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Local coefficients revisited

Slawomir Kwasik and Fang Sun

Abstract. Two simple “simplicial approximation™ tricks are invoked to prove basic results
involving (co)-homology with local coeflicients.

Mathematics Subject Classification (2010). Primary: 55P65; Secondary: 57P10.
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1. Introduction

Homology and cohomology with local coefficients have applications in a
variety of topics including Obstruction Theory, Spectral Sequences, Generalized
Poincaré Duality and more. These homology and cohomology theories possess
many properties analogous to those of homology and cohomology with constant
coefficients (some of these properties will be presented in Section 2), yet some
of the corresponding properties are missing. In particular, there is no Universal
Coefficient Theorem linking homology with local coefficients with cohomology
(there is a version in [Spal, p. 283], though its application is limited). This among
others poses extra difficulties in proving many familiar and useful properties of
these theories. More than often, it takes a completely different proof to generalize
a theorem involving (co)-homology with constant coefficients to one involving
local coefficients.

The purpose of this paper is to establish three basic properties of (co)-homology
with local coefficients.

The First Property (Theorem 3.1). A weak homotopy equivalence induces an
isomorphism on homology and cohomology with local coefficients.

The Second Property (Theorem 4.1). For a CW-pair the long exact sequences
for singular and cellular homology and cohomology group with local coefficients
are equivalent.
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Despite being very basic, no written account of these properties could be
located. Quite likely this was due to the suspicion that the technical difficulties
in rigorous proofs presented a price too high to pay for the final product. Our
proofs of these properties are based on a simple “simplicial approximation” trick
which avoids most of the technicalities.

The Third Property (Theorem 5.1). The Poincaré Duality with local coefficients
Jor closed orientable topological manifolds.

In this case written (and complete) accounts of this property do exist. In fact,
we are aware of two such accounts (cf. [Spa2, Sun]). In this paper we present
yet another alternative proof based on a “simplicial approximation” trick. With
certain topological input, this trick reduces the proof to the more elementary case
of triangulated manifolds.

More comments of historical, motivational and mathematical nature are
contained in corresponding sections dealing with the proofs.

2. Local coefficient systems

For more detail on this topic, the reader is referred to [Whi, Chapter VI,
Section 1-4].

Let G be a bundle of Abelian groups (local coeflicient system) on a topological
space X, that is, G is a covariant functor from the fundamental groupoid of X
to the category of Abelian groups. Recall that the singular chain complex of X
with coefficient in G is defined as

Sk(X:G)= @ G(o(eo))

oAk X
k .
(1) g -0) = G(@)(@) 00+ X (-1)'¢-0i
where A¥ = (eg,eq,---,ex) is the standard k-simplex, g-o € Si(X;G) is the

element that is g on the G(o(eg)) factor and 0 otherwise, ¢ is the homotopy
class of the path obtained by precomposing o with the linear path from e; to
eo in AX, o; is the restriction of o to the i-th face.

Note that the notations we are using are slightly different from the one used
in Whitehead’s book.

It can be shown that {S.(X;G),d} is a chain complex, and its homology is
called the singular homology of X with coefficient in G, denoted as H.(X;G).

In a similar way, one could define the singular cochain complex S*(X;G)
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SK(X;G)y= T G(t(en))
Ak X

T.

@ (-1 ()(0) = GEY elon) + Z, (<1 e(oy)

where ¢ € S¥(X;G),0 : ATl = X .

It turns out that {S*(X;G),d} forms a cochain complex and its homology is
called the singular cohomology of X with coefficient in G, denoted as H*(X;G).

There is another way to define (co)homology groups with local coefficients
that is equivalent to the one above. In the literature it sometimes carries the
name “homology with twisted coeflicients”. We shall introduce this approach in
Section 2.8.

Long exact sequence of pairs, homotopy invariance, excision and additivity
(with respect to disjoint union) are still valid as in the case of constant
coeflicients (cf. [Wal, 1. 2]). The equivalence between singular and cellular
homology/cohomology (cf. [Wal, VL. 4]) is valid as well. The remainder of
this section will be devoted to a brief review of these facts. Readers familiar with
the material of Chapter VI of [Wal] or any equivalent exposition could skip to
the next section.

We shall present these facts without their proofs. We will concentrate on
cohomology, since in the remaining sections we shall deal mainly with cohomology
groups. The results for homology are analogous.

In what follows, all spaces are topological spaces and maps between these
spaces are continuous maps.

2.1. Relative (co)homology groups and long exact sequence. Let (X, A) be a
pair of spaces and G a local coeflicient system on X . Denote by i the inclusion
A < X . The restriction G4 is a local coeflicient system on A and the restriction
i* . S*(X;G) — S*(A4;G|4) is naturally defined and surjective. The kernel of i*
is defined as S*(X, A;G). This is a cochain complex, whose homology is the
relative cohomology group H*(X, A; G). The short exact sequence of cochain
complexes
0— S*(X,A4;:G) > S*(X;G) - §*(A:G|4) = 0

induces a long exact sequence
3
oo —> H¥1(4;G4) — H¥(X, 4;G) — H¥(X;G) — H¥(4;Gq) — -+

Dually, S«(X,A;G) is defined as the cokernel of iy : Sx(A4;G|4) — S«(X;G),
and its homology group H«(X, A;G) fits into a long exact sequence

e — Hy(AGra) —> Hy(X; G) —» HelX, 4:G) — Hy_q(A:Gia) —>
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Long exact sequences of triples are defined in a similar way.
In what follows, we shall abbreviate G4 as G.

2.2. Functoriality. Let G, H be bundles of Abelian groups over a space X .
A homomorphism ¢ : G — H is a natural transformation from G to H. If
@(x) : Gy — H, is an isomorphism of Abelian groups for each x € X, we say
@ is an isomorphism. A homomorphism (resp. isomorphism) ¢ between bundles
induces a chain map (resp. isomorphism) S*(X;¢) : S*(X;G) — S*(X: H),
defined by

SK(X;0)(c)(0) = ¢(c(0)),c € S5(X;G), 0 : Ak - X

Denote the induced homomorphism on cohomology as H*(X;¢). There are, of
course, S«(X;¢) and H.(X;¢) defined for homology.

Let G be a local coefficient system on Y, and f : X — Y a map. Then the
pull-back f*G = Go f3, where f is the induced functor between the fundamental
groupoid of X and that of Y, is a local coefficient systemon X.If g:Z —> X
is a map, then (f og)*G = ¢* f*G. For a homomorphism ¢ : G — G’ between
bundles of Abelian groups over Y, the pull back f*¢ : f*G — f*G’ defined
as f*o(x) = @(f(x)) is a homomorphism between bundles over X .

We will define a category £* whose objects are of the form (X, A;G)
where (X, A) is a pair of spaces and G is a bundle of Abelian groups on
X. A morphism ¢ from (X,A;G) to (Y,B;H) is a pair (¢1,¢2) where
¢1:(X,A) = (Y,B) is amap and ¢, : ¢7 H — G is a homomorphism. Suppose
¢ = (¢1.¢2) 1 (X. A;G) — (Y.B:H) and ¢ = (Y. 92) : (Y. B: H) — (Z.C; K)
are morphisms in £*. Then their composition w = ¥ o ¢ is defined by

wi =Y10¢1 (X, A) = (Z,C), w2 =0 (pfY2) : 1Y K — G

Note that a map f : (X, A) — (Y, B) and a local coefficient system G on Y
induce a morphism f : (X,A4; f*G) — (Y,B;G), where fi = f. f»: f*G —
f*G is the identity. By abuse of notations, we will denote f simply by f.

A morphism ¢ : (X, A;G) — (Y, B; H) induces a cochain map

¢* S*(Y, B H) — S*(X, 4;G), $*(c)(0) = $a(0(e0))(c(¢1 0 0))

where ¢ € S¥(Y,B;H) and o : A¥ - X. Thus ¢ induces a homomorphism
¢* = H*(¢p) : H*(Y,B;H) — H*(X,A;G). In this way H*’s become
contravariant functors from £* to the category of Abelian groups.

There is a category £, dual to £*. The two categories share the same class
of objects, whereas a morphism in £, from (X, A4;G) to (Y, B;H) is a pair
¥ = (Y1.¥2) where ¢y : (X, A) - (Y.,B) isamap and ¥, : G — ¢Y{H is a
homomorphism. It is obvious how to define the induced ¥4 and V. = H. (V).
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Remark. It is easy to see that a morphism ¢ : (X, A; G) — (Y, B; H) in either
£, or £* actually induces a chain map between the corresponding long exact
sequences of homology/cohomology. We shall need this fact in later sections.

2.3. Homotopy invariance in £* and £,. The prism over an object (X, 4;G)
of £* is the object (X x I,Ax I;p*G) of £* where p: X xI — X is the
projection to the first factor and / = [0, 1]. The morphism i : (X, A;G) —
(X xI,Ax I;p*G) is defined by

i20(x) = (x,0),id =id: i)*p*G =G > G

Similarly we can define the morphism i!: (X, A4:G) — (X x I, A x I; p*G).
Let ¢, ¥ : (X,A;G) — (Y,B;H) be two morphisms. A homotopy from
¢ to ¢ is a morphism A : (X x I,A x I;p*G) — (Y,B;H) such that
A0i®=¢, Aoi! = . In this case we write ¢ ~ v, as usual.
The prism of (X, 4;G) in £, is the same as that in £*, while the morphism
i (X,A;G) = (X x I, Ax I; p*G) is defined by

i) = (x,0),i) =id: G - iP*p*G =G

The definition of i' is similar. Now the definition of homotopy in £* can be
carried verbatim to £..

Homotopy equivalence between objects of £* or £4 is defined in the obvious
way. It is an equivalence relation, and we have:

Theorem 2.1 (Homotopy Invariance). If ¢, ¢ : (X,A;G) — (Y,B;H) are
homotopic maps in £* (resp. £1), then H*(¢p) = H* () (resp. Hy(¢) = Hx(Y)).

Of course this implies that a homotopy equivalence in £* or £, induces an
isomorphism on (co)homology groups.

2.4. Homotopy invariance. As far as we are aware of, the material of this
subsection has not appeared explicitly in the literature.

In practice, homotopy equivalences between topological spaces arise more
often and more naturally than homotopy equivalence in £* and £.. Fortunately,
we have the following:

Theorem 2.2. Suppose f :(X,A) — (Y, B) is a homotopy equivalence (between
pairs of topological spaces) and G is a local coefficient system on Y, then
f*: H*(Y,B;G) - H*(X,A; f*G) and fv : H«(X, A; [*G) — H.(Y, B;G)
are isomorphisms.
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We shall prove the claim for cohomology, and note that the proof of the case
of homology is entirely dual. The conclusion of Theorem 2.2 should be expected.
Yet the same line of proof as with ordinary coeflicients would immediately run
into trouble because the coefficients change under the pull-back. The difficulties
can be overcome by the following lemma.

Lemma 2.3. Let H : (X,A) x I — (Y,B) be a homotopy between f and
g and G be a bundle of Abelian groups over Y. For x € X, define Hy
as the homotopy class of the path t — H(x,1 —1t). Then x +— G(Hy)
defines a bundle isomorphism H : f*G — g*G. Furthermore we have the
equality H*(X,A;H) o f* = g* : H*(Y,B;G) — H*(X,A;¢*G). Here
f*: H*(Y,B;G) - H*(X,A; f*G),g* : H*(Y,B;G) - H*(X,A;g*G) are
induced by f, g viewed as morphisms in £*.

Proof. To prove H is a natural transformation, consider, for a given path
u:l — X,the map Ho(ux1y):1x1I — Y. The two paths joining (0,0) and
(1,1) along the boundary are homotopic, and naturality follows. For the second
claim, we can repeat the prism construction as in the case of constant coefficients
(though in most textbooks this construction is done for homology only, because
of the Universal Coeflicient Theorem). For any n, consider the prism A” x [.
Let v; (resp. w;) be the i-th vertex of A" x {0} (resp. A" x {1}). Denote by ;
the linear embedding A"T! — A" x [ sending A"*! = (¢q,---,e,41) onto the
simplex (vg,---,v;, w;,--- ,®,) preserving order of vertices.

For each n, define a homomorphism P : S"T1(Y, B;G) — S"(X, A; f*G) by

n i
P(c)(o) = iEO(—l)’c(H o(ox1p)oy),ce S"HY;G)0: A" > X

One can easily check that §P + P§ = S"(X:H) o (f* — g*), where § is the
coboundary homomorphisms of the chains S*(X, A4; f*G), S*(Y¥,B;G) and
f* . 8"(Y,B;G) — S"(X,A; f*G),g* : S"(Y.B;G) — S™(X,A;g*G) are
induced by f.g as morphisms in £*. Consequently g*o H(X,A; H) = f*. 0

Proof of Theorem 2.2. Let g : (Y, B) — (X, A) be the homotopy inverse of f.

Thus we have homotopies fog g ly,gof g lx . Apply the above lemma to the
first homotopy with bundle G over Y and to the second homotopy with f*G
over X, we have (fog)*oH(Y,B:H) = 17 and (go f)*oH(X, A; ?17) = 1%.In
particular, (fog)* =g*o f*: H*(Y,B;G) > H*(Y,B;g* f*G) and (go f)* =
f*og*: HY(X,A; f*G) — H*(X,A; f*¢g* f*G) are isomorphisms. But this
implies that g* : H*(X, A; f*G) — H*(Y,B;g* f*G) is both an injection and
a surjection, thus a bijection. Hence f*: H*(Y,B;G) - H*(X, A; f*G) is an
isomorphism. []
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In Section 3, we will sharpen Theorem 2.2 by replacing “homotopy equiva-
lence” in the statement with “weak homotopy equivalence”.

2.5. Excision, additivity and dimension axioms. Although the following prop-
erties will not be used in our paper, we list them for completeness sake.

Theorem 2.4. Let (X; X1, X2) be a triad of spaces such that X = Int X; UInt X5,
and let G be a bundle of Abelian groups over X . Then the injection (X, X1 N
X2) = (X, X2) induces isomorphisms H*(X,X»;G) — H*(X1, X1 N X2;Gx,)
and Hy«(X1, X1 N X2;G|x,) = H«(X, X2;G).

Theorem 2.5. Let X be a disjoint union of X,’s, G be a system of local
coefficients over X and Gy = G|x,, A € X be a subspace and Ay = AN Xq.
Then H*(X,A;G) — H*(Xq,Ay;Gy) and H (X4, Ag;Goy) — Hi (X, A;G)
induced by inclusion for all o represent H*(X, A;G) as a direct product and
H.(X,A;G) as a direct sum.

Theorem 2.6. If X = {*} is a one point space, then H°(X;G) = G =~ Hy(X;G)
and H¥(X:G) = 0= Hy(X;G) for k #0.

2.6. Cellular homology. The construction of cellular (co)homology carries
over verbatim as the case of constant coeflicients. Let (X, A) be a CW-
pair and G be a system of local coefficients over a CW-pair X. Denote
the k-th skeleton of X by Xj. Define the cellular cochain (resp. chain)
complex I'*(X,A;G) (resp. I'«(X,A4;G)) of (X,A) with coefficients in G
by T*(X,A;G) = H¥(Xyx U A, Xy_; U A;G) (resp. T'k(X,A;G) = Hp(Xp U
A, Xk—1 U A;G)). The coboundary map § : I'K(X,4;G) — I'*t1(X, A4;G) is
defined as the connecting homomorphism of the cohomological long exact
sequence of the triple (Xzy; U A, Xx U A, Xg—; U A), while the boundary map
d: Ikr1(X, A4;G) — Tk (X, A;G) is defined using the homological long exact
sequence of (Xgpy1UA, X UA, X1 UA). As in the case of constant coefficients,
we have ([Whi, VI.4.1 and VI1.4.1*]):

Theorem 2.7. Let hy : (A", 0A") — (Xn, Xn—1),a¢ € A be characteristic maps
of X of dimension n that are not contained in A. Denote hy(ey) as zy. Then
the homomorphisms (as « ranges through A) G(zq) — I'y(X, A;G) sending
g € G(zy) to the homology class represented by g-hy represent I'y(X, A;G) as a
direct sum. Dually, the homomorphisms I'" (X, A; G) — G(zy) sending an element
of T'"(X, A; G) represented by ¢ € S"(X, U A, X,—1 U A;G) to c(hy) represent
I'(X, A; G) as a direct product. If k # n, then Hi(Xp,UA, X1 UA;G) =0 =
H¥(X, U A, Xn—1 U 4;G).
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There is an isomorphism between singular and cellular (co)homology groups
with local coeflicients for a CW-pair (X, A). The definition of this isomorphism
is (again) carried verbatim from the case of constant coefficients, the references
for which can be found in almost every textbook on algebraic topology (e.g., [Hat,
Section 2.2 and Section 3.1]). In the remainder of this paper, we shall simply refer
to this isomorphism as the (natural) isomorphism between singular and cellular
(co)homology.

2.7. Cap product. We start by defining the tensor product of bundles of modules.
Let R be a principal ideal domain. A bundle G of R-modules over a space
X is a covariant functor from the fundamental groupoid of X into the category
of R-modules. Let G, G’ be bundles of R-modules over X . The tensor product
G ®r G’ is defined by G ® G'(x) = G(x) ®g G'(x) for any x € X and
G®rG'([u]) = G([u]) ®r G'([u]) for any u : I — X, where [u] is the homotopy
class of u.

Denote the vertices of A" as eg,e;,---,e,. Let 0 : A" — X be a continuous
map. For 0 < iy < ip < - < iy < n, let o} .. denote o restricted
(preserving order) to the simplex (e; e;,---¢;, ).

For o : A" — X and g € G(o(eg)), let

go € Sp(X;G)= @ G(n(eo))
n:AP—X
denote the element which has value g on the o-coordinate and O otherwise.

Now one is able to define the cap product on (absolute) chains and cochains.
Assume that G, G’ are bundles of R-modules over a space X, the cap product
is defined as

SK(X;6) ®p Su(X:G') — S, (X;G ®r G")
¢ ® go — (G(070,n-k)(C(On—k, ,n])) ® €)O[0, n—k]

where ¢ € SK(X;G), g € G'(0(ep)).

If A;, A, are subspaces of X, define S,(A4; + A2:G’) = S,(A41:G’) +
Sp(A2;G") € S,(X;G') and define S, (X, Ay, + A2;G") = Sp(X;G")/Sp(Ay +
Az;G’). The above absolute cap product induces a relative product

S*(X. A1;G) @& Sp(X, Ay + A2;G") —> Sy 4 (X, A2:G ®r G')
The cap product satisfies the identity
e —~a) =c ~ (da) — (8¢) ~a,c € C¥(X;G),a € Cp(X:G)

Note that the sign appearing in the above equation is a result of our adopting the
definitions (and thus the sign conventions) in [Whi].
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Consequently there is an induced cap product on (co)homology
H (X, A1;G) @& Ha(X, A1 + A2:G') —> Hyi(X, 42;G ®r G')

If Inty,u4,A41UIntg, 4,42 = A1 U A, then the inclusion induces an isomorphism
H, (X, Ay + A2;G’') = H, (X, A; U A3; G") and we have a cap product

H*(X, A1;G) ®R Ha(X, A1 U A2;G") —> Hyi(X, A2:G ®r G')

2.8. Homology with twisted coefficients. Suppose X is a path-connected space.
If G is a local coeflicient system on X, and G, is the group (fiber) over a
chosen base point xq. Then (X, xg) acts on Gy from the left by definition of
G . Conversely, a (left) action of m(X,xo) on an Abelian group G, induces a
bundle of Abelian groups G over X which is unique up to isomorphism, such
that the fiber over xo is Go and the induced action on Gg is the given action
(cf. [Whi, p. 263]). Thus for connected spaces, bundles of Abelian groups are
essentially equivalent to actions of fundamental groups. The data in the form of
fundamental group actions has the advantage of being simpler and more explicit,
and thus is preferred in the field of low dimensional topology.

The homology and cohomology groups with local coefficients we have defined
so far could be expressed in terms of fundamental group actions, in the following
way. Suppose our connected space X assumes a universal cover X . Choose a
base point Xy of X covering xo, we may identify (X, xo) with the group IT of
covering translations (deck transformations). Given an (left) action of (X, xp)
on an Abelian group Gg, we define a right action by requiring g -[u] = [u]™!-g
for any g € Gy, [u] € m1(X).

On the other hand, IT acts on X from the left. Hence there is an induced
left action on S, (X), the group of integral singular chains.

Let Z[I1] be the group ring of Il over Z, one can form the chain complex
Go ®zm) S+ (X). It can be shown (see [Hat, Proposition 3H.4] or [Whi, Theorem
VI1.3.4]) that the homology groups of this chain complex (sometimes called
homology with twisted coeflicients) is isomorphic to H«(X;G), where G is the
bundle of groups induced by the action of m;(X,x9) on Gy. The dual results
for cohomology is also true ([Whi, Theorem VI.3.4*]). Homology with twisted
coeflicients is usually easier to handle in explicit computations.

3. Weak homotopy equivalence and cohomology

It is a standard result in homotopy theory that weak homotopy equivalences
(continuous maps which induce isomorphisms of all homotopy groups with
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all choices of basepoints) induce isomorphisms on singular homology and
cohomology. In this section, we will provide a proof of the following result:

Theorem 3.1. Let [ : (X,A) — (Y,B) be a weak homotopy equivalence of
pairs (that is, both [ and f4 are weak homotopy equivalences). Let G be
a local coefficient system on Y. Then f.: Ho(X,A; f*G) — H«(Y,B;G) and
f*:H*(Y,B:G) - H*(X, A; [*G) are isomorphisms, where f*G is the pull-
back of G via f.

3.1. Background. Beside the natural expectation of the validity of the above
result, Theorem 3.1 is also needed for the following definition in Obstruction
Theory.

Suppose (K, L) is a relative CW-complex, p : X — B is a fibration with
(n — 1)-connected fiber F', and we are given a commutative diagram:

%X
P
¢
—

N

B

The diagram induces an element y"*!(f) € H"*Y(K, L;¢*n,(F)), called the
primary obstruction to extending f ([Whi, p. 298]). The name comes from the
fact that f can be extended to a partial lifting f,.; : K"*! — X of ¢ if and
only if y"t1(f)=0.

Some times it is useful to have a primary obstruction defined when (K, L)
is replaced by an arbitrary topological pair (P, Q). In particular, one needs such
definition when defining the Whitney class of a vector bundle over an arbitrary
base (not necessarily homotopy equivalent to a CW-complex), or constructing the
Leray—Serre spectral sequences of a fibration over an arbitrary base.

To this end, we can take a CW-approximation ¢ : (K, L) — (P, Q), i.e., a map
of pairs such that (K, L) is a CW-pair and ¢ is a weak homotopy equivalence
of pairs. Thus we have a diagram:

L2015 x
R
E—tof-tup

The element y*"*1(f o) € H* (K, L:¢*¢p*m,(F)) is well-defined. By Theo-
rem 3.1,

¢*  H'"Y(P, Q:¢*mn(F)) — H" (K, L:9*¢p* w0 (F))
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is an isomorphism (in [Whi, p. 300] this is assumed without any explanation),
therefore we could define p"t1(f) := o* 19"t (fop) € H" (P, Q:¢*n,(F)).
An easy argument of naturality shows that this construction is independent of
the CW-approximation ¢. Hence we have a well-defined primary obstruction
AN UME

There are at least two ways to prove that a weak homotopy equivalence
induces isomorphisms on homology (with constant coefficients) in the literature.
One approach uses the Hurewicz Theorem ([Spal, 7.5.9, 7.6.25]). The other proof
([Hat, Proposition 4.21]) is by a construction that relies heavily on the finiteness
of singular chains. The analogous result for cohomology with constant coefficients
follows from this via the Universal Coefficient Theorem. To illustrate, we have:

TaBLE |
Constant coefficients Local coefficients
Homology Hurewicz/Construction Construction
Cohomology Universal Coefficient Theorem ?

When it comes to local coefficients, the Hurewicz Theorem is no longer available.
The constructive proof still works for homology with local coefficients. Yet due
to the absence of the Universal Coefficient Theorem, the result for cohomology
does not follow automatically. Our proof turns out to be quite different from those
above. As far as we know, no alternative exists in the literature for cohomology.

3.2. Singular complex. We begin with the notion of singular complex, which
is central in our proof.

Let X be a topological space. Consider the disjoint union of k-simplexes,
one for each continuous map o : A¥ — X . Repeat this for all integer k = 0 and
then glue the simplexes according to restriction of maps to faces. The resulted
CW-complex is called the singular complex of X, denoted by SX. In fact, SX
is a A-complex ([Hat, p. 164]).

A continuous map f : X — Y induces (with the obvious definition) a map
Sf:SX - 8Y.

Since the simplexes of SX corresponds to continuous maps A¥ — X | there
is a canonical map Iy : SX — X mapping each simplex via the map defining it.
Ix is natural with respect to a continuous map f : X — Y, i.e., the following
diagram commutes:

f

X —— Y

] ]

sx 3, sy
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The following result will be used in our considerations:
Theorem 3.2. For any topological space X, Ix is a weak homotopy equivalence.
Proof. See [LW, Chapter I1I, Theorem 6.7] or [Gra, Theorem 16.43 on p. 149]. L[]

For a local coefficient system G on a A-complex K, there is a version of
simplicial homology/cohomology. The definition of chains/cochains and bound-
ary/coboundary maps are the same as the singular ones, except that the di-
rect sum/product is now over all simplices of K. We denote the simplicial
chains/cochains of K with coefficient in G by A.(K;G) and A*(K;G), and
simplicial homology/cohomology by H2(K;G) and H}(K;G).

As in the case of constant coefficients, we still have:

Theorem 3,3. The canonical injection A« (K;G) 2 S«(K;G) and projection
S*(K;G) 2y A*(K;G) are chain maps that induce isomorphisms on homology/
cohomology groups.

Proof. For homology one could repeat the proof of [Hat, 2.27], except that one
needs to quote Theorem 2.7 of this paper (since homology with local coefficients
does not always behave well upon taking quotient of spaces). Although the
Universal Coeflicient Theorem is not available, one could easily adapt the above
mentioned proof to the case of cohomology, with little change. L]

Now suppose G is a local coeflicient system on a topological space X . Let
Iy G be the pullback of G via Ix. We have

It 4
EHX: 6 — S*(BX; I56) — ANSX; I5E)

It is easy to see that the composition j* o 7} identifies S¥(X:G) =

lk'l G(o(ey)) = Ak(SX;I)’(“G). In particular, j¥ o Iﬁ is a cochain isomor-
AR > X
phism and j*o Ig: H*(X;G) — HX(SX;I7G) is an isomorphism as well. By

a similar argument one can show that Iy, o j. : H2(SX; I3G) - H.«(X:;G) is
an isomorphism. Combined with Theorem 3.3 we have shown:

Theorem 3.4. The map Ix induces isomorphisms on homology and coho-
mology. To be more precise, for any local coefficient system G on X,
Ix« : Ho(SX:;I3G) — Hi«(X:G) and Iy : H*(X;G) — H*(SX:;IyG) are
isomorphisms.
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3.3. Proof of Theorem 3.1.

Proof. By the naturality of homological long exact sequences of pairs (see the
remark at the end of Section 2.2), we may reduce the theorem to the absolute
case. Let f: X — Y be a weak homotopy equivalence. As noted above there’s

a commutative diagram
f

X ——

k-

sx =L, sy

in which Iy, Iy are weak homotopy equivalences by Theorem 3.2.
Commutativity implies that Sf is also a weak homotopy equivalence.
Since SX,SY are CW-complexes, the Whitehead Theorem (cf. [Hat]) implies
that Sf is a homotopy equivalence, and hence induces isomorphisms on
homology/cohomology with local coefficients.
Now apply Theorem 3.4 to the induced (commutative) diagram on homol-
ogy/cohomology and the desired result follows. ]

4. Identifying singular and cellular long exact sequences

4.1. Background. Let (K,L) be a CW-pair, G be a local coefficient system
on K. There are long exact sequences (cf. Section 2.1)

3) — H,(L;:G) — H,(K;G) — H,(K,L;G) —
and
4) — H"(K,L;G) — H"(K;G) — H"(L;G) —

There are also naturally defined short exact sequences of cellular chain/cochain
complexes

00— T(L;G) > T«(K;G) —T'«(K,L;G) — 0

and
0—TI*K,L;G) —TI*K;G) —T*(L;G) —0

which induce long exact sequences
(5) —> Hy(T4(L); G) — Hy(T«(K);G) — H,(T'«(K,L);G) —>
and

(6) — H"(I'*(K,L);G) — H"(I'*(K);G) — H"(I'*(L); G) —
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The groups in (3) and (5) (resp. (4) and (6)) are term-wise isomorphic. It is
natural to ask whether the long exact sequences (viewed as chain complexes) are
chain isomorphic. This is used in the proof of [Wal, Theorem VI.6.9] (again this
is used without any justification). It is natural to expect that this problem could be
solved by diagram chasing, since the definition of cellular homology/cohomology
can be described by chasing certain diagrams (cf. [Hat, p. 139 and p. 203]).
Yet as far as we know, no such proof has been given. In fact the only relevant
results in the literature are given in Schubert’s book (cf. [Sch, p. 303]) and Luck’s
paper [Liic]. In both references, an intermediate between the singular and cellular
chain complex, called normal chain complex is used it to show (3) and (5) are
chain isomorphic. The construction and proof (again!) depends heavily on the
finiteness of singular chains, thus fails to prove the result for cohomology with
local coeflicients (though for constant coefficients one could still use the Universal
Coefficient Theorem to dualize everything).

Our goal is to prove:

Theorem 4.1. The long exact sequences (3) and (5) (resp. (4) and (6)) are chain
isomorphic.

We shall prove the result for cohomology, the proof for homology is analogous.

4.2. Proof of Theorem 4.1.

Proof. Since the identification of singular and cellular homology/cohomology
groups are natural with respect to cellular maps (whether the system of coeflicients
is constant or local), it suffices to check the commutativity of the diagram
(coefficients omitted):

H"(T*(L)) —%—> H""(T*(K, L))

I I

H"(L) —5%—— H"FY(K, L)

Note that SL can be identified canonically with a subspace of SK and
Ix : SK — K restricts to I;, on SL. Thus we have a weak homotopy equivalence
Ix : (SK,SL) — (K, L). Since both the domain and codomain are CW-complexes,
Ik is actually a homotopy equivalence. Homotope /g to a cellular map Jg and
consider the diagram:
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H"(L) H* K, L)
H"(SL) J( H*T1(SK, SL)
H"(I'*(L)) H" T (I'*(K, L))
/ /
H"(I'*(SL)) H"tL(I'*(SK, SL))

in which vertical arrows are isomorphisms between singular and cellular coho-
mology groups, horizontal arrows are boundary maps in the corresponding long
exact sequence and arrows going down left are induced by Jg . Coeflicients are
obvious and omitted.

The rectangle on top of the above diagram commutes since the map (in this
case Jx) induces a chain map between singular long exact sequences (see the
remark at the end of Section 2.2). Similarly, the cellular map Jx induces a
chain map between cellular long exact sequences, hence the commutativity of the
bottom rectangle. The rectangles on the left and right commute because of the
naturality of the identification of singular cohomology with cellular cohomology
under cellular maps.

All down left arrows are isomorphisms since Jg is a (cellular) homotopy
equivalence. In particular the map Jg : H"T'(I'*(K, L)) — H"t'(I'*(SK, SL))
is an isomorphism.

We intend to prove the commutativity of the rectangle in the back. As indicated
by the above argument, it suffices to show that for the front rectangle. In other
words, we have reduced the problem to the case where (K,L) is a pair of
A -complexes. We shall assume this from now on.

For a A-complex pair (K, L) and a local coefficient system G on K, there
is an isomorphism ® : A"(K, L;G) — I'(K, L; G) defined by the identification

A"(K, L; G) < TIG(o(eq)) <> MTH"(A",A":0*G) «— (K, L: G)
a a

where the direct products are over all n-simplexes of K — L. It is easy to check
(by diagram chasing) that ® commutes with boundary maps of the two chain
complexes and hence is a chain isomorphism.

Now that j* and & induce the following commutative diagram joining the
singular, simplicial, and cellular short exact sequences of (K, L) (coefficients
omitted)
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0 —— S*"(K,L) —— S*(K) —— S*(L) —— 0

| l l

0 — A¥*(K,L) — A*(K) —— A*(L) —— 0

| ! l

0 — IM(K,L) — I'™(K) —> I'*(L) —— 0

which induces a commutative diagram for the boundary homomorphisms in the
corresponding long exact sequences

oLy —2& s gotlpg, I

| I

HI (L) —2— HIMY(K, L)

l‘b* lq,*

H"(M*(L)) —— H"Y(T*(K, L))
The theorem will then follow from the lemma below. O

Lemma 4.2. The isomorphism ®*oj* is exactly the natural identification between
cellular and singular cohomology.

Proof. We shall prove this for the absolute case (i.e., L. = @). The proof of the
relative case is similar. The local coeflicient system G will be omitted in what
follows.

Consider the following diagram:

H"(K)

[

H"(K™) HE(K)

|l A

H"(C*(K))

In the above diagram, ¢ is induced by the inclusion K" < K and « is the
homomorphism I'"(K) = H"(K", K" ') — H"(K") induced by identity.

For any [p] € H"(K) where b € S"(K), let [@¢] € H"(I'(K)) be the
element corresponding to [b] via the natural identification between singular
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and cellular cohomology. Then «(Je]) = ¢([p]), hence o = [a] for some
a € S"(K", K" 1) ¢ S"(K") such that a — bjgn = §c for some ¢ € S""1(K").
It suffices then to show that ®* 1 ([a]) = j*([b]).
We know that

j*@)— j*b) = j*(a—bgn) = j*(8c) = 8%(c) € AY(K") = A™(K)

In other words, j#(a), j#(b) are cohomologous.
Also, one can check that

j*(a)
— d)#_l([a])
= o"'(@) € A"(K) = 1G(0(e0)

by looking at their value on each n-simplex o.
Thus ®*'([a]) = [®* " ()] = [* (@] = [*(B)] = j*(1b])- L]

5. Simplicial approximation and Poincaré Duality

We now turn to another type of simplicial approximation. Let M be a closed
n-dimensional topological manifold, R be a principal ideal domain and G a
bundle of R-modules.

The Poincaré Duality Theorem (with local coefficients) states that

HY(M; G) 25 Hy_i(M; G ®g MR).0<i <n

where H! stands for singular cohomology with compact support, paq is the
(generalized) fundamental class and Mg is the orientation bundle of M with
coefficient in R.

For relevant definitions and proof of the theorem, see [Spa2] or [Sun].

There is a version of this duality for compact triangulated manifolds with or
without boundary (see [Lee]), which dates back much earlier, i.e., the original
proof given by S. Lefschetz. The proof in [Lee] deals with the case of A = Z[x]
coeflicients. By an argument attributed to J. Milnor (cf. [Wal, Lemma 1.1]) the
mentioned duality remains valid for every (left) A-module B. This in turn can be
viewed (cf. [Hat, Proposition 3H.4, p. 331, and the bottom of p. 333]) as a duality
with local coefficients as stated above. This proof is short and purely geometric
(it uses the dual decomposition of the corresponding simplicial complex). Thus
it would be nice if one could reduce the general case to the case of triangulated
manifolds. This is when simplicial approximation comes into the picture.

Assume, for simplicity, that M is closed and orientable.
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Theorem 5.1. Let G be a local coefficient system on an n-dimensional closed
oriented topological manifold M. Denote by pa the fundamental class of M.

Then H'(M:;G) 25" H,_i(M; G) is an isomorphism for all 0 <i <n.

Proof. By [KS, top of the page 301 (a)], there is a stable normal k-disk bundle
E of M in R"%_ Also, E admits a triangulation. Obviously E is orientable
as a manifold with boundary. Consider the map

Hi*R(E JE: p*G) “25 H,_i(E; p*G)

where g is the fundamental class of E and p*G is the pull-back bundle. Since
E is triangulable, this is an isomorphism.
Next we prove that £ is orientable as a disk bundle.

Claim 1. There exists an element U € HX(E,0E;7) that restrict to a generator
Ui € HK(E ,0E:7) for every x € M. Here (E,,0E\) stands for the fiber
over x.

Proof. The composition
HYE,JE:7) 2 H(E:7) 25 Hy(M:7)

is an isomorphism because p is a homotopy equivalence. Define
U e H¥(E,DE;Z) by U ~ ug = p;" (um).

Note that M embeds in E by the zero-section. For x € M, consider the
following diagram, where vertical maps are induced by inclusions

H*(E,0E;7) ® Hysr(E,DE;7) —=—> H"(E;7) —2— H,(M;7)

b 2 I

H¥(E\M7) ® Hyi g (E|(x,0);Z) —> H"(E|Ex:7) —2 H,(M|x;7)

Here X|Y denotes the pair (X, X —Y). The rightmost rectangle is easily seen
to be commutative. [

Claim 2. The homomorphism i, is actually an isomorphism.

Proof. To justify Claim 2, it suffices to prove that the inclusion 0E — E —M is
a weak homotopy equivalence (this would actually make the inclusion a homotopy
equivalence, for both dF£ and E— M have the homotopy type of CW-complexes).
Since p: E — M is a D¥-bundle and M is disjoint from the boundary of
E, the restriction of p to E — M is a fiber bundle with fiber D* — 0. This
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can be seen by taking a local trivialization over suitably small open set of M,
treating IntD¥ as R¥ and translating points of M to 0 by subtraction. On
the other hand, the restriction of p to dE is a bundle with fiber S¥~1. The
inclusion of dF in E — M induces a map between the Serre exact sequences
of homotopy groups of respective bundles. Now the Five Lemma shows that the
inclusion dF — E— M induces isomorphisms on homotopy groups. This finishes
the proof of Claim 2. ]

Let U' = i7 ' (U) € H*(E|M;Z). Define ji(x0) = in(uE) € Hppi(E|(x,0):Z).
Then by naturality of cap products, U’ —~ p(x.0) = i3py ' peam. By commutativity
and definition of the fundamental class fiaq, Psizsps fiar = isjtaq iS a gen-
erator of H,(M|x;Z). Since p: (E|E;) — (M]|x) is a homotopy equivalence,
i3« Py ' paq is also a generator.

Now choose an open disk neighborhood W of x in M upon which E
admits a local trivialization ® : p~ L (W) — W x D¥. Let ®, : Ex — D* be the
restriction of ®. Consider the following diagram:

HY(E|M;Z) @ Hyyr(E|D™(x,0); Z) - H"(E|Ey; Z)

o o o]

HYX(W x D¥|W x 0;Z) @ Hypr (W x D¥|(x,0);Z) —— H™(W x D¥|E,;7)

where vertical homomorphisms are induced by &.

By excision, ®,,®; are isomorphisms. Hence by naturality &(U’) —~
5 (1(x.0) = Psizepy pat, which is a generator of H,(W x D*|Ey;Z) = Z.
Note that the cross product induces an isomorphism

H*(W x DK|W x 0,Z) < H*(D*|0;Z) @ H*(W;Z)

and @;(U’) corresponds to @ (U|y) x 1. This forces ®,.(U|,y) and thus U), to
be a generator. This proves Claim 1. Thus U is an orientation for the disk bundle
E.

Since U is an orientation, we have a Thom homomorphism H'(M;G) —
H'**(E,3E; p*G) sending « to p*(«) — U . This is an isomorphism (cf. [Spal,
p. 283]).

Now we have a commutative diagram

HI(M:G) —EM 5 H,i(M;G)

| |

HIYE(E BE; p*G) =25 H,_(E; p*G)

where the left vertical map is the Thom isomorphism.
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Now:
P*(((P*O!) —U) ~ ME)
= pe(pe ~ (U ~ pp))
(naturality) =o ~ px(U —~ ug)
(definition of U) =a —~ Upm
The top arrow is thus an isomorphism since all others are isomorphisms. ]
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