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A sixteen-relator presentation of
an infinite hyperbolic Kazhdan group

Pierre-Emmanuel CAPRACE

Abstract. We provide an explicit presentation of an infinite hyperbolic Kazhdan group with
4 generators and 16 relators of length at most 73. That group acts properly and cocompactly
on a hyperbolic triangle building of type (3,4,4). We also point out a variation of the
construction that yields examples of lattices in A -buildings admitting non-Desarguesian

residues of arbitrary prime power order.
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1. Hyperbolic Kazhdan groups

The existence of infinite Gromov hyperbolic groups enjoying Kazhdan’s
property (T) has been known since the origin of the theory of hyperbolic groups,
as a combination of the following results.

e Every simple Lie group possesses a cocompact lattice, by [Bor];

e the rank one simple Lie groups Sp(n,1) (with n > 2) and F4_20 have (T),
by [Kos] (see also [BAIHV, §3.3]);

e if a locally compact group G has Property (T), then so does every lattice
[" in G by [Kaz] (see also [BAIHV, Theorem 1.7.1]);

e a cocompact lattice in a rank one simple Lie group is Gromov hyperbolic,
since it is virtually the fundamental group of a closed Riemannian manifold
of negative sectional curvature, see [Gro].

Those results imply in particular the existence of a negatively curved closed
manifold M of dimension 8 whose fundamental group (M) has Kazhdan’s
property (T) (namely M is covered by the symmetric space of Sp(2,1)). I am
not aware of any known explicit presentation of the fundamental group (M)
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in that case. This is a very interesting and natural problem. It is also natural to
ask whether the fundamental group of a negatively curved closed manifold M
of dimension < 8 can have property (T). If M has dimension 2 or 3, then
the Hyperbolization Theorem (see [AFW, Theorem 1.7.5] and references therein)
ensures that the fundamental group (M) is a lattice in O(2,1) or O(3,1).
Therefore it cannot be a Kazhdan group by [BdIHV, Theorem 2.7.2] (see also
[Fuj] for a more general result on the failure of Property (T) for 3-manifold
groups). It is currently unknown whether a negatively curved closed manifold of
dimension 4,5,6 or 7 can have a Kazhdan fundamental group. Misha Kapovich
pointed out to me that the related problem of finding objects of either of the
following kinds, is also open:

e a nonpositively curved closed manifold, not homeomorphic to a locally
symmetric space, and with a Kazhdan fundamental group;

e a Kazhdan Poincaré duality group not isomorphic to a lattice in a connected
Lie group.

The possibility to write down an explicit presentation of an infinite hyperbolic
Kazhdan group was first realized in [BS, Corollary 2], where the geometric
approach to Property (T) via the spectral gap of finite graphs is exploited (see
[BAIHV, Chapter 5] for an exposition of that approach including a historical
account). The graphs used in [BS] are certain Cayley graphs of Sl,(Z/nZ),
which satisfy the required spectral gap condition for n sufficiently large. An
alternative source of finite Cayley graphs that enjoy the required spectral condition
is suggested by Alain Valette in his review of [BS], but I am not aware of any
reference where that suggestion was incarnated into an explicit presentation of
a hyperbolic Kazhdan group. A different construction is highlighted by Marc
Bourdon in [Bou, §1.5.3]. It gives rise to cocompact lattices in certain Gromov
hyperbolic triangle buildings, and also relies on the geometric approach to
Property (T). The advantage is that the finite graphs on which the spectral gap
condition is tested are finite generalized polygons, and the eigenvalues of their
incidence matrix is explicitly known by classical results from [FH]. Nevertheless,
the corresponding group presentations one obtains from that construction take
several hundreds relations. The variations on Bourdon’s construction described in
[Swi] also seem to require a rather large number of relators. Other examples of
infinite hyperbolic Kazhdan groups are studied in [LMW], but no explicit short
presentation is recorded there.

Cornelia Drutu asked me whether it was possible to use buildings in order
to construct an explicit short presentation of an infinite hyperbolic group with
Kazhdan’s Property (T). As explained in [DK, Section 19.8]: “while ‘generic’
finitely presented groups are infinite and satisfy Property (T), finding explicit and
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reasonably short presentations presents a bit of a challenge”. In that context,
targeting hyperbolic buildings is especially natural in view of the fact that
there exist 5-relator presentations of infinite Kazhdan groups acting properly and
cocompactly on buildings of type A,, see [Ess, Examples following Theorem 5.8].
Note that those groups cannot be hyperbolic since they are quasi-isometric to
a 2-dimensional Euclidean building. The shortest presentation I could find in
attempting to answer Cornelia Drutu’s question is the following.

Theorem 1. The group

E={xyztr|xy [xylz"" [x 2] [p.2],

2

t2,r73 trtr,

[x2pz L, 1], [z, tr], k¥ 22, 17,
[x,2r73M, [y, te 2, 2, 1™,

[x_zyz, tr_zs], [x_lyz_3, tr_w], [x_3yz_2, tr_”])

is an infinite Gromov hyperbolic group enjoying Kazhdan’s Property (T). It
is virtually torsion-free, and acts faithfully, properly, cocompactly (not type-
preservingly) on a thick hyperbolic triangle building of type (3,4,4). In particular
E is quasi-isometrically rigid by [Xie].

In view of the relation [x,y] = z, the generator z is redundant, and the
presentation of FE given in Theorem 1 is equivalent to a presentation with
4 generators and 16 relators. This modification increases the length of some
of the relators, but one checks that the maximal length of a relator in that
16-relator presentation of E remains equal to 73.

To prove that E is infinite and hyperbolic, we identify E as the fundamental
group of a simple complex FE()) of finite groups, in the sense of [BH,
Chapter I1.12]. The complex in question is described in Section 2. In verifying
that this complex is developable, we provide a complete description of the link of
every vertex. All of them happen to be incidence graphs of generalized polygons,
i.e., bipartite graphs whose diameter is equal to half of the girth. Since the
spectrum of the Laplace operator on such graphs is known by the work of Feit—
Higman [FH], we may invoke a criterion due to Izhar Oppenheim [Opp] in order
to establish that £ has Property (T). The proof of Theorem 1 is completed in
Section 7.

A local characterization of buildings due to Jacques Tits [Tit] ensures that
the global development of the complex E()), which is a simply connected 2-
dimensional simplicial complex that we denote by D()’), is a non-thick hyperbolic
triangle building of type (2,4,6). A canonical procedure, described in Section 7
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and consisting in discarding the edges contained in exactly two 2-simplices,
allows us to view D())) as a thick hyperbolic triangle building of type (3,4,4).
This enables us to invoke a result of Xiangdong Xie [Xie] ensuring that E is
quasi-isometrically rigid.

The final section of the paper records several variations of the construction giv-
ing numerous additional examples of infinite hyperbolic Kazhdan groups, as well
as groups acting properly cocompactly on A,-buildings with non-Desarguesian
residue planes. It also contains an infinite hyperbolic group, denoted by E3, ad-
mitting a presentation much shorter than the presentation of E from Theorem I;
the question whether E3 satisfies Property (T) is open (see Question 13).

The paper has been written in such a way that it should be accessible to a
reader without any prior knowledge of the theory of buildings. Buildings appear
in Section 6, whose purpose is to clarify the connection between this paper and
the work of Jan Essert [Ess]. However, the proof of Theorem 1 does not rely on
that section. The only prerequisite needed for the proof of Theorem 1 is some
familiarity with the theory of non-positively curved simple complexes of finite
groups, developed in [BH, Chapter I1.12].

2. A simple complex of finite groups

We assume that the reader is familiar with the terminology and notation from
[BH, Chapter II.12]. Let A be a geodesic triangle with angles 7 /6,7/4,7/2 in
the real hyperbolic plane. Let ) be the 2-dimensional simplicial complex on 11
vertices, denoted by a,b,cy,...,co, obtained by glueing 9 isometric copies of A
along their hypothenuse [a, b], as depicted in Figure 1. Hence ) is a piecewise
hyperbolic complex. In each triangular face abc;, the angle at a is 7/6 and the
angle at b is n/4.

Ficure 1
The complex Y
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Figure 2
The vertex and edge groups in E())

Next we construct a simple complex of groups E()). First we define the
local groups as follows (see Figure 2).

The vertex group E, = (t,r | t2,r73,trtr) is the dihedral group of order
146.

The vertex group Ep = {(x,y,z | x7,y7,[x,y]z7L [x.z].[y.z]) is the
Heisenberg group over F;, of order 343. Notice that the relation z7 = 1

follows from the others in the group Ej.

The vertex group E, = (w; | w}*) is the cyclic group of order 14 for
f = lssisads

The edge groups Eg.; (resp. Ep; ) are cyclic of order 2 (resp. 7).

The edge group E,, and the face groups Egp., are trivial.

The glueing homomorphisms are defined as follows.

For i = 1,...,9, we identify E,, with (w/) < E, and Ep, with
(w]) < E, .
For i = 1,...,9, the homomorphism E,. — E, maps w] to ¢, tr,tr'7,

tr=34 13268729, ¢ 25 tr71® and tr711 respectively.
For i = 1,...,9, the homomorphism Ep, — Ejp maps w? to x2yz~!, xyz?,

x3yz2, x,v,z, x 2yz,x lyz™3 and x3yz~? respectively.

It follows from [BH, §I1.12.12] that the fundamental group m admits the
following presentation:
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EQ) = (x, V2,8, 1w, ..., wo | x7, ¥, [x,v]z7Y, [x, 2], [, 2],

2,173, trev,
14 14 14
w, ', wyt, . wgt,

t = wi, fr = g, tr'’ = wi,
tr—3% = w], fr—% = 1, ir =2 = wl,
=P = wl, b = wl tr~t = w,

s = g, ¥yz® = 1wy, xye? = wl,
B - s

X~w4, y—w55 Z_w6s
I . S . S R S
xT2yz = w2, x7lyz? = wi, xPyz? = wi )

It is straightforward to check that the group £ from Theorem 1 is isomorphic to
E(f) by observing the existence of natural homomorphisms E/‘(37) — FE and
E — L‘*:(‘ij that are inverse of one another.

In order to prove that £ is infinite hyperbolic, we will rely on Theorem 11.12.28
from [BH], which will ensure that the complex E()) is developable. To verify
the hypotheses of that result, we need to understand the shape of the local
developments of that complex at every vertex (see [BH, §11.12.24] for the definition
of the local development). To that end, the following terminology will be useful.

Given a group G and a collection {P; | i € I} of subgroups of G, the
bipartite coset graph of G with respect to {P; | i € I} is the bipartite graph
whose vertex set is the disjoint union of G with | |;.; G/P;, and where the
element ¢ € G forms an edge with the coset hP; if and only if g € AP;. That
graph is connected if and only if G is generated by the set | J;.; Pi.

The following observation follows directly from the definitions.

Lemma 2. In the complex E()), the link at a in the local development around
a is isomorphic, as a simplicial graph, to the bipartite coset graph of the finite
group Eq = {t,r | t2,r7 trir) with respect to the 9 cyclic subgroups generated
by generated by t,tr, trV7, tr~ 3, ¢r 2, 2, ir28, fr™ gnd ir~.

Similarly, the link at b in the local development around b is iso-
morphic, as a simplicial graph, to the bipartite coset graph of Ep =
(x,v.z | x7,¥7.[x, ]zt [x, 2], [y, z]) with respect to the 9 cyclic subgroups

generated by x?yz™', xyz3, x*yz2, x,y,z, x ?yz, x Vyz73 and x3yz 2. []

We now investigate those graphs in more detail.

3. Projective planes and dihedral groups

We review some basic notions from the theory of projective planes. For a
comprehensive account, we refer to the book [HP].
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A generalized triangle is a bipartite graph with diameter 3 and girth 6. The
incidence graph of every projective plane of order g is a generalized triangle
all of whose vertices have degree ¢ + 1; conversely, every generalized triangle
whose vertex degrees are all ¢ + 1, with ¢ > 2, is the incidence graph of a
unique projective plane of order q.

A difference set in a group G is a subset O of G such that every non-trivial
element ¢ of G can be written in a unique way as ¢ = o~ !t with 0,7 € D.
Notice that G must have order g2 + g +1 where ¢ = |D| — 1. The following
special instance is directly related to the group E:

Example 3. The set

D =1{0,1,17,39,41, 44, 48, 54, 62}
= {0,1,17,—34,—32,-29,-25,—19, 11}

is a difference set in the cyclic group Z/737Z.

Difference sets in groups are tightly connected with projective planes. Details
may be consulted in [HP, § XIIL5] or in [Dem, pp. 105-106]. For our purposes,
we need the following result, showing that a difference set in a cyclic group
of order n = g?> + ¢ + 1 allows us to associate a projective plane of order ¢
to the dihedral group of order 2n. Such a connection was first highlighted by
Ivanov—lofinova in [II, Lemma 3.2].

Proposition 4. Let ¢ > 2 be an integer and let n = q> + q + 1. Let
Doy = (r,t | ¥, 1% trir) be the dihedral group of order 2n, and let D be
a difference set in the cyclic group Z/nZ. Then:

(i) The Cayley graph of Da,, with respect to the set {tr° | o € D} is the
incidence graph of a projective plane of order q.

(ii) The bipartite coset graph of Dy, with respect to the subgroups {{tr°) | o €
D} is the first barycentric subdivision of the incidence graph of a projective
plane of order q.

Proof. Since any reflection in D5, has non-trivial image in the quotient D, /(r),
it follows that any loop in the Cayley graph G of D, with respect to the set
{tr? | 0 € D} has even length. In particular G is bipartite. If G contains a
loop of length 4 through the identity, then there exist oy,...,04 € D with
1 = tro¢ro2¢r9¢r° . Hence r—°1102y=93%0 — |, Since P is a difference set,
we must have o7 = 04 and o = 03, so that the loop was a backtracking path.
Thus G has girth at least 6. Observing that G is a vertex-transitive bipartite graph
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of degree g + 1, we infer that the total number of vertices at distance exactly 2
from the identity vertex in G is g(q + 1). Since the total number of vertices of
G is 2(6]2 + ¢ + 1) and since G is bipartite, we deduce that G has diameter 3
and girth 6. This proves assertion (i). Assertion (ii) follows from (i) since the
bipartite coset graph in question is the first barycentric subdivision of G. []

Corollary 5. The link at the vertex a in the local development of the complex
E(Y) around a is isomorphic, as a simplicial graph, to the first barycentric
subdivision of a generalized triangle of order 8. In particular it has diameter 6
and girth 12.

Proof. This follows directly from Lemma 2 and Proposition 4. [

Remark 6. It is a famous open problem to determine the integers » > 3 such
that the cyclic group of order n contains a difference set. Clearly » must be of
the form n = g2 + ¢ + 1 for some integer ¢ > 2. A sufficient condition is that ¢
be a prime power: see the Corollary to Theorem 2.64, together with Lemma 13.12,
in [HP]. The Prime Power Conjecture predicts that this sufficient condition is also
necessary.

4. Generalized quadrangles and Heisenberg groups

We recall that a graph is the incidence graph of a generalized quadrangle
if and only if it is bipartite, has diameter 4 and girth 8. The order of a finite
generalized quadrangle is the pair (s,¢f) such that the vertex degrees of the
incidence graph of the quadrangle are s + 1 and  + 1.

The following observation is closely related to a result of W. Kantor [Kanl,
Theorem 2]. It allows one to recognize when a bipartite coset graph (which is
indeed a bipartite graph) is the incidence graph of a generalized quadrangle.

Proposition 7. Let G be the bipartite coset graph of a group G with respect to
a collection {P; |i € I} of subgroups. Assume that |I| > 2 and that P; # {e}
for all i €1.
(i) If Pin P; = {1} for all distinct i,j €I, then G has girth > 6.
(i) If PPy N Py = {1} for all distinct i, j.k € I, then G has girth > 8.
(iii) Let t = |I|—1 and suppose that s = |P;|—1 for all i € I. If the condition
(if) holds and if in addition G is finite of order |G| = (1 4+ s)(1 + st), then
G is the incidence graph of a generalized quadrangle of order (s,t).
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Proof. The proof is a direct computation similar to the proof of Proposition 4. []

The following consequence allows one to recover a family of finite generalized
quadrangles that is well-known to the experts; it was first discovered by S. Payne
[Pay]. The right choice of p + 2 cyclic subgroups was recorded in [Ess,
Theorem 3.10].

Corollary 8. Let p be an odd prime and H(F,) = (x,y,z | xP,y?,[x,y]z71,
[x,z],[v,z]) be the Heisenberg group over ¥p,. Then the bipartite coset graph of
H(F,) with respect to the collection {{x),(z)} U {(x%yz"2) |a=0,...p—1}
of p+ 2 cyclic subgroups of order p is the incidence graph of a generalized
quadrangle of order (p—1,p+1).

Proof. For all integers a,b,n € Z., we have

_(n—Ll)nab
(xayb)n - xnaynbz s

In particular

n2ab

(xaybz—ab/2)n - xnaynbz— 5

b,—ab/2)

It follows that the cyclic group (x%y depends only on the point of the
projective line over F, whose homogeneous coordinates are [a : b]. Letting [a : b]

Z

run over the p+1 points of that projective line, we obtain p+1 cyclic subgroups
of H(F,), namely {{x)}U {{(x?yz=%) |a =0,... p—1}. Together with the center
of H(F,), namely the cyclic group (z), we obtain a family of p + 2 cyclic
subgroups. Routine calculations show that the conditions from Proposition 7 are
satisfied with s = p—1 and t = p + 1. (]

Specializing to the case p =7, we obtain:
Corollary 9. The link at the vertex b in the local development of the complex
E(Y) around a is isomorphic, as a simplicial graph, to the incidence graph of
a generalized quadrangle of order (6,8). In particular it has diameter 4 and

girth 8.

Proof. 'This follows directly from Lemma 2 and Corollary 8. ]

5. Developability of E()Y)

We are now able to complete the proof that the group E = E()_f) is infinite
hyperbolic.
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Proposition 10. The group E is infinite hyperbolic; it acts properly cocompactly
by isometric automorphisms on the global development |D(Y)|, which is a
CAT(—1) space. That space is geodesically complete: every geodesic segment
can be extended to a geodesic line. Furthermore, every finite subgroup of E is
conjugate to a subgroup of E,, Ep or E. for some i, and E is virtually
torsion-free.

Proof. Since the affine realization |)| is simply connected and endowed the
structure of a finite piecewise real hyperbolic triangle complex, all we must do to
prove that £())) is developable is to show that the link of every vertex t € )V in the
local development of E()) around 7, is CAT(l) (see [BH, Remark I1.12.27(2)]).
This is the so called Link Condition. Since Y is 2-dimensional, it suffices to prove
that every injective loop in the link has length at least 2z (see [BH, §I1.5.24]).
We consider the vertices a, b and ¢; successively.

e The angle at ¢ in A is /6. Moreover, by Corollary 5, the link at a in the
local development of E()) around a has girth 12. We conclude that every
injective loop in that link has length at least 2, as required.

e The angle at » in A is /4. Moreover, by Corollary 9, the link at » in
the local development of E()) around b has girth 8. We conclude that the
Link Condition is also satisfied at b.

e The link at ¢; is the complete bipartite graph K, 7, its girth is 4, so the
Link Condition is satisfied at ¢; for every i.

The developability of E()) therefore follows from [BH, Theorem I1.12.28], which
also ensures that |D())| is a CAT(—1) space. Since E acts properly and
cocompactly on |D())|, it follows that £ is Gromov hyperbolic.

Observe that the link of every vertex in the local developments of E())
has the following property: given a point p in that link, there is a point g at
distance 7 from p. This implies that every geodesic segment in the development
|D(Y)| can be prolonged locally beyond its extremities. It follows that |D())| is
geodesically complete. In particular it is unbounded. Hence E is infinite.

That every finite subgroup of E is conjugate to a subgroup of a vertex group
also follows from [BH, Theorem 11.12.28]. In order to prove that E is virtually
torsion-free, we observe from the presentation of £ that this group has two
retractions £ — E, and E — Ej. Their product p: E — E, x Ep yields a finite
quotient isomorphic to D46 x H (F7); moreover, for each i, the vertex group E,
splits as a direct product E.. = E4. x Ep., . Therefore, any non-trivial element
of a vertex group has a non-trivial image under p: £ — E, x E,. It follows that
Ker(p) is a finite index torsion-free subgroup of E. L]
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6. A hyperbolic triangle building

A hyperbolic triangle building of type (p,q,r) is a 2-dimensional building
whose type is given by the hyperbolic Coxeter group generated by the reflections
across the sides of a geodesic triangle with angles n/p, n/q and =/r in the
hyperbolic plane. Our next goal is to observe that the global development D()))
is a hyperbolic triangle building of type (2,4,6).

What we did so far provides a detailed description of the link of every vertex
in the global development D()). Indeed, we have seen that every such link is
a copy of the complete bipartite graph K, ; (for the vertices in the orbit of
c; for some i), or the first barycentric subdivision of the incidence graph of
a projective plane (for vertices in the orbit of «), or the incidence graph of a
generalized quadrangle. All these graphs are special instances of 1-dimensional
spherical buildings. We are thus in a position to invoke a theorem of Jacques
Tits, providing a local characterization of buildings (see [Dav, Chapter 18] for
generalities on geometric realizations of buildings).

Proposition 11. The global development D(Y) is a hyperbolic triangle building
of type (2,4,6). The natural E -action on that building is type-preserving.

Proof. Given the shape of the link of every vertex, described by Lemma 2 and
Corollaries 5 and 9, the required conclusion follows from [Tit, Theorem 1]. [

In the building on which E acts naturally, the edges covering ab form a
single F -orbit; since the edge group FE,; is trivial, the action of E on that orbit
is moreover free. Thus, by construction, the £ -action on the associated building is
sharply transitive on the panels of a certain type. A study of ‘short presentations’
for groups acting sharply transitively on panels of one type in 2-dimensional
Euclidean buildings was performed by Jan Essert in [Ess]; in some sense, the
present paper provides a hyperbolic analogue of that study. For that reason, the
group appearing in Theorem 1 is denoted by the letter E.

7. The spectral criterion for Property (T)

Our final task to complete the proof of Theorem 1 consists in checking that
E has Kazhdan’s property (T). To that end, we rely on a result due to Izhar
Oppenheim from [Opp]. It provides a sufficient condition for a group acting on a
2-dimensional simplicial complex X to enjoy Kazhdan’s property (T), provided
the smallest eigenvalue of the Laplace operator on the links of vertices of X
satisfy a suitable condition. In the case of the complex D()), we already know
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the shape of the link of every vertex: it is a complete bipartite graph, or the
first barycentric subdivision of the indicidence graph of a projective plane of
order 8, or the incidence graph of a generalized quadrangle of order (6,8). For
each of these graphs, the full spectrum of the Laplace operator is known: it can
be extracted from the work of Feit-Higman [FH]. However, a calculation shows
that the hypotheses of [Opp, Theorem 1] are not satisfied by the complex D()).

In order to overcome that difficulty, we use the following trick. In the simplicial
complex D()), the edges in the E -orbit of [ac;] for some i are characterized
by the property that they are the only edges contained in exactly two 2-simplices.
Such edges are called thin. Let [ac;] be such an edge. Let also b and b’ the
only two vertices (both in the E-orbit of b) such that abé; and ab'é; are
both the vertex sets of a 2-simplex. For all thin edges of the form [ac;], we
replace the subcomplex spanned by a@,hb,b’.& by a subcomplex containing a
single 2-simplex, spanned by a,b, b’ (see Figure 3). The new complex obtained
in this way is denoted by X . The operation of replacing D()) by X is purely
combinatorial, it does not affect the metric on |D())|. Moreover the E -action
on D()) canonically determines an action on X by isometric automorphisms.
Every 2-simplex in the metric realization |X| is now isometric to a geodesic
triangle with angles /3,7 /4,7 /4 in the real hyperbolic plane.

The operation of replacing D()) by X does not modify the shape of the
links at vertices » € X in the E-orbit of ». On the other hand, if a is a vertex

FiGure 3
Discarding the thin edges
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in the E-orbit of a, then the link of X at a is now the incidence graph of a
projective plane of order 8 and no longer its first barycentric subdivision. Indeed,
the vertices of degree 2 in that subdivision are discarded, since they correspond
to the thin edges in D())).

We now state a criterion for Property (T) which follows easily from the main
result of [Opp].

Proposition 12. Let X be a 2-dimensional simplicial complex and T be a
discrete group acting properly, cocompactly on X. Let p > 3 be an integer.
Assume that in every 2-simplex of X, the link of one vertex in X is isomorphic
to the incidence graph of a projective plane of order p + 1, and the link of
the other two vertices is isomorphic to the incidence graph of a generalized
quadrangle of order (p—1,p+1). If p > 6, then I has Kazdhan’s Property (T).

Proof. We need to know the smallest positive eigenvalue of the Laplace operator
on the incidence graph of a projective plane of order g (resp. a generalized
quadrangle of order (s,7)). The spectrum of that operator can be extracted from
the computations made in [FH, Lemmas 3.3 and 5.1], but the corresponding result
is not stated explicitly in that reference. An explicit computation of the spectrum
is done in [Gar, Prop. 7.10] under the extra hypothesis that the generalized polygon
is associated to a group with a BN -pair. However, that extra hypothesis is not
needed (see for example [BdIHV, Proposition 5.7.6] for the case of projective
planes). The result is that the smallest positive eigenvalue of the Laplacian of the
incidence graph of a projective plane of order ¢ (resp. a generalized quadrangle

of order (s,7)) is 1 — AL (resp. 1 — /2t ). Taking ¢ = p + 1 (resp.

g+1 Y (+s9)(+0)
(s.,) =(p—1,p+1)), we find Ap =1 — _VpT; (resp. Ag = 1 —,/-25). By

[Opp, Theorem 1], the group I' has Property (T) provided that the following two
conditions hold:

o Ap +2Ag > 3/2,
e Ap +Ag— 12 +2(Ap +Ag—1D(2hg —1)>0.

A straightforward computation shows that the first condition holds for all integer
p =5, while the second holds for all p > 6. ]

End of the proof of Theorem 1. That E is infinite hyperbolic and virtually torsion-
free follows from Proposition 10. The discussion at the beginning of the present
section shows that the 2-complex D()) can be replaced, in a canonical way, by
a 2-complex X satisfying the hypotheses of Proposition 12. The latter shows that
E has Property (T).
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Invoking [Tit, Theorem 1], we infer that the simplicial complex X is a
hyperbolic triangle building of type (3,4,4) which is thick (i.e., it contains
no thin edge). This is global feature of X allows us to invoke [Xie], which
ensures that £ is quasi-isometrically rigid. []

8. Variations on the same theme

There is a certain amount of flexibility in the construction of the group FE
which can be exploited to provide many more infinite hyperbolic Kazhdan groups
similar to E. The vertex groups FE. need not be cyclic: they could also be
chosen to be the dihedral group D4 of order 14. One could also permute the
edge groups Eg,, arbitrarily without changing Ej., . The specific choice for the
group E in Theorem 1 was made in order to minimize the maximal length of a
relation.

Let us note that one can also obtain larger siblings of E as follows. For
any Mersenne prime p, define a simple complex of groups consisting of p + 2
hyperbolic triangles of type (2,4, 6) glued along their hypothenuse. The two acute
vertex groups are a Heisenberg group over F, and a dihedral group D,, of order
2n, where n = (p + 1)2 4+ p + 2, respectively. The other p + 2 vertex groups are
cyclic or dihedral of order 2p. The edge groups are chosen using Proposition 4
and Corollary 8 so that the Link Condition is satisfied at every vertex. We need
p to be a Mersenne prime since p 4+ 1 must be a prime power to guarantee
that the hypotheses of Proposition 4 are fulfilled, see Remark 6. The fundamental
group of that complex is always hyperbolic, and it has Property (T) for all p > 7
by Proposition 12.

For the Mersenne prime p = 3, using the difference set D = {0, 1,4, 14,16} =
{0,1,4,—7,-5} in the cyclic group Z/21Z, we obtain the following group
presentation:

E3 - (xayﬁz-:tsr | ‘x31y33 [x’y]z_l’ [X,Z],[y,Z],
12,2 trtr,

[xyz,t], [x " tyz7L tr],

[x,er*), [y tr 7] [z, 00

After substituting z = [x, y], we obtain a 12-relator presentation for £3 in which
all relators have length < 21. The same arguments as for £ show that Ej3 is
infinite, hyperbolic, virtually torsion-free and that it acts geometrically on a thick
hyperbolic triangle building of type (3,4,4). However, the spectral criterion for
Property (T) from Proposition 12 does not apply, and the following question
remains open:
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Question 13. Does the group E3 have Kazhdan’s property (T)?

That question might be approached using similar methods as in [KNO].

We finish this note by recording another observation that follows from
combining Proposition 4 with Marc Bourdon’s construction from [Bou, §1.5.3]
and its extension due to Jacek Swiatkowski [Swil.

Proposition 14. Let L be the incidence graph of a finite generalized n-gon of
order (s,t) with n > 3 (i.e., a bipartite graph of diameter n and girth 2n
such that every vertex has degree s + 1 or t + 1). Assume that t is a prime
power.

Then there is a group U acting faithfully, properly and cocompactly (but not
type preservingly) on a thick locally finite triangle building X of type (3,n,n)
admitting L as the link of a vertex.

Proof. We follow the construction described in [Swi, §5.3] in order to build T
as the fundamental group of a simple complex of finite groups I' = G())) . The
underlying complex ) is the simplicial cone over the graph L. Let V =V, UV,
be the bipartition of the vertex set of L, so that every edge in L joins a
vertex in V; to a vertex in V,, every vertex in V; has degree s + 1 and
every vertex in V, has degree ¢t + 1. To each vertex v in V,, we define
the vertex group G, as a dihedral group of order 2(t*> + ¢ + 1). To each
edge e belonging to the set Ep(v) of edges of L emanating from v, we
define G, as a cyclic group of order 2. For all ¢ € Er(v) we define the
inclusion of G, into G, in such a way that the bipartite coset graph of G,
with respect to {G. | e € Ep(v)} is the first barycentric subdivision of the
incidence graph of the Desarguesian projective plane of order ¢. Such a choice
is possible in view of Proposition 4 and Remark 6; this is where we use the
hypothesis that ¢ is a prime power. For v € V| we define the vertex group
G, to be cyclic of order 2, and identify G, with all edge groups G, with
e € Ep(v). The groups attached to all the other simplices of ) are trivial. By
[BH, Theorem 11.12.28], the simple complex of groups G()) defined in this
way is developable. By [Tit, Theorem 1], the development D()) is a non-thick
triangle building of type (2,6,n). Upon discarding the edges of D()’) that cover
edges of L, we may view D()) is a thick triangle building of type (3,n,n)
on which I' = 567) acts faithfully, properly and cocompactly, but not type-
preservingly. L]

The difference between Bourdon’s construction [Bou, §1.5.3] and Proposition 14
is that the former yields triangle buildings of type (2,n,n).
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Remark 15. Proposition 14 comes close to a solution of a problem posed by
W. Kantor [Kan2, Problem C.6.7]. It notably implies that all finite projective
planes satisfying the Prime Power Conjecture appear as residue planes in A, -
buildings admitting a discrete cocompact group of automorphisms. In particular, all
known non-Desarguesian finite projective planes do. This provides a construction
of an infinite family of cocompact lattices in exotic A,-buildings of arbitrarily
large thickness, where exotic means non-isomorphic to the Bruhat-Tits building
of a simple algebraic group over a local field. In particular, the main result
of [BCL] applies to those lattices, which ensures that they do not admit any
finite-dimensional representation with infinite image over any field. The first
construction of an infinite family of cocompact lattices in exotic A,-buildings
was obtained in [BCL, §10]; since then another source of cocompact lattices in
exotic A -buildings of arbitrarily large thickness has been identified by N. Radu
[Radl]. The first example of a cocompact lattice in an A,-building admitting
non-Desarguesian residue planes is due to him [Rad2]. That example remains the
only known A,-building with a cocompact lattice where all residue planes are
non-Desarguesian.
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