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Basic matrix perturbation theory

Benjamin TEXIER

Abstract. In this expository note, we give proofs of several results in finite-dimensional
matrix perturbation theory: continuity of the spectrum, regularity of the total eigenprojectors,
existence and computation of one-sided directional derivatives of semi-simple eigenvalues,
and Puiseux expansions of coalescing eigenvalues. These results are all classical, at least in
the case of one-dimensional, analytical perturbations; a standard reference is the treatise of
T. Kato, Perturbation theory for linear operators (Springer, 1980). In contrast with Kato,
we consider perturbations which are not necessarily smooth, in arbitrary finite dimension,
and for coalescing eigenvalues we do not use the notion of multi-valued function. The
proofs use Rouché’s theorem, representations of projectors as contour integrals, and the
description of conjugacy classes of connected covering maps of the punctured disk.

Mathematics Subject Classification (2010). Primary: 47A55, 15A42.

Keywords. Matrix perturbation theory, regularity of spectra in finite dimensions

Consider a family of matrices M defined over an open set Q C R%:
(1) M: x et Mix)sCNN,

We denote sp M(x) the spectrum of matrix M(x). The eigenspace associated with
A € sp M(x) is the non-trivial kernel ker M(x) — Ald. The generalized eigenspace
associated with A € sp M(x) is the largest space in the (strictly increasing until
stationary) sequence ker(M(x) — AId)*, k > 1. The index of an eigenvalue A of
M(x) is the smallest k such that ker(M(x)—AId)* is maximal. An eigenvalue is
said to be semi-simple if the generalized eigenspace coincides with the eigenspace.
In particular, the index of a semi-simple eigenvalue is equal to 1.
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1. Continuity of the eigenvalues

Proposition 1.1. If x — M(x) is continuous, then the spectrum of M is
continuous, in the following sense: given xo € Q, given Ay € sp M(xg) with
multiplicity m as a root of the characteristic polynomial of M(xy), for any small
enough r > 0, there exists a neighborhood U of xo in 2, such that for all
x € U, the matrix M(x) has m eigenvalues (counting multiplicities) in B(Ag.r).

Proof. This is a consequence of Rouché’s theorem (see for instance the Corollary
to Theorem 20 in Chapter 4 of [Ahl]), which states that if f, ¢ are holomorphic
in B(Ag,r) C C, and if |f —g| < |g| in 0B(Lo,7), then f and g have the
same number of zeros (counting multiplicities) in the open ball B(Ag,r).

Let TI(A,x) = det(A — M(x)), holomorphic in A and continuous in x. By
finiteness of the spectrum, if r > 0 is small enough, then TII(-, xp) has only one
zero in the closed ball B(Ag,r), with multiplicity m. In particular, |TT(A, xo)| > 0
on the boundary dB(Ay,r), and the inequality
2) h(x) = K [T1(, x) — T, xo)| — [TI(-, x0)| < 0
holds at x = x¢. Inequality (2) still holds in a neighborhood of xq. Indeed, by
continuity of IT in (A, x), for all A € dB(A¢,r), there can be found «, > 0, such
that |TT(w, x) — TT(w, xo)| < |T1(, x0)| for |x —xo| <y and |A — p| < &y with
u € dB(Ag,r). The family of open sets {u € dB(Ag,r), |0 —A| < @y}, indexed
by A € dB(Ay,r), covers the compact boundary 0B(Ag,7). A finite subcover is
indexed by i € /. The minimum « = min; oy, is positive. Then, for all x such
that |x — xo| < «, we have h(x) < 0. Thus, by Rouché’s theorem, applied with
f =T(,x) and g = TI(-, x¢), with x fixed in U = B(xy,«), the function II(:, x)
has the same number of zeros as TI1(-, xo) in B(A¢,r), counting multiplicities.
This means that M(x) has exactly m eigenvalues in B(4,r), for any x € U,
which concludes the proof. ]

We assume continuity of M in the following. In particular, Proposition 1.1
applies. Let

& = U spM(x) x{x} = {()L,x) eCxQ, det(l — M(x)) = (}}
xeQ

be the spectrum of the family of matrices M, and let the projection
(3) 7:(A,x)eS — x €,

so that the spectrum of matrix M(x) is the fiber 7= '({x}).
The multiplicity of a point (4,x) € S is the algebraic multiplicity of A in
sp M(x), that is the order of A as a root of the characteristic polynomial of M(x).



Basic matrix perturbation theory 251

A point (Ag,xo) € S is said to have constant multiplicity if locally around
(Ao, x0), there exists only one eigenvalue of M(x), not counting multiplicity.

Corollary 1.2. Around a point of constant multiplicity, the projection w is a
local homeomorphism. If the whole spectrum of M(xy) has constant multiplicity,
then m is a covering map at xo, and the number of sheets is equal to the number
of distinct eigenvalues around x.

Proof. 1f (Lg, xo) has constant multiplicity, the continuous branch of eigenvalues A
given by Proposition 1.1 is a continuous section of the projection m, such that
A(xg) = Ag. Thus in restriction to a neighborhood of (A¢, xg), the projection

is a homeomorphism. If the whole spectrum {A;,....A,} of M(xy) has constant
multiplicity, then in addition the fibers have constant cardinality, equal to p,
around xg¢. Thus =z is a covering map. U]

If a point in S does not have constant multiplicity, it is said to be a coalescing
point in the spectrum. The associated multiplicity is strictly greater than one.

Coalescing points in the spectrum are not necessarily isolated, even if M is
smooth. Consider for instance the case €2 = R, and let F be a closed set in R.
There exists a smooth ¢ > 0 such that F = a~!({0}). Then for

0 1
a(x) 0
every point in {0} x F is a coalescing point in the spectrum.

Proposition 1.3. If Q@ C R, or if Q is an open subset of C, and if M(x) is a
polynomial in x € 2, then the spectrum has a finite number of coalescing points.

Proof. We may work with irreducible components TIT; of the characteristic
polynomial Il (a polynomial in two variables, A and x). For every such
component, I1; and d,I1; are relatively prime. In particular (see for instance
Theorem 3 in chapter 8 of [Ahl]), there are a finite number of x such that IT; (-, x)
and d,I1;(-,x) have a common root A(x). These common roots (x,l(x)) are
precisely the coalescing points in the spectrum. [

We say that (4, x) is a isolated coalescing point in the spectrum (of the family
of matrices M introduced in (1)) there exists a neighborhood & of (A,x) in
C x € such that (¢ \ {(A,x)}) NS comprises only points of constant multiplicity.

Corollary 1.4. If (A¢, x¢) is an isolated coalescing point in the spectrum, then if
e > 0 is small enough, the restriction of the projection w : SN 1 (B(xg,£)*) —
B(xo,€)* is a covering map. Here w1 (B(xg,&)*) is the inverse image of the
punctured ball B(xg,¢)*.
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Proof. Identical to the proof of Corollary 1.2, since the fibers above the (connected)
punctured ball have constant cardinality. []

At a coalescing point in the spectrum, eigenvalues may fail to be differentiable,
even if M is smooth. The canonical example is

4) (2 (1)) x > 0.

Regularity issues for the eigenvalues are examined in Sections 3 and 4.

2. Cauchy formulas

We use notation S for the spectrum of the continuous family of matrices M ,
as defined in Section 1.

Proposition 2.1 (Cauchy formula for total eigenprojectors). Let (Ao, x¢) € S, and
y a closed, positively oriented curve in C, which does not intersect sp M(xg),
and the interior of which intersects sp M(xgy) at Ay only. Then for x close to xg,

1 .
(5) P(x) = ﬂ/ (A — M(x))""dr
Y

is the sum of the projectors onto the generalized eigenspaces associated with
eigenvalues of M(x) which lie in the interior of y. In particular, the projector
P is as regular as M.

Above and below, projectors onto generalized eigenspaces (equivalently,
generalized eigenprojectors) are implicitly parallel to the direct sum of the other
generalized eigenspaces.

Proof. If (A, x¢) has constant multiplicity, or if it is an isolated coalescing point
in the spectrum, then there is a constant number of distinct eigenvalues near Ag
for x close to xo. In general, however, for x close to xg, the number of distinct
eigenvalues of M(x) near A9 may depend on x. Let j(x) be this number, and
J(x) be the total number of distinct eigenvalues of M(x). Thus for x close to
Xg, the eigenvalues A;(x),...,A )(x) belong to the interior of y, while the

other eigenvalues Ajx)+1(x),.... Ay (x) do not.
The spectral decomposition of M(x) is

(6) M(x)= Y (X(x)+ Ni(x)P(x),

1<j<J(x)
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where the P; are projectors onto generalized eigenspaces, such that
(7) M= Y P, RAORE=0 if i#j]
1<j<J(x)

and the N; are the associated nilpotent components, such that
Nj(x) P (x) = Pj(x)N;(x), and Ni(x)P;(x) = 0 if i # j.
By (6) and (7), for x e U and A ¢ sp M(x), we have

(8) A-M@) "= > (A0 - Nix) T P,
1<j<J(x)
which we may rewrite, the matrix Id — uN; being invertible for all pu :
- _ . -
A-M0) = Y A -40) (A= (G -20) V) P,
1<j<J(x)

and, expanding in inverse powers of A —A;(x),

=
9 (A—Mx)
_ —(k
=Y (A-x@) "+ Y A-40) TN R,
1<j<J(x) l<k=<rj(x)—1
where rj(x) > 2 is the index of the nilpotent matrix Nj;(x), that is the smallest
integer £ such that N; (x)* = 0. We now compute residues:
1 | . .
Yim (A—)Lj(x)) Pi(x)dA = P;(x), 1=j=jx),
1
[ =n@) Bma =0 w1 <.
y
f (A —2;(0) " VN ()} Pj(x)dA = 0, for all j and all k > 1.
1

Thus P(x) = > << joo Pi(x) satisfies representation (5) for x close to, and
different from, x,. The above also shows that at x = xg, the right-hand side of (5)
is the eigenprojector onto the generalized eigenspace associated with A. ]

Corollary 2.2. Around a point (Ag, xo) of constant multiplicity in the spectrum,
the associated eigenvalue and generalized eigenprojector are as regular as M,
and we have

(10) (A(x) + N(x)) P(x) = ﬁ f A(A— M(x))_l dA,
¥

where x — A(x) is the local branch of eigenvalues such that A(xg) = Ao, P is
the associated projector, and N the associated nilpotent.
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Note that in the case of simple roots of the characteristic polynomial of M, the
regularity of the eigenvalues follows directly from the implicit function theorem.

Proof. The constant multiplicity hypothesis implies that the total eigenprojec-
tor P(x) from Proposition 2.1 is the generalized eigenprojector onto the unique
eigenvalue A(x) of M(x) near Ay. Thus, by representation (5), the eigenprojec-
tor P is as regular as M.

Next we use a spectral decomposition of M(x) in order to express A(A —
M(x))~!, for A € C, as a sum of projectors, as we did for (A — M(x))~! in (8)
in the proof of Proposition 2.1:

AA=M@) " = AA-A0)-NE@) T P@+ Y ARA-A ()N (1) ().
2<j<J(x)

where A(x) is the eigenvalue of M(x) which is equal to Ay at xo, and the
Aj(x), for 2 < j < J(x) are the other eigenvalues of M(x). For x close to xo,
the eigenvalues A;(x) are far from Ao. Computing residues as in the proof of
Proposition 2.1, we find that if the interior of y contains Ay and is small enough:

| —1 B 1 —1
(11) Z_;[yl(l—M(x)) di = Efyl(/l—)u(x)—N(x)) P(x)dA.

We now expand in powers of (A —A(x))~!:
AA=A) = N@) " =2 =)+ Y A=) Nk,
1<k<r(x)—1

where r(x) is the (possibly x-dependent) index of N(x), for x close to xo, and
then again compute residues:

1 =
ﬂfym = 2(x) 7 P(x)dA = A(x) P(x),

1 _

- [ A =2@) N P(x) AL = N P(), k= 1.
in J,

With (11), this implies representation (10), from which we deduce that the map

x — (A(x) + N(x))P(x) is as regular as M. Taking the trace, we find that

x — mA(x) is as regular as M, where m > | is the multiplicity of A. L]

Corollary 2.3. If (Ao, x0) is an isolated coalescing point in the spectrum, with
multiplicity m > 1, we have

1 —1
(12) > () + N()Pi(x) = 2_—[A(A—M(x)) da,
1<j=m’ b Jy
where x — Aj(x), for 1 < j <m’, are the distinct branches of eigenvalues such
that Aj(xg) = Ao, for some m' < m, and the matrices P; are the associated
projectors, and N, the associated nilpotents.
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Proof. For all x € U \ {xo}, where U is some neighborhood of x,, the matrix
M(x) has the same number of distinct eigenvalues in a neighborhood of Ay.
Let m’ be this number, less than or equal to m, the multiplicity of Ao. Let
Al,...,Am be these eigenvalues. It suffices to reproduce the computations of the
proof of Corollary 2.2, where each A; plays the same role as A in the proof of
Corollary 2.2, to arrive at (12). ]

3. Holder estimates

Proposition 3.1. If M is differentiable at xq, then for any local branch A of
eigenvalues of M around xo, we have the bound

(13) |A(x) — A(xo)| < C(M)|x — xo["/™,

locally around xo, with C(M) > 0, where m is the index of (A(xg),xo), as
defined in the introduction.

If (A(xg),xo) has constant multiplicity and M is locally Lipschitz, then by
Corollary 2.2 the eigenvalues are actually Lipschitz, locally around xo, which
of course is much better than (13) in the case m > 1. Estimate (13) however
accurately describes the eigenvalue behavior in the canonical coalescing case (4),
for which m = 2.

Proof. Let y be a path around A(xy) and P be the associated total eigenpro-
jector, as in Proposition 2.1. Then P is differentiable at xo, just like M, by
Proposition 2.1. For x close to xg, let u(x) be a unitary eigenvector associated
with A(x). We have no information on the regularity of u. For x close to xp,
we have

(M(x) = Ax0))" P()u(x) = (A(x) — A(x0))" u(x).
Taking norms, this gives
A(x) — A(x0)|" = [(M(x) — A(x0))" P(x)].

Since m is the index of (A(xp),xp), we have (M(xq) — A(xg)" P(xo) = 0. Thus
we may write the above as

IA(x) — A(xo)|™ = [(M(x) — A(x9))™ P(x) — (M(x0) — A(x0))"™ P(x0)

*

and we conclude by differentiability of x — (M(x) — A(xo))” P(x). O
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Remark 3.2. Without appealing to the Cauchy formula of Proposition 2.1, we can
show that A satisfies |A(x)—A(x¢)| < C(M)|x—xo|"/?, where p is the multiplicity
of (A(xg), xp), as follows. We denote A9 = A(xg). The characteristic polynomial
M(A,x) = det (A — M(x)) factorizes into I1 = T¢Iy, where IT{(4o,xo) # O,
and Tp(A,xg9) = (A — Ag)?. The degree of [l is equal to p, the multiplicity
of (Ag,xg), and Tl is unitary. We may focus on [ly in the following. Let A
be a branch of eigenvalues such that A(xo) = A¢. Expanding Il in powers of
A(x) — Ag, we find, since aiﬂo(ko,xo) =0for0<j<p-—1:

Mo(A(x). x0) = (P~ (A(x) — o)™ + O(JA(x) — Ao|)” .

Besides, the matrices M being differentiable at x,, the characteristic polynomial
IT is differentiable in x at xy, and so is Iy :

l—lo(/l(x),x) = l’[o()u(x),xo) + O(|x —x0|) = 0.
Thus
(P (M) — A0)” + O(IA(x) — Ao])” T = O(Ix — xol).

which implies (13), with p instead of m. We have m < p, and the inequality
may of course be strict, so that the bound of Proposition 3.1 is stronger than the
one proved here in this Remark.

The estimate of Proposition 3.1 is much improved in the semi-simple case:

Proposition 3.3. If M is differentiable at xo, and if (Ag,xo) is an isolated
coalescing point such that Ay is a semi-simple eigenvalue of M(xy), any local
branch A of eigenvalues of M such that A(xg) = Ao has a one-sided directional
derivative in every direction, and, for all ¢ € R4,

o Ao+ 18) = A(x0)

t—0 !
t>0

€ sp P(AO, X())M’(Xo) e P(A(), X()),

where P(MLg, xo) is the generalized eigenprojector onto the generalized eigenspace
at (Ao, xo), and parallel to the direct sum of the other generalized eigenspaces.
In particular, the eigenvalues are Lipschitz:

|A(x) — A(x0)| < C(M)]x — xol,

locally around xqo, with C(M) > 0.

See Corollary 3.6 below for an improvement on Proposition 3.3.



Basic matrix perturbation theory 257

Proof. Let m be the multiplicity of Ay, and A4,..., Amrs, 2 <m' < m, the
distinct eigenvalues that coalesce at x, with value Ay. By Corollary 2.3,

f A(A = M(xo + h))‘1 dA = Z (Aj(xo + h) + Nj(xo + h)) Pj(xo + h),
¥ 1<j<m’

where 7 € R? is small and y is a suitable curve in C. Above, N; and P; are
the nilpotent and projector associated with A;. By Proposition 2.1,

f (A—M(xo +h)) " dA = P(xo+h) := > Pilxo+h).
Y l<j=m’

Thus

(14) [ (A —20)(A — M(xo + h)) ' dA
¥

=Y (A (xo + k) — Ao + Nj(xo + 1)) P (xo + ),

1<j<m’
By differentiability of M at xg:
(A=M(xo+m) "' = (A=M(x0)) ™ +(A—M(x0)) " M’ (x0)-h(A—M(x0)) " +0(h).
Since A is semi-simple, the spectral decomposition at xq is
M()C()) = )L() P(Ao, JC()) + M()C())(Id = P(ko, )C())),
where P(Ag,xo) is the generalized eigenprojector. Thus
(A= M(x0)) ™" = (A —10) " P(Ao, x0) + (A — M(x0)) ™" (Id — P(A0. x0)).
so that
(A—20)(A — M(xo + h)) ™
= P(Ao, xo0)

+ (A —20) (A — M(x0)) ™" (Id = P (Ao, x0))

+ P(Ao. x0) M (xo) - h(A — M(xo))™"

+ (A~ A0) (A — M(x)) " (Id — P(ho, x0)) M (x0) - h(% — M(x0)) "

+ o(h).

We now compute residues. First, by choice of y, definition of P(A¢,xp) and
Proposition 2.1,

] —
¥
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Second,
[(A —20)(A — M(x0)) ' dA =0,
Y
and
f()t —20)(A — M(x0)) ™ (1d — P(Xo, x0)) dA = 0,
Yy
and

[(A — 20)(A — M(x0)) " (Id = P(Ro, x0)) M'(x0) - h(A — M(x0)) ' dA =0,
Y

since in all three cases the integrands do not have poles in the interior of y.
From (14) and the above, we deduce

(15) Z ()Lj(X()‘l‘/’l)—/lo-l—Nj(xO—Fh)

] )Pj(X0+h)

1<j<m’

h
= P(Lo.x0)M'(xp) - W‘D(AO,XO) + o(1).
Equating spectra, evaluating at & = te, for ¢t > 0, and taking the limit + — 0 (as
we may by Proposition 1.1), we arrive at the result. [

Remark 3.4. If (X¢,x9) has constant multiplicity, then by Corollary 2.2,
the branch of eigenvalues A and the associated eigenprojector P are as
smooth as M. If M is differentiable, the proof of Proposition 3.3 shows that
A(xg) - hP(Lo, x9) = P(Ao, x0)M'(xg) - hP(Ly. x9). A shortcut here consists in
differentiating the identity M(x)P(x) = A(x)P(x), for x close to xgp, which
gives

M'(x)P(x) + M(x)P'(x) = A (x)P(x) + A(x)P'(x),
and then, since PP’'P = 0 (simply because P is a projector), by applying P to
the left and the right of the above identity, we find PM'P = A'P.

Lemma 3.5. Given (Ag, Xxo) in the spectrum of M, with index m, if M is q > 1
times differentiable at xo, denote My the Taylor expansion of M at xg:

(16) M(x) = My(x) + |x — xo|? R(x¢. x),

where My is a degree-q polynomial in x — xo, and R(xp,x) — 0 as x — Xp.
Then, for any branch A of eigenvalues of M such that A(xy) = Ao, for some
branch p of eigenvalues of My, we have

(17) A(x) = p(x) + o(jx — xo|%™).



Basic matrix perturbation theory 259

Proof. Let
2
M(x,y) = Mo(x) +y, yeC""

Then, M(xp,0) = My(xg) = M(xo). In particular, the point (A9, x0,0) has
multiplicity m in the spectrum of M. Let A be a local branch of eigenvalues of
M such that A(xo,0) = Ao. By Proposition 3.1, where the variable y € CV ® s
seen as a real variable y € R?Y 2, we have

(18) A(x,y) — A(x,0) = O(|y|”™), for small|y|andxnearx.

Specializing to y = |x — x9|? R(x¢,x) for x near xo, we observe that, given A
a branch of eigenvalues of M such that A(xo) = Ao, we have

A(x) = A(x,

x — x0|? R(xo, x)).

Since A(-,0) is a branch of eigenvalues of M,, we deduce (17) from (18) and
the fact that R(xg,x) — 0 as x — Xxo. L]

With the help of Lemma 3.5, we may remove, in the statement of Propo-
sition 3.3, the assumption that (Ag,xo) is an isolated coalescing point in the
spectrum:

Corollary 3.6. If M is differentiable at xo, and if (Ag,x¢) is a coalescing
point such that Ao is a semi-simple eigenvalue of M(xo), then the conclusion
of Proposition 3.3 holds. That is, the assumption that (Lo,x¢) is an isolated
coalescing point in the spectrum can be removed in Proposition 3.3.

Proof. Let (16) be the Taylor expansion of M at xo, with ¢ = 1. The
eigenvalue Ay of M(xo) is also a semi-simple eigenvalue of My(xy). Consider
one-dimensional perturbations x = x¢ + té, where ¢ is given in R?, and
t € R. Proposition 1.3 applies to the family of matrix polynomials in one variable
t — My(xo + ze). In particular, the coalescing point (4g,0) is isolated in the
spectrum of ¢ — My(xp +t€). We may thus apply Proposition 3.3: for any branch
t — u(t) of eigenvalues of t — My(xg + t€), we have

(19) lim p(2) ; ©(0)

t>0

€ sp P(Lo, xo)M'(x9) - € P(Lo, xo).

Here we used M(xg) = My(xg), so that the relevant generalized eigenprojector
for My at (Ao, xo) coincides with the projector for M, and M'(xo) = My(xo).

Now given A a branch of eigenvalues of M such that A(xg) = Ag, by
Lemma 3.5 with ¢ =m =1 we have

Alxo +1€) — pu(t) = o(2),
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for some branch p of eigenvalues of t — My(xo +¢€). Thus, with (19), we have
Alxg +te) = A(xg) + at + o(1), t >0,

where « is in the spectrum of P(Lg,xo)M'(xg) - ¢ P(Ao,xo). This is precisely
the conclusion of Proposition 3.3. ]

4. Puiseux expansions

We describe eigenvalues around a coalescing point, following the approach of
[Tex].

Consider a point (Ag,x9) € &, and suppose that M is g > 1 times
differentiable at xo, so that the Taylor expansion (16) holds. We reproduce
(16) here:

M(x) = My(x) + |x — x0]? R(xg, x), R(xg,x) = 0 as x — xp.

The entries of matrix M, are polynomials of degree ¢ in x —xp € R%. In
particular, M,y has an extension to C¢. Let ¢ € R? be a fixed spatial direction,
and consider

So = {(2,2) € C x B(0,), det (Mo(xo + 2&) — A1d) = 0}.

where B(0,e) C C is the open disk centered at 0 and with radius & > 0 in the
complex plane. We denote my the projection

o : (A, z) € So — z € B(0,¢).

By Proposition 1.3, if ¢ is small enough then Sy has only (4¢,0) as a coalescing
point. Thus by Corollary 1.4, the restriction of my to Sp N my '(B(0,8)*) is a
covering of B(0,&)* if & is small enough. Let V' be a connected component of
So N7y 1(B(0,£)*). Since B(0,£)* is connected and locally path-connected, the
restriction 7y of my to V is a covering map with base B(0,&)* :

7o: ((A,z) eV — z € B(0,¢)".

’

Lemma 4.1. The covering map mq is conjugated to the covering p:z — z™ of
B(0,8)* for some m' € N* that is at most equal to the multiplicity of (A¢, xp).
That is, there exists a homeomorphism  such that the following diagram is
commutative:

v (B0, 2))

B(0, &)*
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Proof. Let A(xg+2z€),...,Am (xo-+z€) be the distinct eigenvalues of M, which
takes values in V for z € B(0,¢)*. The number of these eigenvalues is constant
over B(0,£)*, and at most equal to the multiplicity of (Ag,xp). In particular,
7o is an m’-sheeted covering of B(0,¢&)*. Connected coverings of a punctured
ball in C are determined, up to isomorphism, by their numbers of sheets (see
for instance [Mas, Chapter V, Theorem 6.6]). Thus 7y is conjugated to p, by a
homeomorphism . L]

Based on Lemma 4.1, we may give Puiseux expansions of eigenvalues around
a coalescing point:

Proposition 4.2. If (A, x9) is a coalescing point in the spectrum of M, with
index m, and if M is q > 1 times differentiable at xq, then for any local branch
A of eigenvalues of M which coalesce at xo with value Ao, any é € R?, there
exists a smooth map ¢ defined in [0,ty], for some tg > 0, and a positive integer
m' that is at most equal to the multiplicity of (Ao, Xxo), such that

(20) Alxo +t8) = Y™y + o(r2/™),

for 0 <t <ty.

By Proposition 3.1, we also know that |A(xo + t€) — A(xo)| = O('/™). In
particular, ¢(0) = Ag, and, if m’ > m, then the first derivative or derivatives of
¢ are equal to O at t = 0: ¢®(0) =0 for 0 <k <m'/m.

Proof. Given ¢ >0 and V as in the discussion preceding Lemma 4.1, let p be
a local section of g, that is a branch of eigenvalues of My(xp + z€). We have
7o(p) = 1d, hence, by Lemma 4.1, poylou =1d. Thus ¥~ !opu is a section
of p, meaning an m’-th root of unity:

1) 10(z) = p(wz'/™),

where ¢ is the first component of ¥, and @ is a given m’-th root of unity.

We now specialize to a local section p which is defined at some 7y > 0,
so that (f, u(f9)) € V. Then, the set {(r,u(r)), 0 <t < to} is connected in
SoNmy ' (B(0,€)*), by continuity of g, hence included in the connected component
V. Thus equality (21) holds for small enough ¢ > 0. In particular,

w(@™) = ¢p(wr), for 0 <1 <y,

implying that ¢t — ¢(wt) is as regular as p, hence analytical (by Corollary 2.2,
since only 0 is a coalescing point and M, is analytical). Thus, { — ¢ (w?), being
analytical in 0 <t <ty and bounded around ¢ = 0, is analytical in [0, ], so
that (21) holds for all 0 <t <y, with w(0) = ¢(0).
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Let finally A be a branch of eigenvalues of M such that A(xy) = Ay. By
Lemma 3.5, for some branch p of eigenvalues of My, we have

Alxo +18) = u(r) + o(t4™).

Together with (21), this implies (20), with a slight change of notation for ¢. [

Bibliographical note. The Cauchy formula of Proposition 2.1 is found in Equa-
tion (1.16), Paragraph 1.4, Chapter 2, in Kato [Kat]. The proof of Proposition 3.1
is borrowed from Saad (|Saa, Proposition 3.3 in Section 3.1.5]). The existence of
directional derivatives (Proposition 3.3) is found in Theorem 2.3, Paragraph 2.3,
Chapter 2, in [Kat]. Kato refers to Knopp [Kno], without proof, for details on
Puiseux expansions (see [Kat, Chapter 2, Paragraph 1.2]). So do Reed and Simon
(IRS, XILI]). Knopp’s discussion is limited to polynomials in two variables, the
roots of which are described as multi-valued analytical functions; here eigenval-
ues around a coalescing point are seen as perturbations of sections of a ramified
covering of a disk in the complex plane.

Remark 4.3 (On hyperbolic polynomials). If the spectrum of M(x) is real for
all x € @, then the family M is said to be hyperbolic. The eigenvalues are then
locally Lipschitz; see Brohnstein [Bro], or Kurdyka and Paunescu [KP]. In one
space dimension, Rellich’s theorem [Rel] states that analytic families of Hermitian
matrices have analytic eigenvalues and eigenvectors.

Remark 4.4 (On geometric optics). An important consequence of Proposition 3.3
is that the amplitude of a wave-packet is transported by a hyperbolic system at
group velocity; this is a crucial step in the derivation of amplitude equations in
geometric optics, see [Tex] and references therein.

Similar formulas exist for higher derivatives (see |Tex, Proposition 2.6 and
Remark 2.7] and Kato [Kat, Paragraphs 2.1 and 2.2, Chapter 2]). The corresponding
identity for second-order derivatives describes the Schrédinger correction to the
transport along rays for distances of propagation equal to the inverse of the
wavelength.

Acknowledgement. The author is grateful to the reviewer, who made a number
of interesting comments, and pointed out Saad’s book.
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