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A simplification problem in manifold theory

Jean-Claude HAausmanN and Bj@grn JAHREN

Abstract. Two smooth manifolds M and N are called R-diffeomorphic if M x R is
diffeomorphic to N x R. We consider the following simplification problem: does R-
diffeomorphism imply diffeomorphism or homeomorphism? For compact manifolds, analysis
of this problem relies on some of the main achievements of the theory of manifolds,
in particular the h- and s-cobordism theorems in high dimensions and the spectacular
more recent classification results in dimensions 3 and 4. This paper presents what is
currently known about the subject as well as some new results about classifications of
R -diffeomorphisms.
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1. Introduction

Let X and Y be smooth manifolds. We write Y =g X when Y is
diffeomorphic to X and Y =~y p X when Y is homeomorphic to X . Given
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a manifold P, Y and X are called P -diffeomorphic (notation: Y ~ p_gig X ) if
there exists a diffeomorphism f:Y x P — X x P, and such an f is called a
P -diffeomorphism. Consider the following simplification problem.

The P -Simplification Problem. For smooth closed manifolds, does P -diffeo-
morphism imply diffeomorphism, or homeomorphism?

The first part of this paper is a survey on what is currently known about
the R-simplification problem (other cases are briefly discussed in Section 8).
This quite natural question, expressed in very elementary terms, happens to be
closely related to the theory of invertible cobordisms (see, e.g., [Sta3, JKI] and
Proposition 3.3). As advertisement, here are some samples of the main results of
the theory.

Theorem A. Let M and N be smooth closed manifolds of dimension n. Suppose
that M is simply connected. Then

(i) N~prdit M = N ~p M,
(ii) N ~pqgig M = N ~gg M ifn #+ 4.

The simplicity of the statement of Theorem A, with almost no dimension
restriction, contrasts with the variety of techniques involved in the proof. Actually,
Theorem A concentrates a good deal of important developments in differential
topology during the 20th century (see also Section 8.2).

When M is not simply connected, part (i) of Theorem A is false in general,
The first counterexample was essentially given by Milnor in a famous paper in
1961 [Mill] (see Example 4.5.(1)). Using a recent result of Jahren—Kwasik [JK2,
Theorem 1.2], we now know that part (i) is, in general, “infinitely false”, i.e.,
there are manifolds having countably many homeomorphism classes within their
R -diffeomorphism class (see Example 4.5.(5)).

In dimension 4, part (ii) of Theorem A is infinitely false in general, even
when M is simply connected. Indeed, there may be a countable infinity of
diffeomorphism classes of manifolds within the homeomorphism class of M, for
instance when M = C P2k C P2. the connected sum of the complex projective
space CP? and k copies of CP? with reversed orientation, k > 6 [FS]. Each
such diffeomorphism class provides a counterexample of part (ii) of Theorem A,
thanks to the following result (probably known by specialists).

Theorem B. Let M and N be smooth closed manifolds of dimension 4 which
are homeomorphic. Suppose that Hy(M,Z,) = 0. Then N ~p-gixt M.

In particular, although it is not known whether all differentiable structures
on the 4-sphere S* are diffeomorphic (the smooth, 4-dimensional Poincare
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conjecture), they would all be R -diffeomorphic. Incidentally, the possibility of
such exotic structures will play a role in some results in Sections 5, 6 and 7.
Note also that manifolds M and N as in Theorem B but simply-connected are
homeomorphic if and only they are homotopy equivalent [FQ, § 10.1].
The hypothesis of simple connectivity in Theorem A is not necessary in low
dimensions. The following result is classical for » < 2 and follows for n = 3
from a result of Turaev [Turl] together with the geometrization theorem.

Theorem C. Let M and N be two closed manifolds of dimension n < 3, which
are orientable if n = 3. Then N ~gr-git M if and only if N ~g4g M.

Theorem C is currently unknown for non-orientable 3-manifolds (see Re-
mark 6.2).

Proofs of Theorems A, B and C are given in Sections 4-6 (with more
general hypotheses for Theorem A), after important preliminaries in Sections 2—
3. Of particular importance for the simplification problem are the so-called
inertial invertible cobordisms, characterized by the property that the two ends are
diffeomorphic (homeomorphic). Section 4 also includes some new results in this
area (notably Proposition 4.7).

In the last part of this paper (Section 7), we present new results on
classification of R -diffeomorphisms under several equivalence relations. For
instance, a diffeomorphism f: N x R — M x R is called decomposable if
there exists a diffeomorphism ¢: N — M such that f is isotopic to ¢ x *idg.
Fix a manifold M and consider pairs (N, f) where N is a smooth closed
manifold and f: N xR - M xR is a diffeomorphism. Two such pairs (N, f)
and (ZV f ) are equivalent if f~1o f is decomposable. The set of equivalence
classes is denoted by D(M). We compute this set in all dimensions in terms of
invertible cobordisms. As a consequence, in high dimensions we get the following
result.

Theorem D. Let M be a closed connected smooth manifold of dimension n > 5.
Then D(M) is in bijection with the Whitehead group Wh(m M).

Corollary E. Let M be a closed connected smooth manifold of dimension n > 5.
The following assertions are equivalent.

(i) Wh(z;M) = 0.
(ii) Any diffeomorphism f: N xR — M xR is decomposable.

Theorem D is actually a consequence of a more categorical statement
(Theorem 7.1), which is of independent interest.
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We also consider a quotient D.(M) of D(M) where isotopy is replaced
by concordance. Interesting examples are produced to discuss the principle of
concordance implies isotopy for R -diffeomorphisms.

2. Cobordisms

2.1. Preliminaries. Throughout this paper, we work in the smooth category C*
of smooth manifolds, (possibly with corners: see below) and smooth maps. Our
manifolds are not necessarily orientable.

If X is a manifold and r € R, the formula jy(x) = (x,r) defines a
diffeomorphism j5: X — X x {r} or an embedding j5: X — X xR, depending
on the context.

Let X and X’ be manifolds with given submanifolds Y and Y’, resp., and
let 1: Y —> Y’ be an identification (diffeomorphism), usually understood from
the context. A map f: X — X’ is called relative Y (notation: rel Y) if the
restriction of f to Y coincides with the identification 7. Often, ¥ = dX and
Y’ = dX’, in which case we say relative boundary (notation: rel d).

2.2. The cobordism category. A triad is a triple (W, M, N) of compact smooth
manifolds such that oW = (M IIN)UX with 0X = M UAJN and X ~qig OM <1 .
Most often dM is empty, in which case dW = M LI N. Otherwise, W is actually
a manifold with corners along M and 0N, modeled locally on the subset
{(x1,..-,xp)|x1 = 0,x2 > 0} of R”. Smooth maps are then always required to
preserve the stratification coming from this local structure (for a precise exposition
of the smooth category with corners, see the appendix of [BS]).

Let us fix the manifolds M and N (one or both of them could be empty).
A cobordism from M to N is a triple (W, ju, jn), where W is a compact
smooth manifold and jy : M — W, jy : N — oW are embeddings such
that (W, jiu (M), jn(N)) is a triad. If M and N have nonempty boundaries,
(W, jum, jn) will sometimes be called a relative cobordism.

By a slight abuse of notation we will also let jjs denote the embedding jas
considered as a map into W.

Two cobordisms (W, ja, jn) and (W', ji,, jy) are equivalent if there is a
diffeomorphism h: W — W’ such that jyoh = j;, and jyoh = j, . The set
of equivalence classes of cobordisms from M to N is denoted by Cob(M, N).
The equivalence class of (W, ja, jn) is denoted by [W, jum, jn].

A triad (W, M,N) determines an obvious cobordism, (W,1ps,15), and its
equivalence class in Cob(M, N) will also be denoted by [W, M, N]. Note that
[W,M,N] = [W’',M,N] if and only if W ~gg W’ (rel M U N). We shall make
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no distinction between a triad and the cobordism it determines and often write
“a cobordism (W, M, N)” instead of “a triad (W, M,N)”. A triad of the form
(M x I,M x {0}, M x{1}) = (M x I,jg,jx) (using the notations j; from
Section 2.1) will be called a trivial cobordism.

We now define a composition

Cob(M, N) x Cob(N, P) —s Cob(M, P).

Let ¢ € Cob(M,N) and ¢’ € Cob(N, P), represented by cobordisms (W, jar, jn)
and (W', jy,jp). The topological manifold W Ujr o jt W’ admits a smooth
structure compatible with those on W and W’ [Mil2, Theorem 1.4]. Such a
smooth structure is unique up to diffeomorphism relative boundary (see also
[Hir, Chapter 8, § 2]). Choosing one of these smooth structures gives rise to a
smooth manifold WoW’, and (WoW', ju, jp) represents a well-defined class
coc’ € Cob(M, P). With this composition, one gets a category Cob whose
objects are closed smooth manifolds and whose set of morphisms from M to
N is Cob(M,N). The identity at the object M is represented by the trivial
cobordism:

Iy =[M xI,M x {0}, M x{1}] = [M x I, jyy, jn]-

Note that, by construction, the composition 1ps0(W, jar, ja)olny has the form of
a triad (W', M, N), where we identify M and N with M x {0} and N x {1}. In
other words: up to equivalence, cobordisms can always be represented by triads.
This will sometimes be exploited in proofs, in order to simplify notation. But in
general it is helpful to have the extra flexibility of the more general definition, as
it makes it easier to keep track of how we identify M and N with submanifolds
of oW . A trivial example is 15, which as a cobordism goes from M to itself,
but in a triad the two ends can not be the same manifold. More examples are
the definition of mapping cylinders and Lemma 2.4 below.

Our definition of the cobordism category is a condensed reformulation of
[Mil2, § 1], with end-identifications going in reverse directions.

2.3. Duals and mapping cylinders. The order of M and N in (W, ja, jn)
reflects the categorical intuition that W is a cobordism from M to N . Reversing
the order of M and N, we obtain the dual cobordism (W, jy, ju), where W is
just a copy of W . If the cobordism is given by a triad (W, M, N), its dual is given
by (W,N, M). The correspondence [W] — [W] defines a functor Cob — Cob®P
which is an isomorphism of categories.

Examples of cobordisms are given by mapping cylinders of diffeomorphisms.
Let f: M — N be a diffeomorphism between smooth closed manifolds. The
mapping cylinder Cy of f is defined by
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2.1) Cr={M x[0,)} U{N x (0,11} /{(x,2) ~ (f(x),1)
for all (x,t) € M x (0,1)}.

Note the obvious homeomorphism

(2.2) Cr ~ouop {M x T U N} [{(x,1) ~ f(x)}.

The latter is the usual definition of the mapping cylinder valid for any continuous
map /. But, when f is a diffeomorphism, Definition (2.1) makes Cy a smooth
manifold with boundary dCy = M x {0} U N x {1}. We thus get a cobordism

(Cr. il JN)-

Lemma 2.4. For a diffeomorphism f: M — N between smooth closed manifolds,
the equalities

(2.3) [Croinesdn] = [M % L, ji, e f =[N x 1, jief, i3]

hold in Cob(M,N).

Proof. One checks that the correspondences

M x[0,1)> (x,t) — (x,1)
& { Nx©15 (.0 = (f.0 .

provide the first equality. The second one is obtained similarly. L]

Example 2.5. Let f : M — M be a self-diffeomorphism of a closed manifold
M. Then Cy is equivalent to 1y if and only if there is a diffeomorphism
F:MxI - M x1I such that F(x,0) = f(x) and F(x,1) = x, i.e., f is
concordant to idys .

The proof of the following lemma is left to the reader (compare [Mil2,
Theorems 1.6]).

Lemma 2.6. Let M i> N 55 P be diffeomorphisms between smooth manifolds.
Then [Cgor] = [Crlo[Cq]. O

Remark. The reason for the contravariant form of this identity is that we write
composition of cobordisms “from left to right”. This is the usual convention
in cobordism categories, like path categories (e.g., fundamental groupoid) and
topological field theories.
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3. Invertible cobordisms

3.1. The category of invertible cobordisms. A cobordism (W, ja, jn) is called
invertible if [W] is an invertible morphism in Cob, i.e., there is a cobordism
(W™L, jn, jar) such that [W]o[W™!] =1j and [W1o[W] =1y.

As usual, these conditions uniquely determine [W~!] if it exists. Two smooth
manifolds are invertibly cobordant if there exists an invertible cobordism between
them. Let Cob*(M,N) be the subset of Cob(M,N) formed by invertible
cobordisms. This defines a subcategory Cob*™ of Cob, with the same objects.

An example of invertible cobordism is given by the mapping cylinder Cy of
a diffeomorphism f: N — M. Indeed, Lemma 2.6 together with Lemma 2.4
imply that [Cf]™! = [Cp—1] = [Cr].

3.2. Invertible cobordisms and R -diffeomorphisms. From now on until Sec-
tion 7 we will be mainly concerned with cobordisms between closed manifolds,
unless explicitly stated. The main exceptions are the discussions of 4 -cobordism
and Whitehead torsion in Sections 3.10 and 3.12 and of concordance in Sec-
tion 3.17.

Here is one of the main results of this section.

Proposition 3.3. Let M and N be smooth closed manifolds. The following
statements are equivalent.

(@) N ~gdgir M.

(b) N and M are invertibly cobordant.

(c) There is a diffeomorphism B: N x S1 — M x S' such that the composed
homomorphism

B (N x pt) —> m(N x SY) -2 m(M x 81 2% 2 (sY)

is rrivial.
(d) There is a diffeomorphism B: N x S' — M x S such that the diagram

71N x S1) b (M x SY)

(3.2) \ /

m(Sh)

commutes, where the arrows to mw(S') are induced by the projections
onto S'.
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Remark 3.4. Conditions (c¢) or (d) are stronger than just S! -diffeomorphism, since
there are examples of closed manifolds M and N such that M ~ g1 47 N but
m1(N) % (M) (see, e.g., [Cha, p. 29], [CR, Theorem 4.1] or [KR1, Theorem 2]).
Some of these examples are in dimension 3, so crossing with spheres provides
examples in all dimensions greater than four.

We write a detailed proof of Proposition 3.3, introducing notations which will
be useful in Section 7. Also, proving (a) = (c) is delicate: Kervaire wrote a short
argument at the end of [Ker| but, after publication, thought that his argument
was incorrect. For a proof of (b) = (c) using the deep s-cobordism theorem,
when dim M > 4, see Remark 3.16.

Proof of Proposition 3.3. (a) implies (b). Let f: N xR — M xR be a
diffeomorphism. Write M,, = M x {u}, N, = N x{u} and N), = f(N,). We
use the obvious diffeomorphisms jy : M — M, and jy: N — N, introduced
in Section 2.1.

By compactness of N, there exists r <u < s < v such that N;’; C M x(rs)
and Mg C f(N x (u,v)) (to get this order, one might have to precompose f
by the automorphism (x,u) > (x,—u) of N xR). The region A between M,
and N, and the region B between N,, and M produce equivalence classes of
cobordisms

[A, jar, foin] € Cob(M,N) , [B, fojy,jnl € Cob(N, M)
obviously satisfying [A]o[B] = 13s. One also has the class of cobordism
[A', i, foi}] € Cob(M,N).

Using the diffeomorphism f, one proves that [B]o[A’] = 1, . This implies that
[4'] = [A] and [B] = [4]"".

(b) implies (a) and (c). We first prove that (b) implies (a), using an argument
of Stallings [Sta3, §2]. Let A be an invertible cobordism from M to N, with
inverse B. Let A; and B; be copies of A and B indexed by i € Z. Consider
the manifold

W=...0 (AioBi)o (Ai—[—loBi-l-l)o"
=+ o(BioAit1) o (Bit10A4i42)o -

Let gi: M x [i,i + 1] — A;joB; be copies of some diffeomorphism relative
boundary g: M x I — AoB. Then, gy = (J;cz &i is a diffeomorphism from
M xR onto W. The same may be done with the second decomposition of W.
We thus get two diffeomorphisms gp: M xR — W and gy: N xR - W,
which proves (a).

(3.3)
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We now prove that (b) implies (c). By conjugation by gjs, the automorphism
(x,2) > (x,t +1) of M xR produces an automorphism 7° of W, generating a
free and proper Z-action on W and a diffeomorphism «: W/Z s M xSt It is
not clear whether the corresponding automorphism obtained via gy is conjugate
to 7. However, the manifold Z; = B;joA;+; is a fundamental domain for the
T -action and the restriction of 7" to Z; sends Z; onto Z;; relative boundary.
Therefore, we get a diffeomorphism

" 1 « 1

The composed homomorphism (3.1) is trivial since the restriction of 8 to N x pt
factors through M x R.

(c) implies (d). Using the exact sequence

1 - (N x pt) - 1 (N x §1) = (S = 1

Condition (d) implies that projopB. factors through an endomorphism f, of
m1(S1) which, being surjective, satisfies By(b) = +b (identifying m;(S!) with
7). The possible negative sign may be avoided by precomposing f with the
automorphism (x,z) — (x,zZ) of N x S!.

(d) implies (a). Let B: NxS! — M xS as in (d). Consider the pullback diagram

PP MxRr

| Lo

NxS! P mxst.

The map B is a diffeomorphism, since so is B. The covering p corresponds
to the homomorphism projoBs: m(N x S') — m1(S'). The latter is equal
to proj: m(N x S') — m(S!) by the commutativity of (3.2), implying that
P ~4ig N x R. ]

Closely related to Proposition 3.3 is the following result.

Proposition 3.5. Let (W, jup, jn) be a cobordism between closed manifolds. The
Jollowing five statements are equivalent:

(a) W is invertible.
(b) W —jn(N) ~aitrt M x[0,00). (b)) W — jy(M) ~agir N x (—o0,0].
() W —0W ~gig M x R. (cy W —0W =gx N xR.
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Proof. 1t clearly suffices to prove this for a triad (W, M, N). We shall prove that
(@) = () = (¢) = (a). The implication chain (a) = (b') = (¢) = (a) is
obtained similarly.

Suppose that W admits an inverse W~!. Let W; and W;=! be copies of W
and W', indexed by i € N. One has

W — N =it WeoN x [0, 00)
~diff Woo Wy Lo Wio W o Woo -
~dit M x [0, 1]°W1°W1_10W20 s

X diff M x [0, OO) 5

thus (a) = (b).

As (b) = (c) is obvious, it remains to prove (c) = (a). For 1 <r e N, let
W, = (M x[-r,0])c Wo(Nx[0,r]) and V, = M x[—r,r].Let f: W—0W — M xR
be a diffeomorphism. As W — oW g lim, 00 W, and M xR g lim, o0 V5,
there are 1 <r <s <t in N such that

fWo) C Ve C f(W) C Vi,

none of these inclusions being an equality. As in the proof of Proposition 3.3,
this provides classes 4, B,C, X, Y, Z in Cob(M, M) such that [V;] = Ao[Wplo X,
[Ws] - BO[V,-]OY and [Vt] e CO[WS]OZ. MOI‘COVEI‘, BoA = [M X [—-S,O]] = lM
and CoB = [M x [—t,—s]] = 1ps. Therefore, B is invertible and C = A = B!,
In the same way, Y is invertible and X = Z = Y ~!. Therefore,

[W] = [W,] = Bo[V,]oY = Bolpo¥ = BoY

and thus W is invertible. ]

3.6. The set B(M). In view of Proposition 3.3, the study of the simplification
problem is related to the classification of invertible cobordisms. We fix a smooth
closed connected manifold M and consider invertible cobordisms starting from
M . Two such cobordisms are regarded as equivalent if they are diffeomorphic
relative to M . To be precise: (W, ja, jn) is equivalent to (W', j;,, jy) if there
is a diffeomorphism f : W ~gg W' such that j;, = fju . The equivalence class
of a cobordism (W, ju, jn) does not depend on jy and is denoted by [W, ju|,
or just [W[. Let B(M) be the set of equivalence classes.

Example 3.7. Let (W, ju,jn) be an invertible cobordism between closed
manifolds M and N. Then, [W,ju[= [M x I,j%[ in B(M) if and only if
[W] = [Cy] for some diffeomorphism f: M — N . Indeed, the if part follows
from Lemma 2.4. Conversely, let F: M xI — W be a diffeomorphism rel M x {0}
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and let f: M — N be the restriction of F to M x{1}. Then F o jxy = jjof 7',
which implies that [W, ja, jn] = [M xI, jiy, jare f']. The latter coincides with
[Cr] by Lemma 2.4 again.

For any closed manifold N, the correspondence [W] > [W][ gives a map
am,n: Cob*(M,N) — B(M) that we shall now study (note that Cob*(M, N)
is empty if N is not invertibly cobordant to M ). The group Diff(N) of self-
diffeomorphisms of N acts on the right on Cob™*(M,N) by [W, ju, jnle =
[W, jm, jno@]. The map ap n is invariant for this action and then descends
to a map ap,y: Cob*(M,N)/Diff(N) — B(M). We claim that the latter is
injective. Indeed, if an,n((W, jm, jn]) = amn (W', jig. ix]), then there is a
diffeomorphism A: W — W such that o jp = j;, and thus

[ijM’jN] — [Wl’j]{/I’h°jN] = [W,’iM’j;V]k’

where k = (j}) 'hojn € Diff(N).
Let M, be the set of diffeomorphism classes of closed manifolds of
dimension n. The correspondence (W, M, N)+> [N] defines a map

(3.4) e: B(M) > M,.
Let MY be a set of representatives of M, (one manifold for each class).

Lemma 3.8. The map o = 11, MO OM.N provides a bijection

[y ep0 Cob™ (M, N) / Diff(N) — B(M).

The resulting partition of B(M) is the one given by the preimages of the map e.

Proof. Let us first see that « is injective. Let a € Cob*(M,N) and b €
Cob*(M,N’) with N,N' € MO. If a(a) = a(b), then eoa(a) = eoa(h)
and then N = N’, whence a = b since oy ny is injective. To prove the
surjectivity of «, let (W, jp, jn) be an invertible cobordism and let N, be the
representative of e([W[) in M2 . Thus there exists a diffeomorphism h: No — N

and [W[= am n,([W, jm, jnoh]). O
Remarks 3.9. (1) Composition of cobordisms defines an operation
(3.5) Cob*(L, M) x B(M) —> B(L)

making B a functor on the category of closed manifolds and (equivalence
classes of) invertible cobordisms.
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(2) There is a version B'(M) of B(M) where we only use triples (W, M, N). The
obvious inclusion B'(M) — B(M) is, in fact, a bijection, by the observation
at the end of 2.2. This will often be used without further mention, to simplify
notation.

Note that, using Lemma 2.4, the map B(M) — B/(M) can also be defined
as [W, jm, jn] = [Cjp o (W,idy, jN)], where M’ = jp(M).

3.10. h-cobordisms. A cobordism (W, ju, jy) from M to N is called an k-
cobordism if both of the maps jy : M — W and jy : N - W are homotopy
equivalences. The composition of jy with a homotopy inverse of jps then
produces a homotopy equivalence & : N — M whose homotopy class is well
defined. Any choice of such an /4 will be called a natural homotopy equivalence
associated to W . The main relationship between #/-cobordisms and invertible
cobordisms is given by the following proposition.

Proposition 3.11. An invertible cobordism is an h-cobordism. The converse is
true when n # 3.

The above statement is unknown for n = 3.

Proof. 1t suffices to consider the case of an invertible triad (W, M,N). Let
(W', N, M) be an inverse for W, and choose diffeomorphisms W oW’ SMxI
rel M and WoW 5 N x I rel N. The inclusions M C W C WoW’ and
W CWoW C Wo(WoW) a~ W show that M and W are homotopy retracts
of each other. Analogously for N and W.

That an %-cobordism is invertible when n > 5 will be proven in Theorem 3.15.
For n = 4, this is a result of Stallings (see [Sta3, Thm. 4]), and for n < 2 it
follows from (the proof of) Proposition 6.3. 0

3.12. Whitehead torsion. We recall here some facts about Whitehead torsion
and the s-cobordism theorem. For more details, see [Mil3, Coh].
The Whitehead group Wh(x) of a group = is defined as

(3.6) Wh(rr) = GLoo(Z1) / Eoo(Zm) U (+7),

where Eo(Zn) is the subgroup of elementary matrices and (+mx) denotes the
subgroup of (1 x {l1})-invertible matrix (£y) with y € n. As E.(Zm) is the
commutator of GL(Zr), the group Wh(x) is abelian.

A pair (X,Y) of finite connected CW-complexes is an h-pair if the inclusion
Y — X is a homotopy equivalence. To such a pair is associated its Whitehead
torsion t(X,Y) € Wh(mY). The Whitehead torsion z(f) € Wh(K) of a
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homotopy equivalence f: K — L (K, L finite CW-complexes) is defined by
t(f) = ©(Cr, K), where Cs is the mapping cylinder of f. If 7(f) =0, we say

that f is a simple homotopy equivalence.

If K i) L5 M are homotopy equivalences between finite CW-complexes,

then

(3.7) t(go /) =t(f) + (f) ' (z(9)

where fi: Wh(mr1L) — Wh(mxK) is the isomorphism induced by f. Also
useful is the following partial product formula. Let K, L and Z be connected

finite CW-complexes and let f: K — L be a homotopy equivalence. Then, in
Wh(m(K x Z)), one has

(3.8) t(f xidz) = x(Z)-<(f),
where y(Z) is the Euler characteristic of Z (see [Coh, (23.2)]).

Remark 3.13. This definition of the torsion of a homotopy equivalence is slightly
non-standard, as it measures the torsion in the Whitehead group of the source
of f, rather than the target, as in [Coh] and [Mil3]. The two definitions are of
course equivalent, but for our purposes, the current definition is more convenient,
since now the torsion of a pair (X,Y) is equal to the torsion of the inclusion
map Y C X.

An easy case for computing (X, Y) is when the h-pair (X, Y) is in simplified
form, i.e.,

p
(3.9) x=vyulJegulJd" (=2
i=1

i=1P

where elj denotes a j-cell. Let (X,Y) be the pair of universal covers. Then
the chain complex of C.(X,Y) is a complex of free Zx-modules and the
boundary operator §: Cr41(X,Y) — C,(X,Y) is an isomorphism. Bases may
be obtained for C.(X,Y) by choosing orientations of ¢/ and liftings &/ in X.
Then,for such bases, 7(X,Y) is represented in GL,(Zn) by the matrix of §¢
with & = (=1)U~D,

Let M be a connected manifold. The Whitehead group Wh(s; M) is then
endowed with an involution

(3.10) T T

induced by the anti-automorphism of Zm M satisfying @ = w(a)a™' for

a € myM, where w: ;yM — {%1} is the orientation character of M. We
denote by Wh(M) the abelian group Wh(mry M) equipped with this involution.
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Let W be an invertible cobordism starting from the closed connected
manifold M. Then (W, M) admits a C!-triangulation which is unique up to
PL-homeomorphism [Whil, Theorems 7 and 8]. This makes (W, M) an h-pair
whose Whitehead torsion z(W,M) € Wh(M) is well defined. An invertible
cobordism with vanishing torsion is called an s-cobordism.

To compute (W, M), one can use a simplified form analogous to (3.9).

Lemma 3.14. Let (W, M, N) be an invertible cobordism with dimM = n > 4.
Then, for 2 <r <n —2, there exists a decomposition

W =W,eW, 1

where (W,, M, M,) has a handle decomposition starting form M with only
handles of index r and (Wy4+1, M,, N) has a handle decomposition starting form
M, with only handles of index r + 1.

Proof. When n > 5, this is [Ker, Lemma 1]. We have to see that the proof works
for n = 4. 'The principle is to eliminate handles of index k by replacing them by
handles of index k + 2. There is an easy argument eliminating 0-handles, which
also works when n = 4. There is also a special argument to get rid of 1-handles,
given in [Ker, pp. 35-36]. This argument also works when n = 4: it suffices to
prove that two embeddings fy, f1 of S! into a 4-dimensional manifold P which
are related by a homotopy f; are ambient isotopic. Let f: S!'x1 — P x [
be the map f(x,t) = (f;(x),t)). By general position, f is homotopic relative
S1 x 3l to an embedding. Therefore, fyo and f; are concordant and, as we are
in codimension 3, they are ambient-isotopic [Hud]. ]

The number of handles for W,;; and W, is the same (say, p) since M — W
is a homotopy equivalence. As a consequence (see [RS, p. 83]), (W, M) retracts
by deformation relative M onto a CW-pair (X, M) as in (3.9) from which we
can compute (W, M) = (X, M).

Torsions of invertible cobordisms satisfy some specific formulae. First, let
(W,M,N) and (W', N, N') be invertible cobordisms. Then, in Wh(M), one has

(3.11) t(WoW', M) = t(W, M) + hi(t(W', N)),

where h.: N — M is a natural homotopy equivalence associated to W . This
follows from [Coh, (20.2) and (20.3)]. One also has the duality formula (see
[Mil3, pp. 394-398]):

(3.12) hy(t(W,N)) = (—=1)"t(W, M).

More generally, if (W, jpr) represents an element in B(M), we define
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TW, jm) = t(jim) = Gm) 't (W, ju(M)).

The duality formula now becomes

(3.13) Gn)7 G« (e (W, jn)) = (D" (W, ja) .-
Thanks to the uniqueness of C!-triangulations, this gives a well defined map

T: B(M) — Wh(M).

Theorem 3.15. Let M be a smooth closed connected manifold of dimension > 5.
Then,
(i) the map T: B(M) — Wh(M) is a bijection;
(ii) any h-cobordism (W, M, N) is invertible;
(iii) 7(W, jm) =0 if and only if (W, jyu(M)) ~qig (M x I, M x {0}) (rel M).

For the situation when n = 3,4, see Lemma 5.8, the end of Section 5 and
Section 6.

Proof. The proof involves four steps.

(1) Part (iii). This is the content of the s-cobordism theorem, which is valid for
n > 5. This theorem was first independently proved by Barden, Mazur and
Stallings in the early 60’s. For a proof and references, see [Ker].

(2) For any © € Wh(M), there exists an h-cobordism (V,M,M’)) with
7(V, M) = 7. This was proven in [Mil3, Theorem 11.1]).

(3) Part (ii). Let (W,M,N) be an h-cobordism and let 0 = (W, M). Let
f: N — M be the composition of the inclusion N <> W with a
retraction from W to M. Let (Wg, N, Mg) be an h-cobordism such that
J«(t(Wg,N)) = —o. By (3.11), one has

t(WoWr, M) =t(W,M) + fu(t(Wg,N)) =0.

By part (iii) already established, there exists a diffeomorphism (relative M)
H: WoWgr — M x I. Let h: Mg — M x {1} be the restriction of H to
Mpg . Using the diffeomorphism H and Lemma 2.4, one gets

[WoWg, jmr U jue] = [M x 1, j3 1L h] = [Cy].

Therefore, [W]o[Wr] = 1pr, where [Wg] = [WR]o[Cp-1].

Similarly, let (Wy, Mz, M) be an h-cobordism with (W, M) = (=1)"*15.
By (3.12) and (3.11), one has
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G1d) Lz WoW.N)) = fu(tOW.N) + £ (c(We. M) )
=(-D"a + (-1)""'5 =0.

As above, this permits us to construct a cobordism WL from N to M, such
that Wy, is a left inverse for W: [W.]o[W] = 1y . Having a left and right
inverse, [W] is invertible and [W] = [Wg].

(4) Part (i). The surjectivity of 7 follows from (2) and part (ii) already
proven. For the injectivity, let (W, M, N) and (W', M, N") be two invertible
cobordisms starting from M, with t(W,M) = t(W', M) = a. As T is
surjective, there is an invertible cobordism (V, P, M) such that z(V, M) =
(—D)"*t1@. As in (3.14), we check that t(VoW,P) = t(V.W',P) = 0.
By (1) above, there are diffeomorphisms (relative P) H: VoW — P x I
and H': VoW’ — P x I, with restrictions h: N — P x{l} ~ P and
h': N — P x {1} ~ P. Then

[VIe[W[= [P x I[= [V]o[W'[.
As [V] is invertible, one gets the equality [W[= [W'[ in B(M). ]

Remark 3.16. The results of this section may be used to give an alternative proof
that two closed manifolds M and N of dimension > 4 which are h-cobordant
are R -diffeomorphic (Proposition 3.3). Indeed, let (W, N, M) be an h-cobordism.
Then, W x S! is an s-cobordism by (3.8) and thus, using Theorem 3.15, there
exists a diffeomorphism F: N x §' x I — W x S! inducing a diffeomorphism
F1: N xS!'x {1} - M x S!. By Proposition 3.3, one deduces that M ~ggir N .
Indeed, Condition (¢) of Proposition 3.3 may be checked for § = F;, using that
F may be chosen relative N x S! x {0}.

3.17. Remarks on the relative case. Concordance. With minor modifications
most of the results in this section go through also in the relative case, i.e., when
M and N have nonempty boundaries. In particular, we can define invertible
cobordisms and relative invertible cobordisms the same way in this generality.
Moreover, the crucial results used in this section, the s-cobordism theorem and
classification of h-cobordisms by Whitehead torsion still hold. Although they are
usually only formulated in the closed case, the proofs don’t really use this, but
work exactly the same way in general, since all the constructions can be done
‘away from the boundary’. This means that Theorem 3.15 could just as well have
been formulated for manifolds with boundary, to the expense of a little more
notation.

Here we will not need a full discussion of this, but in Section 7 we come
back to a special case, when we wish to compare invertible cobordisms between
the same manifold, using the relation of concordance.
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Fix two invertibly cobordant closed manifolds M and N, and let (W, ju, jn)
and (W', ji,, jy) be two invertible cobordisms between them. We say that
these cobordisms are concordant if there is an invertible cobordism (X, Jw, Jw’)
between them, with the following extra compatibility condition between J.’s and
jx’s: There are embeddings Hy : M x I — 0X and Hy : N x I — dX filling
in 80X — (JwW U JyrW') and such that Jwjy = Hujyy. Jwijsy = Huipy
Jwin = Hyj§ and Jwjy, = Hyjy -

Observe that concordance defines an equivalence relation on Cob*(M, N).
We denote the set of equivalence classes by Cob*(M,N). Via the composed
map Cob*(M,N) — B(M) — Wh(M) this relation corresponds to a relation on
Wh(M), which will be important in Section 7.

Lemma 3.18. Let M and N be a compact closed manifolds of dimension n,
let (W, jm,jn) and (W', ji,, jy) be two invertible cobordisms, and assume
(X, Jw,Jw’) is a concordance between them. The Whitehead torsions are then
related by the formula

W' ) =W, jm) = jmy (2(X, Iw) + (D" (X, Iw)).

Proof. The two maps jwjm and jwj;, are homotopic homotopy equivalences.
Hence they have the same torsion, and we get the identity

t(im) + jmy (Gw)) = tUs) + s (tGiw))-

The result now follows from the duality formula ((3.13)). ]

4. The case n > 5

The following theorem is a direct consequence of Proposition 3.3 and
Theorem 3.15.

Theorem 4.1. Let M and N be smooth closed connected manifolds of dimension
n > 5 such that N ~g-git M. Suppose that Wh(M) = 0. Then N =g M.

As Wh({1}) = 0, Theorem 4.1 implies Theorem A in the case n > 5. As a
first generalization, let us consider the following conjecture.

Conjecture 4.2. Let M and N be smooth connected closed manifolds of
dimension > 5 such that N ~pgif M. Suppose that my M is torsion-free.
Then N X diff M.
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Using Theorem 4.1, Conjecture 4.2 would follow from the well known
conjecture that Wh(x) = 0 if = is a torsion-free finitely presented group. This
is part of the Farrell-Jones conjecture in K-theory and it has been proven by
several authors for various classes of finitely presented torsion-free groups, such
as free abelian groups, free groups, virtually solvable groups, word-hyperbolic
groups, CAT(0)-groups, etc. For references, see [LR, BLR] (see also the proof of
Theorem 5.1).

To generalize Theorem 4.1 we need to introduce the concept of inertial
invertible cobordisms: a cobordism (W, jas, jn) is inertial if N ~gig M .

Let ZB(M) be the subset of elements in B(M) represented by inertial
cobordisms and let I(M) = T(ZB(M)) C Wh(M). Note that /(M) is not a
subgroup of Wh(M) in general [Hau2, Remark 6.2].

Theorem 3.15 together with Proposition 3.3 implies the following result, which
is the strongest possible generalization of Theorem 4.1:

Theorem 4.3. For M a smooth connected closed manifold of dimension > 5,
the following assertions are equivalent.

(i) Any manifold R -diffeomorphic to M is diffeomorphic to M .
(ii) I(M) = Wh(M). O

The set I(M) is contained in the set Itop(M) of those o € Wh(M) such
that if (W, M, N) is an invertible cobordism with (W, M) = o, then N =~ M.
In all cases where these sets are computed, they are equal, but it is not known
whether /(M) = Itop(M) in general for a smooth manifold M of dimension
> 5, contrary to the claim in [JK2]. However, there is a smaller set, SI(M),
of strongly inertial invertible cobordisms, which indeed is the same in the two
categories. This is the set of invertible cobordisms (W, jar, jn) such that j A}l ojN
is homotopic to a diffeomorphism (homeomorphism). See [JK3].

The general question is intriguing, not the least because of the following
reformulation:

Question 4.4. Given two smooth manifolds M and N of dimension # 4 such
that M ~ggir N and M Ritop N.Is M ~4ig N?

The answer of the above question is “infinitely no” in dimension 4, even if
M and N are simply connected (see Section 5). It is “yes” in dimension 3 for
orientable manifolds (see Theorem C).
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Examples 4.5. We start with examples where /(M) # Wh(M).

(1) Itop(M) # Wh(M) for M = L(7,1) x S* or M = L(7,2) x §*. Indeed,
in 1961, J. Milnor [Mill] showed that these two manifolds are invertibly
cobordant but have not the same simple homotopy type (they are then not
homeomorphic by Chapman’s theorem [Coh, Appendix]). Historically, this
was the first example of this kind and Milnor used it to produce the first
counterexample to the Hauptvermutung for finite simplicial complexes [Mill].

(2) Itop(M) =0 if M is a lens space of dimension > 5 [Mil3, Corollary 12.13].
This result was extended in [KS2] to generalized spherical spaceforms
(see 8.6).

(3) For k > 3, one has Itop(L(p,q) x §2%) = 0 if p = 3 (mod4). Also,
I(L(5,1) x §%*) = 0 but there exists a manifold N h-cobordant to
L(5,1) x §2k such that I/(N) # 0 (see [Hau2, §6]).

(4) Let W be an invertible cobordism and consider its dual W (see 2.2). Then,
WoW is an inertial invertible cobordism. By (3.11) and (3.12), one has
t(WUW, M) = t(W, M)+ (=1)"t(W, M). Therefore N(M) = {t+(—1)"T |
T € Wh(M)} Cc I(M). The subgroup N (M) plays an important role in
Section 7.

(5) Let & be a finite group such that Wh(xz) is infinite. (For = abelian, this
is the case unless & has exponent 2,3,4 or 6: see [Bas]). Then, in every
odd dimension > 5, there are manifolds M with fundamental group = such
that Itop(N) is finite for any manifold N invertibly cobordant to M (see
[JK2, Theorem 1.2 and its proof]). Then there are infinitely many distinct
homeomorphism classes of manifolds R -diffeomorphic to M .

In view of Theorem 4.3, the case /(M) = Wh(M) is particularly interesting.
The proof of the following proposition uses a standard technique to produce /-
cobordisms, going back to [Mill, §2] and generalized independently in [Lawl]
and [Haul].

Proposition 4.6. Let K be a finite 2-dimensional polyhedron with m\ K finite
abelian and let n > 5. Let E be a regular neighborhood of an embedding of K
in R*"*! and let M = 0E. Then I(M) = Wh(M).

Proof. Let i: K — E be the natural inclusion and let f: K — K be a
homotopy equivalence with homotopy inverse ¢. Then, io f is homotopic to
an embedding jr: K — E. Let Vy be a regular neighborhood of js(K) in E
and let Wy = E —int V. Doing the same construction in Vy with jro@, and
another time using again f, shows that (Wy, dV,, M) is an invertible cobordism.
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The torsion of Wy is related to 7(f), via natural identifications of fundamental
groups (see [Haul, proof of Proposition 1.1] or [Lawl, Proposition 3]). As jr is
isotopic to i in R**!, one has E ~g Vy, thus Wy is inertial. By [Lat, Theorem
1], every element of Wh(x; K) is realizable as the torsion of a self homotopy
equivalence of K. This proves that /(M) = Wh(M). L

In the even case, this result has a vast generalization, as a consequence of the
following proposition.

Proposition 4.7. Let M be a smooth connected closed manifold of dimension
n>5. Let 0 € Wh(M) such that 0 = (—1)"c. Then o € I(M).

Proof. Let i: K — M be an embedding of a finite connected 2-dimensional
complex K into M such that wyi: 71(K) — m(M) is an isomorphism, which
we use to measure Whitehead torsions in 71 (K). Let A be a regular neighborhood
of i(K) and let B = M —intA.

Let (V, A, A’) be an invertible cobordism relative boundary with t(V, A) = 0.
Then, W = VU(Bx) is an invertible cobordism from M to M’ = A’U(B x{1})
with t(W, M) =o0.

Since dim M > 5 and codim K > 3, we have dimodA > 4 and 704 = m, A.
Then, by Theorem 3.11 and Lemma 5.6, there also exists an invertible cobordism
T € B(dA) with Whitehead torsion o. The condition o0 = (—1)"6 now means
that 7! =7, and AoToT ~gr A, el 9.

Let C = AoT. Then we may also consider V' as an A-cobordism from C to
A’oT, and computing the torsion of the inclusion K C V two ways, we see that
7(V,C) = 0. By the s-cobordism theorem we conclude that C ~zgig A'-T rel d,
and hence A’ ~gix A rel 9, since T is invertible. Extending this diffeomorphism
by the identity on B, we see that M’ ~gig M . L]

Remark 4.8. When o # (—1)"G, it is still possible that M’ a4y M, as seen
above; simply, the diffeomorphism from M’ to M is not relative B.

When M is orientable with 7y M finite abelian, then ¢ = o for all
o € Wh(M) [Bak], hence we have the following corollary of Proposition 4.7.

Corollary 4.9. Let M be a connected orientable closed manifold of even
dimension > 6 such that m\M finite abelian. Then (M) = Wh(M). O

In the case when w1 (M) is finite cyclic, this was first proved in [Lawl, Cor. 1].
We also mention another corollary of Proposition 4.7, which essentially
amounts to a curious reformulation. Let (W, M, N) be an invertible cobordism
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with Whitehead torsion 0 = t(W, M), and let h : N — M be a natural homotopy
equivalence associated to W . It follows easily from the composition and duality
formulae (3.7) and (3.12) that 7(h) = —o + (—1)"6. Hence we see that & is a
simple homotopy equivalence if and only if ¢ = (—1)"c.

Corollary 4.10. If the natural homotopy equivalence defined by the invertible
cobordism (W, M, N) is simple, then (W, M, N) is inertial.

But note that 2 may not itself be homotopic to a homeomorphism! A
counterexample is given in [JK2, Example 6.4].

Finally, we describe how to get inertial invertible cobordisms by “stabilization”
(up to connected sums with §” x §"~"). First, a few words about connected sums.
Since we do not worry about orientations, the diffeomorphism type M; ff M, may
depend on the choice of embeddings f;: D" — M; (see, e.g., [Hau3, §4.2.3]).
This will not bother us because our manifold M, (like S” x S"7) admits
an orientation reversing diffeomorphism. The same holds true for cobordism
connected sum W; f{ W,, obtained using embeddings S;: (D" x I, D" x {0}, D" x
{1}) — (Wi, M;, N;).

Proposition 4.11 ([HalLa], compare 8.5). Let M be a smooth connected closed
manifold of dimension n > 5. Let (W, M, N)) be an invertible cobordism such
that T(W, M) is represented by a matrix in GL,(ZmM). Then, for 2 <r <n+2,

Mg p(S" x S"") ~aig N p(S" x S"7).

Consequently, the cobordism W p(S™ x S"77 x I) is an inertial invertible
cobordism.

Proof. One uses a simplified handle decomposition W = W,oW,; like in
Lemma 3.14, together with the remark of [Hal a] that the r -handles of (W,, M, M,)
are attached trivially, meaning that the attaching embedding factors through the
standard embedding of S7~! x D"*!=7 into R". This implies that M, =g
M tt p(S™ x S"~7). The same holds true for the (n—r)-handles of (W,,1, N, M,),
thus Mt p(S" x §"77). For details, see [Hala]. ]

Combined with Proposition 3.3, this gives an interesting relation between two
kinds of stabilization:

Corollary 4.12. Let M and N be closed smooth manifolds of dimensions
> 5 which are R-diffeomorphic. Then there exists an integer p such that
M p(S" x 8"77) ~qig N § p(S™ x S*7) for any r such that 2 <r <n—2. If
w1 (M) is finite, p may be chosen to be less than or equal to 2.
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Proof. 'The last statement follows since GL,(Zx) — Wh(x) is surjective if =z is
a finite group [Vas]. Note that p can not always be chosen to be 1 (see [JK2,
Theorem 1.1]). O

An intriguing question is if there is some kind of converse to this result. A
very special case is given by Lemma 4.1 in [JK2].

By Theorem 3.15, an invertible cobordism X starting from Y = M f§ p(S" x
S™T) is of the form W #f p(S”™ x S" " x I) where W is an invertible cobordism
starting from M with ©(X,Y) = (W, M). Using Proposition 4.11, this proves
the following

Corollary 4.13. Let M be a smooth connected closed manifold of dimension
n > 5. Suppose that GL,(ZmiM) — Wh(mi M) is surjective. Then, for any
2<r<n+2, one has I(M § p(S™ x §*77)) = Wh(M). O

S. The case n = 4

A group = is called poly-(finite or cyclic) if it admits an ascending sequence
of subgroups, each normal in the next, with successive quotients either finite or
cyclic (this is equivalent to & being virtually polycyclic: see [Weh, Theorem 2.6]).
We first prove the following theorem which implies part (ii) of Theorem A.

Theorem 5.1. Let M and N be smooth connected closed manifolds of dimension
4 such that N ~p-qif M. Suppose that w1 M is poly-(finite or cyclic) and that
Wh(M) =0. Then N ~p M.

Proof. By Proposition 3.3, there is an invertible cobordism W from M to N.
Then W is an h-cobordism by Proposition 3.11 and, as Wh(M) = 0, it is
an s-cobordism. The topological s-cobordism theorem in dimension 4 holds for
closed manifold with poly-(finite or cyclic) fundamental group [FQ, Theorem 7.1A
and the Embedding theorem p. 5]. Therefore, W ayo, M x [ (rel M) and then
N =op M . L]

Example 5.2. By [FH], Wh(M) = 0 when m; M is poly-(finite or cyclic) and
torsion-free. By Theorem 5.1, N ~-qif M implies N =~ p M in this case.

Remark 5.3. Poly-(finite or cyclic) groups are the only known examples of
finitely presented groups which are called “good” by Freedman and Quinn, i.e.,
for which their techniques work [FQ, p. 99]. Freedman and Teichner [FT] showed
that groups of subexponential growth are good, but the only known such groups
which are finitely presented are poly-(finite or cyclic). Note that Theorem 5.1 may
be true even if (M) is not good in the above sense.
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We now prepare the proof of Theorem B of the introduction. Recall that,
to a homeomorphism f: M — N between smooth manifolds is associated its
Casson—Sullivan invariant cs(f) € H3(M;Z,) [Rud, Definition 3.4.5]).

Proposition 5.4. Let M, N be two closed smooth connected 4-manifolds. Suppose
that there exists a homeomorphism f[: M — N with vanishing Casson—Sullivan
invariant. Then, M and N are smoothly s-cobordant. The converse is true when
m1(M) is poly-(finite or cyclic).

Proof. The mapping cylinder Cy produces a topological s-cobordism W between
M and N. As dimW = 5, the only obstruction to extend the smooth
structure on dW to a smooth structure on W is the Kirby—Siebenmann class
ks(W,0W) € H*(W, W ;Z,) (see [FQ, Theorem 8.3.B]). The image of ks(W, aW)
under the isomorphism

(5.1 HY(W,0W;Z5) ~ Hi(W,Z2) ~ H{(M;Z») ~ H3*(M;Z5)

coincides with cs(f) [Rud, Remark 3.4.6].

Conversely, let (W, M, N) be a smooth s-cobordism. If 7;(M) is poly-(finite
or cyclic), the topological s-cobordism holds true (see the proof of Theorem 5.1).
Therefore, W ~op, M x I (rel M) and the topological version of Example 3.7
makes W homeomorphic rel M to the mapping cylinder Cy of a homeomorphism
f: M — N. Using (5.1), one has cs(f) = ks(W,dW) = 0. ]

As H3*(M;Z,) ~ H{(M;Z,), one has the following corollary of Proposi-
tion 5.4; it was proven by C.T.C. Wall [Wal2] when M is simply connected, by
a different method.

Corollary 5.5. Let M and N be smooth closed manifolds of dimension 4 which
are homeomorphic. Suppose that Hi(M,Z,) = 0. Then, M and N are smoothly
s-cobordant.

We are ready to prove Theorem B of the introduction.

Proof of Theorem B. Let M and N be smooth closed manifolds of dimension 4
which are homeomorphic. By Corollary 5.5, there is a smooth #%-cobordism W
between M and N . Such a cobordism is invertible (see [Sta3, Thm. 4]; if M
is simply connected, then W~! = W [RS, Lemma 7.8]). Thus N ~p-gig M by
Proposition 3.3. L]

We now discuss a partial analogue to Proposition 4.11, which was first proven by
C.T.C Wall in the simply connected case [Wal2, Theorem 3]. (See also Section 8.5.)
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Proposition 5.6. Let M and N be smooth closed connected manifolds of
dimension 4 which are R-diffeomorphic. Then, there exists p € N such that

Mt p(S? x §%) ~qr N § p(S* x §?).

Proof. A simplified handle decomposition W = (M x [)oWhoW3 as in
Lemma 3.14 is available, but we do not know that the 2-handles of (W, M x
{1}, M) are attached trivially (see [Wal3, Theorem 3 and its proof]). However,
since 7y (M) =~ (W), the attaching map a: S! x D3 — M x {1} of a 2-handle
of W, is homotopically trivial. As in the proof of Lemma 3.14, this implies,
using an ambient isotopy of M x {1}, that one may assume that a(S! x D?)
is contained in a disk. Also, a: S!' = S! x {0} — M x {1} extends to an
embedding a_: D2 — M x I and thus to an embedding &: S — W . Since
(M x I) — m(W) is an isomorphism, one can choose «_ so that « is
homotopically trivial.

That « is attached trivially is thus equivalent to the triviality of the normal
bundle v to @. As a vector bundle over S?, the Whitney sum 7S? @ v is
isomorphic to @*7 W . The latter is trivial since @ homotopically trivial. As T'S?
is stably trivial, so is v, which implies that v is trivial since rank v > dim §2. [

Unlike in Proposition 4.11, the torsion of an invertible cobordism between M
and N only furnishes a lower bound for the integer p of Proposition 5.6, as
seen by the case where M and N are simply connected. An interesting question
would be to find the minimal integer p necessary to construct a given invertible
cobordism. Some results in the simply connected case may be found in [Law2].

We finish this section by considering the following problem which is important
in view of Section 7.

Problem 5.7. Describe the set B(M) for M a smooth closed connected manifold
of dimension 4.

Only partial information is currently known about this problem. For instance,
the map 7: B(M) — Wh(M) of Theorem 3.15, associating to an invertible
cobordism (W, M, N) its Whitehead torsion (W, M) is defined, and one has the
following

Lemma 5.8. Let M be a smooth closed connected manifolds of dimension 4.
Then, the map T: B(M) — Wh(M) is surjective.

Proof. 1t is said in [FQ, p. 102] that 7 is surjective, based on “the standard
construction of A-cobordisms” with reference to [RS, p. 90]. But, when n = 4,
this standard construction for o € Wh(M) only provides a cobordism (W, M, N)
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such that the inclusion M <> W is a homotopy equivalence with torsion
o. By Poincaré duality, one has 0 = H*(W,M;Zn) ~ H.W,N;Zr), where
7 = m(W) ~ m(M). This proves that W is a semi-h-cobordism from N,
that is to say that the inclusion N <— W is homotopy equivalent to a Quillen
plus-construction (see [HV]); thus i.: 7;(N) — & is onto with perfect kernel K.

By [FQ, Theorem 11.1A], there exists a semi-s-cobordism (W', N, N’) with
(M) — 7 (W’) onto with kernel K. Formula (3.12) may be used here, and
thus X = WoW’ is an h-cobordism with 7(X,M) = o. As an h-cobordism
between closed 4-manifolds, X is invertible [Sta3, Thm. 4]. ]

Some information is available on B(M) when M is simply connected.
By Corollary 5.5, the map e of (3.4) may be replaced by a surjective map
e: B(IM) > M(M), where M(M) is the set of diffeomorphism classes of
manifolds homeomorphic to M. This set may be infinite [FS], and so does
B(M). Let M°(M) be a set of representatives of M(M). For M oriented, one
can precompose the bijection of Lemma 3.8 by the surjective map

Ly eqg.cary Cob* (M, N) / Diff (V) — Iy eoqa Cob™(M, N) /Diff(N)

where “or” stands for “oriented”. Now, by [Law2, Krel], Cob™ (M, N) is in
bijection with the set of isometries between the intersection forms of M and N.

Examples 5.9. The above discussion implies the following facts.

(1) The case M = S*. The intersection form is trivial, so Cob™® (M, N) has one
element for each oriented homotopy sphere N . Note that Cob™°"(M,—M)
and Cob™“" (M, M) are represented by the mapping cylinders of the identity
or a reflection. By Lemma 2.4, these cobordisms both represent [S* x I[ in
B(S%).

(2) The case M = CP2. The set Cob™*(M,—M) has one element and
Cob™% (M, M) is empty.

(3) Results given in [LLaw2, Proposition 8 and its proof] imply, for instance, that
Cob™* (M, M) /Diff*" (M) is infinite for M = CP2k CP2 (k > 9).

The following result is a direct consequence of Example (1) above.

Proposition 5.10. The set B(S*) consists of one element if and only if the smooth
Poincaré conjecture is true in dimension 4. O
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6. The case n <3

We start with the proof of Theorem C of the introduction (and then Theorem A
in low dimensions).

Proof of Theorem C. There is only one closed manifold in dimension 1, namely
the circle. Closed surfaces are classified up to diffeomorphism by their fundamental
group. This proves Theorem C when n < 2.

In dimension 3, let M and N be closed smooth orientable manifolds. Thanks
to the proof of the geometrization conjecture [MT2], we know that M and N
are geometric in the sense of Thurston. Therefore, if M and N are h-cobordant,
a theorem of Turaev [Turl, Theorem 1.4] implies that they are homeomorphic,
and hence also diffeomorphic by smoothing theory [Mun, Theorem 6.4]. L]

Remark 6.1. Theorem C also follows from a theorem of Kwasik—Schultz which
is interesting in itself: an h-cobordism between geometric closed 3-dimensional
manifolds M and N is an s-cobordism [KS1, Theorem p. 736]. One thus get a
simple homotopy equivalence from N to M, and such a map is homotopic to
a diffeomorphism by [Tur2, Theorem 1] or [KSI, Theorem 1.1].

Remark 6.2. We do not know if Theorem C is true for closed non-orientable
manifolds in dimension 3. The proof of [KSI, Theorem 1.1] uses the splitting
theorem for homotopy equivalences of [HeLa], which is wrong in general for non-
orientable manifolds (see [Hen]). Currently, a positive answer for the simplification
problem for closed non-orientable 3-manifolds is only known for P?-irreducible
ones, i.e. irreducible (every embedded 2-sphere bounds a 3-ball) and not containing
any 2-sided RP2. Such manifolds are indeed determined up to diffeomorphism
by their fundamental group [Heil].

We now turn our attention to the set B(M).

Proposition 6.3. Let M be a smooth closed manifold of dimension n < 2. Then
B(M) contains one element.

Proof. Let (W, M,N) be an h-cobordism with n < 2. We claim that W =i
M x I if n <2 (this implies that W ~gig M x I (rel M)). As an invertible
cobordism is an h-cobordism by Proposition 3.11, this will prove the proposition.
The claim is obvious for n = 0 and, for n = 1, it follows from the classification
of surfaces with boundary. The case n = 2 splits into three cases. We shall use
the cobordisms R_ = (D3,@,S?) and Ry = (D3,52%,@).
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() M = S%. Let (W,S% N) be an h-cobordism. By the classification of
surfaces, there is a diffeomorphism #: §2 > N and W = WoCy is
an h-cobordism from S2 to itself, with W =gz W (rel S2). Then,
%3 = R_oWoR, is a homotopy sphere, which is diffeomorphic to S by
Perelman’s theorem ([Per, MT1]). Therefore, W is diffeomorphic to S3 minus
the interior of two smoothly embedded 3-disks, implying that W ~gi S2x 1 .

(2) M = RP?. Suppose that M = RP?. By composing W with a mapping
cylinder, we may assume that N = RP2. Let (W, M,N) be the universal
covering of W, equipped with its involution 7 (the deck transformation).
One has M = N = S2, on which t is the antipodal involution. As in
(1), form the closed 3-manifold 3 = RioWoRi_, diffeomorphic to S* by
Perelman’s theorem. The involution 7 extends to an involution 7 on X with
two fixed points pi. By part (¢) of Proposition 3.5, W — oW ~gg M x R.
Therefore, ¥ —{p+)} is equivariantly diffeomorphic to S xR equipped with
the involution 7(x,t) = (—x,1).

Hence, (X, 7) is equivariantly homeomorphic to the suspension of (52, 1).
It follows that W is equivariantly homeomorphic to (S2 x I,7). Hence,
W ~op RP? x I, implying that W asgig RP? x 1.

(3) x(M) < 0. The discussion in [Stal, pp. 97-99] implies that W =g

MxI. 1

Much less is known about B(M) when M is a closed 3-manifold. When M
is orientable, we already used (in the proof of Theorem C) the Kwasik—Schultz
result that the Whitehead torsion map 7: B(M) — Wh(M) is identically zero.
However, there are non-trivial s-cobordisms (see, e.g., [CS, Kwa] for results and
references). The following question seems to be open.

Question 6.4. Is a smooth A -cobordism between closed 3-dimensional manifolds
invertible?

Here is a partial answer.

Proposition 6.5. Let (W, M, N) be an s-cobordism between closed manifolds of
dimension 3. Suppose that i M is poly-(finite or cyclic). Then, W is topologically
invertible with W= = W.

Proof (following [RS, Lemma 7.8]). Consider K = W I as a cobordism relative
boundary from M x I to (W x {0})o(N x I)o(W x {1}) ~gx WoW (reld). Then
K is an s-cobordism. As dim(W x 1) =4 and 7y M is poly-(finite or cyclic), the
topological s-cobordism theorem implies that W ~gig (M x1)x1 (rel M x I x{0}).
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Therefore, WoW ~wp M x I (rel M). The same argument using the end N x [
of K gives that WoW ~p N x I (rel M). O

Here are two partial results when M = S3.

Proposition 6.6. Let (W,S3 N) be a smooth h-cobordism. Then W Rtop
83 x 1 (rel $3).

Proof. 1t is enough to prove the statement for W a topological /-cobordism. By
Perelman’s theorem, there is a homeomorphism 4: S — N and W = WoC,
is an h-cobordism from S3 to itself, with W Rtop W (rel S3). As in the
proof of Proposition 6.3 (case of M = S$?), this implies that W is the
complement of two disjoint tame 4-disks in a homotopy sphere X4. By
Freedman’s solution of the Poincaré conjecture [Fre], X ~op S*, which implies
that W ~uop S x I (rel §3). O

Corollary 6.7. The following assertions are equivalent.

(a) Any smooth h-cobordism (W, S3, N) is diffeomorphic to S*x 1 relative S>.

(b) The smooth Poincaré conjecture is true in dimension 4.

Proof. The proof of Proposition 6.6 shows that (b) implies (a). Conversely, let
Y be a smooth homotopy 4-sphere and let K be a smooth submanifold of ¥
with K agiy¢ D*1I D*. Then W = £ —int K is a smooth h-cobordism from S3
to S3. If (a) is true, then X ~yqiy D* Uy D* for some self-diffeomorphism % of
S3. Therefore, ¥ ~gig S* [Cer]. ]

We finish this section with the following open question.

Question 6.8. If (W, M,N) is an h-cobordism with dim M = 3, do we have
SUx W ~gir (S' x M) x I (rel S' x M)? Note that the Whitehead torsion will
vanish, by the product formula (3.8). Hence this is true if dimM > 4.

7. Classifications of R -diffeomorphisms

In this section we examine the construction in Proposition 3.3 further, aiming
for a full classification of R -diffeomorphisms. The diffeomorphisms are classified
under three levels of relations: isotopy, decomposability and concordance.

Let M and N be closed manifolds. Let Diffx(N, M) be the set of
R -diffeomorphisms from N to M, endowed with the C°°-topology. Thus,
mo(Diffr (N, M)) is the set of isotopy classes of such R -diffeomorphisms. For
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simplicity’s sake, we restrict our attention to the subspace Diﬂ’fg (N, M) of
those R -diffeomorphisms f preserving ends, in the sense that f(N x [0,00)) C
M x (r,00), for some r € R (see also Remark 7.3). As in Section 3, Diff(N)
denotes the topological group of self diffeomorphims of N.

In the proof of Proposition 3.3, an invertible cobordism (Ay, ji,. feojN)
(for suitable r and s) was associated to f € Diffgr(N, M). Consider its class
Af in Cob*(M,N). Here is the fundamental observation leading to the other
classification results. It is valid in all dimensions.

Theorem 7.1. The correspondence [ > (Ay, jy,, fojy) induces a bijection
A : 7o (DiffE (N, M)) —> Cob*(M, N).

Moreover, A(idpyxr) = 1y, and if | € Diff]‘fi(N, M) and g € Diﬁgé(P, N), then
A(f8) = A(g)o A(f).

Before we proceed, we remark that this gives a new interpretation of the
category of invertible cobordisms.

Corollary 7.2. The category Cob™ is isomorphic to the opposite of the category
where the objects are smooth manifolds and the set of morphisms from N to M
is o (Diffg (N, M)).

Proof of Theorem 7.1. The proof involves several steps.

(1) A is well defined. Let f: N xR — M xR be an element of Diff (N, M).
We use the notations of the proof of Proposition 3.3: M, = M x {r},
Ny = N x{u}, N, = f(Ny), etc. Recall that, to define Ay, we choose u
and r < s in R such that N, C M x (r,s). The region from M, to N,
constitutes Ay and that between N, and M; constitutes the inverse By of
Ay . It is easy to check that [As] = [Ay, ji;. foji] € Cob™(M,N) does
not depend on the choices of r and u. Consequently, we may assume that
il =,

Let f;: NxR - M xR (¢t € I) be an isotopy between f, = f and
i = f . Let g, be the restriction of f; to Ny. Since N is compact, there
exist r <r; <s; <s in R such that g,(No) C M x(ry,s;) for all ¢. By the
isotopy extension theorem on M x[r, s| [Hir, Theorem 1.3 in Chapter 8], there
exists an ambient isotopy F;: M xR — M xR, which is the identity outside
M x [ry,s1] and such that g, = Fyogo. Using r to define both Az, and
Ay, , we see that F; provides a diffeomorphism from Ay to A 7 (relative

M, ) such that Fyofoj% = foj0. Therefore, [As] = [A 71 in Cob™(M, N).
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A is surjective. Let A = (A, jp, jn) represent a class « € Cob™(M, N) and
let B = A~!. Composing infinitely many copies of AoB as in (3.3), we
obtain a manifold W together with two diffeomorphisms

(7.1) MxR -2 w Y N xR,

Then h = glogny: N xR — M xR is an element of Diﬂ'ﬁ(N,M) such
that [A;] = [A]. Hence, A(h) = «.

A is injective. Let f and f in Diffsf(N, M) such that A(f) = A(f).
Using observations in (1), we can represent A(f) by (As, jyy, foj%) and
A(fh) by (Afﬂ,jﬂ‘j_,,foj};‘,), where we may assume that N, C intAf. In
fact, after suitable isotopies of f and f (by translations in the R -direction)
we may even assume that u = 1 = 0. This means that we can write
[47] = [Af]o[K]. where [K] = [K, fojb. fojf]. But if A(f) = A(f).
the invertible cobordism K must be equivalent to 1y, i.e., there exists
a diffeomorphsim F : N x I — K such that F(x,0) = f(x,0) and
F(x,1) = f(x,0) for all xe N.

Now think of F as an isotopy of embeddings from foj 1(\’, to f ° jl?l. By
the isotopy extension theorem there exists an ambient isotopy H, of M xR
such that Hy = idyyxg and Hjo f(x,0)) = f(x,O) for all x e N.

Define G : NxR — NxR by G = f—loHIof. Then G is a diffeomorphism
such that G(x,0) = (x,0) for all x € N. Considering G and idyxr as
tubular neighborhoods of N x {0} in N xR, we see that G is isotopic to
the identity, by uniqueness [Hir, Theorem 5.3 in Chapter 4]. It follows that
f is isotopic to _foG = Hyo f, hence also to Hyo f = f.

It is obvious that A(idpsxr) = 1ps, and it remains to prove the composition
formula. Let f € Diﬁ’;{g(N,M) and g € Diffng(P, N). Start by choosing
u € R such that f(N,) C M x (0,00), and then v € R such that
g(Py) C N x (u,00). Then the regions A, between N, and g(P,), As
between My and f(Ny), and Ar., between My and fog(P,) can be used
to define A(g), A(f) and A(fog), respectively. In other words,

A(g) = [Ag, jn-&°Jp]
A(S) = g, ags /o)
A(fog) =[Afog. jnr fogojp]
Now observe that we can write Ar., as Ar U f(Ag), and consequently
[Afog-Jai- fogoipl = [f(4e). foin. fogoiplolAs. ju- /o iN]
= [Ag. jn-&ojplo[As. ar: foiN]
= AgoAr ]
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We are now interested in another equivalence relation amongst R -diffeo-
morphism, using decomposability. A R-diffeomorphism [ € Diﬂ?ﬁ(Q,Q’) is
called decomposable if there exists a diffeomorphism ¢: Q' — Q such that f is
isotopic to ¢ xidr. Fix a manifold M and consider pairs (N, f) where N is a
smooth closed manifold and f: N xR — M xR is a diffeomorphism. Two such
pairs (N, f) and (N, f) are equivalent (notation: (N, f) ~ (N, _f)) if f_lof
is decomposable. The set of equivalences classes is denoted by D(M). Note that
(N, f) is decomposable if and only if (N, f) ~ (M,id).

Remark 7.3. The above definition of D(M) is equivalent to the one presented
in the introduction, where R -diffeomorphisms were not supposed to preserve
ends. Indeed, Difff(VN, M) is a fundamental domain for the action of {£1} ~
{idy x £idr} by precomposition.

Theorem 7.4. Let M be a smooth closed manifold. The correspondence (N, [) —
[Af[ induces a bijection

B: D(M) = B(M).

Moreover, B(N, ) =[M x I[ if and only if f is decomposable.

Proof. Actually, the map B is induced from the bijection .4 of Theorem 7.1. As
in Lemma 3.8, let MY be a set of representatives of the diffeomorphism classes
of closed manifolds of dimension n. Consider the commutative diagram

(7.2)
1A

Hyermo o (Diffg (N, M)) Ly ey Cob™ (M, N)

i ¢

[vend ToDifFE (N, M)) /Diff(N) L2~ [1y 00 Cob™ (M, N) /DifF(N)

lm alw

D(M) 2 B(M)

The map IIA is a bijection by Theorem 7.1. It intertwines the right-actions of
Diff(N) on Cob*(M, N) of Lemma 3.8 with the ones defined on 7o(Diffg (N, M))
by pre-composition using the inclusion Diff(N) — Diﬁfl{(N, N) given by
¢ — ¢ x idr. The latter corresponds to the equivalence relation ~ (note that
N ~gg N if (N, f) ~ (N,f)). That the map « is a bijection is the statement
of Lemma 3.8. Thus, the map B is bijective. ]
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Remark 7.5. From part (2) of the proof of Theorem 7.1, it follows that
(N, f) ~(N,gy ogn), where gy and gy are the diffeomorphisms constructed
ity (7.1

Thanks to Proposition 6.3, Proposition 5.10 and Corollary 6.7, Theorem 7.4
admits the following corollary.

Corollary 7.6. Any diffeomorphism f: N xR — M x R is decomposable if
dimM <2. When N = M = S" with n = 3,4, this is true if and only if the
smooth Poincaré conjecture is true in dimension 4. O

The bijection B: D(M) — B(M) of Theorem 7.4 may be composed with the
map 7: B(M) — Wh(M), associating to W its Whitehead torsion z(W, M).
This gives a map 7: D(M) — Wh(M). By Theorem 3.15, 7 is a bijection when
n > 5. Thus, Theorem 7.4 has the following corollary.

Corollary 7.7. Let M be a smooth closed manifold of dimension > 5. Then, the
map T: D(M) — Wh(M) is a bijection. Moreover, T(N, f) = 0 if and only if
[ is decomposable.

Corollary 7.7 implies Theorem D and Corollary E of the introduction. Another
immediate consequence is the following:

Corollary 7.8. Let M be a closed manifold and let K be a closed manifold
with Euler characteristic 0. The map D(M) — D(M x K) given by product with
the identity map on K is trivial.

In other words: if f: N xR S MxRisa diffeomorphism, then f xidg is
isotopic to a diffeomorphism of the form & x idg, where % is a diffeomorphism
NxK-—-MxK.

Proof. The bijections D(M) ~ B(M) ~ Wh(M) commute with product with K.
The result then follows by the product formula for Whitehead torsion (3.8). [J

Diagram (7.2) gives a partition of D(M) indexed by diffeomorphism classes
of manifolds. Particularly interesting is the class corresponding to M itself, which
via the bijection B corresponds to the inertial cobordisms:

(7.3)  IB(M) = Cob*(M, M)/Diff(M) ~ mo(Diff 4 (M x R))/Diff(M).
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Corollary 7.9. Let M be a smooth closed manifold. The following assertions are
equivalent.

(a) Any automorphism g: M xR — M x R is decomposable.
(b) IB(M) has one element.

Moreover, if dimM > 5, Assertion (b) may be replaced by
(b") 1(M) = {0}.

Manifolds M such that /(M) = {0} may be found in Example 4.5.

Example 7.10. Given two diffeomorphisms f,g: N xR — M xR, it is possible
that f~'og is decomposable but not go f~!. An example of this sort may be
obtained using Corollary 7.9 and part (3) of Example 4.5.

In formula (7.3) the second action is right multiplication by the image of
the group homomorphism mo(Diff(M)) — mo(Difffz(M)) induced by ¢
¢ xidg, and this corresponds to the map (also homomorphism!) 7y (Diff(M)) —
Cob*(M, M) given by f Cs—1 (mapping cylinder). As seen in Example 2.5,
this map is not injective, but has as kernel the isotopy classes of diffeomorphisms
concordant to the identity. This leads to the following result, first proved by W. Ling
in the topological category [Lin]. Let C(M) = {f € Dift(M xI)| f|M x{0} = id}
be the space of concordances of M . Then evaluation on M x {1} gives rise
to a fibration (over a union of components) C(M) — Diff(M), with fiber
Diff(M x I,rel M x ol).

Proposition 7.11. The long, exact sequence of homotopy groups of this fibration
ends as follows:

+ — mo(C(M)) — mo(Diff(M)) — o (Diffg(M)) — IB(M)

Proof. The last map in the ordinary long exact sequence is the homomorphism
mo(C(M)) — mo(Diff(M)) with image the set of isotopy classes of diffeomor-
phisms concordant to the identity, which we just saw is also the kernel of the
homomorphism o (Diff(M)) — nO(Diﬂ']E (M)). The last map is just the quotient
map onto the set of left cosets. L]

Remark 7.12. It is known that Diff(M x R) is a non-connected delooping of
Diff(M x 1,rel M xdl). (See, e.g., [WW].) Proposition 7.11 gives more information
on components.

We now use the relation of concordance to give a classification of R -diffeo-
morphisms which is coarser than isotopy. Following the pattern above, we first say
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that a R-diffeomorphism f € Diﬁﬁ (Q’, Q) is c-decomposable if there exists a
diffeomorphism ¢: Q' — Q such that f is concordant to ¢ xidr. Then (1\7 , f )
and (N, f) are called c-equivalent (notation: (1\7, _f) ~c¢ (N, f)) if f‘lo_f is c-
decomposable. Of course, (1\7 5 f ) ~ (N, f) implies (1\7 g f ) ~¢ (N, f); therefore,
the set D.(M) of these c-equivalences classes is a quotient of D(M).

Using the the bijection B of Theorem 7.4, the equivalence relation ~, on
D(M) may be transported to B(M), giving rise to an equivalence relation on
B(M), also denoted ~.. We want to prove that ~, can be described in terms
of the relation of concordance of invertible cobordisms, defined in Remark 3.17.

Recall again the partition

[ yens Cob*™ (M, N) / Diff(N) —> B(M).
of Lemma 3.8. In Remark 3.17 the relation of (invertible) concordance is defined

on each set Cob*(M,N), and the action of Diff(N) descends to the set of
concordance classes Cob™(M, N). Set

(7.4) Be(M)= ]] Cob*(M,N) / Diff(N).
Nemi

Like Theorem 7.4, the following result is valid in all dimensions.

Theorem 7.13. Let M be a smooth closed manifold. Then, the bijection
B: D(M) — B(M) of Theorem 7.4 descends to a bijection

Be: De(M) =5 B.(M).

Proof. Given part (i) of the proof of Theorem 7.4, in order to define B., we
just need to prove that when f, f :N xR — M xR are concordant, then
[Af] = [Af, ji, 1 fojN] and [Af] = [Af"jj{»f il foj}\’,] represent the same class
in Cob*(M,N). Let F: 1 x N xR — I x M xR be a concordance between
f and f . The construction of Ar, Br, A 7 and B ; may be done globally in
I'x N and I x M. This would provide cobordisms Ar between Ay, A:, and
Bfr between By, B 7 which are inverses of one another, which is what we need.

The map B, is thus well defined. It is surjective, since B is. To prove that B,
is injective, we use a relative version of the proof of surjectivity in Theorem 7.1. Let
(N, f) and (/\A/,fA) represent classes in D(M) such that B(N, f) ~. B(N,f).
Since the relation ~. preserves Cob*(M,N), this means that there is a
diffeomorphism y: N — N such that B(N, _f) = B(N, fo(yxidR)). This permits
us to assume that N = N. In this case, B(N, f) and B(N, f ) are represented
by [Af] and [A f] in Cob*(M,N) such that [A] is invertibly concordant to
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[A;]B for some B € Diff(N). Using again that (N, f) ~ (N, fo(B x idg)), we
may assume that [4 ;] = [4] in Cob*(M, N).

Let [K] be a concordance between Ay and A 7 with inverse [L] from [By]
and [Bf]. Let K; and L; (i € Z) be copies of K and L. As in (3.3), we form
the manifold

X =0 (KioLi) o (KisroLig1) o
=-+ro(LioKit1) o (Lit10Kit2)o-+-
Using convenient diffeomorphisms KjoL; ~gig I X M x I and L;o K11 ~dgif
I x N x I, one gets, as in (7.1), two diffeomorphisms

(7.5)

(7.6) IxM xR 2 x <% [ x N xR

The diffeomorphism F = GjpleGny: 1 x N xR — I x M x R restricts
to diffeomorphisms F;: {i} x N xR — {i} x M xR (i = 0,1) and F
constitutes a concordance between Fy and F;. Therefore, (N, Fy) ~ (N, Fy).
By Remark 7.5, one has ({0} x N, Fo) ~ (N, f) and ({1} x N, F;) ~ (N, f).
Therefore, (N, f) ~¢ (N, f ), which proves the injectivity of B.. [l

We now compute B.(M) when dim M > 5, using the bijection 7: B(M) —
Wh(M) of Theorem 3.15. As in Example 4.5, we consider the subgroup N (M)
of Wh(M) defined by

NM) = {r+ (-1)"T | t € Wh(M)},

using the involution 7+ 7 of (3.10).
The following result now follows easily from the discussion at the end of
Section 3:

Proposition 7.14. Let M be a smooth closed manifold of dimension n > 5. Then,
the bijection T : B(M) — Wh(M) of Theorem 3.15 descends to a bijection

To: Bo(M) —> Wh(M)/N(M).

Proof. That 7. is well-defined follows from Lemma 3.18, and surjectivity is
trivial. Assume now that the torsions of two invertible cobordisms (W, jur, jn)
and (W', ji,. jp) satisfy the equation (W', ji,) —t(W, ju) = 0 + (=1)"6 for
some o € Wh(M), where n = dimM .

There is a relative h-cobordism (X, W, V) with t(X,W) = jy«(0), where
V' is another h-cobordism from jp(M) to jy(N). By Proposition 3.11 X and
V' are both invertible, and by Lemma 3.18 we have t(V, jy) = ©(W’, jyu). By
uniqueness of Whitehead torsion, [W, jy[= [V, jmu[€ B(M). ]
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Theorem 7.13 together with Proposition 7.14 implies the following corollary.

Corollary 7.15. Let M be a smooth closed manifold of dimension > 5. Then,
the bijection T : D(M) — Wh(M) of Corollary 1.7 descends to a bijection

Te: De(M) - Wh(M)/N(M).

Moreover, T.(N, f) =0 if and only if f is c-decomposable. O

Recall the inclusion N(M) C I(M), which is not an equality in general.
Corollary 7.15 implies the following result.

Corollary 7.16. Let M be a smooth closed connected manifold of dimension
> 5. The following assertions are equivalent.

(a) Any automorphism g: M xR — M xR is c-decomposable.
(b) N(M) =1(M). d

Example 7.17. Let M be a smooth closed connected manifold of dimension
n > 5 such that # = m;(M) is cyclic of order 5 with generator ¢. Then,
Wh(M) ~ Z generated by o = (1 —t —t*) € GL{(Zn) [Mil3, Example 6.6]. We
see that o = o, so the involution on Wh(M) is trivial. Therefore,

e if n is odd, N(M) =0 and then D(M) = D.(M) ~ Z; thus concordance
implies isotopy for R -diffeomorphisms with range M x R;

e if n is even, then D(M) ~ Z and D.(M) =~ Z,. Thus, for diffeomorphisms
with range M xR, there are infinitely many isotopy classes within the same
concordance class.

8. Miscellaneous

8.1. 'This paper deals with R-diffeomorphisms between closed manifolds. For
open manifolds, there is a long story of negative answers to the R -simplification
problem, starting with the earlier example of J. H. C. Whitehead [Whi2, p. 827].
There is also the famous Whitehead manifold which is R -diffeomorphic but not
homeomorphic to R3 (see, e.g., [dRha, pp. 61-67]). The most striking example
is given by the uncountable family of fake R*’s (see, e.g., [Gom]), which are
all R-diffeomorphic, since there is only one smooth structure on R> [Sta2,
Corollary 2].
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8.2. Historical note As seen in Sections 3—6, Theorem A of the introduction is
equivalent to the smooth #-cobordism theorem of Smale [Sma] for n > 5, and
to the topological /4 -cobordism theorem of Freedman for n = 4 [FQ]. For n =3
it is a consequence of Perelman’s proof of the Poincaré conjecture (see [MTI]).
There is no known proof not using these formidable results for which three Field
medals were awarded. Finally, for n = 2, Theorem A requires the classification
of surfaces, a classical but not trivial result. Note that the simplification problem
is a geometric form of the problem of recognizing the diffeomorphism type of a
smooth closed manifold by its homotopy type, one of the most important problems
of algebraic topology, going back to the birth of the subject (see, e.g., [Hau3,

§5.1]).

8.3. R*-diffeomorphisms were introduced by B. Mazur [Maz] under the name
of k-equivalences. Note that a diffeomorphism f: M x R¥ — N x R¥ induces
a stable tangential homotopy equivalence (still called f) from M to N. The
thickness of such a stable tangential homotopy equivalence f is the minimal
k for which f is induced by an R -diffeomorphism [KS4]. This thickness is
<dim M + 2 [Maz, Theorem 1]. For more results, see, e.g., [KS4, JKI, KRI].

8.4. 'The P -simplification problem has been studied for P a sphere, a torus or a
surface. See, e.g., [HMR] for results and several references, and also Remark 3.4.
For more recent results, see, e.g., [KR1, JKI1, KS3, KR2].

8.5. Stable diffeomorphisms Two closed manifolds M, N of dimension 2r are
called stably diffeomorphic in the literature if M § p(S” xS™) ~gg N § p(S" xS™)
for some integer p. Thus Corollary 4.3 and Proposition 5.6 say that R-
diffeomorphism implies stable diffeomorphism. The stable diffeomorphism class
of a manifold may be detected by cobordisms invariants, as initiated by
M. Kreck [Kre2]. For recent results and many references, see [PKLT].

8.6. Generalized spherical spaceforms A manifold is a generalized spherical
spaceform if its universal covering is a homotopy sphere. Let M and N be
diffeomorphic generalized spherical spaceforms of dimension > 5. Then Kwasik
and Schultz have proved that any % -cobordism between M and N is trivial [KS2].
This implies that /(M) = 0 and, thus, R -diffeomorphism implies diffeomorphism.

8.7. In general relativity, the R-simplification problem has natural applications
to the classification of Cauchy surfaces in globally hyperbolic spacetimes. (See
[Tor] for results and references). The R -simplification problem was also recently
studied in the framework of contact-symplectic geometry [Coul].
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