2sin?¢ x2 Jo Vx2 —sin?¢
W, is strictly decreasing on (1,00). As fO”/Z cos™'tdt = oo, lim,_,,+ I\ (x) =
co. Clearly limy_, o 47 (x) = 0. Furthermore, when x > 1, since vx? — sin®z >
x2 —1, we have

b1
(28) 0 <hi(x) € ———— for x> 1.
! 4x24/x2 — 1

It is straightforward to see that the functions £ and K in (25) have derivatives
given by

1 1
29) E'y)=—(E()—-K(©»)), K©»)=——(E()—(0—-yHK(»)).
(29) E'(y) y( (y) = K(») (v) y(l—y2)( () — (1= yHK())

Clearly, h2(x) = K(y) — E(y), where y = y(x) = +/1 —x~2. So by chain rule,
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/2

d 1
hy(x) = y’(x)E(K —E)(y(x) = ;fo (1—q —x"z)sinzz‘)l/2 dr.

Hence £/, is strictly decreasing on [1,00), A5(1) = /2, and limy_,o h5(x) = 0.
To show (26), observe that
hi(x) = E(1/x), xhj(x)=K(/x)— E(1/x),
ha(x) = K(y) — E(y), xh5(x) = E(y),

where again y = /1 —x~2. Hence
wi(x) = E(1/x)E(y) — [K(1/x) — E(1/x)|[K(y) — E(¥)]
= E(1/x)K(y) + K(1/x)E(y) — K(1/x)K(y).

Computing o/, we see from (29) that @] = 0. So w; is a constant function. By
(28), limy g h’l(x)(l—x_z) =0, and so lim,\; w1 (x) = /2. Thus w(x) = /2
for all x > 1 and we may set w(1) = 7 /2.

We now show (27) following Haagerup’s arguments. Note that

wx(x) = E(1/x)(K(1/x) — E(1/x)) + EQ)(K(y) — E(»)).

Let g(x) = E(/x)(K(v/x) — E(/x)). A straightforward calculation using (29)
shows that

&) =3 1—x X

2
] >0, xel0,1].
2

So g is convex on [0,1]. Hence g(1 — x) is also convex on [0,1]. Let
f(x) = g(x) + g(1 —x). Then f is convex on [0,1] and f’/(1/2) = 0.
Therefore f(x) > f(1/2) > 2g(1/2). This yields the first inequality in (27):
wz(x) > 2h1 (V2)ha(V/2) for x € [1,4/2].

The Taylor expansions of #; and A, may be obtained as that in (11),

R =Y I 2.3 1 e S S
S mix) = zg[z%(my} i—2%
[ @) TP 2% e
1 hz(x)_'ig[zzk(k!)z] 21—

Approximate numerical values of Ay and hy, at x = /2 and 4 are calculated’
to be:
5 For example, using www.wolframalpha.com, which is freely available. Such numerical calculations

cannot be completely avoided — Haagerup’s proof implicitly contains them as he used tabulated values
of elliptic integrals.
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(32) 71 (V/2) ~ 1.3506438, ha(V/2) 2 0.5034307,
hi(4) ~ 1.5459572, ha(4) ~ 1.7289033.

The second inequality in (27) then follows from 2h;(v/2)h2(+/2) ~ 2 x 1.35064 x
0.50343 > /4. L]

In the next two lemmas and their proofs, Arg will denote principal argument.

Lemma 5.2, Let h : [—1,1] — [—1, 1] be the real Haagerup function as defined in
Section 3. Then h can be extended to a function hy : H — C that is continuous
on the closed upper half-plane H = {z € C : Im(z) > 0} and analytic on the
upper half-plane H = {z € C : Im(z) > 0}. In addition, hy has the following
properties:

(i) Im (h+(z)) > Im (h+(]z|)) forall ze HN{zeC:|z|>1} and hy(z) #0
for all z € H\{0}.

(ii) For x € [1,00),
Re (h+(x)) =hi(x); Im (h+(x)) = Joslx);

where hy,hy are as defined in Lemma 5.1.

(iii) For all k € N and all real o > 1,

3 @ ~
(33) hokt1 = mfl Im((h+(x)) ‘2"“)) dx + re(e)

where

(34) lre ()] <
Proof. Integrating by parts, we obtain
/2 /2
h(x) = [ cost - d (arcsin(x sint)) = [ sin¢ arcsin(x sint) dt, x € [—1,1].
0 0

The analytic function sinz is a bijection of [—m/2,7/2] x [0,00) onto H and
it maps the line segment {t + ia : —n/2 <t < m/2} onto the half ellipsoid
{zeH:|z—1|+|z+ 1| =2cosha}. Let arcsin, be the inverse of this mapping.
Then arcsing is continuous in H and analytic in H. In addition, we have:

arcsin x if xel[-1,1],

arcsing x = ‘
{% sgnx + i arccosh x| if x € (—oo0,—1) U (1, 00),

| —
Im(arcsing z) = arccosh(5(|z — 1|+ |z+ ll)), z € H.
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If we define
/2 o
hyi(z) = f sint arcsiny(z sint) dt, z € H,
0
then A, is a continuous extension of 4 to H and is analytic in H.
(i) Since arccosh is increasing on [1,00), we have

: 1 arccosh |z| if |z| > 1,
Im(arcsing z) = mccosh(§(|z — 1| 4|z + 1[)) >

0 it |z| < 1.
Therefore for ze HN{z e C : |z| > 1},
/2
Im (hy(z2)) = f sinf - Im (arcsin+ (z sin t)) dt
0

/2
> [ sint arccosh (|z| sint) dt = Im (h(|z])).

— Jaresin(1/)z])
As Im(arcsing z) > 0 on H, we have Im (h4(z)) > 0 on H. For x € [-1,1],
hy(x) = h(x) is zero only at x = 0. For x € (—oo,—1) U (1, 0),
/2
Im (h4(x)) = / sinz arccosh (|x|sinz) dt > 0.

arcsin(1/|x|)
Hence /4 has no zero in H\{0}.

(i) Let x € (1,00). Integrating by parts followed by a change-of-variables
sinu = x sint in the next-to-last equality gives us:

arcsin(1/x) o /2
Re (hy(x)) = f sint arcsin(x sin?) dt + — f sint dt
0 arcsin(1/x)
arcsin(1/x) cos2 ¢ /2
:x[ dr:f V1= x2sin? u du
0 V1 —x2sin?¢ 0

= hl()C).
A change-of-variables sinv = (1 —x72)""/2cost in the next-to-last equality
gives us:

/2 /2

‘)
_ _ cos“ t
sint arccosh(x sint) dt = xf

Im (hy(x)) = f dt
arcsin(1/x) Vv x2 sin2 t — 1

arcsin(1/x)

/2 320
=(1~x_2)f Sy — dv = hy().
0o 1—(1—=x"2)sin%v
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(iii) The power series (11) shows that & defines an analytic function A(z) in the
open unit disk that is identically equal to A, (z) on {z € C:|z| < 1} n H.
Since h(0) =0 and A’(0) # 0, we can find some &y € (0, 1] such that i(z)
has an analytic inverse function (12) in {z € C : |z| < §p}. For 0 < § < 4§y,
let Cs be a counterclockwise orientated circle with radius §. It follows that
h(Cg) is a simple closed curve with winding number —+1. Integrating by
parts with a change-of-variables, we have

1 h=1(z) 1 z
2k 2mi h(Cs) 22k+2 : 2mi »/CS h(Z)2k+2 (Z) z

Note that byg4; € R and

zh'(z) f 1 f d [ g
(2k + ) Cs h(z)2k+2 dz + Cs h(z)2k+l dz Cs dz h(z)2k+1 dz 0

Then we get

1
212k +1) Jeg

1
— —(2k+1)
2]‘[(2]( ~+ 1) Cs Im (h(Z) ) dz

2
- = I h —(2k+1) d
7k + 1) Jeg w0 {lfz) Jde

bak+1 = h(z)"®+D 4z

where C; is the quarter circle (8¢’ 1 0 < 6 < w/2). Since h(z)
identically equals h4(z) on Cg and hy(z) has no zeros in the set
{zeC:6 <|z| <a, 0 < Argz < n/2} by (i), Cauchy’s integral formula
yields

2

a
b2k+l — mlm[/; h+(z)_(2k+1) dz + /;” h+(z)—(2k+l) dz

id
+ f hy(z)~@k+D dz].
i

Moreover, since h,(z) is real on [§,1] and its real part vanishes on the
imaginary axis, we are left with

- 2 “ —(2k+1)
bt = 2o /1 Im(h (2) 2)4z
—(2k+1)
+7n(2k+1) Im[fcg, hy(z) dz].
By (i), hy(2) > Im (4 ()) > Im (4 (|2])). Thus

hy(z)~ @40 g7

)—(2k+1)
c, '

< 2= (1m (h+ (@)
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The integral expression of hp,; in (33) will be an important ingredient in
the proof that hyrq < 0 for £ > 1. We establish some further approximations
for this integral in the next and final lemma.

Lemma 5.3. Let o = 4 throughout.® Let 0(x) := Arg (hy(x)) for x € [l,00).
Then 6 : [1,00) — [0,2x] is strictly increasing on for x > 1, 6(1) = 0, and
limy_, o 6(x) = 7/2. In addition, we have the following:

(i) Let p = |2k + 1DHO(x)/7]. Let

) 0(x)=nr/(2k+1)

r =

- hy (X)]”*+D sin ((2k + DO(x))| dx
w(2k + 1) 6(x)=:r(r—l)/(2k+1)| +( [ sin )

for r =1,2,...,p, and
2 o

o m O(x)=np/(2k+1) 'h+(X)l_(2k+l)| 0 ((Zk + 1)9(x))‘ dx.
Then
JT(2k +1) _[ Im (A (x)” (2k+1)) dx = —I1+ 1l —...+ (1), +(-1)?11J.

(ii) Let k > 4. Then p>2 and I, > I, > ---> 1, > J.

(iii) Let k > 4 and ¢ = |he(V2)|ePYD/2 Then I, > 0.57¢~@+D /(2 4 1)2
and 12 =< 0.8511.

Proof. Since 0(x) = arctan (ha(x)/ h1(x)), by (26), we get

d9(x) hi(x)hy(x) — b (x)ha(x)

) 5 e ()2

>0, x>1.

So 6(x) is strictly increasing on for x > 1. Itis clear that 6(1) = 0. By Lemma 5.1,
limy o0 21(x) = /2 and limy_ o0 h2(x) = 400, SO limy o0 0(x) = /2.

(i) This follows from dividing the interval of the integral [1,«] into p + 1

subsets:
2 o
——— I —(2k+1)
LD fl m(f4 (x)"C*D) dx
2 o
- —(2k+1) o p
22k + 1) [1 A+ (x)] sin ((2k + 1)0(x)) dx

=—h+IL—...+ (—l)p]p s (—l)p+1J_

s'To avoid confusion, we write ‘a’ for the upper limit of our integrals instead of ‘4’ as the same
number will also appear in an unrelated context ‘k > 4.
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We write x = x(0), 0 € [0,7/2), for the inverse function of 6 = 6(x).
By (35), we have

i 4 e (©)|hy (x(©)] | sin ((2k + 1)0)|d6
= ————— x sin + !
w22k + 1) [n(r—1)/(2k+1) +(:(0) ( 9]

4 0(@) —2k+1
J= ——— x(0)|hy (x(0))] | sin ((2k + 1)0)| 6.

722k + 1) Jap/k+1)

By Lemma 5.1, A;(x) and h,(x) are strictly increasing function of x €
[1,00), therefore, so is |hy(x)|? = h1(x)? + ho(x)?. With this, we deduce
that x|hy(x)|"2¢*1 is strictly decreasing on [1,a] for k > 4 as

d -
= (el ()72

2k+1 ( 2k + l)x —2k—1 d

= |ny )| e ()] 7 = (o
= |h+(x)|‘2"‘1(|h+(x)\ ~ 2k — Dx(h 1(x>h’1(x) + ha ()5 () )
< e 0] 7 (e - @k = D7)
< Jhe (o) (s (@) - %T) ~ —0.1187 < 0,

where we have used the fact that |k (x)|? is increasing on [1,«] in the
next-to-last inequality and the numerical value is calculated from those of
hy(4) and h,(4) in (32). Since |sin((2k + 1)@)| is periodic with period
n/(2k + 1), we obtain Iy > [, > ... > [,. In addition,

J= —4—[9(“) x(O)] 4 (x(@))] | sin ((2k + 1)0)| do
w22k + 1) Jap/ck+1) "
4 0(e)—m/(2k+1)

|—2k+l

x(0)|h4(x(0)) | sin ((2k + 1)6)|d6

¥
T w22k + 1) Jop-Dyask+1)
< Ip.

Finally, we have 6(a) = arctan (hi(e)/ha(a)) ~ 0.8412 > 7/4 = arctan(1),

and so p = |2k + DO(a)/n| > |90(t) /7| =2 for k > 4.

Since x(6) > 1 for 6 € [0,7/2), we have

w/(2k+1)
])[ X0+ (x(0))] 72| sin ((2k + 1)0)| d6.

> —
b= 7202k +

Recall that @ = 6(x) and x = x(0) are inverse functions of one another.

For 0 € [0,0(v/2)],



348 S. Friepranp, L.-H. Lim and J. ZHANG

1 d 2 sdON—1
57 oo (77)
I () + IRy ) _ wa() 1

T Ry (x) — K (D)hy(x)  o1(x) 2

for x € [1,+/2], where we have used (26), (27), and the fact that 6(x)
is strictly increasing for x > 1. Hence log|hy(x(0))| < log|h(+/2)] —
(0(+/2) — 0)/2 which is equivalent to

|hi (x(8))] < ce?2, 8 e[0,0(v2)]

where ¢ = |hy(+v/2)]e /2 12059 and 6(+/2) > 7/9, using values of
h1(+~/2) and hz(+/2) in (32).

It follows that for k > 4, we have

d
Elog |hy (x(9))| =

2

4 i 6/2\—2k+1
]1 m/o (C(f / )_ + sin ((Zk—l— 1)9)(19

e 2kt T k—1/2)0/(2k+1
:—f e~ (k=1/2)6/Ck+D) gin g 46
222k + 12 J,

4(,—2k+1
R
T w22k 4+ 1)?

20\21 + e /2 —@k+D) 0.57¢(2k+1D)
= — . >
(JT) 1+1/4 2k + 1)2 2k + 1)2

Since < log |h4(x(0))] > 1/2, we get

f e 92 5in0 do
0

—2k
|h+(x(9 -+ ”/(Zk + 1)))’ 2 -HS e_(k—l/Z)x/(2k+1)|h+(x(9))|—2k+1

Moreover, since 0(5/+/3) > 27/9, we know that x(6) < 5/+/3 on [0,27/9].
Hence for k > 4, it follows from the above results that

4 5 [2m/(2k+1) T A
=S A sin ((2k + 1
w2 (2k 4 1) x/gfn/(2k+l) *O)h (@) sin {( )9)

~ EZ(T;:JF_])% ]:/(2k+1) x(@)‘h+(x(0 Ok 4 ])))’—21«4—1

sin ((2k + 1)0) d6

4 5 w/(2k+1) _5E
< - _(k—l/Z)ﬂ/(2k+1)/ N P 2k+1
=22kt 1) 3" ; x(0) |y (x(0))]

sin ((2k + 1)0) 46
5

Ee—”/“*/l < 0.851,.

[A
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The fact that x|hy(x)|72K*! is strictly decreasing on [1,4] for k > 4,
established in the proof of (ii) above, is a crucial observation for establishing the
nonpositivity of h,i 1, for kK > 4. Observe that since |k (x)| is strictly increasing
for x > 1, it is enough to show that x|hy(x)|™7 is strictly decreasing on [1,4],
which is what we did. Note that for a fixed k > 1, x|hy(x)|72* T is increasing
for large enough x, as |hy(x)| behaves like Clogx for x > 1.

Theorem 5.4. Let the Taylor expansion of h™'(x) be as in (12). Then bygy; <0
for k > 1.

Proof. Let k >4 and let Iy, 15,...,1,,J be as defined in Lemma 5.3. By (33)
with @« =4 and Lemma 5.3(i) and (ii), we have

—bopr =l — L+ ...+ (DP T + (—DPT = ra1(5v2)
-39 ¢ —]2—]‘2k+1(5\/§).

By (34) and Lemma 5.3(iii) with ¢ ~ 1.2059 (established in its proof), we get

0.0855
I = > ————(1.206)"@+D |y 1(4)] <

1,728)~2k+1)
2k + 1)2 ‘“2k+1( )

Since —bhyxy1 > 11 — I — rap41(4), we get by < 0 for k > 9. Direct
computation using the Lagrange inversion formula gives us b3,bs,...,b17 <0,
proving nonpositivity for k < 8. O]

Acknowledgment. We thank the anonymous referee for his careful reading and
many helpful suggestions that greatly improved our exposition. We would also
like to thank Malgorzata Stawiska for suggesting that we send this article to
L’Enseignement Mathématique. This work is generously supported by DARPA
DISAPO00109 and NSF IIS 1546413. LHL acknowledges additional support from
a DARPA Director’s Fellowship and the Eckhardt Faculty Fund.

References

[AK] F. ALBiac and N.J. Karron, Topics in Banach Space Theory, volume 233 of
Graduate Texts in Mathematics. Springer, |Cham]|, second edition, 2016.
With a foreword by Gilles Godefory. Zb11094.46002 MR 2192298

[Ble] R. C. BLEl, An elementary proof of the Grothendieck inequality. Proc. Amer.
Math. Soc. 100 (1987), 58-60. Zbl 0637.46017 MR 0883401



350

[Bra]

|[Davl]
|Dav2]

IDFS|

|DIJT]|

[FA]

[FLZ]

|Gro|

|Haa]

[Jam]

[ Kail

[Konl|

[Kon2|

[ Kri]

[Lim]

[LP]

S. FrieprLanp, L.-H. Lim and J. ZnaNG

M. BRrAVERMAN, K. MAKARYCHEV, Y. MAKARYCHEvV, and A. Naor, The
Grothendieck constant is strictly smaller than Krivine’s bound. Forum Math.
Pi 1:e4, 42 (2013). Zbl1320.15016 MR 3141414

A.M. Davig, Lower bound for kg . Unpublished note, 1984.

Matrix norms related to Grothendieck’s inequality. In Banach Spaces
(Columbia, Mo., 1984), volume 1166 of Lecture Notes in Math., pages
22-26. Springer, Berlin, 1985. Zbl 0611.46069 MR 0827755

J. DiestEL, J. H. Fourig, and J. Swart, The Metric Theory of Tensor Products.
American Mathematical Society, Providence, RI, 2008. Grothendieck’s
résumé revisited. Zbl 1186.46004 MR 2428264

J. DiesteL, H. Jarcnow, and A. TonNGe, Absolutely Summing Operators, vol-
ume 43 of Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, Cambridge, 1995. Zbl 0855.47016 MR 1342297

S. FriebpLanD and M. AviaBapi, Linear Algebra and Matrices. SIAM, Philadel-
phia, PA, 2018. MR 3767232

S. Friepranp, L.-H. Lim, and J. Zuang, Grothendieck constant is norm of
Strassen matrix multiplication tensor. arXiv:1711.04427

A. GRrOTHENDIECK, Résumé de la théorie métrique des produits tensoriels
topologiques. Bol. Soc. Mat. Sdo Paulo 8 (1953), 1-79. Zbl0074.32303
MR 1466414

U. HaaGerup, A new upper bound for the complex Grothendieck constant. Israel
J. Math. 60 (1987), 199-224. 7Zbl 0646.46019 MR (0931877

G.J.O. Jameson, Summing and Nuclear Norms in Banach Space Theory, volume 8
of London Mathematical Society Student Texts. Cambridge University Press,
Cambridge, 1987. Zbl 0634.46007 MR 0902804

S. Kauser, A simple-minded proof of the Pisier—Grothendieck inequality. In
Banach Spaces, Harmonic Analysis, and Probability Theory, volume 995 of
Lecture Notes in Math., pages 33—44. Springer, Berlin, 1983. Zbl 0547.46038
MR 0717227

H. Konig, On an extremal problem originating in questions of unconditional
convergence. In Recent Progress in Multivariate Approximation (Witten-
Bommerholz, 2000), volume 137 of Internat. Ser. Numer. Math., pages
185-192. Birkhéuser, Basel, 2001. Zbl 0994.47029 MR 1877506

Some remarks on the Grothendieck inequality. Internat. Ser. Numer. Math.
103 (1992), 201-206. Zbl 0779.47017 MR 1213007

J.-L. Kriving, Constantes de Grothendieck et fonctions de type positif sur les
spheres. Adv. in Math. 31 (1979), 16-30. Zbl 0413.46054 MR 0521464

L.-H. Lim, Tensors and hypermatrices. Chapter 15, 30 pp., Handbook of Linear
Algebra, 2nd Ed., CRC Press, Boca Raton, FL, 2013.

J. LinpeEnsTRAUss and A. PerczyNski, Absolutely summing operators in
L, -spaces and their applications. Studia Math. 29 (1968), 275-326.
Zbl 0183.40501 MR 0231188



[LT]

[Mau]

|Pis1|

[Pis2]

|Rie]

An elementary and unified proof of Grothendieck’s inequality 351

J. LinpensTrAUSs and L. Tzarriri, Classical Banach Spaces. I. Springer-Verlag,

Berlin-New York, 1977. Sequence spaces, Ergebnisse der Mathematik und
ihrer Grenzgebiete, Vol. 92. Zbl 0362.46013 MR 0500056

B. Maurey, Une nouvelle démonstration d’un théoréme de Grothendieck. page 7,

1973. Zbl 0262.47014 MR 0399818

G. Pisier, Factorization of linear operators and geometry of Banach spaces,

R.E.

volume 60 of CBMS Regional Conference Series in Mathematics. Published
for the Conference Board of the Mathematical Sciences, Washington, DC; by
the American Mathematical Society, Providence, Rl, 1986. Zbl 0588.46010
MR 0829919

Grothendieck’s theorem, past and present. Bull. Amer. Math. Soc. (N.S.) 49
(2012), 237-323. 7Zbl1244.46006 MR 2888168

Rietz, A proof of the Grothendieck inequality. Israel J. Math. 19 (1974),
271-276. Zbl10321.46018 MR 0367628

(Regu le 19 avril 2018)

Shmuel FriepLanp, Department of Mathematics, Statistics and Computer Science,
University of Illinois, Chicago, 851 South Morgan Street,
Chicago, IL 60607-7045, USA

e-mail: friedlan@uic.edu

Lek-Heng Lim, Computational and Applied Mathematics Initiative, Department of
Statistics, University of Chicago, 5747 South Ellis Avenue,
Chicago, IL 60637-1514, USA

e-mail: lekheng @ galton.uchicago.edu

Jinjie Zunang, Department of Statistics, University of Chicago, 5747 South Ellis
Avenue, Chicago, IL 60637-1514, USA

Current address:

Department of Mathematics, University of California, San Diego, 9500 Gilman Drive,
La Jolla, CA 92093-0112, USA

e-mail: jiz003@ucsd.edu

© Fondation I”ENSEIGNEMENT MATHEMATIQUE






	An elementary and unified proof of Grothendieck's inequality

