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Spectral asymptotics on sequences of elliptically
degenerating Riemann surfaces

Daniel GARBIN and Jay JORGENSON

Abstract. In this article we study the spectral theory associated to families of hyperbolic
Riemann surfaces obtained through elliptic degeneration, in particular the behavior of
several spectral invariants. Some of these invariants, such as the Selberg zeta function
and the spectral counting functions associated to small eigenvalues below 1/4, converge
to their respective counterparts on the limiting surface. Other spectral invariants, such as
the spectral zeta function and the logarithm of the determinant of the Laplacian, diverge.
In these latter cases, we identify diverging terms and remove their contributions, thus
regularizing convergence of these spectral invariants. Our study is motivated by a result
from [Hej3], which D. Hejhal attributes to A. Selberg, proving spectral accumulation for the
family of Hecke triangle groups. In this article, we obtain a quantitative result to Selberg’s
remark.

Mathematics Subject Classification (2010). Primary: 11M36, 35K08, 32Gl5.

Keywords. Spectral theory, degenerating Riemann surfaces, Laplacian eigenvalues, counting
functions.

1. Introduction

In the last section of the monumental second volume of Selberg trace formula
Jor PSL(2,R), D. Hejhal proves a statement, which he attributes to A. Selberg,
concerning the behavior of the zeros and poles of the scattering determinant for
the Eisenstein series associated to the Hecke triangle groups Gy as N goes
to infinity. Namely, for the Hecke triangle groups Gy which are subgroups
of PSL(2,R) generated by the fractional linear transformations z +— —1/z and
z+ z+ 2cos(w/N) for 3 < N < oo, the parabolic Eisenstein series associated
to the cusp at infinity has the following Fourier expansion

En(zis) = y* + ¢n()y'™ + 0(e7>™),
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where the function ¢y (s) is referred to as the determinant of the scattering matrix
(a 1-1 matrix in this case). The behavior for the zeros and the poles of ¢x(s) are
the last two results in Hejhal’s second volume on the trace formula, with zeros
accumulating to the right of the critical line and the poles to the left of it. The
precise statements of Theorem 7.11 and Corollary 7.12 in [Hej3] are as follows:

Given ty € R and 0 < § < 1, the rectangle [%,% + 8] x [to — 8,29 + 8] must
contain zeros of ¢n(s) and the rectangle [% -4, %] X [to — 8, to + 8] must contain
poles of ¢n(s) when N is sufficiently large.

The latter result appears in the ending remarks of Selberg’s Gottingen lectures
part 2. Hejhal also promises to explore this topic in a third volume on the trace
formula, a volume that unfortunately has not yet been published. Motivated by this
remark, we are set to provide the quantification of the rate of accumulation of the
poles of the scattering determinant for the Hecke triangle groups. Furthermore, the
Hecke triangle groups is one instance of a family of hyperbolic Riemann surfaces
which is elliptically degenerating. In the setting of the Hecke groups Gy, Hejhal
shows that the Eisenstein series and the scattering determinants converge through
degeneration.

The present paper is motivated by the goal of establishing a quantitative
formulation of the above mentioned result. More generally, we will define a
(discrete) sequence of hyperbolic Riemann surfaces that we deem to be elliptically
degenerating. We denote by {M,} to be a sequence of finite volume hyperbolic
Riemann surface parametrized by the vector g which consists of the orders
of some of the torsion points corresponding to finite order elements in the
fundamental group. By letting these orders approach infinity one obtains an
elliptically degenerating family of surfaces, with the limiting surface M., having
g additional cusps corresponding to each degenerating torsion point. Let us
summarize some of the main results below. After establishing the definition of
elliptic degeneration, we then investigate the behavior of such spectral invariants
in the setting of elliptic degeneration of hyperbolic Riemann surfaces. We list
below some of the results we have derived.

For T > 0, let Np, (7)) denote a weighted spectral counting function. In
the compact case, Nu,,(7) is given by the formula

NMq,w(T) = Z (T - An,q)wv
An.g<T

where w > 0 denotes the weight and the A, s are discrete eigenvalues of the
Laplace operator. For the non-compact case, we refer the reader to Section 5.
One of the main results of this paper describes the behavior through elliptic
degeneration of the weight zero spectral counting function. Namely, Theorem 5.7
shows that as g approaches infinity, then
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Nuty o(T) = co(T) log(0) + O((1og(2)™*).

where Q denotes of the product of the orders of degenerating torsion points
and c¢o(7) is some constant depending on 7' only. This in turn, when applied to
the special case of Hecke triangle groups (where Q = N), describes the rate of
accumulation of the poles of the scattering determinant.

Another result concerns the behavior of the spectral zeta function through
elliptic degeneration given in Theorem 6.2. For o € (0,1/4) we denote by §(a) (s)
the «-truncated spectral zeta function, which in the compact case is deﬁned by
the series

BRey= Y, iZ
Ang>a

for Re(s) > 1. Denote by DtrKyy, (¢) the contribution of the degenerating elliptic
elements to the trace of the heat kernel on M, . If « is not an eigenvalue of
My, then for any s € C, we have

ee]

() Jo

The result is valid in the compact as well as non-compact finite volume setting.
In the compact case, the Hurwitz spectral zeta function is represented via the
Dirichlet series

qll)n;o |:§(a)(S) DtI'KMq(I)IS%] (Ot) ( ).

ta(s.2) =Y 2+,
An>0
for z,s € C with Re(z) > 0 and Re(s) > 1. The behavior through elliptic
degeneration of the Hurwitz spectral zeta function is given in Theorem 6.4.
Namely for any s € C and Re(z) > —1/4 we have

(@) 1 > —Zzt sdt A ()]
hm 5y, (s z)— ﬁ DtrKpy, (1)e 't 7| = Moo (s, z).
As with the spectral zeta, the result also applies to the non-compact finite volume

setting.
The Selberg zeta function is defined by the product

Zus)= [] lo_O[ (1- e Gtmity),

yeH(I') n=0

with convergence for Re(s) > 1. The behavior of the Selberg zeta function through
elliptic degeneration is given by Corollary 7.2, namely for any s with Re(s) > 1
or Re(s? —s) > —1/4, we have
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qll)ngo Zm,(8) = Zpmy, (5).
In addition to this, at s = 1, we have that

lim Zj, (1) = Zj, (D).

qg—0o0

For a compact surface M, the determinant of Laplacian Ay, is formally defined
as the infinite product

det Ay = 1—[ A
An>0

which is regularized as a special value of the derivative of the spectral zeta
function, namely

logdet Ayr = —3,(0).

Let a € (0,1/4) be any number that is not an eigenvalue of M., and define the
o -truncated determinant det @Ay, by

det @ Ay = exp(—¢(0)).

Corollary 7.3 describes the behavior of the determinant in both the compact and
non-compact finite volume settings, namely

g—00

e dt
lim |:log det("‘)AMq —|—[ DtrKp, (t)7:| = log det(“)AMw.
0

Our analysis follows a pattern of study undertaken in the setting of finite volume
hyperbolic manifolds of dimension two and three which are degenerating by pinch-
ing geodesics; see [JLul], [Wol], [JLu2], [JLu3], [HIL] and references therein. In
all settings, one needs to establish convergence results for the associated sequence
of heat kernels through degeneration. This technical undertaking is identical in the
study of degenerating hyperbolic Riemann surfaces and degenerating hyperbolic
three manifolds, as one can see by comparing [JLu3] and [DJ]. The heat kernel
convergence results in the present setting are, again, identical in their conclusion
and in their proofs. We refer the interested reader to [GJ] for details. We note
that all of the heat kernel convergence results are somewhat expected, so, in that
sense, we deem it appropriate to proceed with applications, which we develop
in this paper. Specifically, we will study convergence results of the Selberg zeta
function, determinants of the Laplacian, small eigenvalues and spectral counting
function. Interestingly, some of the convergence results in this paper differ from
the setting of hyperbolic degeneration.

The paper is organized as follows. In Section 2 we describe the setting of
elliptic degeneration. In Section 3 we define various traces of the heat kernel, an
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instance of the Selberg trace formula, and describe the behavior through elliptic
degeneration of the so called regularized trace. In Sections 4 and 5 we present
the behavior of spectral measures in general and spectral counting functions in
particular, the latter of the two sections containing the result about accumulation of
the poles of the scattering determinant for the Hecke triangle groups. In Section 6
we present the behavior of the spectral and Hurwitz spectral zeta functions while
in Section 7 we study the Selberg zeta and the determinant of the Laplacian.
Section 8 concludes the paper with some remarks concerning the behavior for
other integral kernels.

2. Geometry of elliptic degeneration

Heuristically, our point of view of a sequence of elliptically degenerating
Riemann surfaces is as follows. First, one begins with a smooth, compact Riemann
surface with a prescribed open cover by unit discs, coordinate functions, and
transition maps. As such, the uniformization theorem asserts the existence of a
unique hyperbolic metric which is compatible with the complex structure and
has constant negative curvature equal to —1. Next, choose a finite number of
open discs within the cover and remove its origin and corresponding point on the
manifold. Again, the uniformization theorem asserts the existence of a complete
hyperbolic metric, and the removed points are considered “points at infinity.” For
another finite set of open discs within the cover, replace the local coordinate
on the manifold by its n-th root, where n is positive integer which will vary
from open to disc to open disc. This procedure yields a Riemann surface with
a finite number of points at infinity and a finite number of elliptic points, and,
again, the uniformization theorem provides a unique, complete hyperbolic metric.
Finally, for each elliptic point constructed above, let its ramification order n tend
to infinity, possibly at varying rates. The resulting sequence of Riemann surfaces,
with their hyperbolic metrics, is an elliptically degenerating sequence. Along the
way, one is allowed to change the local data associated to charts which do not
yield cusps or elliptic points, but one does so in a “bounded” manner. Let us
now make this construction precise.

Let M be a connected hyperbolic Riemann surface of finite volume, either
compact or non-compact. For simplicity, let us assume that M is connected, so
then M can be realized as the quotient manifold I"'\H, where H is the hyperbolic
upper half space and I' is a discrete subgroup of SL(2,R)/{£1}. A non-identity
element y € I' is called hyperbolic, parabolic, or elliptic, if y is conjugated
in SL(2,R) to a dilation, horizontal translation, or rotation respectively. This
is analogous to |Tr(y)| being greater than, equal, or less than 2, respectively.
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Furthermore, an element y is called primitive, if it is not a power other than
+1 of any other element of the group. With this in mind, a primitive hyperbolic,
parabolic, or elliptic element y is conjugated to

etv/? 0 1wy, cos(m/qy)  sin(w/gy)

( 0 e“ir/z)’ (0 1)’ or (— sin(7/qy) cos(n/q,,))
respectively. Here £, is the length of the simple closed geodesic on the surface
M in the homotopy class of y, w, denotes the width of the cusp fixed by y,
and 27 /q, is the angle of the conical point fixed by y. The positive integer g,
is the order of the centralizer subgroup of the elliptic element y. We will say
that the corresponding elliptic fixed point has order g, .

For a given positive integer g, let C, denote the infinite hyperbolic cone of
angle 2n/q. One can realize C, as a half-infinite cylinder

2.1 Cq ={(0,0): p>0,0€[0,27)}.
equipped with the Riemannian metric

(2.2) ds? = dp? + ¢~ % sinh?(p)d6?,
having volume form

(2.3) du = g~ sinh(p)dpd6.

A fundamental domain for C; in the hyperbolic unit disc model is provided by a
sector with vertex at the origin and with angle 27 /¢ . In these coordinates, we can
write a fundamental domain for C; as {aexp(i¢): 0 <o« < 1,0 < ¢ < 2n/q}.
The hyperbolic metric on C, is the metric induced onto the fundamental domain
viewed as a subset of the unit disc endowed with its complete hyperbolic metric.
The isotropy group which corresponds to this fundamental domain consists of the
set of numbers {exp(2wik/q) : k = 1,2,...,q} acting by multiplication. Let
Cy,e denote the submanifold of C, obtained by restricting the first coordinate of
(p,0) to 0 < p < cosh™'(1 + eq/27). A fundamental domain for C,. in the
unit disc model is obtained by adding the restriction that « < (eq /(47 + £q))'/2.
An elementary calculation shows that the volume of this manifold vol(C,.) = ¢,
and the length of the boundary of C,. is (4me/q +2)!/2. For &1 < &, one can
show that the distance between the boundaries of the two nested cones C; ., and
Cyqer 18

£2q + 21 + \Je2q (47 + 826]))

du(3C,.5,,0Css,) = log
SR £1q +2m + yJe19(4m + £19)

Let C» denote an infinite cusp. A fundamental domain for Cy in the upper
half-plane is given by the set {x +iy:y > 0,0 <x < 1}. A fundamental domain
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for C in the upper half-plane is obtained by identifying the boundary points iy
with 14iy. The isotropy group that corresponds to the above fundamental domain
consists of Z acting by addition. As before, let C . denote the submanifold of
Cx Obtained by restricting the y coordinate of the fundamental domain given
above to y > 2/¢. Elementary computations show that vol(Cs.¢) = £/2, and the
length of the boundary of Cu is also &/2.

In its quintessential form, elliptic degeneration turns a cone of finite order ¢
into a cone of infinite order, i.e. a cusp. To view this, we realize the positive
angle cone C, as the half-infinite cylinder {(x,y) : x € [0,1),y € (0,00)}, by
changing the (p,f) coordinates in (2.1) as 6 = 2zx and p = 2tanh™'(e™*),
where o = 2n/gq. In (x,y) coordinates, C, is a cone of angle o = 2x/q with
apex at y = oo, equipped with the Riemannian metric

dx? + dy?

ds? = =toes .
a2 sinh”(ay)

q

As the order g goes to infinity, or equivalently as the angle a goes to zero, the
cone C,; converges to the cusp Co with metric given by

_dx? +dy?

2
ds 32

o0
To develop several cones into cusps, we proceed as follows. Let g =
(91,92,---,9m), with each integer q; > 2, be a vector of the orders of el-
liptic fixed points. In this case we define C; = Uy’ Cy . We similarly define
Cqe = Up_,Cqr.e- We say that the vector g approaches infinity if and only if
the minimum of the ¢;’s approach infinity. With these in mind, let us make the
following definition.

Definition 2.1. A family of finite volume hyperbolic surfaces {M,} is elliptically
degenerating to M., as g approaches infinity, if for any & € (0, 1/2) the following
properties hold (see Fig. 1):

(a) C,;. embeds isometrically into M, and U?" .Cs.. embeds isometricall
q, y q k=1 5 y
into My ;

(b) There exists a sequence of homeomorphisms f; . : Mg\Cye — Moo\ Uy,
Coo,e such that for x,y € M\ UZ’ZI Coo,e

Jim diyp,m, (fare (9, Sae ) = diyp,moo (. ¥)-

(c) The convergence above is uniform on compact subsets of M.\ Ur—i Coose -
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FiGure 1
Elliptic degeneration of ¢; and ¢»

Remark 2.2. As notations get cumbersome, we feel that suppressing some of it
would lead to an easier reading. For instance, we may write Cy , in place of
Up_Coo,e as well as Coo in place of U"_, Cwo. In a slight abuse of notation, we
will also write x € Moo\ U}’ Co¢ in place of quel (x). Additionally, if &, < &3,
one can set fy; ¢, = fq¢ Wwhen the latter map is restricted to M;\Cy¢,, SO One
can assume the functions {f,; .} satisfy such relations. As such, the pre-image of
x on My\Cy, is unambiguous.

The volume forms induced by the converging metrics also converge uniformly
on compact subsets of M,\C, ., and all such measures are absolutely continuous
with respect to each other. In general, the hyperbolic volume form occurring in an
integral will be denoted by du with an appropriate subscript when needed (for
example, dpg). The description of the degeneration of M, to the limit surface
My, also applies to the degeneration of C; and C, s (with & < §) to their limit
surfaces, Co, and Cy s respectively.

In rough terms, the idea with Definition 2.1 follows the established notion
of hyperbolic degeneration which combines the algebraic-geometric construction
from [Fa] together with the hyperbolic geometric results of [Ab]. The main
theorem of [Jud2] may be viewed as the elliptic analog to the results in [Ab]. It
implies that given a finite volume hyperbolic surface M, with p cusps, there
exists a family of hyperbolic surfaces {M,}, with p —m cusps indexed by the
m-tuple g such that limy_oo My = My .

3. Asymptotics of heat kernels and traces

In this paper we consider hyperbolic surfaces having conical singularities,
surfaces realized as the action of discrete groups I' of PSL(2,R) acting on H.
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The conical singularities are present once the group ' contains elements (other
than the identity) having fixed points. Such is the case with the full modular
group PSL(2,7Z). In particular, let M be a compact hyperbolic surface, having
n marked points {c;}7_,. The hyperbolic metric g on M is called conically
singular if and only if for every i = 1,...,n there exists a chart (U;, u;) about
the point ¢; that maps U; isometrically to a hyperbolic cone with angle «;.
The hyperbolic metric is the unique metric with curvature equal to —1 and is
compatible with the underlying complex structure.

The surfaces under consideration have conical points and possibly cusps, so
the function space on which the Laplace operator acts has to be extended in
order to obtain an operator which is self-adjoint and acts on a Hilbert space of
functions. The details by which one obtains such extension, called the Friedrichs
extension, are described thoroughly in [LP]. We refer the interested reader to
this reference for the discussion. For the sake of space, we will state, as on
page 17 of [Ven], the following. Since the spaces in question have conical points,
there is a range of possible self-adjoint extensions of the Laplacian. The choice
of extension is important; however, from our point of view, we will utilize the
commonly chosen Friedrichs extension, as in [Ven], referring to [LP] for details
regarding its construction and further properties.

Let A denote the Laplace operator on the surface M . Consider the heat
operator Ay + 3, acting on functions u : M x Rt ~ R which are C?(M)
and C'(R*). Then the heat kernel associated to M is the minimal integral
kernel which inverts the heat operator. Namely, the heat kernel is a function
Ky : Rx M x M — R satisfying the following conditions. For any bounded
function f € C2(M) consider the integral transform

) = [ Kt 9) £ 0)dban ()
Then the following differential and initial time conditions are met:

Ayu+d,u=0 and f(x)= 1im+u(t,x).
t—0

If M is compact, then the spectrum of the Laplace operator is discrete, consisting
of eigenvalues 0 = A9 < A; <A < — oo counted with multiplicity. Associated
to these eigenvalues there is complete system {¢n(x)};>, of orthonormal
eigenfunction of the Laplace operator on M. For t > 0 and x,y € M, the
heat kernel has the following realization

(3.1) Km(t,x,y) = ) e 4, (x)n(y),

n=0

and the sum converges uniformly on [tp, 00) x M x M for fixed to > 0 (see [Ch]).
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If M is not compact, the spectrum has a discrete part as well as a continuous
part in the real interval [1/4,00). The continuous spectrum comes from the
parabolic Eisenstein series Epar;am, p(z,s) associated to the each cusp P of M.
In such case, the spectral expansion has the following form (see [Hej3])

B2 Km(t,x,y)= Y e ¢u(x)pn(y)
discrete

1 0o |
+ 2 Z [ o~ ja+r)e Epar;m,p(x,1/2 4+ ir) Eparm,p (¥, 1/2 + ir)dr.
pYo

cusps

Let Ky(z,x,y) denote the heat kernel on the upper half-plane. Recall that
Ku(t, x,y) is a function of ¢ and the hyperbolic distance d = dy(X, ¥) between
X and y, so

Ku(t,x,y) = Kul(t,d).

Quoting from page 246 of [Ch], we have for d > 0

(3.3) Ku(t,d) =

ﬁe—t/4 foo ue—u2/4tdu
4r1)3? J;  Jcoshu — coshd

while for d =0

] oo
(3.4) Ku(t,0) = -~ / e~/ anh(er)rdr.
T Jo

Remark 3.1. It is possible to extend the heat kernel to complex valued time. For
time z € C, write z =1t +1is with ¢ > 0. Then we have

ﬁe—z/4 ]oo ue—u2/4zdu

K Z,d = ’
() (4nz)3/2 J;  Jcoshu — coshd

and setting © = |z|?/t, yields the bound

ﬁe—t/4 /«w ue—u2/4tdu

Ku(z,d)| <
Kz, 4) (47)3/2(¢2 + 52)3/* |4 /coshu — coshd

< S M 31242 4 (23 g d).

For any hyperbolic Riemann surface M ~ I'\H, one can express the heat
kernel as a periodization of the heat kernel of the hyperbolic plane. Let x and
y denote points on M with lifts ¥ and y to H. Then we can write the heat
kernel on M as

(3.5) Km(t.x.p) = Ku(t.du(%,v5).
yell
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Denote by H(I'), P(I'), and E(I') complete sets of I'-inconjugate primitive
hyperbolic, parabolic, and elliptic elements, respectively, of the group I'. If M
is compact, then P(I") is empty. Let I', denote the centralizer of y € I'. If
y is a hyperbolic or a parabolic element then I', is isomorphic to the infinite
cyclic group. If y is elliptic then its centralizer is isomorphic to the finite cyclic
group of order g, . In each instance, the centralizer is generated by a primitive
element. We can use elementary theory of Fuchsian groups (see [McK]) to write
the periodization (3.5) as

o0
Kpy(t,x,y) = Ku(,x,7) + Z Z Z Ku(t, %, 'y "« ¥)

yeP(I)n=1kely,\T

+ Z Z Z Ku(t, %, 71y "« )

yeH(T) n=1kel,\I'
qy—1

+ Z Z Z Ku(t, %, 1y k).

y€E(T) n=1 keTy\T

Using the above decomposition we define the parabolic contribution (i.e. the

contribution coming from the parabolic elements) to the trace of the heat kernel
by

oo
PKy(t.x)= > > > Ku(t.%« 'y
yeP([) n=1kel,\T

and in a similar manner we define the hyperbolic contribution and elliptic
contribution which we denote by HKjys (¢, x) and EKps(z,x) respectively.

Definition 3.2. For a connected hyperbolic surface M, we define the regularized
or standard heat trace StrKps(¢) by

STrKa (1) = HTrKp (t) + ETrKp () + vol(M) Ku (¢, 0),

where the hyperbolic and elliptic traces HTrKps(¢) and ETrKy(t) are given by
HTrKp () = f HKp(t,x)dpu(x) and ETrKp(t) = f EKp(t, x)dp(x),
M M

respectively. If M is a hyperbolic Riemann surface of finite volume, but not
connected, each trace can be defined as the sum of the traces associated to each
connected component of M .

The following result due to Selberg [Sel] evaluates the integral representation
that defines the hyperbolic trace, namely
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8—3/4 o0 E "
(3.6) HTrK (1) = ) IR e S
V6wt e sinh(nt, /2)

We refer the reader to Theorem 1.3 of [JLu3] for an elementary proof. An integral
representation for the elliptic heat trace is

qy—1 _ _ )
Y e t/4 © o 2rnr/qy—tr

37  ETkm@®)= > >

yeE() n=1

2qy sin(nw/qy) J—oo 1+ 727"

and can be found in [Hejl] on page 351 or [Kub] on pages 100-102. The elliptic
trace may also be expressed as

et/4 Wl o ¢4 cosh(u/2)
2 =] == 2 i
J16nt gy Jo sinh“(u/2) + sin“(nx/qy)

ye€E() n=1

(3.8) ETrKm(t) =

One can use the Parseval formula to show that the expressions (3.7) and (3.8) for
EtrKps(t) are equal.

Remark 3.3. In the case M is compact, the standard trace STrKps(¢) is simply
the trace of the heat kernel. One immediately obtains from (3.1) the spectral
aspect of the standard trace,

(3.9) STrKa (1) = [M Km(t,x, x)dp(x) = Y et
n=0

On the other hand, Definition 3.2 and the various aforementioned integral
representations ((3.4), (3.6), (3.7)), give the geometric side of the standard trace,
namely

vol(M)

(3.10)  STeKp () =—

o0
f e~ YD Ganh(er)rdr
—0Q

e /4

+ 2 Zsinh(nﬂy/2)./—1(m[e

yeH() n=1

—(ny)?/4t

ay—1 e—t/4 0 e—27mr/qy—tr2

+ T3 "
yEE() n=1 2qy sin(nm/qy) J—oo 1+ e727"

The combination of (3.9) and (3.10) yields an instance of the Selberg trace
formula as applied to the function f(r) = e~ and its Fourier transform
f) = (dmi)=12em/8,

One can use this special case to generalize the trace formula to a larger class
of functions as follows. First, denote by r, the solutions to A, = 1/4 + r,%. The
non-negativity of the eigenvalues imply that for each n there are two solutions
r, which are either opposite real numbers or complex conjugate numbers in the
segment [—i/2,i/2].
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Let h(z) be any measurable function for which A(¢)e!/4+9" is in L1(R) for
some & > 0. Multiply the right-hand side of (3.9) and (3.10) by A(f)e!/* and
integrate from 0 to oo with respect to 7. Set

H(r) = fo ooh(t)e—'z'arr.

By rewriting the absolute integrand of H(r) as |h(z)e/4+o)| . |e=(r*+1/4+e))y)
and recalling the imposed conditions on /k(¢), it follows that H(r) is analytic
inside the horizontal strip [Im(r)| < 1/2 + ¢ for some & > 0 depending on e.
The Fourier transform of H(r) has the form

- o0 1 2
H(u :f h(t)——e™ ¥ /4 dr .
®) 0 ()JH

Putting these facts together yields the Selberg trace formula in the compact case,
namely

vol(M)

(B11) ) H(r) = f_ - H(r) tanh(zr)rdr

a Z ZZsmh(nﬂ /2)H(n£y)

yeH(I)n
ay—1 e—2mnr/qy
UDIDY [ e .
yeE(T) n=1 24y Sln(nﬂ/qy) 1 Te

where the sum on the left is taken over r, € (0,00) U[0,i/2]. We note that (3.11)
above agrees with the formula in Theorem 5.1 of [Hejl], with y being the trivial
character of the group I'.

In the case M is non-compact, the regularized trace equals the trace of the
heat kernel minus the contribution of the parabolic conjugacy classes. While the
geometric side of the regularized trace is precisely as in (3.10), the spectral side
has the following presentation

l oo /
(3.12) STrKp(t) = ) e™*' — — e-(f2+1/4>f“i(1 /2 +ir)dr
San 4 J oo ¢
o0 l"«l
- L2 _(r2+1/4)'—(1 +ir)dr
2 I

P lOg(Z) e—r/4
Vit ’
where C(M) denotes a set of eigenvalues associated to L2 eigenfunctions on

M, ¢(s) the determinant of the scattering matrix ®(s), I'(s) the Euler Gamma
function, while p the number of cusps of M (see page 313 of [Hej3]).

_ %(p —Tr <1>(1/2))e"/4 +
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One can use the same argument as in the compact case to obtain the formal
Selberg trace formula in the non-compact case. While the geometric side doesn’t
change (see the right-hand side of (3.11), the spectral side is as follows:

(3.13) spectral side =Y H(ry) — ﬁ f - H(r)%(l /2 +ir)dr

o f_: H(r)FF’(l +ir)dr
1 ~
— Z(p —Tr ©(1/2))H(0) + plog(2)H (0).

Remark 3.4. Returning to the special case of the trace formula given by (3.10),
we note the following. For the first term in the right hand side of (3.10), the
identity contribution, we can write

vol(M)e~t/4

ITrKp(2) = T

o0 2
[ e " "sech®(xr)dr,
0

using integration by parts. Furthermore, for any ¢ > 0, the integral can be bounded
as follows

/ e sech®(wr)dr < f sech®(wrr)dr = —
0 0 4

with equality when ¢ = 0. It then follows that the identity trace has the following
asymptotics

vol(M) - g
(3.14) ITeKp () = | “amz T O 87—
O(e™'/*%), as — oo.

The hyperbolic trace, the second term in the geometric side of the trace (3.10),
has the following asymptotics

O(e~c/t), ast—0

(3.15) HTrKp (2) = { O(e"’/4) as r — oo.

For a detailed account of these see Theorem 1.1 in [JLu3]. To continue, the
integrals in the elliptic trace can be bounded as follows. For any primitive elliptic
element y € E(I') and 1 <n < g, , we have

oo e—tr2—27mr/qy oo e—tr2—21rnr/qy [ere) e—tr2+21rnr/qy
= dr = =i 5 dr
—s5 1 e==%r 0 14 e=%7 0 1 4 esnr

0o o0
< f e—tr2—2n(n/qy)rdr ¥ f e—tr2—2n(1—n/qy)rdr_
0 0
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Now for b > 0, the function G4(t) given by the Gaussian integral

o0 2
Gp(t) = [ e~ b gy
0

is defined for any ¢ > 0. Furthermore, since the limits of Gp(¢t) at + = 0 and
at t = oo are b~! and 0 respectively, the integrals in the elliptic trace are finite
for all ¢+ > 0. Consequently, the elliptic trace has the following behavior

_ o(l), ast—0
i3.16) EIrKule) = { O(e_’/"f), as t — oo.
Putting all these together, the combination of (3.9), (3.10), (3.14), (3.15), and
(3.16) give the asymptotic behavior for the standard trace of the heat kernel in
the compact setting. Namely when ¢ — 0, we have

s vol(M)
3.17 K = At = 7 4 0(1),
(3.17) StrKp (t) ngoe = + 0(1)
while
(3.18) StrKp(t) =1+ O(e_”)

for some positive constant ¢, as f — oo. Furthermore, if we denote by
N(A) = card{A, : A, < A}, then we can write the above expansion as follows

vol(M)
4t

oo
[ e MIN) = +0(1) at t = 0.

0
The Tauberian—Karamata theorem then gives an instance of Weyl’s law as applied
in the setting of hyperbolic Riemann surfaces

vol(M)

(3.19) N(A) ~ A

as A = oo.

The next result presents the behavior through degeneration of the heat kernel
and its derivatives. Namely, we have the following theorem. For brevity, we only
state the result. For details, we refer the reader to [JLul] and Theorem 1.3 of
[JLu2] which one can easily adapt to the elliptic degeneration setting.
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Theorem 3.5. Let R, denote either My or C4. For i = 1,2, let v; = v;i(q) be
a tangent vector of unit length based at x; € R; which converges as q — oo.
Denote by 0y, x; the directional derivative with respect to the variable x; in the
direction v;. Assume that either x1 or X, is not a degenerating conical point.
Then

(3.20) qango KR, (z,x1,%2) = KRoo (2, X1, X2)
(3.21) qli)n;oav,-,xi KR, (z,x1,X2) = 0y, x; KR (2, X1, X2) for i = 1,2
(3.22) ql—l-)-ngo Bv] ,X1 avz,xz KR(, (Z::%15 x2) = av1 ,X1 avg,xz KROO (2. X1 x2)-

(a) Let A be a bounded set in the complex plane with inf,c4 Re(z) > 0. For
any & > 0, the convergence is uniform on A x Rg\Cq e x Rg\Cyc.

(b) We define D.p to be an & neighborhood of the diagonal of R,\Cgye X
Ry\Cy,s. That is,

DE,E, == {(x],xz) € Rq\Cq,s X Rq\Cq,g : d(xl,)(fz) < 8,}.

Let B be a bounded set in the complex plane with inf,cpRe(z) > 0. For
any ¢ > 0 and & > 0, the convergence is uniform on B x ((R4\Cy,e %

Rq\Cq,e)\De,e’) ¥

To continue, let us define the degenerating trace of the heat kernel. Denote
by DE(I") a subset of the elliptic conjugacy classes E(I'), corresponding to the
cones we wish to degenerate into cusps. It then follows that the degenerating heat
trace DtrKjs(¢#) can be expressed as

_l _
(3.23) DTeky () = » qyz 1 [ © /4 cosh(u/2)
Viert T szt 9 Jo sinh?(u/2) + sin®(n7/qy)

A staple ingredient in this paper is the convergence through elliptic degeneration of
the regularized trace minus the degenerating trace on M, to the regularized trace
on the limiting surface Mo,. To prove Theorem 3.6 below, one can follow similar
arguments as in Theorem 0.2 of [JLu2] in the setting of hyperbolic degeneration
in 2 dimensions or Theorem 8.1 of [DJ] in the setting of 3-manifolds. For a
detailed proof we refer the reader to [GJ].

Theorem 3.6. Let M, denote an elliptically degenerating family of compact
or non-compact hyperbolic Riemann surfaces of finite volume converging to the
non-compact hyperbolic surface M.

(a) (Pointwise) For fixed z =1t +is with t > 0, we have
lim [HTrK, (z) + ETrKpy, (z) — DTrKpy, (2)] = HTr Ky (2) + ETr K (2).
g—00
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(b) (Uniformity) For any t > 0, there exists a constant C (depending on t)
such that for all s € R and all g, we have the bound

IHTr K, (z) + ETrKar, (2) — DTrKag, (2)] < C(1 + |s/2.

As a consequence of Theorem 3.6, we have the following corollary, which
describes the small time behavior for the regularized trace of the heat kernel.
While the arguments involved in the proof of Theorem 3.6 above can be easily
reconstructed from the corresponding theorems in the hyperbolic degeneration
settings, for the next result we feel more appropriate to provide all the pertinent
details.

Corollary 3.7. Let M, denote an elliptically degenerated family of compact or
non-compact hyperbolic Riemann surfaces of finite volume which converges to
the non-compact hyperbolic surface My,. Then for any fixed § > 0, there exists
a positive constant ¢ such that for all 0 <t <§, we have

HTrKpm, (t) + ETtKpg, (t) — DTeKpg, (1) = O (177)

uniformly in q.

Proof. Assuming that M, is compact, let us show that for 0 < ¢ < 1, there is
a constant C > 0, independent of the degenerating parameter ¢, such that the
following inequality

(3.24) |HTrKp, (z) + ETtKp, (z) — DTeKp, (2)] < Ct72(1 + |s])*/2,

holds. Derivation on the group side of the Selberg trace formula (see for instance
[McK]) allows us to formally write for sufficiently small ¢ and 7 > 0

()  (HTrKp, + ETrKy, — DTrKpg, )(t + is)
= [ (Kuty = K)o 5.5, 00dR()
My\Cy e

n +f (Km, — Kc,)(t +is,x,x)du(x)

Cq.e
(IIT) —/ (Kc, — Km)(t +is,x,x)du(x),

Cfl\cq,e
provided all intervals converge.

For integral (I), we have by Proposition 2.1 of [JLu2], the maximum modulus
principle, and the Gauss—Bonnet formula the following bound
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(3.25)
| 1] 5[ | Ky (t +is,x,x)|dp(x) —I—/ | Ka, (¢ +is,x,x)|du(x)
Mq Cq.e Mq\Cq,s
<27(2g —2+r)(|Ku( +is,0)| + max |Ka,(t, xq,%q)|)
xXg€0Cq ¢

with g denoting the genus of the family and » denoting the number of distinct
conical points. Next we can write directly from (3.4), which extends for complex
time z =1t 4 is, that

] ™ 1
(3.26) |Ku(t +is,0)| < — f e~V panh(r)rdr < ——.
2 0 4t

Additionally, we recall that for ¢ approaching zero, for any positive integer N,
there exist constants by, ...,b, such that

N
1
3.27 Ky(t,x,x) = — E:bt" oY,
(3.27) Mm(t, x,x) 4m+n=0n + O( )

see formula (0.2) of [JLul] and the references therein. The combination of (3.25),
(3.26), and (3.25) yields

1
(3.28) |I|§4n(2g—2+r)(—+C),
4t

for some positive constant C .

For integral (II), we can apply similar arguments as in Theorem 3.4 of [JLu2]
and while paying close attention to dependence on ¢ in formulas (3.14), (3.16),
and (3.17) therein, we see that

(3.29) | I | < Cr(1 + |s])*2.

For integral (III), we can use arguments similar to those in Theorem 3.1 of [JLu2]
to show that for any ¢ > 0 and z = 4 is with ¢ > 0, we have the bound

(3.30)

—t/4
fc (Ke, — Km)(z, x, x)du(x)

< .
- 2

( : )—ZW [é@(l + 2ny) +n],

|z|

where
t g \2
= e d :1 1 — 5
1= v =tee(1+(5))

and {g denoting the Riemann zeta function. With e, > max{2mr, ¢} we split
integral (III) as
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m=[ (ke ~ KmGxndul)+ [ (Ke,~ Km)(ex 0duo),
Cq\Cq.5,

CCI.E] \C(I.E

referring to the two integrals above as (III.1) and (IIL.2) respectively. Applying
(3.30), for integral (III.1) we obtain the bound

| I | < ﬁ[m(l L o) + n],

with n = t/(4(t2 + 5?)) and y = log(1 + (g1/2m)?). If s # 0, then 2y \, 0 as
t \, 0; consequently ¢o(1+ 2ny) ~ (2ny)~! and

1 2(t2 + 52) s . a3l € 2
3.31 M. | < = (t L A
(3.31) | |_m[ ” +Cy] (% +s7) t2+yt

< Cyt™2(1 + |s])*/2.

For integral (II1.2), we use the same arguments as for integral (II) and the inclusion
of heat kernels to obtain

(3.32) | IIL2 | 5/ (Km, — Ku)(t, x, x)dpu(x) < Ct(1 + |s])*2,

Cy.e4

The combination of the bounds in (3.28), (3.29), (3.31), and (3.32) complete the
proof of (3.24) for the small complex time behavior of the trace. To complete
the proof in the compact case, we look at the special case s = 0. Noting that
integral (I) is O(¢t~') while integrals (II) and (II.2) are O(1), we only need to
revisit integral (IIL.1). In this direction, since 2ny = y/(2t) — o0 as t N\ 0 it
follows that {g(1 + 2ny) ~ 1 4+ (2ny)~! and consequently

1 [2¢
| IL1 | < —| = 4¢, | < C 172,
Vily

which completes the proof in the compact setting.

In the non-compact setting, aside from the m degenerating conical points, each
surface in the family has p cusps. Consequently, we need to consider integrals
involving cusps since we have
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(I) (HTrKp, + ETrKpr, — DTeKp, ) (¢ + is)

— f (Kpm, — Ku)(t +is, x, x)du(x)
My\(Cq.eU Coo.e)
(1) + (Km, — Kc, )t +is,x,x)du(x)
Cy.e
(110) —f (K¢, — Kn)( +is,x,x)du(x)
Cq q.&
Iv) —|—/ (Km, — Kcoo ) +is, x, x)du(x)
CDO.S
V) —/ (Kco, — Km)(t +is,x,x)du(x).
COO\COO.E'

The behaviors of integrals (IV) and (V) is similar those of integrals (II) and (III)
respectively, so that similar arguments may be employed. []

Aside from the asymptotics near ¢ = 0, we also need the behavior of the trace
for large values of the time parameter 7. In this direction, we need the following
definition.

Definition 3.8. Let M, be an elliptically degenerating family of compact or
non-compact hyperbolic Riemann surfaces of finite volume which converge to the
non-compact hyperbolic surface M,. Let 0 <« < 1/4 be such that « is not an
eigenvalue of My,. We define the «-truncated hyperbolic and elliptic trace by

HTeK}g) (1) + ETrKyg) (1) = HTrKa, (1) + ETeKpg, (1) — Y e7hent,

Ag.n=a

The next result describes the behavior of the trace when the time parameter ¢
goes off to infinity. The theorem may be proved using similar arguments to those
found in Theorem 3.1 of [JLu3] in the setting of hyperbolic degeneration in
2 dimensions and Theorem 9.1 of [DJ] in 3 dimensions.

Theorem 3.9. Let M, be an elliptically degenerating family of compact or non-
compact hyperbolic Riemann surfaces of finite volume which converge to the
non-compact hyperbolic surface M. Let o be given according to the Definition
3.8 above. Then for any ¢ < a, there exist a constant C such that the bound

[HTrK ) (1) + ETeK ) (¢) — DTrKg, (1)] < Ce™

holds for all t > 0 and uniformly in q.
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4. Asymptotics of spectral measures

We start the section with some general remarks on the Laplace transforms
of a function. This material can also be found in [HJL]. However, to make the
reading self contained we present the material below.

For any function f(z) defined on the positive real line, we formally define
the Laplace transform and cumulative distribution function to be

2(/)(E) = [0 Tt f@)dt and F() = fo Fanydu.

The Laplace transform £(f)(z) exists, if say f(¢) is a piecewise continuous,
real-valued function for 0 <t < oo and for some constants M and a, we have
that | f(z)] < Me%". Then the Laplace transform will make sense in the right
half-plane Re(z) > ao. The inversion formula for the Laplace transform allows
us to write

a+ioc

a+tioco d
0= [ ertin@iz wmad Fo= oo [T emz(n@
which holds for any a > ay.

Remark 4.1. We will assume that f is such that its Laplace transform exists
and the inversion formula holds. Furthermore, we will need the following basic
assumption

a-+ioo |Z|
[ (1 + D212 N < oo

—ioo | |

where z =t +is and a is some positive number.

As an application of the convergence of the regularized trace of the heat
kernel, we have the following theorem which is the elliptic degeneration analog
of Theorem 2.1 of [HJL] in the context of hyperbolic degeneration.

Theorem 4.2. Let M, be an elliptically degenerating family of compact or
non-compact hyperbolic Riemann surfaces of finite volume converging to the non-
compact hyperbolic surface M. Let [ be any function which satisfies the above
assumption. Let z =t +is with t > 0 and denote by

1 a+tioco d
N (D) = 5 [ 2@tk 20T

and

a-+ioo d
Nat, p(f)(T) = —— [ £(/)@DuKy, ("%
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Then

A [Nag, (F)T) = Naay,p (f)T)] = Nagoo (fNT)-

Proof. Consider the sequence of functions g,(z) given by

zT

24(2) = 2£(f)(2) [StrKn, (z) — DtrKag, (2)] =

€ZT

Z

goo(2) = L(f)(2)StrK, (2)

We need to show that

Z

1 a+ioco 1 a-+ioo
lim —f gq(2)dz = mf ‘ gool(2)dz.
a a—lioo

@00 21 Ja-iec
As g approaches infinity, using part (a) of Theorem 3.6, g,(z) converges pointwise
t0 goo(z) whenever + = Re (z) > 0. Using part (b) of the very same theorem,
we also get that the functions are bounded uniformly, that is
ezT
184(2)] < [2()@)IA + |s)*? 7’

Furthermore, the assumption on f coming from Remark 4.1 requires that the right-
hand side of the above inequality is integrable on vertical lines. All the hypotheses
of the dominated convergence theorem are met, so that we can interchange the
limit and the integration. (]

5. Convergence of spectral counting functions and small eigenvalues

In this section, we will make use of the Theorem 4.2 as applied to a particular
family of test functions which come from analytic number theory and spectral
theory. In this particular case, the functions mentioned in Theorem 4.2 are called
spectral weighted counting functions with parameter w > 0. For these functions
and their associated degenerating component, we can explicitly determine the
asymptotic behavior for fixed 7 > 0 and all w > 0.

Consider the following family of functions with parameter w > 0

Ju(@®) = (w+ 1t¥.
It follows immediately that the corresponding Laplace transform and cumulative

distribution are given by

2@ = "UED g ) = o
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respectively. With these remarks in mind, we can now define the regularized
weighted spectral counting function on a hyperbolic Riemann surface M by

a+ioo I )
Natw1(T) = Nag (fu®)(T) = % f Tw+2)

Zzw+1
In a similar fashion, we define the degenerating elliptic weighted spectral counting
functions on the family M,, by using DtrKy,(z) instead of StrKp,(z). By
Theorem 3.6, these weighted spectral counting functions are defined for values of
the parameter w > 3/2.

If the surface M is compact, the regularized trace equals the trace of the heat
kernel (see the Remark 3.3). Using the spectral side of the Selberg trace formula
(see Equation (3.9)) together with the mechanism of the inversion formula for the
Laplace transforms, one can show that

(5.1) Nmw(T) = ) (T —2a)".

An<T

d
StrKa (z)e?T 72 )

—ioo

In the non-compact case, the regularized trace equals the trace of the heat kernel
minus the contribution to the trace of the parabolic conjugacy classes. Using the
spectral side of the trace as given by equation (3.12) together with the inversion
formula, we obtain

(5.2)
| NT-I7A &
Nmaw(T) =D (T =" - o= (T —1/4—rHYZ(1/2 + ir)dr
s 7 J_yT=1/3 ¢
p (VT I
= (T —1/4—r>HY—(1 +ir)dr
2w J_ =173 r

- %(p = Tr®(1/2))(T — 1/4)"
plog(2) M'(w + 1)
VarT(w + 3/2)

whenever T > 1/4, and

(T o 1/4)w+1/2,

Npw(T) = D (T —Ap)?
An<T
it T <1/4.
As a direct application of Theorem 4.2 we have the following result.

Theorem S5.1. Ler M, denote an elliptically degenerating family of compact or
non-compact hyperbolic Riemann surfaces of finite volume converging to the
non-compact hyperbolic surface M. For any w > 3/2 define

1 a+tioco F(w + l) r dZ
Gty (T) = Mot 0 famt D) = 5= [ 2D Dk, ()T .
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Then for T > 0 we have that

qll)ngo[NM w(T) GMq,w(T)] = NMoo,w (7).
The next result establishes the asymptotic behavior of the function Gy, (T)
for fixed T > 1/4 and weight w > 0.

Proposition 5.2. Let M, denote an elliptically degenerating family of compact
or non-compact hyperbolic Riemann surfaces of finite volume converging to the
non-compact hyperbolic surface Mo,. For any degenerating elliptic representative
y € DE(T'y) let q, denote the order of the corresponding finite cyclic subgroup.

(a) For any w >0 and T > 1/4 we have

GMqﬂ»U (T)
gy—1 r=1/4 5 —2mnr/qy
= T—1/4— O
Z Z 24y sm(nn/q ) [ ( [4=r7) 1 +e—27r r
yeDE((y) n=1 _JT=13

(b) For any w >0 and T <1/4 we have Gp,w(T) = 0, independently of q.
(¢) For fixed w=>0 and T > 1/4 we have

GMq,w (T)

T—1/4

1

log( I1 q,,) / (T =1/4= ) e dr + O(1)
yeDE(T) =173

as the gy s tend fo infinity.

Proof. We are studying the inverse Laplace transform of

ay—1 g—ti 0o e—ZJInr/qy—tr2

DirKp, )= Y Y.

yeEDE((I'y) n=1

—_—dr
24y sin(n7/dy) Joo 1+ €25

Using the definition of the degenerating elliptic spectral counting function together
with the mechanism of the Laplace inversion formula allows us to write

qy 1 «/le/_4
Gy = 3 X [ @14y
yeDE(T,) n=1 “7 a2 i

provided that T > 1/4. In the case T < 1/4, the properties of inverse
Laplace transform imply that the integral over the vertical line equals zero,

—27nr/qy

1 + e—ZTrt’ r
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hence Gy, w(T) = 0. Recall that, from the definition of the weighted spectral
counting function, we know that such functions are only defined for w > 3/2.
However, the above formula is defined for any w > 0. This in turn, allows us to
extend the definition of the degenerating (as well as elliptic) weighted spectral
counting function to any non-negative weights w. This proves parts (a) and (b)
of the theorem.

To prove part (c), we start by fixing 7 > 1/4. We note that e=27""/4v —
1+ O(r/gy) if r> <T —1/4, so then

(5.3)
gy—1 vT-1/4
G T) = T —1/4—r3)® ————
Myw(T) Z Z 24y sm(mt/qy) f ( 4= 1+ e27r !
yeDE((I'y) n=1 _JT=174
-1 VT-174
Py Y [ a-vya-rp 20
_ 2w V) g,
2q2 sm(mr/q ) 1 4 e—27r
yEDE(Ty) n=1 ~ Y _JT=T4

To continue, we focus on estimating the sum

qy—1
c 1

Slay) = )

= 2qy sin(nw/qy)

as gy — oo, since such an estimate would apply to estimate the function

GMq , W (T) -
Let us write

lay/4] 1 [3qy /4] 1
S(gqy) = . + :
¥ ,; 2qy, sin(nw/qy) n:[qu/;Hl 2q, sin(nm/q,)
gy—1 1
e
n=[3q,/4]+1 2qy sin(nm/qy)

We recognize the middle sum as a Riemann sum. As such we can write its
limiting value as

3r/4
[3qy/4] 1 1 T

4 —_— — -
n=[g, /4]+1 2qy sin(nz/qy) 2n T sin x

= 0(1) as g, — oo.

Using the identity sin(x) = sin(w — x), we then have that

lay /4]

1
S — o(1 :
(9y) ; o smeniay T oW ma oo
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For x € [0,7/4], we have that x — x3/6 < sinx < x, so then
1 1
=

1
- < i € [0,7/4
x — sinx — x—x3/6 o x € [0, /4]

which further implies
1 1 X

x—x3/6 x  6(1—x2/6)
With all this, we take x =nn/q, with 1 <n <|q, /4] and arrive at the bounds

[ay /4] lay /4]
0< S Z . 1 1 = 3 Z n/qy .
qdy Sln(””/‘]y) n”/@'y dy 6(1 —(nm/qy) /6)

n=1

for x € [0, /4].

This upper sum is also recognizable as a Riemann sum, so then we can write

[ay /4] /4

1 nw/qy 1 X
gy ,; 6(1 — (nm/qy)?/6) T x b/ mdx as g, — oo.

The above integral is clearly finite. Therefore, we have shown that

1 lgy /4] 1
Stay) — — > —=0(1) as g, —> 0.
n=1
It is elementary to show that
lgy /4]
Z P log(qy) + O(1) as g, — oo.
n=1

Thus the first inner sum in the right-hand side of equation (5.3) has the asymptotic

1
S(qy) = = log(gy) + O(1) as g, — oo.

Consequently, the second inner sum in the right-hand side of (5.3), namely
g 1S(gy) approaches zero as g, approaches infinity. Applying these estimates to
equation (5.3) completes the proof. O

Our next task is to study the behavior of the weighted spectral counting
functions Mpy, (T) for weights 0 < w < 3/2 in both compact and non-compact
cases. We start by making the following observations coming from Proposition 5.2.
Consider the integral in the formula for Gy, (T)

T—1/4
cw(T):% [ (T —1/4 — r*j"

—/T—1]4

—2nnr/qy

1+e—2nr r
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Let f(T,r) denote the integrand above. Since f(7,r) as well as the limits of
integration are C! in both variables we have that

54 L) =f (T, T — 1/4) diT ( T — 1/4)

dT
d

—f(T,—\/T—1/4)d—T(— T—1/4)
NS e
2 A r 14 @€

+ = / — [(T 1/4—r?) 1+e_2w:|dr
_JT=1/3

=(w + Dew(T),

for any w > 0. Setting Q = []g,, where the product runs over all the
degenerating elliptic elements of I'y, we can write

(5.5) GMyw(T) = cw(T)1og(Q) + O(1)

as the ¢ tends to infinity. Furthermore, in the special case w = 0, we can apply
the mean value theorem to estimate the integral the defines co(7). Namely, for
some value ¢ in the domain of integration, we get

e~2mnclay 2 /T —1/4
- .

1 + e—21rc

co(T) =

This allows to rewrite the behavior of the weight 0 degenerating elliptic counting
function as

Gty o(T) = Y log(0) + 0.

e T —17
/1
as g tends to infinity and for some 0 < C < 1.
We continue by making the following observation. For w > 1/2, the expression
for the weighted counting function associated to the compact family M,, as given
by (5.1) implies

1 d

= Nrtgwi1(T) = D (T = A g)®.
w+1 dT Mgt

The left-hand side above is defined since w + 1 > 3/2. It is also clear that
the right-hand side above is a well defined function. This allows us to define
Np,w(T) for values of the weight above 1/2, namely,

1 d

(5.6) Nu,w(T) = ~Feik ﬁNMq,w—i—l(T)-
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By repeating the above argument, we can extend Ny, (7) to any w > 0.
In particular, N, ,0(7) counts with multiplicity the eigenvalues of the Laplace
operator on M, which are less than 7. With the above remarks in mind, we
are now ready to give the behavior of the counting function Ny, ., (T) for any
weight 0 < w < 3/2 in the compact case.

Theorem 5.3. Let M, denote an elliptically degenerating family of compact
hyperbolic Riemann surfaces of finite volume. Then for T > 1/4 and 0 < w < 3/2
we have that

Nuyw(T) ~ cw(T)log(Q)

as q tends to infinity.

Proof. Given any w > 0, the counting function Np, . (7T) is increasing for
T > 0. Choose any & > 0. The mean value theorem applied to Ny, (7T) on the
interval [T, T + ¢] together with the differential equation satisfied by the counting
functions (see Formula (5.6)) as well as the monotonicity imply

1 Num,w+1(T + &) — Ny, w+1(T)
w+ 1 €

(5.7 Nm,w(T) = < Ny, w(T +9).

Now fix a weight w > 1/2. Then we can write the inequalities in (5.7) above as

NuywT) _ 1 Numywi (T +¢)/10g(Q) — Nm,w+1(T)/log(Q)

log(Q) ~ w+1 &
i NMq,w (T +e¢)

log(Q)

Taking the limit as ¢ goes to infinity in (5.8), together with the convergence
of counting functions of weight w > 3/2 (see Theorem 5.1) and the asymptotic
coming from (5.5) applied to the middle term imply that

NMq,w(T)< 1 ey 1(T + &) — cy41(T)

(5.8)

59 lim su
2 el TTog(0) - w1 .
. Ny, w(T +¢)
< liminf —£
T g— log(Q)

Letting ¢ go to zero and using the differential equation satisfied by c¢y41(7)
(coming from (5.4)), to obtain

) Num, w(T) .. o Nm,w(T)
(5.10) limsup —2—— < ¢y(T) < liminf ————.
M gy~ @) =IBE Tog()

This proves that for weights w > 1/2 we have
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3 N Mg,w (T)
lim ———
¢—co log(Q)
Fix w > 0 and repeat the above argument to extend the result to any non-negative
weight w. L

= gl T b

Let us continue by investigating the behavior of the counting functions for
weights 0 < w < 3/2 associated to the non-compact family M, . In this case,
the spectrum of the Laplace operator has both a discrete part and a continuous
part. The distinction between the spectral counting functions in the compact and
non-compact settings is reflected in the Formulas (5.1) and (5.2) respectively.
Consequently, the arguments in the compact setting do not apply in the non-
compact case.

Theorem 5.4. Let M, denote an elliptically degenerating family of non-compact
hyperbolic Riemann surfaces of finite volume. Then for T > 1/4 and 0 < w < 3/2
we have that

NMq,w(T) ~ cy(T) log(Q)

as q tends to infinity.

Proof. We need to show that for fixed 7 > 1/4 and 0 < w < 3/2 the following
limit holds

: NMq,w(T) _

Recall that for 7 > 1/4 and w > 3/2, the spectral counting function Nz, w(7)
is given by Formula (5.2). Let us look at the 5 terms that amount the counting
function. For the third term we have that

cw(T).

=

(1 4in %’(1)‘ =)=y

where y denotes the Euler—-Mascheroni constant (see p. 114 [JLI]). This shows
that this term in the expression of the spectral counting function is finite and
independent of . Consequently, the contribution of this term to the limit (5.11)
is zero. The fourth term in (5.2) involves the trace of the scattering matrix at
s =1/2. The p x p matrix A = ®(1/2) is orthogonal and symmetric ([Kub]).
Then A? = Id which implies that the only eigenvalues of the matrix 4 are +1.
Since the trace of the matrix equals the sum of its eigenvalues, it follows that
|Tr ®(1/2)] < p. Consequently, the fourth term in (5.2) is bounded independently
of ¢, so that its contribution to the limit (5.11) is zero. The contribution of the
fifth term of the spectral counting function to the above limit is clearly zero.
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So far we have shown that only the first two terms in the right-hand side of
equation (5.2) have a significant contribution to the spectral counting function.
To this end, let us define

(5.12)
JT—1/4 ¢l
Naw(T) = Y (T —An)® ——f (T—1/4—r2)w$(1/2+ir)dr.

=T W T=174
By the previous remarks, it remains to show that

m ———
g—c0  log(Q)

Quoting Lemma 5.3 of [HIJL] (see pp. 160 of [Hej3]), we have the following
result

(5.13) — cu(T).

N

4)’ . l—Sk’q
_75(1/2+u») E(kq_1/2)2+ 5 = 2log(gm,) > 0,

where 1/2 < sg 4 <1 and gp, > 1. This allows to write

(5.14) Nagw(T) = Y (T—An)®

An<T
1 JT—1/4

A, =
JST—=1]4%

+_
Am Jy1=173

Mz

1 —
(T — 1/4—r2)¥ (—(1/2+1r) e _1/‘2")’g+r2)4r
k=1 Wkaq

2w 1 —Skq
@=L kz=:1 (Sk.q —1/2)2—|—r2

Consequently, the hat spectral counting function, as given by (5.14), is increasing
whenever w > 0 and 7 > 0. Furthermore, the hat function (5.12) satisfies the
differential equation as in (5.6). For w > 3/2, the result of the Theorem 5.1
applies. Fix a weight w > 1/2 and proceed as in (5.7) through (5.10) to show
that

Nty w(T)
lim "Mew () _ £
g—o0  log(Q)
Repeating the argument, but now with w > 0 fixed, completes the proof. L]

As an immediate consequence of Theorem 5.1 and Proposition 5.2 together
with the fact that these counting functions extend to any non-negative weight, we
obtain the following corollary.
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Corollary 5.5. Let M, denote an elliptically degenerating family of compact
or non-compact hyperbolic Riemann surfaces of finite volume converging to the
non-compact hyperbolic surface My,. Then for T < 1/4 and w > 0 we have
that

Km Nagyw(T) = Npoy,w(T).
g—00
In addition to this, if T is not an eigenvalue of M.,, we get that

qliyc}o Ny ,0(T) = Npoo,0(T).

In the case T < 1/4, the weighted spectral counting functions for M, in both
compact and non-compact case (see Equations (5.1) and (5.2)) turn out to be

Nugw(T) = D (T =2ng)".
An.g<T

The above corollary implies the convergence of these small eigenvalues through
elliptic degeneration. In particular, if the eigenvalue A, , has multiplicity one,
then we have

lim A, 4 = An,co-

g—00
Remark 5.6. We note that Theorems 5.3 and 5.4 present the asymptotic behavior
of the counting function Njz, . (T) for T > 1/4 and weights 0 < w < 3/2,
in both the compact and non-compact case. These two results only mention the
behavior of the leading term and nothing about the error term. Modifications in
the course of the proof of the two theorems can lead to results about the error
term. To get such results, one needs to assume something extra about the rate at
which e approaches zero. More precisely, & should approach zero at a rate that
depends on the degenerating parameter ¢g. A similar situation had been studied
in [HIL] in the context of hyperbolic degeneration.

From Theorem 5.1, we have that for w > 1/2, T > 1/4, and arbitrarily large

values of the degenerating parameter ¢

Nmy,w+1(T) = NMoow+1(T) + Gmy,w+1(T) + O(f(q)),

for some function f(q) which approaches zero when ¢ approaches infinity.
Choose £(g) > 0. Applying the mean value theorem on the interval [T, T + e(q)]
allows us to write

1 Numoow+1(T + £(q) — Nroo,w+1(T)
w + 1 &(q)
1 1 GMq,w-}-l(T + 8(‘])) — GMq,w-i-l(T) 10 (f(CI)) _
w+ 1 e(q) &(q)

NMq,w(T) =
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Using a linear approximation for the first two terms in the middle of the above
inequality gives

NMq w(T) < NM o, w (T) + 8(‘]) NMoo w(Th)

+ Gatyw (1) + 6(0) 3Gty o (T2) + 0 ( / (‘7))

&(q)

for some 7,7, € [T,T + &(g)]. In a similar fashion, by applying the mean value
theorem this time on the interval [T — &(q), T], it follows that

d
NMq,w(T) > NMoo,w(T) + S(Q)ENMoo,w(Té)

+ oty (T) 4 50) 1 Gogan(T9) + 0 (1D,

£(q)

for some 73,74 € [T —e(q),T]. Theorems 5.3 and 5.4 applied to the derivative
terms imply the following asymptotic formula

NMq,w(T) NMoo,w(T) + GMq »(T) + O (g(q) log(Q)) + O (f(q))

(q)

One needs to optimize the way in which &(q) approaches zero so that the amount

of error is minimized, namely by setting &(q) = +/ f(q)/log(Q). Optimizing the
error in the case w > 1/2 allows then for the improvement of the error in the

case w > 0.

Theorem 5.7. Let M, denote an elliptically degenerating family of compact
or non-compact hyperbolic Riemann surfaces of finite volume converging to the
non-compact hyperbolic surface Mo,. Then

Nat, o(T) = co(T) log(Q) + O (log(2))™*).

Proof. The proof uses two applications of Remark 5.6. In the first step we set
w = 1. Following the computations of Proposition 5.2, we can take f(q) = 1.
In this case, Remark 5.6 begins with

Num,2(T) = NMoo 2(T) + G, 2(T) + O(1)
and ends with
Nty 1(T) = Nagoo 1(T) + Gag, 1(T) + O(s(q) log(Q)) + O (8(‘?) |

Minimizing the error term implies &(g) = (log(Q))_l/ >
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In the second step, Remark 5.6 starts with

Nty (T) = Nato 1 (T) + g, 1 (T) + 0 ((log(2)) %)
and ends with

1/2
Nu,,o(T) = Nptoo o(T) + Gt 0(T) + O(e(g) log(Q)) + O ((I_Oi%))_)_) .

Minimizing the error term implies &(q) = (log(Q))_l/ * . Consequently,

Nat 0(T) = Nateo,o(T) + G, .0(T) + O (10g(0)) ).

By Formula (5.5) together with Theorems 5.3 and 5.4, the first two terms on the
right-hand side above grow like co(7)log(Q). O

Remark 5.8. Let Gy be the Hecke triangle group, which is the discrete group
generated by
z+> —1/z and z — z + 2cos(z/N)

for any integer N > 3. The group is commensurable with PSL(2,7Z) only in the
three cases when N = 3,4,6. In all other instances, the non-arithmetic nature
of Gy is such that certain precise, theoretical computations may be impossible.
However, the explicit nature of the group theoretic definition of Gy is such that
numerical methods can be employed (see for example [Hej4]). It can be shown
that for each N, the quotient space Gy \H has genus zero with one cusp and two
elliptic points of order 2 and N respectively (see [Hej3], [Hej4], and references
therein). As such, the results in the present paper apply. Specifically, Theorem 5.7
determines the accumulation of the spectral densities as a function of N, a result
which is attributed to Selberg (see p. 579 of [Hej3]). In other words, Theorem 5.7
above can be viewed as providing precise quantification of Selberg’s result.

6. Spectral functions

In this section, we investigate the behavior through degeneration of the spectral
zeta function and Hurwitz spectral zeta function, the former being a special case
of the latter. After we recall definitions, we present the analytic properties these
functions posses as well as describe their behavior on a family of elliptically
degenerating surfaces. The main ingredient in the process is the analysis of the
various integral transforms of the trace of the heat kernel that realize these spectral
functions.
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6.1. Spectral zeta function. Let us assume first that the surface M is compact
(with one connected component). In this case, the spectrum of the Laplace
operator consists of a discrete sequence of finite multiplicity real eigenvalues
0= A4p < A; <Ay <... that accumulate at infinity. The positive eigenvalues can
be used to form a Dirichlet series, the spectral zeta function ¢ps(s) which is
defined by

ta(s) = ) A;%
An>0

By Weyl’s law (3.19), the series converges absolutely and uniformly for Re(s) > 1.
Hence {ps(s) is an analytic function in this right half-plane.
Furthermore, we can write

i dt
v —S 0N —s —t.48 7
L)) = Y A T(s) = Y A, fo et
An>0 An>0
:[ Z .zg""'”zsc—i£ :f [StrKas(2) — l]tsﬂ.
0 An>0 ! 0 t

The behavior of StrKps(z) near t = 0 and ¢ = oo (see (3.17) and (3.18)
respectively) shows that the above integral is defined for Re(s) > 1. Parenthetically,
if the surface had cps connected components, then the value 1 (coming from the
zero eigenvalue) in the above integrand would be replaced by cps . For simplicity
of notation, we assume that ¢y = 1. That said, the above manipulations show that
the spectral zeta function is (up to a multiplicative factor) the Mellin transform
of the standard trace of the heat kernel. More precisely, one has

00 d
6.1) Fug (5 = % fo [StrKM(t)—l]tsTt.

Proposition 6.1. Suppose that M is a compact hyperbolic Riemann surface. Then
the spectral zeta function (p(s) has meromorphic continuation to all s € C,
except for a simple pole at s = 1 with residue vol(M)/(4r).

Proof. The proof follows from the analysis of the integral representation of the
spectral zeta from (6.1) above. We start by splitting the domain of integration as
follows

(6.2)

. lStK s=1g
CM(S)—mfo rKp (1)t I_F(s

1
['(s+1) *

1 5 1
+1) I

= _ s—1
s)fl [StrKas(£) — 1]¢° " dt

=G(s)—

1 > s—1
) /1 [StrKas(2) — 1] dt.
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The second term above is entire. Since StrKjs(z) — 1 has exponential decay at
infinity (see (3.18)), the third term is also analytic. So we only need to continue
the term containing the integral over [0, 1], which we call G(s). For the latter,
we recall (3.18), namely at t =0

b
(6.3) StrKa (£) = Tl ¥ bo + Buf + Bt ¥ ...

where for simplicity we use h_; in place of vol(M)/(4x). That said, we can
write for Re(s) > 1

1 1
(6.4) G(s) = m/ StrKM(t)tS_ldt
b_
F(v)(sl— S F( A [StrKM(t) _ —] 5714t

The first term in the right-hand side of (6.4) is analytic except for a simple pole
at s = 1 with residue b_, = vol(M)/(4). The second term, call it G,(s), is
analytic for Re(s) > 0. We continue this term as follows

1 bh_
65) G1(s) = F:S)f [StrKM(r) B 121] 5 4

bs [StrKM(t) bt oY,
(s)s F(L\) 2 t '

The first term in the right-hand side of (6.5) is entire, while the second term,
call it Gy(s), is analytic for Re(s) > —1. By the n-th iterate (n = 0,1,2,...),
the function G(s) satisfies the formula

n—1 n—1
B bk 1 ! StrKp (2) bk s+n—1
Gls) = Zl roOGs+ho T e [ T 2 e [T,

with the right-hand side being analytic for Re(s) > —n. In this fashion, the
spectral zeta can be continued to all s € C. Ll

If the surface M is not compact, one defines the spectral zeta by the Mellin
transform of the standard trace as in the formula (6.1) above. Similar arguments
may be employed to show the analytic continuation of the spectral zeta associated
to a non-compact surface.

For o € (0,1/4) we define the «-truncated standard trace by

Sk () = SrKa (1) — Y e~
An<a

By considering the Mellin transform of the standard trace we can express the
truncated spectral zeta function as
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o 1 i @) x5 &
£ (s) = mfo sk @)

With these in mind, we have the following result concerning the behavior of the
truncated spectral zeta function through elliptic degeneration.

Theorem 6.2. Let M, be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
My,. Let @ < 1/4 be any number that is not an eigenvalue of My,. Then for
any s € C, we have

oo

Jim [c(“’()—m DtrKM[,(z)ﬂﬂ Mo (8)-

Furthermore, the convergence is uniform in half-planes of the form Re(s) > C.

Proof. We have to show that

lim w5 f StrK(a)(t)—DtrKMq(t)] L

g—00

F( )f StrKg) (t)t

Recalling Definitions (3.2) and (3.8), the bracket in the left hand side above may
be broken down as follows

(6.6) StrK(“) (t) — DtrKp, (t) = vol(M,)Kw (t,0)

+ | HorKpg, () + BirKpg, (t) — Y e *en' —DirKp, (1)

Ag.n<a

For the volume containing term in the right hand side (6.6), we split the integral
as

1 dt
m/(; VOl(Mq)KI[—]I(l‘ O)t —

B vol(Mq) ! ,dt o Jdt
= ) I:/(; Ky (t,0)t T+£ Ky (z,0)t T:|

and make the following remarks. The volume is bounded by a universal constant
depending solely on the genus and the total number « of cusps and conical ends
of the family, namely vol(M,) < 2n(2g —2 + «). By (3.14), the kernel function
Ku(t,0) decays exponentially as ¢ goes to infinity, so that the integral over
[1,00) is entire as a function of s. Using the same arguments as in the course
of the proof of Proposition 6.1, the integral over [0, 1] is analytic for Re(s) > 1
and may be continued to all s € C.
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The integral consisting of the rest of the terms in (6.6), namely

1 = dt

(6.7) —f HtrKp, () + EtrKpg,, (2) — Z e tant _DrKyy (1) | 15—

T'(s) Jo q q q t

Ag.n<ea

can be split over [0,1] and [1,00). From Theorem 3.9, the bracket in (6.7) has
exponential decay; so then the portion over [0, 1] is analytic for Re(s) > 0 and
may be continued to the whole complex plane, while the part of the integral over
[1,00) is entire as function of s. By the dominated convergence theorem, we can

interchange the limit and the integral. The proof then follows by the convergence
Theorem 3.6. [

6.2. Hurwitz spectral zeta function. As in the case of the spectral zeta function,
we start in the compact setting where the Hurwitz spectral zeta function is
represented via the Dirichlet series

a2 = 3 2+ A,
An>0

for z,s € C with Re(z) > 0 and Re(s) > 1.

In the case when M is compact and connected, the Hurwitz spectral zeta
function may be expressed as the Laplace—Mellin transform of the standard trace
of the heat kernel

1 &0 d
(6.8) Cm(s,z) = —F(—s)_[o [StrKas(¢) — l]e_Z’tSTt.

The above integral transform allows to extend the definition of the Hurwitz spectral
zeta function to the non-compact setting.
From Section 1 of [JLI1] (see also [Sa]) we obtain the following result.

Proposition 6.3. For each z € C, the Hurwitz spectral zeta function extends to
a meromorphic function to all s € C.

Proof. Assuming first that z > 0 we expand the right-hand side of (6.8) as follows

(6.9) Em(s,2) :%s)fl [StrKas(2) — 1] e 5 dt

1
+ — StrK (e 2" t5 1 dt
I'(s) Jo

1 3 oo —t 5s—1
— O l:F(A) —fz e 't dt].

By (3.18), the first term in the right hand side of (6.9) above is entire as a
function of s. For the second term, which is initially defined for Re(s) > 1,
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we can follow the arguments starting with (6.3) in Proposition 6.1 to provide its
analytic continuation. The third term is entire as a function of s. Consequently,
these arguments extend the Hurwitz spectral zeta function to Re(z) > 0.

Next, we extend the Hurwitz spectral zeta to Re(z) > —A; as follows:

(6.10)
1 o0
tm (s, 2) :mf A [StrKpy (1) — 1] e~ ETA 51 g4
S 0

1 oo
= Z (Z —|—An)_s 4+ — Z e—‘(ln—ll)t e—(z-f—l])tts-——ldt-

An<Ai L'(s) Jo An>A1

The first sum in the right-hand side of (6.10) has finitely many terms (according
to the multiplicity of A;). For the second term, the sum in the bracket has the
same asymptotic behavior as StrKjs(¢)— 1. Consequently, the second term is now
defined for Re(z) > —A; and can be continued to all s € C. The process then
can be repeated to extend to Re(z) > —A;, with A; being the first eigenvalue
surpassing A;. O

We end this section by presenting the behavior of the Hurwitz spectral zeta
through elliptic degeneration. For « € (0, 1/4) we define the «-truncated Hurwitz
spectral zeta function as

1 i dt
(@), _ =g __ (@) —zt
v (8,2) = A{a(z + i) = F(s)[o Stk (t)e *¢* 7

With these in mind, we have the following result concerning the behavior of the
truncated spectral zeta function through elliptic degeneration.

Theorem 6.4. Let M, be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
My,. Let a < 1/4 be any number that is not an eigenvalue of My,. Then for
any s € C and Re(z) > —1/4, we have

oo

1 dt
qli)nc}o[ 1(;3 (s,z) — To) DitrKyy, (t)e_”tsle = 1(‘20 (s,2).
0

Furthermore, the convergence is uniform in half-planes of the form Re(s) > C
and fixed z with Re(z) > —1/4.

Proof. The result follows using similar arguments as in Theorem 6.2. [
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7. Selberg zeta and determinant of the Laplacian

In this section, we investigate the behavior of the Selberg zeta function and
the determinant of the Laplacian. After we recall definitions and some analytic
properties of these functions, we describe their asymptotics through elliptic
degeneration. It is worth mentioning that the spectral zeta, Selberg zeta, and
the determinant of the Laplacian, are very much connected. The determinant of
the Laplacian specialized to s(s — 1) is essentially the completed Selberg zeta
function, with additional factors coming from the volume and the conical points
([Sa], [Vor], [Koy]), while the spectral zeta function regularizes the determinant
product. This comes with no surprise since the aforementioned functions appear
in either the spectral side or the geometric side of the trace formula.

7.1. Selberg zeta function. The Selberg zeta function is defined by the product

Zp(s) = ]_[ ﬁ (1 —e_(”")e”).

yeH(I") n=0

Following an elementary argument (see for example Lemma 4 in [JLul]), one
can estimate the number of closed geodesics of bounded length. It then follows
that the Euler product which defines the Selberg zeta function converges for
Re(s) > 1.

Following [McK], the integral representation is derived by carefully manipu-
lating the logarithmic derivative of the Selberg zeta, namely

Z’(s) ge—(+)y o0 o0
—(s+n)lyk
M)ZZ.M@ZZDWV
eH(I) n=0 yeH(r)n=0k—1
lye —skty
—(s—1/2)n£y
= D, Z = B Z -
e ¥ Nper—riate 2smh(n£,,/2)

Recalling the definition of the K -Bessel function

Ks((l,b) - \/\ooe—(azt-{-bz/t)ts?’
0

as well as the fact that Ky/>(h,a) = K_i/2(a,b) = (/7 /b)e™249b | allows us to
write

Zy(s)
Zut) 2D 2 Z\/16 smh(nliy/Z) Kij2ls = 1/2.n8,/2)

y€H(T) n=1

e—s(s—l)r dt.

g o= (t/4+(Ly)2/(41))
= (25 — l)f
yeH(F)n 1\/1671 sinh(n{, /2)
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Using the expression for the hyperbolic heat trace (3.6), the logarithmic derivative
of the Selberg zeta function can be expressed via the integral

Zy(5)
Zm(s)

o0
=@2s—1) f Htr K (£)e 6D gy
0

For a < 1/4, we define the «-truncated logarithmic derivative of the Selberg
zeta function, using the above integral representation minus the contribution to
the trace of the small eigenvalues. Consequently, we have

Z(C!)/ (O 0o ANe 2s_ 1

MW _ o 1)] Hirk @ (=6 gy — Zu®) _ )3 ; ,

Z,(S) (s) 0 Zpm(s) % s(s—1)+ Amn
M.n <o

for Re(s) > 1 or Re(s? —s) > —1/4.

Theorem 7.1. Let M, be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
My. Let « < 1/4 be any number that is not an eigenvalue of My,. Then, for
any s with Re(s) > 1 or Re(s®> —s) > —1/4, we have

29w 29
lim @ = .
g=ree ZMq(S) ZMOO(S)

Proof. The proof follows from the integral representation of the logarithmic
derivative of the Selberg zeta function to which we apply similar arguments
as in Theorem 6.2. [

As a direct corollary to Theorem 7.1 we obtain the following result.

Corollary 7.2. Let M, be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
Mo

(a) For any s with Re(s) > 1 or Re(s®> —s) > —1/4, we have

lim Zp, (5) = Zpm, (5).

g—>00
(b) At s =1, we have

. / 7t
lim Zy,, (1) = Zjy, (1.
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7.2. Determinant of the Laplacian. For a compact surface M, the determinant
of Laplacian Ajps is formally defined as the infinite product

(7.1) det Ay = ]_[ An,
An>0

(see for instance [Sa], [Vor], [JLI], [JLG], [Tsu]). To give meaning to such
divergent product, we observe that if the above product converged, than the
logarithm of the determinant could be written as

d
—logdet Ay = — Z log(An) = 7 Z Ay’
Ass0 " An>0

s=0 - éf’w (0)

Recalling from Proposition 6.1 that the spectral zeta {ps(s) is analytic at s = 0,
the above formal manipulation suggests that the divergent product in (7.1) be
regularized as

(7.2) det Apr = exp(—¢y,(0)).

For 0 < o < 1/4, we can express the derivative of «-truncated spectral zeta
function as follows

d (@) s = (@) dt 1 d e (@) dt

— §) = ——= SurKy, (Ot — + ——— f StrK,y ()5 — | .

dSCM () ()2 Jo m @) t C'(s)ds \Jo m () {
At s = 0 the Gamma function has a simple pole, so that 1/I'(s) = 0 and
consequently the second term above has no contribution to the logarithmic
determinant. Directly from the Weierstrass product definition of the Gamma
function, it follows that

I’ r’/r —y—1
(0 = lim /U6 _ o =¥ —ls _ 1,

s=0  I'(s) 50 1/s
where y denotes the Euler—Mascheroni constant. Consequently, the logarithmic
determinant can be rewritten as

@ ® @ 41
(1.3) logdet® Ay = — [ SteK(P ().
0

The integral representation (7.3) above together with Theorem 6.2 concerning the
behavior of the spectral zeta through elliptic degeneration, yield the following
result concerning the behavior of the regularized determinant.

Corollary 7.3. Let M, be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
Mso. Let o < 1/4 be any number that is not an eigenvalue of Mys,. Then

g—00

o© dt
lim [logdet(“)AMq + / DtrKMq(t)Ti| = logdet® Ay,
0
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8. Integral kernels

As in the articles [HIJL], [JLu2], and [JLu3], one can prove the asymptotic
behavior of numerous other spectral quantities having once established the heat
kernel convergence (see Theorem 3.5), and the regularized convergence theorem
of heat traces (see Theorem 3.6). For completeness, we list here some of the
questions that now can be answered and, for the sake of brevity, we outline the
method of proof.

The resolvent kernel. The resolvent kernel gpr(w,x,y) is the integral kernel
which inverts the operator A 4+ w on the orthogonal complement of the null
space of A + w. In the case w = 0, the resolvent kernel becomes the classical
Green’s function. For Re(w) > 0 and x # y, the resolvent kernel is defined by

[o. 0]
em(w,x,y) = —f Kp(t,x,y)e " dt.
0

If the surface is compact, we can use the spectral expansion of the heat kernel
as in Equation (3.1) to write

n=0 W AM’”

gu(w,x,y) =—Y_ (;)QbM,n(x)ﬁbM,n(y)

for Re(w) > 0 and x # y. From the above, it follows that the resolvent kernel
has a meromorphic continuation to the entire plane with poles located at the
negative eigenvalues of the Laplacian. If the surface is not compact, there is a
similar spectral expansion for the resolvent kernel, coming from Equation (3.2)
together with the above integral representation.

Let 0 < @ < 1/4. Then the «-truncated resolvent kernel g}j)(w,x, y) is given

by

g (w,x,y) = gu(w, x. )+ Y. (;)Q’{’M,n(x)gl’M,n(}’)-

w + A-M,n
AM.n<a

It then follows that the truncated resolvent kernel inverts A+ w on the orthogonal
complement of the space spanned by the eigenfunctions that correspond to the
eigenvalues of A which are less than «.

With the above remarks in mind, we have the following result.

Theorem 8.1. Let M, be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
My. Let 0 <o < 1/4.
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(a) For all fixed w with Re(w) > 0, we have
Jm gm, (W, x,y) = gMoe (W, X, ).
The convergence is uniform for x # y bounded away from the developing

cusps and in half-planes Re(w) > 0.
(b) For all fixed w with Re(w) > —«, we have

im ¢©@ _ @
Jm g (. %, ) = g3, (. X, ¥).

The convergence is uniform for x # y bounded away from the developing
cusps and in half-planes Re(w) > —«.

Proof. Part (a) follows from the convergence of the heat kernel as in Proposi-
tion 3.5 together with the dominated convergence theorem. Part (b) is similar
to part (a) with the addition of the convergence of the small eigenvalues and
eigenfunctions from Section 5. l

The Poisson kernel. A Poisson kernel on the surface M is a smooth function
Pp(w, x,y) defined on Rt x M x M , satisfying the following conditions. Suppose
that f is a bounded and continuous function on M and define

uwx) = [ Puw,x,3) /0N,
Then the Poisson kernel satisfies the differential equation
(Ax — 33)u(w,x) =0

and the Dirac condition

fx) = lim+ Py (w, x,y) f(y)du(y)
w M

—0
uniformly on compact sets. For a more detailed discussion on the Poisson kernel
we refer the reader to [JL2].
The Poisson kernel is given through the G-transform

Py(w,x,y) = KM(t,x,y)e_w2/4’t_3/2dt.

w (0.0}
var /(-)
We conclude convergence of the Poisson kernel through elliptic degeneration. By
arguing as in the case of the resolvent kernel mentioned above, the region of
definition extends to all w € C.
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The wave kernel. From the Poisson kernel we can define the wave kernel with
a rotation in the time variable w, namely

Wy (w,x,y) = Py(—iw,x, y).
The wave kernel Wys(w, x, y) is a fundamental solution to the wave equation
Ay + 32 =0.

As with the Poisson kernel, we obtain convergence of the wave kernel through
elliptic degeneration.

Acknowledgements. The first author acknowledges support from a PSC-CUNY
grant. The second author acknowledges support from grants from the NSF and
PSC-CUNY.

References

|Ab] W. ABikorr, The Real Analytic Theory of Teichmiiller Space. Springer Lecture
Notes in Mathematics 820 (1980). Zbl 0452.32015 MR 0590044

|AJS] M. AvpispHAIC, J. JorRGENsSON, and L. SmaiLovié, Asymptotic behavior of the
Selberg zeta functions for degenerating families of hyperbolic manifolds.
Commun. Math. Phys. 310 (2012) 217-236. Zb11294.11147 MR 2885618

[Ch] I. CHAVEL, Eigenvalues in Riemannian Geometry. Including a chapter by Burton
Randol. With an appendix by Jozef Dodziuk. Pure and Applied Mathematics,
115. Academic Press, Inc., Orlando, FL, (1984). Zbl 0551.53001 MR 0768584

|DJ] J. Dopziuk and J. JorGENsoN, Spectral Asymptotics On Degenerating Hyper-
bolic 3-Manifolds. Mem. Amer. Math. Soc. 135 (1998). Zbl(914.58036
MR 1434990

[Fa] J. Fay, Theta Functions on Riemann Surfaces. Springer Lecture Notes in
Mathematics 352 (1973). Zbl0281.30013 MR 0335789

[GJ] D. Garsin and J. JorGenson, Heat kernel asymptotics on sequences of elliptically

degenerating Riemann surfaces. To appear in Kodai Mathematical Journal.
arXiv:1603.01495

[Hejl] D.A. Hejhal, The Selberg Trace Formula for PSL(2,R), Vol. 1 Lecture Notes in
Mathematics, 548. Springer-Verlag, Berlin-New York, (1976). Zbl 0347.10018

MR 0439755

[Hej2] —— The Selberg Trace Formula and the Riemann zeta function. Duke Math. J.
43 (1976), 441-481. Zbl 0346.10010 MR 0414490

|[Hej3] —— The Selberg Trace Formula for PSL(2;R), Vol. 2. Lecture Notes in Mathe-
matics, 1001. Springer-Verlag, Berlin, (1983). Zbl 0543.10020 MR 0711197

|Hej4] —— Eigenvalues of the Laplacian for Hecke Triangle Groups. Mem. Amer. Math.

Soc. 97 (1992), no. 469. Zbl 0746.11025 MR 1106989



Spectral asymptotics 205

[HIL] J. HunTLEY, J. JorGENsON, and R. LunpeLius, On the asymptotic behavior of
counting functions associated to degenerating hyperbolic Riemann surfaces.
J. Func. Analysis 149 (1997), 58-82. Zbl0889.58078 MR 1471099

[JL1] J. JorGgensoN and S. LANG, Basic Analysis of Regularized Products and Se-
ries. Lecture Notes in Mathematics, 1564. Springer-Verlag, Berlin, 1993.
Zbl10788.30003 MR 1284924

[JL2] —— Analytic continuation and identities involving heat, Poisson, wave, and Bessel
kernels. Math. Nachr. 258 (2003), 44-70. Zb11032.35007 MR 2000044

[JLG] J. JorgEnsoN, S. Lang, and D. GoLprLED, Explicit Formulas. Lecture Notes in
Mathematics, 1593. Springer-Verlag, Berlin, 1994. Zbl 0804.00008
MR 1329730

[JLul] I. JorceEnson and R. LunpeLius, Convergence of the heat kernel and the resolvent
kernel on degenerating hyperbolic Riemann surfaces of finite volume.
Quaestiones Mathematicae 18 (1995), 345-363. Zbl 0853.58099 MR 1354117

[JLu2] —— Convergence of the normalized spectral counting functions on degenerating
hyperbolic Riemann surfaces of finite volume. J. Func Analysis 149 (1997),
25-57. Zbl 0887.58057 MR 1471098

[JLu3] —— A regularized heat trace for hyperbolic Riemann surfaces of finite volume.
Comment. Math. Helv. 72 (1997), 636-659. Zb10902.58040 MR 1600164

[Judl] C. JupcE, On the existence of Maass cusp forms on hyperbolic surfaces with cone
points. J. Amer. Math. Soc. 8 (1995), 715-759. Zbl10846.11035 MR 1273415

[Jud2] —— Conformally coverting cusps to cones. Conf. Geom. Dyn. 2 (1998), 107-113
(electronic).

[Koy] S. Kovama, Determinant expression of Selberg zeta functions. 1. Trans. Amer.
Math. Soc. 324 (1991), 149-168. Zbl 0726.11036 MR 1041049

[Kub]  T. KuBota, Elementary Theory of Eisenstein Series. Kodansha Ltd., Tokyo;
Halsted Press [John Wiley & Sons], New York-London-Sydney, (1973).
7Zb10268.10012 MR 0429749

|LP] P. Lax and R. PuiLLips, Scattering Theory for Automorphic Functions. Annals of
Mathematics Studies, No. 87. Princeton Univ. Press, Princeton, N.J., (1976).
Zb10362.10022 MR 0562288

[McK] H. McKEean, Selberg’s trace formula as applied to a compact Riemann surface.
Comm. Pure and Appl. Math. 25 (1972), 225-246. MR 0473166

[Sa] P. SaArNak, Determinants of Laplacian. Comm. Math. Phys. 110 (1987), 113-120.
MR 0885573

[Sel] A. SeLBerG, Harmonic Analysis and discontinuous groups in weakly symmetric
Riemannian spaces with applications to Dirichlet series. J. Indian Math.
Soc. B. 20 (1956), 47-87. Zbl1 0072.08201 MR 0088511

[Tsu] M. Tsuzuki, Elliptic factors of Selberg zeta functions. Duke Math. J. 88 (1997),
29-75. Zbl 0877.11033 MR 1448016



206 D. GarsIN and J. JORGENSON

[Ven] A. VENkov, Spectral Theory of Automorphic Functions and its Applications.
Translated from the Russian by N. B. Lebedinskaya. Mathematics and
its Applications (Soviet Series), 51. Kluwer Academic Publishers Group,
Dordrecht, 1990. Zbl 0719.11030 MR 1135112

[Vor] A. Voros, Spectral functions, special functions and the Selberg zeta function.
Comm. Math. Phys. 110 (1987), 439—465. Zbl 0631.10025 MR 0891947
[Wol] S.A. Wovrpert, Asymptotics of the spectrum and the Selberg zeta function on

the space of Riemann surfaces. Comm. Math. Phys. 112 (1987), 283-315.
7Zb10629.58029 MR 0905169

(Recu le 20 février 2018)

Daniel GargiN, Department of Mathematics and Computer Science, Queensborough
Community College, 222-05 56th Avenue, Bayside, NY 11364, U.S.A.

e-mail: dgarbin@qcc.cuny.edu

Jay JorGenson, Department of Mathematics, The City College of New York, Convent
Avenue at 138th Street, New York, NY 10031, U.S.A.

e-mail: jjorgenson@mindspring.com

© Fondation L’ENSEIGNEMENT MATHEMATIQUE



	Spectral asymptotics on sequences of elliptically degenerating Riemann surfaces

