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Basic matrix perturbation theory

Benjamin Texier

Abstract. In this expository note, we give proofs of several results in finite-dimensional
matrix perturbation theory: continuity of the spectrum, regularity of the total eigenprojectors,
existence and computation of one-sided directional derivatives of semi-simple eigenvalues,
and Puiseux expansions of coalescing eigenvalues. These results are all classical, at least in
the case of one-dimensional, analytical perturbations; a standard reference is the treatise of
T. Kato, Perturbation theory for linear operators (Springer, 1980). In contrast with Kato,

we consider perturbations which are not necessarily smooth, in arbitrary finite dimension,
and for coalescing eigenvalues we do not use the notion of multi-valued function. The

proofs use Rouché's theorem, representations of projectors as contour integrals, and the

description of conjugacy classes of connected covering maps of the punctured disk.

Mathematics Subject Classification (2010). Primary: 47A55, 15A42.

Keywords. Matrix perturbation theory, regularity of spectra in finite dimensions

Consider a family of matrices M defined over an open set c

(1) M : x e £2 -* M(x) e cNxN.

We denote sp M(x) the spectrum of matrix M(x). The eigenspace associated with
A e sp M(x) is the non-trivial kernel ker M(x) — Aid. The generalized eigenspace
associated with A e sp M(x) is the largest space in the (strictly increasing until

stationary) sequence ker(M(x) — Ald)^, k >\. The index of an eigenvalue A of
M(x) is the smallest k such that ker(M(x) — AId)fc is maximal. An eigenvalue is

said to be semi-simple if the generalized eigenspace coincides with the eigenspace.

In particular, the index of a semi-simple eigenvalue is equal to 1.
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1. Continuity of the eigenvalues

Proposition 1.1. If x -> M (x) is continuous, then the spectrum of M is

continuous, in the following sense: given xo e Q, given Ao e sp M(xq) with

multiplicity m as a root of the characteristic polynomial of M(x0), for any small

enough r > 0, there exists a neighborhood U of Xq in £2, such that for all
x e U, the matrix M(x) has m eigenvalues (counting multiplicities) in B(Xo, r

Proof. This is a consequence of Rouché's theorem (see for instance the Corollary
to Theorem 20 in Chapter 4 of [Ahl]), which states that if f,g are holomorphic
in B(X0,r) c C, and if [/ — g\ < |gj in 3B(X0,r), then / and g have the

same number of zeros (counting multiplicities) in the open ball B(X0,r).
Let II(A,x) det(A — M(x)), holomorphic in A and continuous in x. By

finiteness of the spectrum, if r > 0 is small enough, then n(-,x0) has only one

zero in the closed ball B(X0,r), with multiplicity m. In particular, | fl(A, x0)[ > 0

on the boundary 3B(Xo,r), and the inequality

(2) h(x) — max |IT(-,x) — IT(-,xo)| — |n(-,x0)| < 0
3B(A„,/)

holds at x xo- Inequality (2) still holds in a neighborhood of xo- Indeed, by

continuity of IT in (A,x), for all A e 3B(X0,r), there can be found ax > 0, such

that ]lT(/x,x) — n(/x,x0)| < |n(/x,x0)| for |x — x0| < ax and |A — pt\ < ax with

/x e 3B(XQ,r). The family of open sets {p, e 3B(X0,r), |/x — A| < ax}, indexed

by A e 3B(X0,r), covers the compact boundary 3B(X0,r). A finite subcover is

indexed by i e /. The minimum a min,- axt is positive. Then, for all x such

that |x — x'o| < a, we have h(x) < 0. Thus, by Rouché's theorem, applied with

/ n(-,x) and g — n(-,x0), with x fixed in U B(x0,a), the function fl(-,x)
has the same number of zeros as n(-,x0) in B(X0,r), counting multiplicities.
This means that M(x) has exactly m eigenvalues in B(X0,r), for any x e U,
which concludes the proof.

We assume continuity of M in the following. In particular, Proposition 1.1

applies. Let

5 := (J spM{x) x{x} ((A,x)eCxfi, det(A - M(x)) o)
jtefi

be the spectrum of the family of matrices M, and let the projection

(3) n : (A, x) e S —> x e ST,

so that the spectrum of matrix M(x) is the fiber 7r_1({x}).
The multiplicity of a point (A,x) e S is the algebraic multiplicity of A in

sp M(x), that is the order of A as a root of the characteristic polynomial of M(x).
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A point (Ao,*o) e $ 's sa'd to have constant multiplicity if locally around

(A0,xo), there exists only one eigenvalue of M{x), not counting multiplicity.

Corollary 1.2. Around a point of constant multiplicity, the projection tx is a

local homeomorphism. If the whole spectrum of M(x0) has constant multiplicity,
then it is a covering map at xo, and the number of sheets is equal to the number

of distinct eigenvalues around xo.

Proof. If (A0,x0) has constant multiplicity, the continuous branch of eigenvalues A

given by Proposition 1.1 is a continuous section of the projection n, such that

A(xo) A0. Thus in restriction to a neighborhood of (A0,x0), the projection n
is a homeomorphism. If the whole spectrum {Ai ,XP} of M(x0) has constant

multiplicity, then in addition the fibers have constant cardinality, equal to p,
around x0. Thus n is a covering map.

If a point in S does not have constant multiplicity, it is said to be a coalescing

point in the spectrum. The associated multiplicity is strictly greater than one.

Coalescing points in the spectrum are not necessarily isolated, even if M is

smooth. Consider for instance the case R, and let F be a closed set in R.
There exists a smooth a > 0 such that F a_1({0}). Then for

every point in {0} x F is a coalescing point in the spectrum.

Proposition 1.3. If Q. C R, or if Q. is an open subset of C, and if M(x) is a

polynomial in x e f2, then the spectrum has a finite number of coalescing points.

Proof. We may work with irreducible components 11/ of the characteristic

polynomial If (a polynomial in two variables, A and x). For every such

component, 11/ and r^nj are relatively prime. In particular (see for instance

Theorem 3 in chapter 8 of | Ahl|), there are a finite number of x such that 11/(-,x)
and 3aTI/(-,x) have a common root A(x). These common roots (x,A(x)) are

precisely the coalescing points in the spectrum.

We say that (A,x) is a isolated coalescing point in the spectrum (of the family
of matrices M introduced in (1)) there exists a neighborhood U of (A,x) in
C x such that (W\{(A,x)}) H S comprises only points of constant multiplicity.

Corollary 1.4. If (Ao.xo) is an isolated coalescing point in the spectrum, then if
e > 0 is small enough, the restriction of the projection jt : Sr\ji~1(B(xo,e)*) —>

B(xo,e)* is a covering map. Here ir~~l (K(xo, !-:)*) is the inverse image of the

punctured ball B(xo,e)*.
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Proof. Identical to the proof of Corollary 1.2, since the fibers above the (connected)

punctured ball have constant cardinality.

At a coalescing point in the spectrum, eigenvalues may fail to be differentiable,

even if M is smooth. The canonical example is

<4) (° i)' xî0-

Regularity issues tor the eigenvalues are examined in Sections 3 and 4.

2. Cauchy formulas

We use notation S for the spectrum of the continuous family of matrices M,
as defined in Section 1.

Proposition 2.1 (Cauchy formula for total eigenprojectors). Let (A0, x0) e anc^

y a closed, positively oriented curve in C, which does not intersect sp M(xo),
and the interior of which intersects sp M(xo) at Ao only. Then for x close to xo,

(5) P(x) J (A - M(x))"1 dX

is the sum of the projectors onto the generalized eigenspaces associated with

eigenvalues of M(x) which lie in the interior of y. In particular, the projector
P is as regular as M.

Above and below, projectors onto generalized eigenspaces (equivalently,
generalized eigenprojectors) are implicitly parallel to the direct sum of the other

generalized eigenspaces.

Proof If (A0,x0) has constant multiplicity, or if it is an isolated coalescing point
in the spectrum, then there is a constant number of distinct eigenvalues near A0

for x close to x0. In general, however, for x close to x0, the number of distinct

eigenvalues of M{x) near Ao may depend on x. Let j(x) be this number, and

J(x) be the total number of distinct eigenvalues of M(x). Thus for x close to

xo, the eigenvalues Aj(x) Ay(x)M belong to the interior of y, while the

other eigenvalues Ay(x)+i(x) Ay^(x) do not.

The spectral decomposition of M{x) is

(6) Mix) (Ay (x) + Nj(x)) Pj(x),
1 <j <J(x)
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where the Pj are projectors onto generalized eigenspaces, such that

(7) Id= J2 PJ(xh Pi(x)Pj(x) 0 if
1

and the Nj are the associated nilpotent components, such that

Nj(x)Pj(x) Pj(x)Nj(x), and Ni(x)Pj(x) 0 if' z / j.
By (6) and (7), for x e U and A ^ sp M(x), we have

(8) (A — A/(x))-1 (A-Aj(x)~Nj(x))'1Pj(x),
1

which we may rewrite, the matrix Id — \iNj being invertible for all p, :

(A — M(x))~1 J2 ^-^j(x))~1(ld-(k-Xj(x)y1Nj(x)y1Pj(x),
i

and, expanding in inverse powers of A — Ay(x),

(9) (A-M(x)f1

£ ((A-Ay(x))"1 + £ (A-Aj{x)y(k+l)Nj{x)k)Pj{x),
1 <j <J(x) l<k<rj(x)—\

where r, (x) > 2 is the index of the nilpotent matrix Nj (x). that is the smallest

integer k such that Nj(x)k 0. We now compute residues:

[ (A —Aj(x))~lPj(x)dX Pj(x), 1 < j < ,/(x).
2,1 Tt Jy

f (A — Aj(x))
1

Pj(x)dX 0, j(x) + 1 < j < J(x),
Jy

f (A - Aj(xj)
(k l ^Nj(x)k Pj(x) dX 0, for all j and all k > 1.

Jy

Thus P(x) J2\<j<i(x) Pj(x) satisfies representation (5) for x close to, and

different from, x0. The above also shows that at x x0, the right-hand side of (5)
is the eigenprojector onto the generalized eigenspace associated with A0.

Corollary 2.2. Around a point (Ao,xo) of constant multiplicity in the spectrum,
the associated eigenvalue and generalized eigenprojector are as regular as M,
and we have

(10) (A(x) + N(x))P(x) 2— I A (A — M(xj)
1

dX,

where x A(x) is the local branch of eigenvalues such that A(xo) Ao, P is

the associated projector, and N the associated nilpotent.
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Note that in the case of simple roots of the characteristic polynomial of M, the

regularity of the eigenvalues follows directly from the implicit function theorem.

Proof. The constant multiplicity hypothesis implies that the total eigenprojec-
tor P(x) from Proposition 2.1 is the generalized eigenprojector onto the unique

eigenvalue A(x) of M(x) near A0. Thus, by representation (5), the eigenprojector

P is as regular as M.
Next we use a spectral decomposition of M(x) in order to express A(A —

M(x))~x, for A e C, as a sum of projectors, as we did for (A — Af(x))-1 in (8)

in the proof of Proposition 2.1:

A (A-M(x))"1 A(A-A(x)-(V(x))_1P(x) + J] A(A-AJ(x)-Nj(x))~1 Pj(x),

where A(x) is the eigenvalue of M{x) which is equal to Ao at xq, and the

Aj(x), for 2 < /' < J(x) are the other eigenvalues of M(x). For x close to x0,
the eigenvalues A, (x) are far from A0. Computing residues as in the proof of
Proposition 2.1, we find that if the interior of y contains A() and is small enough:

(11) — [ A (A - M(x))~X dX —[ A (A — A(x) — (V(x))-1 P(x) dX.
2/ 7t Jy 2lJT Jy

We now expand in powers of (A — A(x))-1 :

A(A-A(x)-yV(x))"' =A(A-A(x))_1 + J2 A (x))~(*+1)tV(x)*,
l<k<r(x)-l

where r(x) is the (possibly x-dependent) index of (V(x), for x close to xo, and

then again compute residues:

— I A(A — A(x))-1 P(x) dA A(x)P(x),lin Jy

— [ X(X-\(x))~{k+1)N(x)kP(x)d\ N(x)P(x), k> I.
2 i 71 Jy

With (11), this implies representation (10), from which we deduce that the map

x -> (A(x) + N(x))P(x) is as regular as M. Taking the trace, we find that

x fflA(x) is as regular as M, where m > 1 is the multiplicity of A.

Corollary 2.3. If (Ao,xo) is an isolated coalescing point in the spectrum, with

multiplicity m > 1, we have

(12) E (Aj(x) + Nj(x))Pj(x) —— f A (A — A4(x))
1

dX,
i <j<m'

2m Jr

where x —* Xj(x), for 1 < j < m'. are the distinct branches of eigenvalues such

that Xj(xo) Ao, for some m' < m, and the matrices Pj are the associated

projectors, and Nj the associated nilpotents.
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Proof. For all x e U \ {x0}, where U is some neighborhood of x(>, the matrix

M(x) has the same number of distinct eigenvalues in a neighborhood of A0.

Let m' be this number, less than or equal to m, the multiplicity of A0. Let

Ai,..., Am' be these eigenvalues. It suffices to reproduce the computations of the

proof of Corollary 2.2, where each Aj plays the same role as A in the proof of
Corollary 2.2, to arrive at (12).

3. Holder estimates

Proposition 3.1. If M is differentiable at xo then for any local branch A of
eigenvalues of M around xq, we have the bound

(13) |A(x) — A(x0)| < C{M)\x — x'0|1/m.

locally around xo, with C(M) > 0, where m is the index of (A(xo).xo), as

defined in the introduction.

If (A(xo),x0) has constant multiplicity and M is locally Lipschitz, then by

Corollary 2.2 the eigenvalues are actually Lipschitz, locally around x0, which

of course is much better than (13) in the case m > 1. Estimate (13) however

accurately describes the eigenvalue behavior in the canonical coalescing case (4),
for which m 2.

Proof. Let y be a path around A(x0) and P be the associated total eigenpro-

jector, as in Proposition 2.1. Then P is differentiable at x0, just like M. by

Proposition 2.1. For x close to x0, let u(x) be a unitary eigenvector associated

with A(x). We have no information on the regularity of u. For x close to x0,
we have

(M(x) — A(x0))mP(x)w(x) (A(x) — A(x0))mw(x).

Taking norms, this gives

|A(x) - A(x0)|m I(M(x) - A(x0))mP(x)|.

Since m is the index of (A(x0),x0), we have (M(x0) — A(x0)'"P(x0) 0. Thus

we may write the above as

|A(x) — A(x0)|m I (M(x) — A(x0))m P(x) - (M(x0) - A(xo))'>(x0)|,

and we conclude by differentiability of x -> A4 (x — A (x0 )P (x
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Remark 3.2. Without appealing to the Cauchy formula of Proposition 2.1, we can

show that A satisfies |A(jc)—A(jc0)| < C(M)\x-x0\x,p, where p is the multiplicity
of (A(xo), x0), as follows. We denote A0 A(x0). The characteristic polynomial
n(A,jc) det (A — M(x)) factorizes into n n0n where ni(A0,x0) ^ 0,

and n0(A,Jc0) (A—A0)/'. The degree of n0 is equal to p, the multiplicity
of (Ao,x0), and n0 is unitary. We may focus on n0 in the following. Let A

be a branch of eigenvalues such that A(x0) A0. Expanding n0 in powers of
A(x) — A0, we find, since 3^n0(Ao,xo) 0 for 0 < j < P - 1 :

n0(A(x), xo) (p\y1(X(x)-X0)m + 0(|A(x) — a0|)/'+1.

Besides, the matrices M being differentiate at x0, the characteristic polynomial
Id is differentiable in x at x0, and so is n0 :

n0(A(x),x) n0(A(x), x0) + 0(\x - x0|) o.

Thus

(/d)_1 (A(x) — Ao)^ + 0(|A(x) — A0|)/'+1 0(|x — x0|),

which implies (13), with p instead of m. We have m and the inequality

may of course be strict, so that the bound of Proposition 3.1 is stronger than the

one proved here in this Remark.

The estimate of Proposition 3.1 is much improved in the semi-simple case:

Proposition 3.3. If M is differentiable at xo, and if (Ao.xo) is an isolated

coalescing point such that Ao is a semi-simple eigenvalue of M(xq any local
branch A of eigenvalues of M such that A(xo) A() has a one-sided directional
derivative in every direction, and, for all e e

A(x0 + te) — A(x0) ^hm e spr(A0,xo)/W (x0) • e r(A0, x0),
t-*o t
t> 0

where P(Ao.Xo) is the generalized eigenprojector onto the generalized eigenspace

at (Ao,xo), and parallel to the direct sum of the other generalized eigenspaces.

In particular, the eigenvalues are Lipschitz:

|A(x) — A(xo)| < C(M)|x — xo|,

locally around xo, with C(M) > 0.

See Corollary 3.6 below for an improvement on Proposition 3.3.
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Proof. Let m be the multiplicity of A0, and X\ Am>, 2 < m' < m, the

distinct eigenvalues that coalesce at x0 with value A0. By Corollary 2.3,

f A (A — M (xo + A)) dX ^ '
(Ay (xo + A) + Nj (xo + A)) Py (xo + h),

Y \<j<m'

where h e is small and y is a suitable curve in C. Above, Nj and Pj are

the nilpotent and projector associated with Ay. By Proposition 2.1,

f (A - M(x0 + A))
1

dX — P(x0 + A) := ^ Pj(x0 + h).
Jy 1<j<m'

Thus

(14) j (X - X0)(X - M(x0 + h))~1dX

1 <j<m'

By differentiability of M at xo :

(A — M(x0+A))
1

(A — M(x0)) 1+ (A —M(x0))
1

A/'(x0)-A(A — M(x0)) 1+o(h).

Since A0 is semi-simple, the spectral decomposition at x0 is

M{xo) A0P(A0,x0) + M(x0)(ld - P(A0,x0)),

where P(A0,x0) is the generalized eigenprojector. Thus

(A-M(xo))
1

(A - Ao)-1 P(Ao.xq) + (A - M(x0))
1

(Id - P(A0, x0)),

(A — A0)(A — M (xo + A))

P{A0,x0)

+ (A - A0)(A - M(xo))"1 (Id - P(A0, x0))

+ P(Xq, xq)M'(xo) h(X — M(x0))_1

+ (A — A0)(A - A/(x0))~'(ld - P(Ao,x0))M'(x0) • A (A - M(x0))"'

+ o(h).

We now compute residues. First, by choice of y, definition of P(A0,x0) and

Proposition 2.1,

J + A) — Ao + Afj (xq + A)) Pj (xo + A),

so that
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Second,

1
and

I

(A - A0)(A - M(xo))
1

dX 0,

(A — A0)(A — M(x0)) '(Id — P(A0,x0)) dX 0,

and

[ (A — A0)(A - M(x0))_1 (id — P(Ao,xo))M'(xo) h(X - M(x0))~' dX 0,
Jy

since in all three cases the integrands do not have poles in the interior of y.
From (14) and the above, we deduce

£ ('
1<j<m'

/,c\ \ I (x° + — Ao + A'jC*o + h)\(|5) ;L I
1^[

pj(xo + h)

P(Ao,xo)M'(x0) P(A(), x0) + o(l).
\h\

Equating spectra, evaluating at h te, for t > 0, and taking the limit t -> 0 (as

we may by Proposition 1.1), we arrive at the result.

Remark 3.4. If (A0,a:o) has constant multiplicity, then by Corollary 2.2,
the branch of eigenvalues A and the associated eigenprojector P are as

smooth as M. If M is differentiable, the proof of Proposition 3.3 shows that

A'(jco) • hP(X0, x0) P(X0, x0)M'(x0) hP(X0, x0) A shortcut here consists in

differentiating the identity M(x)P(x) A(x)P(x), for x close to x0, which

gives

M\x)P(x) + M(x)P'(x) — A '(x)P(x) + A(x)P'(x),

and then, since PP' P 0 (simply because F is a projector), by applying P to
the left and the right of the above identity, we find PM' P A' P.

Lemma 3.5. Given (A0. xq) in the spectrum of M, with index m, if M is q > 1

times differentiable at xo, denote Mo the Taylor expansion of M at xo.'

(16) M(x) M0(x) + |x — x0\q R(x0,x),

where M0 is a degree-q polynomial in x — xo, and R(xo,x) —> 0 as x Xo.

Then, for any branch A of eigenvalues of M such that A(xo) Ao, for some

branch p of eigenvalues of Mo, we have

(17) A(x) p{x) + o( |x — x0\q/m).
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Proof. Let

M(x, y) M0(x) + y, jeC"2.
Then, M(xo,0) M0(x0) M(x0). In particular, the point (Ao, xo, 0) has

multiplicity m in the spectrum of M. Let À be a local branch of eigenvalues of
M such that A(x0,0) Ao - By Proposition 3.1, where the variable y e CN~ is

seen as a real variable y e R2N~, we have

(18) A(x, y) — A(x,0) 0(|y|1/,m), for small|y|andxnearx0.

Specializing to y |x —x0|qR(x0,x) for x near x0, we observe that, given A

a branch of eigenvalues of M such that A(x0) A0, we have

A(x) A(x, |x — xo|<?Ä(xo,x)).

Since A(-,0) is a branch of eigenvalues of M0, we deduce (17) from (18) and

the fact that R(x0, x) 0 as x -> x0.

With the help of Lemma 3.5, we may remove, in the statement of Proposition

3.3, the assumption that (Ao, xo) is an isolated coalescing point in the

spectrum:

Corollary 3.6. If M is dijferentiable at xo, and if (Ao.xo) is a coalescing

point such that Ao is a semi-simple eigenvalue of M{xo), then the conclusion

of Proposition 3.3 holds. That is, the assumption that (Ao,xo) is an isolated

coalescing point in the spectrum can he removed in Proposition 3.3.

Proof. Let (16) be the Taylor expansion of M at xo, with q — 1. The

eigenvalue A0 of M(x0) is also a semi-simple eigenvalue of Mq(xq). Consider
one-dimensional perturbations x x0 + te, where e is given in Rd, and

tel. Proposition 1.3 applies to the family of matrix polynomials in one variable

t -* Mq(xo +te). In particular, the coalescing point (A0,0) is isolated in the

spectrum of t -» M0(x0 + te). We may thus apply Proposition 3.3: for any branch

t /x(z) of eigenvalues of t -> M0(x0 + te), we have

(19) lim e sp P(A0, xo)M'(xo) • e P(A0, x0).
(->0 t
t> o

Here we used M(x0) Mo(xo), so that the relevant generalized eigenprojector
for Mq at (A0,x0) coincides with the projector for M, and M'(x0) Mq(x0).

Now given A a branch of eigenvalues of M such that A(x0) A0, by
Lemma 3.5 with q m 1 we have

A(x0 + te) - p,(t) o(t),
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for some branch /x of eigenvalues of t -> Mo(x0 + te). Thus, with (19), we have

X{xq + te) X(xq) + at + o(t), t > 0,

where a is in the spectrum of P(Ao, xo)M'(x0) e P(X0, x0). This is precisely
the conclusion of Proposition 3.3.

4. Puiseux expansions

We describe eigenvalues around a coalescing point, following the approach of
[Tex],

Consider a point (A0,xo) e S, and suppose that M is q > 1 times

differentiable at x0, so that the Taylor expansion (16) holds. We reproduce

(16) here:

M(x) M0(x) + \x — x0\qR(x0,x), R(x0,x) -» 0 as x -> x0-

The entries of matrix M0 are polynomials of degree q in x - x0 e 'Sd. In

particular, M0 has an extension to Cd. Let e e be a fixed spatial direction,
and consider

S0 := I (A, z) e C x Z?(0, e), det (M0(x0 + ze) — Aid) oj,

where B(0, e) c C is the open disk centered at 0 and with radius e > 0 in the

complex plane. We denote jr0 the projection

jto : (A, z) G <So —- z G B{0, s).

By Proposition 1.3, if e is small enough then S0 has only (A0,0) as a coalescing

point. Thus by Corollary 1.4, the restriction of 7r0 to 50 fl e)*) is a

covering of B(0,e)* if s is small enough. Let V be a connected component of
5(| n jIq

' B{(). /-:)* Since B(0, s)* is connected and locally path-connected, the

restriction tt0 of jto to V is a covering map with base ß(0, s)* :

ifo : (A, z) e V —> z e B{0,s)*.

Lemma 4.1. The covering map tt0 is conjugated to the covering p : z -> zm of
B(Q,s)* for some m'eN* that is at most equal to the multiplicity of (Ao,xo).
That is, there exists a homeomorphism f such that the following diagram is

commutative:

Vp~l(B{0,e)*)
Tto

B(0, e)*
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Proof. Let \i(x0 + ze),..., Äm'(xo + ze) be the distinct eigenvalues of M0 which
takes values in V for z e 5(0, s)*. The number of these eigenvalues is constant

over 5(0, e)*, and at most equal to the multiplicity of (A0,x0). In particular,
ir0 is an m' -sheeted covering of 5(0, s)*. Connected coverings of a punctured
ball in C are determined, up to isomorphism, by their numbers of sheets (see

for instance [Mas, Chapter V, Theorem 6.6]). Thus n0 is conjugated to p, by a

homeomorphism f.
Based on Lemma 4.1, we may give Puiseux expansions of eigenvalues around

a coalescing point:

Proposition 4.2. If (Ao,xo) is a coalescing point in the spectrum of M, with

index m, and if M is q > 1 times dijferentiable at xo then for any local branch
A of eigenvalues of M which coalesce at xq with value Ao, any e e 9d, there

exists a smooth map f defined in [0, to], for some to > 0, and a positive integer
m' that is at most equal to the multiplicity of (Ao.xo). such that

for 0 < t < to-

By Proposition 3.1, we also know that |A(x0 + te — A(x0)| 0(tl^m). In

particular, 0(0) A0, and, if m' > m, then the first derivative or derivatives of

f are equal to 0 at t 0 : (p(k)({)) 0 for 0 < k < m'/m

Proof Given s > 0 and V as in the discussion preceding Lemma 4.1, let // be

a focal section of n0, that is a branch of eigenvalues of M0(x0 + ze). We have

if0(/x) Id, hence, by Lemma 4.1, p o o p Id. Thus o p is a section

of p, meaning an m'-th root of unity:

where f is the first component of i//, and to is a given m'-th root of unity.
We now specialize to a focal section p. which is defined at some > 0,

so that (t0,5(?o)) e V. Then, the set {(t,p(t)), 0 < t < t0} is connected in

<S0n1 (5(0, e)*), by continuity of //, hence included in the connected component
V. Thus equality (21) holds for small enough t > 0. In particular.

implying that t —> fient) is as regular as pt, hence analytical (by Corollary 2.2,

since only 0 is a coalescing point and M0 is analytical). Thus, t fi(cot), being
analytical in 0 < t < to and bounded around t 0, is analytical in [0, t0], so

that (21) holds for all 0 < t < to, with /x(0) 0(0).

(20) A(x0 +te) fiit1'm')+o(t«'m),

(21) p{z) 0(cuz1/m'),

p(tm') — fiont), for 0 < t < to,
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Let finally A be a branch of eigenvalues of M such that A(x0) A0. By
Lemma 3.5, for some branch /x of eigenvalues of M0, we have

A(x0 + te) /x(t) + o{tqlm).

Together with (21), this implies (20), with a slight change of notation for <p.

Bibliographical note. The Cauchy formula of Proposition 2.1 is found in Equation

(1.16), Paragraph 1.4, Chapter 2, in Kato [Kat]. The proof of Proposition 3.1

is borrowed from Saad (|Saa, Proposition 3.3 in Section 3.1.5]). The existence of
directional derivatives (Proposition 3.3) is found in Theorem 2.3, Paragraph 2.3,

Chapter 2, in [Kat], Kato refers to Knopp LKno], without proof, for details on

Puiseux expansions (see |Kat, Chapter 2, Paragraph 1.2]). So do Reed and Simon

([RS, XII.1 ]). Knopp's discussion is limited to polynomials in two variables, the

roots of which are described as multi-valued analytical functions; here eigenvalues

around a coalescing point are seen as perturbations of sections of a ramified

covering of a disk in the complex plane.

Remark 4.3 (On hyperbolic polynomials). If the spectrum of M(x) is real for
all x e f2, then the family M is said to be hyperbolic. The eigenvalues are then

locally Lipschitz; see Brohnstein [Bro], or Kurdyka and Paunescu [KP]. In one

space dimension, Rellich's theorem [Rel] states that analytic families of Hermitian
matrices have analytic eigenvalues and eigenvectors.

Remark 4.4 (On geometric optics). An important consequence of Proposition 3.3

is that the amplitude of a wave-packet is transported by a hyperbolic system at

group velocity; this is a crucial step in the derivation of amplitude equations in

geometric optics, see |Tex| and references therein.

Similar formulas exist for higher derivatives (see |Tex, Proposition 2.6 and

Remark 2.7[ and Kato [Kat, Paragraphs 2.1 and 2.2, Chapter 2]). The corresponding

identity for second-order derivatives describes the Schrödinger correction to the

transport along rays for distances of propagation equal to the inverse of the

wavelength.
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