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On a linearization trick

Gilles Pisier

Abstract. In several situations, mainly involving a self-adjoint set of unitary generators of
a C* -algebra, we show that any matrix polynomial in the generators and the unit that is

in the open unit ball can be written as a product of matrix polynomials of degree 1 also

in the open unit ball.

Mathematics Subject Classification (2010). Primary: 46H35, 46L54, 47C15,15B52, 60B20.

Keywords. Random matrices, factorization of polynomials, unitary operators.

In random matrix theory, especially in connection with estimates of the edge

of the spectrum of a random matrix, a certain "linearization trick" has recently
played an important role. It was introduced in the Gaussian random matrix context

by Haagerup and Thorbjprnsen [HT], who mention in [HT] that they were

inspired by a similar trick from the author's [Pisl], The latter can be applied,

among other settings, to unitary random matrices, in problems about "strong
convergence" considered more recently by Collins and Male in [CM], and Borde-

nave and Collins in [BC], Roughly, one wants to estimate the limit of the norm

of a "polynomial" P(x[N\ x^N\ ; x[N^ ,x^ in large unitary random

N x N -matrices and their inverses when N -»• oo and to show that the limit
is equal to the norm of the same polynomial P(xf°, x%°,... ; x$°*,...) but

with the random matrices replaced by certain unitary matrices (jcJ°, x%°,...) that

play the role of a limiting object. In such situations, the main difficulty is to prove
lim;v->.oo || P(x[N\ x^N\ .)|| < || P(xf°, x%°,.. ,)|| (say almost surely). By
homogeneity, this reduces to || P(x, x%°,.. .)|| < 1 => lim# || P(x\N\ x^N\ ,)|| < 1.

Computing the norm of such a polynomial is usually an intractable problem, but

this is often more accessible for polynomials P of degree 1. Thus if we had a

factorization of any P such that || P(xf°, x%°,.. .)|| < 1 as a product of
polynomials of degree 1 satisfying the same bound, the problem would be reduced
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to a more tractable one. While the desired factorization seems hopeless with
scalar coefficients, it turns out to be true if one allows generalized polynomials
with matrices as coefficients, or equivalently matrices with polynomial entries,
the original polynomial being viewed as a matrix of size 1. In fact it is more
natural to try to factorize general polynomials with matrix coefficients in the open
unit ball as products of polynomials of degree 1 in the same ball. This is the

content of our Theorem I below, a rather simple factorization of matrix valued

polynomials that seems to be a basic fact, of interest in its own right.
The "trick" in | Pisl] combines very simply facts and ideas commonly used

in operator space theory, involving completely bounded (or completely positive)

maps (see [ER, Pau, Pis3]).
The recent survey |HMS| and the book [MS] mention several areas where an

analogous trick is known in some form (in some cases going back 50 years), but

do not mention the operator space connection. They describe a linearization due to
Anderson [And] in the form of a factorization of matrices with polynomial entries,

involving the "Schur complement". However, it turns out that, when combined
with ideas due to Blecher and Paulsen [BP], the operator space viewpoint also

produces a very nice factorization theorem that seems to be of independent
interest. This factorization highlights the fact that the operator space structure of
the linear span of the generators of an operator algebra in many cases determines

that of the whole operator algebra (see [Pis2] for more on this).
In short, the goal of the present note is to advocate the resulting operator

space version of the linearization trick.

Throughout this note let H be an arbitrary Hilbert space. Let (xj) be a finite
family in the Banach algebra B(H) of all bounded operator on II ; we denote

by 1 the unit in B(H). By a monomial in (xj,x*) we mean a product of terms

among the collection {I. Xj, x*}. If the product has at most d terms we say
that the monomial has degree at most d. By a polynomial in (xj, x*) (resp. of
degree at most d) we mean a linear combination of monomials (resp. of degree
at most d). Let Mn,m denote the space of n xm complex matrices. We set as

usual Mn A/„,„. By a (rectangular or square) matrix valued polynomial (resp.

of degree at most d) in (xj,x*) we mean a (rectangular or square) matrix with
entries that are polynomials in (Xj,x*) (resp. of degree at most d). The norm
of an n xm matrix valued polynomial is the operator norm, i.e., the norm of the

associated matrix in M,hm(B(H)).
In its simplest form our main result is as follows:

Theorem 1. If the xj's are all unitary operators, any matrix valued polynomial
in (Xj, x* with norm < 1 can he written as a finite product I\ If Pm Of
matrix valued polynomials of degree at most 1 with || ^11 < 1 for all 1 < I < m.
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We complete the proof after Remark 8.

The statement appearing below as Corollary 4 is already in [Pis3, p. 389]

(unfortunately the condition on the unit is missing there). Theorem 2 from
which it is deduced is implicit there. Both are but a slight generalization of
a fundamental factorization result due to Blecher and Paulsen [BP], itself based

on the Blecher-Ruan-Sinclair [BRS] characterization of operator algebras. The

interest of Theorem 1 lies in the fact that it is valid for general unitary operators,
in particular in the reduced C* -algebra of a group; the results of [BP] are stated

for maximal or universal operator algebras, and while one could try a lifting
argument to deduce Theorem I from them we do not see how to do this.

For any pair Hj, //2 of Hilbert spaces we denote by H\ <g>2 H2 the Hilbert

space tensor product. For any t e B(H\) <g> B(H2) (algebraic tensor product)
we denote simply by ||f||min, or more often simply by |/ [|, the norm induced

on B(H\) <g> B(H2) by B(Hi ®2 H2). By definition, an operator space is

a linear subspace E c B(H). Throughout this paper, the space Mn(E) of
« x « matrices with entries in E is always equipped with the norm induced

by Mn(B(H)) B(H ©•••©//) (with H repeated n -times). We refer to
[ER, Pis3, Pau] for more information on operator space theory. We just recall
that a linear map u : E\ -> E2 between operator spaces E\ c B(Hi) and

E2 c B(H2) is called completely bounded (c.b. in short) if sup„ ||!r„|| < oo where

un : Mn(Ej) Mn(E2) is the map taking [a,y] e Mn(Ex) to [u(alj)\ e Mn(E2),
and the corresponding norm is defined by \\u\\cb sup,, |[w„||.

Let A C B(H) be a unital subalgebra. Throughout we identify Mn{A) with
<g> A. We will identify as usual M„(A) with a subset of Mn+X(A) (by

completing a matrix with zero entries). Then we can think of UnMn(A) as a

subalgebra of B(l2CH)). We equip UnMn(A) with its natural operator norm, i.e.,
the norm induced on it by B(l2(7-t)).

For simplicity of notation, we set

ICo UnMn c B(l2),

and we always equip /C0 ® BCH) with the norm induced by B(t2CH)).
We will use the identification (as algebras)

UnMn(A) ~ ICo ® A.

Note ICq 'S) A is a subalgebra of B{l2(K)), generated by (/Co ® fo) U (exx ® A).
We denote by IcIe the identity map on a set E.

Theorem 2. Let c > 0 be a constant (our main case of interest is c 1

Let A C B('H) he a unital operator algebra. Let S be a subset of the unit
ball of /Co ® A — U„ Mn (A). We assume that

(1) en ® lyt 6 S
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and moreover that ACo ® A is the algebra generated by (/Co <8> U)US.
Fix an element x e ACo (g> A. Then, the following are equivalent:

(i) For any H and any unital homomorphism u : A -> //(//)

sup.veS ||[/dic0 <8> m](j)|| < 1 =S> III^aco ® "](*)ll < c.

(ii) For some m there is a factorization of the form x «01) \ a\ Dmam

where uq, am are in AC0 <8> 1 with Wo \\ai II < c and where D\, Dm

are elements of U„ Mn (A) ACo A represented by block diagonal matrices

of the form

(2) De

with y/dO e S for all k and i.

Remark 3. Observe that any De as above is the product of Ne factors of the

same form but with all diagonal coefficients but one equal to 1. Moreover, we

can insert additional a factors in order to rearrange the diagonal terms by means

of a conjugation by a permutation matrix. We then obtain, for a possibly larger

length m, a factorization as in (ii) above such that whenever Ne > 1 we have

y2(f) ••• yNt(V) — [1] (matrix of size lxl).
Proof. We start by some preliminaries. Let T denote the set of v c /C0 & A that

admit a factorization x — cco/Aicg • • F>motm with ae e AC0 <E> I and De as in (2).
We claim that T /C0 <8> A. It is easy to check that if x. y e T then

also belongs to J7 if x, y admit factorizations with the same m. Since we may
add diagonal factors with entries equal to 1.4 (which by (1) are of the form

(2)) to equalize the m's if necessary, this last condition can always be assumed.

Moreover, it is obvious that x e T implies aoxai e T for any g F-o-

Therefore, if x.y e IF then

x + y 1 1) e J7.
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Now since the assumption that S and /C0 © 1 jointly generate /C0 <8 A implies
that any x e JC0 <S> A is a finite sum of elements of IF, the claim follows.

We will now equip A with an operator space (and actually operator algebra)

structure. We introduce on /C0 © A UMn(A) the norm ||x||. inf]-^ II°tH
where the infimum runs over all factorizations as in (ii). The preceding claim

guarantees that ||x||. < oo for any x e JC0 © A. Obviously (using the preceding

equalization of the m's)

(3) Vx, y e /C0 © A max{||x||„ ||y||.} and ||xy||. < ||x||.

For any x e Mn © A Mn(A), let Then we have

(4) IMIM„(A) < ll*IU-

By Ruan's theorem [Rua| (see also [Pau, Pis3]), the sequence of norms (||.||„)
defines an operator space structure on A. The case n I defines a norm on A for
which by (4) and our assumption (1) on the unit we have ||[l]||i lkii®l^||» 1-

By (3), for any x,y e Mn(A), we have \\x O y\\n < ||x|[„||y||„ where ©
is the natural product in the algebra Mn(A), namely [x O y]tj J2kxikykj-
After completion, by the Blecher-Ruan-Sinclair Theorem [BRS] (see also [Pau,

Pis3, BLM]), A becomes a unital operator algebra B embedded completely
isometrically as a unital subalgebra in B(J() for some X (see also [Pis3, p.109]).
Let U : A —^ B(X) be the resulting unital homomorphism. Then

Vy e M„(A) ||y||„ ||y||. ||[IdMn ® U]{y)\\Mn(B(xy)-

Equivalently

Vy eK0®A ||y||. ||[IdKo © t/](y)||.

Let s e S, obviously ||.v||. < 1. Therefore supve5 ||[/ic„®L](.v)|| <1.
Now let us fix x and assume (i). Then taking u — U we find ||x||.

\\[IdKa © t/](x)|| < c. By definition of ||.||., (ii) follows. Thus (i) implies (ii).
The converse is obvious.

Corollary 4. Let c > I be a constant (our main case of interest is c 1 Let

A C B('H) be a unital operator algebra. Let S be a subset of the unit ball of
IJ„ Mn (A). We assume (1) and again that L'o © A is the algebra generated by

(/Co © 1.4 U<S. Then, the following are equivalent:

(i) Any unital homomorphism u : A B(H) such that supïG5 || [/^;(l ©m](x)|[ <
1 is c.b. and satisfies \\u||c^, < c.
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(ii) For any n, any x in Mn(A) with ||jc||m„(/1) < 1 admits (for some

m m(n,x)) a factorization of the form x — aç)D\a\ Dmam where

am are in K.q ® 1 with n m < c and where D\ Dm are
elements of /Co <8> A of the form (2).

Remark 5. Assume (this is the main case of interest for us) that c — 1, and

that S is stable by taking block diagonal sums of the form (2) with diagonal
coefficients in S. Then the factorization in the preceding Corollary 4 can be

stated just like this:

Any x e Mn{A) with ||x|| < 1 can be written as a product

(5) x a0Didi Dmam

with all D| in S (of varying sizes) where the at's are rectangular matrices (of
suitable sizes for the product to make sense, see below) and ||ce^|| < 1 for all I.
The last point can be adjusted by homogeneity.

For the product in (5) to make sense, we set /V0 Nm+\ n and we

implicitly assume that Dt is of size Nt x Nt and at of size Ni x Nt+ \ Assume

0e<S which is harmless. Then we may add zero entries to the Dt's in order to
achieve N\ ••• Nm. Once this is done «o and am will be the only remaining
possibly still rectangular factors.

Remark 6. Assume moreover that, whenever it makes sense, the product a0Da i
is in S for any D e S and any pair of matrices a0,ai with scalar entries in

the open unit ball. Then the conclusion can be simplified: any x e Mn(A) with
||x|| < 1 can be written as a product

with Pi e S for all t.

Corollary 7. The factorization described in (5) holds in the following cases:

(i) Let A be a unital C* -algebra generated by a family of unitaries (xj)j> \.
Let A be the unital *-algebra generated by (xj )j> \. Let S be the set of
all x e UMn(A) with ||x|| < 1 of the form either

(7) x a0 (8 1 + a <%) x,
—'y > 1

where, for some n, j \-r Uj j >0) is finitely supported with values in Mn.

(6) x Pi Pm

or
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(ii) Let A be a unital C* -algebra generated by a family (xj)j>\ with only

finitely many non-zero elements. Let A be the unital * -algebra generated

by {xj)j>\. Let S be the set of all x e UMn A) with ||x|| £ 1 of the form

(8) x ao <E> 1 + ^2 ,>i cij ® xj + ^2 >l bj ® xj + b 0 xjxj + XjxJ)

where, for some n, we have ap,aj,bj,b e Mn.

(iii) In the same situation as (ii), let S be the set of all x e UMn(A) such that

x x* with || jv:|| < 1 of the form (8).

(iv) In the same situation as (ii), let S be the set of all x e UMn(A) such that

x x* with M < 1 of the form

(9) x=a0®l+Yaj® xj + ^ x* + b (g> xjxj + xjx*),

where, for some n, we have ao,aj,bj,b e Mn such that ao a^, bj a*

for all j >1, and h — h*.

(v) Let A be a unital C* -algebra generated by a family of unitaries (xj)j>\.
Let A be the unital * -algebra generated by (xj)j>\. Let S be the set of
all x e UM„(^l) with ||x|| < 1 of the form

(10) x — ap (8) 1 + aj (8) Xj + Y_ bj >Xj.

where, for some n, we have up. a}, bj e Mn such that ao a(*, bj — a*

for all j > 1 and j m- üj e Mn is finitely supported.

Proof. We first observe that in case (ii) the assumption in Remark 5 holds. As
for case (i) we may observe that any matrix D of the form

can be written as

D

and hence since 1m„ ® 1 e <5 tor all n > 1 we may still factorize with factors in

S even though S contains terms of two types.

(i) We use here the "linearization trick" from [Pisl]. Let E — span[l,{x7- |

j > 1}]. Let u : A —> B(H) be a unital homomorphism such that

supseS || [/jc0 ®"]('v)ll 1
• We have clearly ||m|£ \\cb 1. A fortiori of course

11 zy (xy || < 1 and since xj unitary, we have u(x*) u (xj1 u(xj)~l, and

hence (since x* e S) ||m(x7)_1|| < 1, so that u(xj) is unitary for all j. By
Arveson's extension theorem, u admits an extension u : A -» B(H) with
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Il "m Heft 1, and u{ 1) I implies that îT is completely positive (c.p. in

short), see |Pau, Pis3]. Therefore, we have an embedding H c H and a

*-homomorphism :t : A ^ B( H such that u (a) — Phx(u)\h (a «= A).
Writing H — H © K and

it is easy to deduce from the fact that u(xj) and n(xj) are both unitary
that 7T12(xj) ji2] (xj) 0 for all j. In other words, it(xj) commutes with

Ph Since {xj} generates A, PI is invariant under jt(A). Therefore u is

a homomorphism (and even a *-homomorphism) which must coincide with

ii. Thus we conclude ||w||cft 1 and we apply Corollary 4.

(ii) By decomposing them into real and imaginary parts, it is easy to reduce to
the case when the xj's are self-adjoint, so we assume that xj x* for all

/'. Let E be the linear span of {1 Let u : A —> B( H be a unital

homomorphism such that supsgS ||[/x;0 0 m](s)|| 1. Again ||w|£||cft 1,

and u admits a c.p. extension u :A-+B(H), which can again be written
as before as u (a) Ph^{u)\h (a e A). With the same notation as earlier,

but now following [HT|, we have for any self-adjoint a e E

and applying that for each xj as well as for £ xj (on which m u we

lind

But then the equalities tt(£x?) £jr(xy)2 and m(£x?) £ w(xy)2

force £7ri2(xy)^i2(xy)* 0, and hence ji\2{xj) 0 for all j. Again, we

conclude that u is a *-homomorphism equal to u, that ||u ||cft 1 and we

apply Corollary 4.

(iii) Let <S3 be as in (iii). Let S2 be the corresponding class in (ii). For any

y e S2 we have

m (a) 7ti2(a)

Jt2i(a) 7i22 {a)

and also

and hence
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This shows that a factorization of the form (5) with S2 can be transformed

into one with S3.

(iv) Same argument as for (iii).
(v) It is easy to reduce to a finite family of unitaries, then this is a particular

case of (iv).

Remark 8. The preceding argument for (i) shows that the factorization (2)
holds even if S is the set of x's with ||x|| < 1 of the form either (7) or

x x*. Indeed, using x x* suffices to prove that w(xy) is unitary when

sup^s II fco »"](*) II 1
•

Proof of Theorem 1. Just note that in case (i) (and also in case (ii)) we are in

the situation described in Remark 6.

Remark 9. Let (T,),e/ be a family of unital C*-subalgebras of a unital C* -

algebra A. Assume that U,-6//I, generates A. Let Vd denote the linear span of
all the products of d elements in U,e/A,-. Then any x e Mn(Vd) with ||x|| < 1

can be written as a product x Pi Pm of (possibly rectangular) matrices with
entries in V\ such that | Pj || < 1 for all j. This follows by the argument used

to prove (i) in Corollary 7 with S — L)„Mn(Vi).

Remark 10. Let (Xj) be a family of non-commuting formal variables (or
indeterminates). By a *-polynomial P{Xj,XJ) in (Xj) we mean a linear
combination of (non-commuting) products (including the empty product denoted

by 1) of terms taken from {Xj, X*}.

Let A, B be unital C* -algebras. Let (ay)y6/ (resp. (/>y)je/) be a family in

A (resp. B). We say that (hj) satisfies the relations satisfied by (ay) if, tor any

*-polynomial P(Xj,XJ), the implication P(aj,a*) 0 => P(hj,h*) 0 holds.

When dealing with random matrices, it is formally more general to consider
the following "almost sure variant": let (A'jv)ye/ be a system of random matrices

of common size we say that (Jfjv)y6/ satisfies a.s. the relations satisfied

by (ay) if for any *-polynomial P(Xj,X*) such that P (a7, a* 0 we have

P{Xy, X^*) 0 almost surely.

To illustrate the use of the factorization, we recover the following known facts

(implicit in [Pisl]).
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Corollary 11. Let (xj)ji be a family of unitary operators in a unital C* -algebra
A. Let ()j6i be a system of random unitary matrices of common size d^.
We assume that (X^ /e/ satisfies a.s. the relations satisfied by (xj and that

for any n and any finitely supported family j aj e Mn (j 6 / we have

a.s.lim sup a0 ® 1 + aj 0 ^ a0 <8> i + aj
N-

then for any n, any finite set (aif in Mn and any family of * -polynomials
Pjf (Xj, X*) we have

lim sup
II £>* ® Pk(xjN). X}N)*) < IJ2 ak 0 Pk(Xj, xj)

N->oo "
a.s.

Proof Let x J2ak <8> Pk(xj,xJ) and x(N) J2ak <8> Pk(xjN\xjN) By
homogeneity we may assume ||x|| < 1. By Corollary 7 we have a factorization

x a0D\oii... Dmam with all factors D0,Di,... such that either D or D*
is of the form a0 ® 1 + J2 aj ® xi with || D || < 1 as in Remark 5. By our
assumption on the relations satisfied by (Xj^)jei (applied to each entry of the

matrix x — aoD\a\ Dmam) we have almost surely

c^=a0D[N)ctl...D^c
where D. is obtained from Dj by replacing xj (resp. xj) by xjN> (resp.

Xj wherever it appears. This implies

||xw|| < (max || D\N) ||r.l 1

The conclusion is now immediate.

Remark 12. Let (xy)ye/ be a family of free Haar unitaries in the sense of |VDN|.
If a * -polynomial satisfies P{xj,xj) 0 then P(yj.yj) 0 for any family

(jj) of unitaries in a C* -algebra, in particular for any family of unitary matrices.

Thus the assumption on the relations in the preceding corollary is automatically
satisfied if we assume that (X^)j^j is formed of unitary matrices.

Remark 13. A similar statement is valid if we replace a.s. convergence by

convergence in probability. More explicitly, if we assume that for any e > 0 and

any Uj we have

limjv^oo P j I(8) 1 + aj ® Xf I > ||qq ® 1 + ® xj || + ej) 0

then the same argument shows that for any e > 0, any n, any finite set (a/ç) in

Mn and any family of *-polynomials l\ Xj. X * we have

limjv-ooP({|| J2aJ ® pj(XjN)> > Il ® Pj(xj>Xj) II + e}) °'
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Corollary 14. In the situation of the preceding Corollary, Assume that for any

n, any self-adjoint a<) 6 Mn and any finite family (ay in Mn we have

lim sup
N—>oo

flp <8> 1 + üj ® Xj* + y^a* ® xf*

ap 0 1 + J2a* U.S.

then for any n, any finite set (ak) in Mn and any family of * -polynomials
Pic (Xj, X* we have

lim sup W^cik <g> Pk{Xj \xj < ® I'klxj.x*)
N^-oo

U.S.

A similar statement holds for convergence in probability as in Remark 13.

Remark 15. Similar statements hold for the cases (ii), (iii), and (iv) of Corollary 7.

This can be applied in particular when (Xj) is a free semi-circular (or circular)

family in the sense of [VDN].

Questions. One major drawback of the method to prove factorizations such as (5)
is the lack of an algorithm allowing one to construct the factors out of the data

that we wish to factorize. Perhaps a different approach may yield this.

Another natural question would be the quest for quantitative estimates of
the length of the factorization. For instance, given a family of unitaries (xj)
(generating a unital *-algebra A) and taking S formed of degree 1 polynomials
as in part (i) or part (v) of Corollary 7, one can ask for estimates (upper
and lower) for the smallest number m — m(d,n) (resp. m m(d,n,e) for
e > 0 fixed) satisfying the following: any matricial polynomial P e Mn(A) with
|| P || < 1 of degree at most d can be written as a product P — P\... Pm of m

matricial polynomials of degree at most 1 with ||Pf|| < 1 for all I (resp. with

nr ii ^ii <i+e).
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