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Spectral asymptotics on sequences of elliptically
degenerating Riemann surfaces

Daniel Garbin and Jay Jorgenson

Abstract. In this article we study the spectral theory associated to families of hyperbolic
Riemann surfaces obtained through elliptic degeneration, in particular the behavior of
several spectral invariants. Some of these invariants, such as the Selberg zeta function

and the spectral counting functions associated to small eigenvalues below 1/4, converge

to their respective counterparts on the limiting surface. Other spectral invariants, such as

the spectral zeta function and the logarithm of the determinant of the Laplacian, diverge.

In these latter cases, we identify diverging terms and remove their contributions, thus

regularizing convergence of these spectral invariants. Our study is motivated by a result

from IHej31, which D. Hejhal attributes to A. Selberg, proving spectral accumulation for the

family of Hecke triangle groups. In this article, we obtain a quantitative result to Selberg's

remark.

Mathematics Subject Classification (2010). Primary: 11M36, 35K08, 32G15.

Keywords. Spectral theory, degenerating Riemann surfaces, Laplacian eigenvalues, counting
functions.

1. Introduction

In the last section of the monumental second volume of Selberg trace formula
for PSL(2,R), D. Hejhal proves a statement, which he attributes to A. Selberg,

concerning the behavior of the zeros and poles of the scattering determinant for
the Eisenstein series associated to the Hecke triangle groups Gn as N goes
to infinity. Namely, for the Hecke triangle groups G^ which are subgroups
of PSL(2,R) generated by the fractional linear transformations z — 1/z and

zozf 2cos(7r//V) for 3 < N < oo, the parabolic Eisenstein series associated

to the cusp at infinity has the following Fourier expansion

En(z;s) ys +cpN(s)y1~s + 0(e~2ny),
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where the function (Pn(s) is referred to as the determinant of the scattering matrix
(a 1-1 matrix in this case). The behavior for the zeros and the poles of </>jv(.v) are

the last two results in Hejhal's second volume on the trace formula, with zeros

accumulating to the right of the critical line and the poles to the left of it. The

precise statements of Theorem 7.11 and Corollary 7.12 in [Hej3] are as follows:
Given to e M and 0 < 8 < 1, the rectangle [|, 5 + <5] x [t0 — 8, to + 5] must

contain zeros of ftt (,v) and the rectangle — 8, |j x [/0 — 8, to + 5] must contain

poles of (Pn(s) when N is sufficiently large.
The latter result appears in the ending remarks of Selberg's Göttingen lectures

part 2. Hejhal also promises to explore this topic in a third volume on the trace

formula, a volume that unfortunately has not yet been published. Motivated by this

remark, we are set to provide the quantification of the rate of accumulation of the

poles of the scattering determinant for the Hecke triangle groups. Furthermore, the

Hecke triangle groups is one instance of a family of hyperbolic Riemann surfaces

which is elliptically degenerating. In the setting of the Hecke groups Gn Hejhal
shows that the Eisenstein series and the scattering determinants converge through
degeneration.

The present paper is motivated by the goal of establishing a quantitative
formulation of the above mentioned result. More generally, we will define a

(discrete) sequence of hyperbolic Riemann surfaces that we deem to be elliptically
degenerating. We denote by {Mq} to be a sequence of finite volume hyperbolic
Riemann surface parametrized by the vector q which consists of the orders

of some of the torsion points corresponding to finite order elements in the

fundamental group. By letting these orders approach infinity one obtains an

elliptically degenerating family of surfaces, with the limiting surface M«, having

q additional cusps corresponding to each degenerating torsion point. Let us

summarize some of the main results below. After establishing the definition of
elliptic degeneration, we then investigate the behavior of such spectral invariants
in the setting of elliptic degeneration of hyperbolic Riemann surfaces. We list
below some of the results we have derived.

For T ^ 0, let NMq,w(T) denote e weighted spectral counting function. In
the compact case, NMq,w(T) is given by the formula

Nmv,w(T) £ (T - Xn,q)W,

^n.ct<T

where w > 0 denotes the weight and the \„.qs are discrete eigenvalues of the

Laplace operator. For the non-compact case, we refer the reader to Section 5.

One of the main results of this paper describes the behavior through elliptic
degeneration of the weight zero spectral counting function. Namely, Theorem 5.7

shows that as q approaches infinity, then
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NMqfi(T) c0(T) log(ß) + o((log(ß))3/4),

where Q denotes of the product of the orders of degenerating torsion points
and c0 (7) is some constant depending on T only. This in turn, when applied to

the special case of Hecke triangle groups (where Q N), describes the rate of
accumulation of the poles of the scattering determinant.

Another result concerns the behavior of the spectral zeta function through

elliptic degeneration given in Theorem 6.2. For a e (0,1/4) we denote by
the a-truncated spectral zeta function, which in the compact case is defined by
the series

£*>)= E

for Re(.v) > 1. Denote by DtrA/w,, (t) the contribution of the degenerating elliptic
elements to the trace of the heat kernel on Mq. If a is not an eigenvalue of
Moo, then for any s e C, we have

lim
tf—>oo

1 roo J.

ft®-m h

The result is valid in the compact as well as non-compact finite volume setting.
In the compact case, the Hurwitz spectral zeta function is represented via the

Dirichlet series

ÇM(S,Z) ^2(z + Xn)~s,

A„>0

for z,s e C with Re(z) > 0 and Rc(.v) > 1. The behavior through elliptic
degeneration of the Hurwitz spectral zeta function is given in Theorem 6.4.

Namely for any ,v e C and Re(z) > —1/4 we have

lim
>oo

1 f°° dtml
As with the spectral zeta, the result also applies to the non-compact finite volume

setting.
The Selberg zeta function is defined by the product

OO

zM(s)= n
yeH(T) n=0

with convergence for Re(.v) > 1. The behavior of the Selberg zeta function through

elliptic degeneration is given by Corollary 7.2, namely for any s with Rc(.v) > 1

or Refs'2 — s) > —1/4, we have
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lim ZM (s) ZMoo{s).
q->oo

In addition to this, at s 1, we have that

ÄZM,(1) Z^(1).

For a compact surface M, the determinant of Laplacian Am is formally defined

as the infinite product

det Am I I A„,
>o

which is regularized as a special value of the derivative of the spectral zeta

function, namely

log det Am -£m(°)-

Let a e (0,1 /4) be any number that is not an eigenvalue of and define the

a-truncated determinant del(a) Am by

det(a) Am exp(-^} '(0)).

Corollary 7.3 describes the behavior of the determinant in both the compact and

non-compact finite volume settings, namely

lim
q-+oo

f°° dt
log det(a) Am„ + / DtrKMq{t) —

Jo
log det(a) AM(

Our analysis follows a pattern of study undertaken in the setting of finite volume

hyperbolic manifolds of dimension two and three which are degenerating by pinching

geodesies; see [JLul], [Wol], [JLu2], [JLu3], [HJL] and references therein. In
all settings, one needs to establish convergence results for the associated sequence

of heat kernels through degeneration. This technical undertaking is identical in the

study of degenerating hyperbolic Riemann surfaces and degenerating hyperbolic
three manifolds, as one can see by comparing [JLu3] and [DJ]. The heat kernel

convergence results in the present setting are, again, identical in their conclusion
and in their proofs. We refer the interested reader to [GJ] for details. We note

that all of the heat kernel convergence results are somewhat expected, so, in that

sense, we deem it appropriate to proceed with applications, which we develop

in this paper. Specifically, we will study convergence results of the Selberg zeta

function, determinants of the Laplacian, small eigenvalues and spectral counting
function. Interestingly, some of the convergence results in this paper differ from
the setting of hyperbolic degeneration.

The paper is organized as follows. In Section 2 we describe the setting of
elliptic degeneration. In Section 3 we define various traces of the heat kernel, an
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instance of the Selberg trace formula, and describe the behavior through elliptic
degeneration of the so called regularized trace. In Sections 4 and 5 we present
the behavior of spectral measures in general and spectral counting functions in

particular, the latter of the two sections containing the result about accumulation of
the poles of the scattering determinant for the Hecke triangle groups. In Section 6

we present the behavior of the spectral and Hurwitz spectral zeta functions while
in Section 7 we study the Selberg zeta and the determinant of the Laplacian.
Section 8 concludes the paper with some remarks concerning the behavior for
other integral kernels.

2. Geometry of elliptic degeneration

Heuristically, our point of view of a sequence of elliptically degenerating
Riemann surfaces is as follows. First, one begins with a smooth, compact Riemann
surface with a prescribed open cover by unit discs, coordinate functions, and

transition maps. As such, the uniformization theorem asserts the existence of a

unique hyperbolic metric which is compatible with the complex structure and

has constant negative curvature equal to — 1. Next, choose a finite number of
open discs within the cover and remove its origin and corresponding point on the

manifold. Again, the uniformization theorem asserts the existence of a complete
hyperbolic metric, and the removed points are considered "points at infinity." For
another finite set of open discs within the cover, replace the local coordinate

on the manifold by its n -th root, where n is positive integer which will vary
from open to disc to open disc. This procedure yields a Riemann surface with
a finite number of points at infinity and a finite number of elliptic points, and,

again, the uniformization theorem provides a unique, complete hyperbolic metric.

Finally, for each elliptic point constructed above, let its ramification order n tend

to infinity, possibly at varying rates. The resulting sequence of Riemann surfaces,

with their hyperbolic metrics, is an elliptically degenerating sequence. Along the

way, one is allowed to change the local data associated to charts which do not

yield cusps or elliptic points, but one does so in a "bounded" manner. Let us

now make this construction precise.

Let M be a connected hyperbolic Riemann surface of finite volume, either

compact or non-compact. For simplicity, let us assume that M is connected, so

then M can be realized as the quotient manifold r\H, where H is the hyperbolic

upper half space and T is a discrete subgroup of SL(2,R)/{±1}. A non-identity
element y e T is called hyperbolic, parabolic, or elliptic, if y is conjugated
in SL(2,M) to a dilation, horizontal translation, or rotation respectively. This
is analogous to |Tr(y)| being greater than, equal, or less than 2, respectively.
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Furthermore, an element y is called primitive, if it is not a power other than

±1 of any other element of the group. With this in mind, a primitive hyperbolic,
parabolic, or elliptic element y is conjugated to

(e£rl2
0 \ ll wy\ I cos(n/qY) sin(7r/^y)\

0 e~tv/2j \0 1 J' °r
y-sin(7r/(/y) cos(ji/qY)J

respectively. Here ly is the length of the simple closed geodesic on the surface

M in the homotopy class of y, wY denotes the width of the cusp fixed by y,
and 2tt/qY is the angle of the conical point fixed by y. The positive integer qY

is the order of the centralizer subgroup of the elliptic element y. We will say
that the corresponding elliptic fixed point has order qY.

For a given positive integer q, let Cq denote the infinite hyperbolic cone of
angle 2it/q. One can realize Cq as a half-infinite cylinder

(2.1) Cq {(p,9) :p>0,9 e [0,2zr)}.

equipped with the Riemannian metric

(2.2) ds2 dp2 + q~2 sinh2(p)d02,

having volume form

(2.3) dp q~l sinh(p)dpdd.

A fundamental domain for Cq in the hyperbolic unit disc model is provided by a

sector with vertex at the origin and with angle 2n/q. In these coordinates, we can

write a fundamental domain for Cq as {a exp(/V/>) : 0 < a < 1,0 < </> < 2n/q).
The hyperbolic metric on Cq is the metric induced onto the fundamental domain
viewed as a subset of the unit disc endowed with its complete hyperbolic metric.
The isotropy group which corresponds to this fundamental domain consists of the

set of numbers {e,xç(2n ik/q) : k 1,2,...,q} acting by multiplication. Let
Cq>E denote the submanifold of Cq obtained by restricting the first coordinate of
(p, 9) to 0 < p < cosh~' (1 + sq/2n). A fundamental domain for Cq<E in the

unit disc model is obtained by adding the restriction that a < (sq/(4n + sq))1!2.

An elementary calculation shows that the volume of this manifold vol(Q,£) s,
and the length of the boundary of Cq,e is {Ans/q + s2)1/2. For êj < s2 one can

show that the distance between the boundaries of the two nested cones C?j£1 and

C<7,£2 is

j ^ X
(£2q +2?r + s/^qW+~m)\

^h(9C?i£i dCq,S2) — log I I.
\Siq +2JI + ^js\q{\n + Eiq) J

Let Coo denote an infinite cusp. A fundamental domain for in the upper
half-plane is given by the set {x + iy : y > 0,0 < x < 1}. A fundamental domain
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for Coo in the upper half-plane is obtained by identifying the boundary points iy
with 1 + iy. The isotropy group that corresponds to the above fundamental domain
consists of Z acting by addition. As before, let Coo,e denote the submanifold of
Coo obtained by restricting the y coordinate of the fundamental domain given
above to y > 2/e. Elementary computations show that vol(Coc,£) e/2, and the

length of the boundary of is also e/2.
In its quintessential form, elliptic degeneration turns a cone of finite order q

into a cone of infinite order, i.e. a cusp. To view this, we realize the positive
angle cone Cq as the half-infinite cylinder {(x, y) : x e [0,1), y (0, oo)}, by
changing the (p, 6) coordinates in (2.1) as 9 2itx and p — 2tanh_1 (e~ay),
where a 2n/q. In (x,y) coordinates, Cq is a cone of angle a 2n/q with

apex at y oo, equipped with the Riemannian metric

2 dx2 + dy2
dsi

q a~2 sinh2(ay)

As the order q goes to infinity, or equivalently as the angle a goes to zero, the

cone Cq converges to the cusp with metric given by

2 dx2 + dy2
ds„ j2

To develop several cones into cusps, we proceed as follows. Let q

(q\,q2,---,qm), with each integer qi > 2, be a vector of the orders of
elliptic fixed points. In this case we define Cq U^=1 Cqk. We similarly define

Cq,e U=1 C9A;;£. We say that the vector q approaches infinity if and only if
the minimum of the qi's approach infinity. With these in mind, let us make the

following definition.

Definition 2.1. A family of finite volume hyperbolic surfaces {Mq} is elliptically
degenerating to M^ as q approaches infinity, if for any s e (0,1 /2) the following
properties hold (see Fig. 1):

(a) Cq,E embeds isometrically into Mq and U^=1Coo,£ embeds isometrically
into Moo;

(b) There exists a sequence of homeomorphisms fq.e : Mq\Cq,e -» M0Q\ U=1
Coo;£ such that for x,y e Moo\ U^=1 Coo;£

dhyPtMq(fqJ(x), fqJ(y)) dhypMoo(x,y).

(c) The convergence above is uniform on compact subsets of U=1
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Figure 1

Elliptic degeneration of q\ and <72

Remark 2.2. As notations get cumbersome, we feel that suppressing some of it
would lead to an easier reading. For instance, we may write Coo,« in place of
U^LjCx,,« as well as in place of LJ=| In a slight abuse of notation, we

will also write x e ACo\u^=i C0o,s in place of f~J. (x). Additionally, if ei < s2,
one can set /9;£2 /9j£l when the latter map is restricted to Mq\Cq>e2, so one

can assume the functions {fq,E} satisfy such relations. As such, the pre-image of
x on Mq\Cq;£ is unambiguous.

The volume forms induced by the converging metrics also converge uniformly
on compact subsets of Mq\Cq,e, and all such measures are absolutely continuous

with respect to each other. In general, the hyperbolic volume form occurring in an

integral will be denoted by dpi with an appropriate subscript when needed (for
example, d/iq). The description of the degeneration of Mq to the limit surface

Moo also applies to the degeneration of Cq and Cqj (with s < S) to their limit
surfaces, C'00 and C^s respectively.

In rough terms, the idea with Definition 2.1 follows the established notion
of hyperbolic degeneration which combines the algebraic-geometric construction
from [Fa] together with the hyperbolic geometric results of [Ab]. The main
theorem of [Jud2] may be viewed as the elliptic analog to the results in [Ab ]. It
implies that given a finite volume hyperbolic surface M^ with p cusps, there

exists a family of hyperbolic surfaces {Mq}, with p — m cusps indexed by the

m-tuple q such that lim^^oo Mq Moo •

3. Asymptotics of heat kernels and traces

In this paper we consider hyperbolic surfaces having conical singularities,
surfaces realized as the action of discrete groups T of PSL(2,K) acting on H.



Spectral asymptotics 169

The conical singularities are present once the group T contains elements (other
than the identity) having fixed points. Such is the case with the full modular

group PSL(2, Z). In particular, let M be a compact hyperbolic surface, having
n marked points {c,}"=1. The hyperbolic metric g on M is called conically
singular if and only if for every i — 1,...,« there exists a chart (Ul,/x,) about
the point c, that maps 17, isometrically to a hyperbolic cone with angle a,-.
The hyperbolic metric is the unique metric with curvature equal to —1 and is

compatible with the underlying complex structure.
The surfaces under consideration have conical points and possibly cusps, so

the function space on which the Laplace operator acts has to be extended in

order to obtain an operator which is self-adjoint and acts on a Hilbert space of
functions. The details by which one obtains such extension, called the Friedrichs

extension, are described thoroughly in [LP]. We refer the interested reader to
this reference for the discussion. For the sake of space, we will state, as on

page 17 of [Ven], the following. Since the spaces in question have conical points,
there is a range of possible self-adjoint extensions of the Laplacian. The choice

of extension is important; however, from our point of view, we will utilize the

commonly chosen Friedrichs extension, as in [Ven], referring to [LP] for details

regarding its construction and further properties.
Let Aj\i denote the Laplace operator on the surface M. Consider the heat

operator Am + dt acting on functions w : M x K+ i-> E which are C2(M)
and CHlV). Then the heat kernel associated to M is the minimal integral
kernel which inverts the heat operator. Namely, the heat kernel is a function

Km : 1 x M x M M satisfying the following conditions. For any bounded

function / e C2{M) consider the integral transform

u(t, x) I KM(t,x,y)f(y)dßM(y)-
Jm

Then the following differential and initial time conditions are met:

Axu + d,u — 0 and f{x) lim u(t,x).
t-+o+

If M is compact, then the spectrum of the Laplace operator is discrete, consisting
of eigenvalues 0 Ao < Ai < A2 < -» oc counted with multiplicity. Associated

to these eigenvalues there is complete system {</>„(x)}^0 of orthonormal

eigenfunction of the Laplace operator on M. For t > 0 and x,y e M, the

heat kernel has the following realization

OO

(3.1) KM(t,x,y) J2e~X"'(l)n(x)(t>n(y),
n=0

and the sum converges uniformly on [t0. oo) x M x M for fixed t0 > 0 (see [Ch]).
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If M is not compact, the spectrum has a discrete part as well as a continuous

part in the real interval [1/4, oo). The continuous spectrum comes from the

parabolic Eisenstein series Epar;M,p(z,s) associated to the each cusp P of M.
In such case, the spectral expansion has the following form (see [Hej3])

(3.2) KM(t,x,y)= ^ e~Xnt(j)n(x)4>n{y)

discrete

j p oo

+ r- ^ / e~(1/4+r Epa[;M,p(x, 1/2 + ir)Epar;M,p(y, 1/2 + ir)dr.
71

cusps p 0

Let Kn(t,x,y) denote the heat kernel on the upper half-plane. Recall that

Ku(t,x,y) is a function of t and the hyperbolic distance d du{x, y) between

x and y, so

Km(t,x,y) Ku(t,d).

Quoting from page 246 of [Ch], we have for d > 0

V2e-'l4 [°° ue~u2'4tdu
(3.3) Ku(t,d) fJd(4jrt)3/2 Jd Vcosh u — cosh d

while for d 0

i r°°
(3.4) Km(t,0) — e"(1/4+r tanh(;rr)rdr.

Jo

Remark 3.1. It is possible to extend the heat kernel to complex valued time. For

time z g C, write z t + is with t > 0. Then we have

Kn(z, d)
^2e-z/4 too ue-u2l4zdu7Jd(4jtz)3/2 Jd Vcosh u — cosh d

'

and setting r |z|2/t, yields the bound

V2e-f/4 r°° ue-u2'4xdu
1 H(Z' )15 (4^)3/2(^+^)3/4^ VcoshM _coshûf

< es2/4tt~3/2(t2 + £2)3/4ATh(t, d).

For any hyperbolic Riemann surface M ~ r\H, one can express the heat

kernel as a periodization of the heat kernel of the hyperbolic plane. Let x and

y denote points on M with lifts x and y to IUI. Then we can write the heat

kernel on M as

(3.5) KM(t,x,y) ^ Ku(t, dH(x, yy)).
yer
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Denote by H(r),P(T), and E(T) complete sets of T-inconjugate primitive
hyperbolic, parabolic, and elliptic elements, respectively, of the group T. If M
is compact, then f(T) is empty. Let ry denote the centralizer of y e T. If
y is a hyperbolic or a parabolic element then VY is isomorphic to the infinite
cyclic group. If y is elliptic then its centralizer is isomorphic to the finite cyclic

group of order qy. In each instance, the centralizer is generated by a primitive
element. We can use elementary theory of Fuchsian groups (see [McK]) to write
the periodization (3.5) as

OO

KM{t,x,y) KH(t,x,y) + Ku(t,x,K 1ynKy)

y<EP(r)n=hcery\r
OO

+ ^ ^ X! Km(t,x,K~1ynKy)
yeH(r)n=l Kery\r

Qy 1

+ H H Ku(t,x,K~lynKy).
ye£(r) n=i Ksry\r

Using the above decomposition we define the parabolic contribution (i.e. the

contribution coming from the parabolic elements) to the trace of the heat kernel

by

OO

PKM(t,x)= KM(t,x,K~1ynKx)
y<=P(r)n=\Kiv\r

and in a similar manner we define the hyperbolic contribution and elliptic
contribution which we denote by HKm(},x) and EKmU, x) respectively.

Definition 3.2. For a connected hyperbolic surface M, we define the regularized
or standard heat trace StrKm (0 by

STrKM(t) HTrKM(t) + ETrKM{t) + \o\(M)Ku(t, 0),

where the hyperbolic and elliptic traces HTrA^M(t) and ETvKmU) are given by

HTr^M(t) / HKM(t,x)d/i(x) and ETrKM(t) — f EKM(t,x)dn(x),
Jm Jm

respectively. If M is a hyperbolic Riemann surface of finite volume, but not

connected, each trace can be defined as the sum of the traces associated to each

connected component of M

The following result due to Selberg [Sel] evaluates the integral representation
that defines the hyperbolic trace, namely
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,3.6,

g-f/4 fC
(3.7) ETr7,a/(0 E E

We refer the reader to Theorem 1.3 of [JLu3] for an elementary proof. An integral
representation for the elliptic heat trace is

e-t/A poo e-2nnr/qy-tr2

yzE(T) hi 2«y Sin("^/^) J-oo 1
• -

and can be found in [Hejl] on page 351 or [Kub] on pages 100-102. The elliptic
trace may also be expressed as

„3
e-'/4 1 f°° e-"2/4' cosh(n/2)

(3.8) ETrKM(t) — / / — / ~ r du.
Vîfori y<T^r) ^ dr Jo sinh (u/2) + sin2(«jr/<7y)

One can use the Parseval formula to show that the expressions (3.7) and (3.8) for

EArKnf(t) are equal.

Remark 3.3. In the case M is compact, the standard trace STrKm (0 is simply
the trace of the heat kernel. One immediately obtains from (3.1) the spectral

aspect of the standard trace,
» oo

(3.9) STrKM(t)= I KM(t,x,x)dß(x) Ve4"'.
Jm

n=o

On the other hand, Definition 3.2 and the various aforementioned integral

representations ((3.4), (3.6), (3.7)), give the geometric side of the standard trace,

namely

(3.10) STrKm(0 —
vol(M) f e~d-+i/4tanh(jrr)rt/r

4tt J-œ
OO 0 ,y—t/4

y^ y^ ly e ^-(nlyp/At
yh(T)hl sinh(«V2) 716^7

1y~x e-'/4 r°° g-2nnr/qy-tr2
+ yS(D S 2(ly Sin(W7r/^) J~°° 1 + e_23rr

dr

The combination of (3.9) and (3.10) yields an instance of the Selberg trace

formula as applied to the function f(r) e~~tr2 and its Fourier transform

/(«) (4tt/)-1/2e-"2/4'.
One can use this special case to generalize the trace formula to a larger class

of functions as follows. First, denote by rn the solutions to Xn — 1/4+ r2. The

non-negativity of the eigenvalues imply that for each n there are two solutions

r„ which are either opposite real numbers or complex conjugate numbers in the

segment [—;/2, i/2].
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Let hit) be any measurable function for which h(t)e(^4+£^ is in LJ(R) for
some e > 0. Multiply the right-hand side of (3.9) and (3.10) by h(t)et^A and

integrate from 0 to oo with respect to t. Set

f°° 2

H{r) — I h(t)e r 'dt.
Jo

By rewriting the absolute integrand of H(r) as \h(t)e(il4+E)t )\ \e~^2+llA+^,)\
and recalling the imposed conditions on h(t), it follows that H{r) is analytic
inside the horizontal strip |Im(r)| < 1/2 + s' for some e' > 0 depending on e.

The Fourier transform of H(r) has the form

poo 1

H(u) / h(t) -e~u !Atdt.
Jo V4Jtt

Putting these facts together yields the Selberg trace formula in the compact case,

namely

(3.11) y H(rn) _ f H(r)tanh(jrr)rdr
4tt J_oorn

OO g

+ S
y&H(T)n=l v >' '

v
q'v_

~1
J poo 2nnr/qy

+ yeÇr) S 2qy sin(»*/?>') J-oo 1 + e~27tr ^ '

where the sum on the left is taken over rn e (0, oo) U [0, i/2]. We note that (3.11)

above agrees with the formula in Theorem 5.1 of [Hejl], with y being the trivial
character of the group T.

In the case M is non-compact, the regularized trace equals the trace of the

heat kernel minus the contribution of the parabolic conjugacy classes. While the

geometric side of the regularized trace is precisely as in (3.10), the spectral side

has the following presentation

1 /*oo J' /

(3.12) STrA-M(0 V e~Xnt / e_(r2+1/4)r —(1/2 +/r)</r
4-tc J_no (b

C(M) 00 V

n f°° -, V
+ — (r /4)f—(1 + ir)dr

J—oo ^

4.(1/2))»-"+
4^ / *J\nt

where C(M) denotes a set of eigenvalues associated to L2 eigenfunctions on

M, (f>(s) the determinant of the scattering matrix <t>(.v), T(.y) the Euler Gamma

function, while p the number of cusps of M (see page 313 of [Hej3]).
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One can use the same argument as in the compact case to obtain the formal

Selberg trace formula in the non-compact case. While the geometric side doesn't

change (see the right-hand side of (3.11), the spectral side is as follows:

v, 1 r°° à,'
(3.13) spectral side H(rn) / H{r)—(1/2 + ir)drAn /_oo </>

rn

p r°° r'
+ i~ H(r) — (l+ir)dr

J—OO

-\{p- Tr 4>(l/2))//(0) + p log(2)//(0).

Remark 3.4. Returning to the special case of the trace formula given by (3.10),

we note the following. For the first term in the right hand side of (3.10), the

identity contribution, we can write

n>M) /"V'WorrMr,
4t Jo

using integration by parts. Furthermore, for any t > 0, the integral can be bounded

as follows

f°° 2 f°° 2
1

I e sech (jir)dr < I sech (nr)dr —
Jo Jo n

with equality when t — 0. It then follows that the identity trace has the following
asymptotics

(3.14) ITrKM(t)
vol(M)

h 0(1), as t -» 0
Ant

0(e-'/4), as -> oo.

The hyperbolic trace, the second term in the geometric side of the trace (3.10),

has the following asymptotics

(3.15) HTiKM(t) - ^ °
0(e '' as t -> oo.

For a detailed account of these see Theorem 1.1 in [JLu3|. To continue, the

integrals in the elliptic trace can be bounded as follows. For any primitive elliptic
element y e E(r) and 1 < n < qY, we have

foo p—tr2—27inr/qY poo p—t^—lnnr/qy poo p—tr2+27tnrlqY
dr/oo

ç—tr"—27inrlqY poo p—tr^—2nnr/qy poo p—tr
dr / dr + /

.oo
1 + Jo 1 + e Jo 1

p OO poo
/ e~tr -1n{nlqy)r/ e~tr2-2n(l-n/qy)r

Jo Jo
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Now for b > 0, the function Gb(t) given by the Gaussian integral

r°°
Gb(t) / e-tr~brdr

Jo

is defined for any t > 0. Furthermore, since the limits of Gb(t) at t 0 and

at t — oo are h~l and 0 respectively, the integrals in the elliptic trace are finite
for all t > 0. Consequently, the elliptic trace has the following behavior

(3.16) ETrKm {t)
O(l), as t -»• 0

0(e-'/4), as t -» oo.

Putting all these together, the combination of (3.9), (3.10), (3.14), (3.15), and

(3.16) give the asymptotic behavior for the standard trace of the heat kernel in
the compact setting. Namely when t -> 0, we have

(3.17) Str/Gv/(0 + 0(1),to 4nt

while

(3.18) StrKM(t) 1 + 0(e~ct)

for some positive constant c, as t -> oo. Furthermore, if we denote by

N(X) card{7„ : Xn < A}, then we can write the above expansion as follows

vol(M)
Jo ' 4jit

e~XtdN{A) - + 0(1) at / 0.

The Tauberian-Karamata theorem then gives an instance of Weyl's law as applied
in the setting of hyperbolic Riemann surfaces

(3.19) NW ~
47T

as A oo.

The next result presents the behavior through degeneration of the heat kernel
and its derivatives. Namely, we have the following theorem. For brevity, we only
state the result. For details, we refer the reader to [JLul] and Theorem 1.3 of
[JLu2] which one can easily adapt to the elliptic degeneration setting.
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Theorem 3.5. Let Rq denote either Mq or Cq. For i 1,2, let v; v, (q) he

a tangent vector of unit length based at xx e Rq which converges as q —> oo.
Denote by dVi>Xi the directional derivative with respect to the variable Xi in the

direction v,-. Assume that either x\ or x2 is not a degenerating conical point.
Then

(3.20) lim Kr {z,xx,x2) KRoo{z,xx,x2)
q->-oo

(3.21) \imodVi>XiKR9(z,xi,x2) dVi,Xi KRoo(z, xu x2) for i 1,2

(3.22) lim hv^Xldv2,x2KRq(z,xi,x2) — 9x\ ^V2,X2 KRoo(Z,X I,X2).
q—> 00

(a) Let A he a bounded set in the complex plane with infz<E/i Re(z) > 0. For

any s > 0, the convergence is uniform on A x Rq\C(hE x Rq\Cq,e.

(b) We define De^> to be an e! neighborhood of the diagonal of Rq\Cq,e x
Rq\Cq,e That is,

De,e' {(,^1,^2) ^ Rq\Cq,e x Rq\Cq,e • dl^Xi,X2) < S }.

Let B be a bounded set in the complex plane with infzeg Re(z) > 0. For

any e > 0 and s' > 0, the convergence is uniform on B x ((Rq\Cq>s x
Rq\Cq,E)\T>e,e')-

To continue, let us define the degenerating trace of the heat kernel. Denote

by DE(T) a subset of the elliptic conjugacy classes E(V), corresponding to the

cones we wish to degenerate into cusps. It then follows that the degenerating heat

trace DïvKm{i) can be expressed as

e-'/4 ^ 1 f00 e-w2/4r cosh(w/2)
(3.23) DTrKm(t) V V — / f1-1 du.

Vlôjrt ye^(r) ^ Qv Jo sinh (u/2) + sin2(n7r/qY)

A staple ingredient in this paper is the convergence through elliptic degeneration of
the regularized trace minus the degenerating trace on Mq to the regularized trace

on the limiting surface M^. To prove Theorem 3.6 below, one can follow similar

arguments as in Theorem 0.2 of [JLu2] in the setting of hyperbolic degeneration
in 2 dimensions or Theorem 8.1 of [DJ] in the setting of 3-manitolds. For a

detailed proof we refer the reader to [GJ],

Theorem 3.6. Let Mq denote an elliptically degenerating family of compact
or non-compact hyperbolic Riemann surfaces of finite volume converging to the

non-compact hyperbolic surface Mm.

(a) (Pointwise) For fixed z t + is with t > 0, we have

lim [\YWKMq(2) + ETrKMq(z) - DTrKMq{z)\ m\KMoQ(z) + ETrKMeo(z).
q—>00
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(b) (Uniformity) For any t > 0, there exists a constant C (depending on t)
such that for ail s e E and all q, we have the hound

As a consequence of Theorem 3.6, we have the following corollary, which
describes the small time behavior for the regularized trace of the heat kernel.

While the arguments involved in the proof of Theorem 3.6 above can be easily
reconstructed from the corresponding theorems in the hyperbolic degeneration

settings, for the next result we feel more appropriate to provide all the pertinent
details.

Corollary 3.7. Let Mq denote an elliptically degenerated family of compact or
non-compact hyperbolic Riemann surfaces of finite volume which converges to
the non-compact hyperbolic surface Then for any fixed 8 > 0, there exists

a positive constant c such that for all 0 < t < 8, we have

uniformly in q.

Proof Assuming that Mq is compact, let us show that for 0 < t < 1, there is

a constant C > 0, independent of the degenerating parameter q, such that the

following inequality

(3.24) \KTrKMv(z) + ETrKMq(z) - DTrKMg(z)\ < C/"2(l + |.v|)3/2,

holds. Derivation on the group side of the Selberg trace formula (see for instance

[McK]) allows us to formally write for sufficiently small e and / > 0

(I) mvKMq + ETrKMq - DTrKMq){t + is)

provided all intervals converge.
For integral (I), we have by Proposition 2.1 of [JLu2], the maximum modulus

principle, and the Gauss-Bonnet formula the following bound

|HTrKm9(z) + ETrKMfiz) - \mKMJz)\ < C( 1 + |.v|)3/2.

KYrKMq(t) + ETrKMq(t) - L>TrKMv(t) - O (r1)

(III)

(II)
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(3.25)

/ \Ku(t + is,x,x)\d/x(x) + / \KMq(t + is,x,x)\d/x(x)
JM,,\C„r JM„\Cn e

11 <
>Mq\Cq,e JMq\Cqe

<2n(2g-2 +r)(\Ku(t + is,Q)\+ max \KMq(t,xq,xq)\)
XqdCq,s

with g denoting the genus of the family and r denoting the number of distinct
conical points. Next we can write directly from (3.4), which extends for complex
time z t + is, that

i 9 i
(3.26) |^n(t +i.s,0)| < — / e_(1/4+r )< tanh(jrr)rdr <

27T Jo 4jtt

Additionally, we recall that for t approaching zero, for any positive integer N,
there exist constants bo, bn such that

1
N

(3.27) KM(t,x,x) — + Ybntn + 0{tN+1),
Ant z—'

«=o

see formula (0.2) of [JLul] and the references therein. The combination of (3.25),
(3.26), and (3.25) yields

(i^7 + c)'(3.28) I ï I < An(2g - 2 + r) —
for some positive constant C.

For integral (II), we can apply similar arguments as in Theorem 3.4 of [JLu2]
and while paying close attention to dependence on t in formulas (3.14), (3.16),

and (3.17) therein, we see that

(3.29) I II I < Ct{ 1 + M)3/2.

For integral (III), we can use arguments similar to those in Theorem 3.1 of [JLu2]
to show that for any e > 0 and z t + is with t > 0, we have the bound

(3.30)

/ e \~2ir/ {KCq - Km)(z, x, x)dix(x)
JCq\Cq,£ yfn\z~\ V2?r(B £q0 + 2rjy) + n

where

j<^) and y Xog (I+(B2)'
and Çq denoting the Riemann zeta function. With sL > max{2n,e} we split
integral (III) as
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111= / (KCq - Kw)(z,x,x)dix(x) + / (KCq - Ku)(z,x,x)dfj,(x),
JCg\Cq,e j JCq,e\\Cq,e

referring to the two integrals above as (III.l) and (III.2) respectively. Applying
(3.30), for integral (III.l) we obtain the bound

III.l I

1

yf\Ä
+ 2 rjy) + *

with r] t/(4(t2 + ,s'2)) and y log(l + (S\/2n)2). If s ^ 0, then 2rjy \ 0 as

t \ 0; consequently £<q(1 + 2r]y) ~ (2t?y)_1 and

(3.31) III.l I <
Vt2 + P2

2(t2 +Ä2)

yt
+ cv (t2+s2)3'4

2

yt

< cyr2( l + |^|)3/2.

For integral (III.2), we use the same arguments as for integral (II) and the inclusion
of heat kernels to obtain

(3.32) I III.2 I < f (Km, - Km)(t,x,x)dli{x) < Ct\ 1 + |i|)3/2.
J Cq,e 1

The combination of the bounds in (3.28), (3.29), (3.31), and (3.32) complete the

proof of (3.24) for the small complex time behavior of the trace. To complete
the proof in the compact case, we look at the special case s — 0. Noting that

integral (I) is 0(t~x) while integrals (II) and (III.2) are 0(1), we only need to
revisit integral (III.l). In this direction, since 2rjy y/(2t) -> oo as t \ 0 it
follows that Cq(1 + 2r]y) ~ 1 + (2rjy)"1 and consequently

ml 1 £ 7!
21

L Y
+ Cy < Cyt-1/2,

which completes the proof in the compact setting.

In the non-compact setting, aside from the m degenerating conical points, each

surface in the family has p cusps. Consequently, we need to consider integrals
involving cusps since we have
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/Jm

(III)

(I) (HTiKMq + ETrKMq - DTrKMq){t + is)

(KMq - /fjuXl + is,x,x)dpt(x)
Mq\(Cq,e\J Coo,e)

(II) +/ (KMq - KCq){t + is,x,x)dp.(x)
J Cq,e

/ (Kcg - ^h)(? + is,x,x)dpt(x)
JCq\Cq,£

(IV) +/ (KMq - KCoo)(t + is,x,x)dp,(x)
JCoo.e

(V) - f (Kcoo - Ku)(t + is,x,x)d[i(x).
J Coo\Coo,e

The behaviors of integrals (IV) and (V) is similar those of integrals (II) and (III)
respectively, so that similar arguments may be employed.

Aside from the asymptotics near t — 0, we also need the behavior of the trace

for large values of the time parameter t. In this direction, we need the following
definition.

Definition 3.8. Let Mq be an elliptically degenerating family of compact or
non-compact hyperbolic Riemann surfaces of finite volume which converge to the

non-compact hyperbolic surface M^. Let 0 < a < 1 /4 be such that a is not an

eigenvalue of We define the a-truncated hyperbolic and elliptic trace by

HTr/f^; (0 + ETrK%\ (t) HTrKMq (t) + ETrKMq (0 - £
The next result describes the behavior of the trace when the time parameter t

goes off to infinity. The theorem may be proved using similar arguments to those

found in Theorem 3.1 of [JLu3] in the setting of hyperbolic degeneration in
2 dimensions and Theorem 9.1 of [DJ] in 3 dimensions.

Theorem 3.9. Let Mq be an elliptically degenerating family of compact or non-

compact hyperbolic Riemann surfaces of finite volume which converge to the

non-compact hyperbolic surface Let a be given according to the Definition
3.8 above. Then far any c < a, there exist a constant C such that the bound

|HTrKjg(t) + ETr*t>(0 - D'YrKMq(l)\ < Ce~c'

holds for all t > 0 and uniformly in q.
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4. Asymptotics of spectral measures

We start the section with some general remarks on the Laplace transforms

of a function. This material can also be found in [HJL], However, to make the

reading self contained we present the material below.

For any function f(t) defined on the positive real line, we formally define

the Laplace transform and cumulative distribution function to be

pOO pt
£(f)(z) I e~zt f(t)dt and F(t) / f(u)du.

Jo Jo

The Laplace transform £(f)(z) exists, if say f(t) is a piecewise continuous,
real-valued function for 0 < t < oo and for some constants M and a0 we have

that |/(0I 5 Mea°'. Then the Laplace transform will make sense in the right
half-plane Re(z) > an. The inversion formula for the Laplace transform allows

us to write

i r-a+ioo i r-a+ioo i
f(t) — / e,z£(f)(z)dz and F(t) — / etzX(f)(z) —,

Z7tl Ja—ioo Ja—ioo %

which holds for any a > a0.

Remark 4.1. We will assume that / is such that its Laplace transform exists

and the inversion formula holds. Furthermore, we will need the following basic

assumption

ra+ioo ij„|/ (l + |,|)3/2|£(/)(Z)||ezr|^<oo
Ja—ioo \Z\

where z t + is and a is some positive number.

As an application of the convergence of the regularized trace of the heat

kernel, we have the following theorem which is the elliptic degeneration analog

of Theorem 2.1 of [HJL] in the context of hyperbolic degeneration.

Theorem 4.2. Let Mq be an elliptically degenerating family of compact or
non-compact hyperbolic Riemann surfaces offinite volume converging to the non-

compact hyperbolic surface M<*>. Let f be any function which satisfies the above

assumption. Let z — t + is with t > 0 and denote by

t r-a+ioo j
NMq{f){T) — / Z(f)(z)StrKMv(z)ezT —

2 7X1 Ja-ioo z

and
r-a+ioo jz

NMq,D(f)(T) - — / X(f)(z)DtiKMq(z)ezT —.
Ja—ioo %
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Then

Hm [NMg(f)(T) - NMqtD(J)(T)\ NMoo(J)(T).
q->oo

Proof. Consider the sequence of functions gq(z) given by

ezT
gq{z) Uf )(z) \StiKMq(z) -DtvKMq(z)\ —

goo(z) X(f)(z)StrKMoo(z)—.
z

We need to show that

i-a+ioo i pa+iooI Pd-\-lOO J PC

lim — / gq(z)dz — /
<7^oo 2ltl Ja-ioo 27XI Ja.

goo(z)dz.
100

As q approaches infinity, using part (a) of Theorem 3.6, gq(z) converges pointwise
to goo(z) whenever l Re (z) > 0. Using part (b) of the very same theorem,

we also get that the functions are bounded uniformly, that is

\gq{2)I < |£(/)(Z)|(1 +|.v|)3/2'"Zr

Furthermore, the assumption on / coming from Remark 4.1 requires that the right-
hand side of the above inequality is integrable on vertical lines. All the hypotheses

of the dominated convergence theorem are met, so that we can interchange the

limit and the integration.

5. Convergence of spectral counting functions and small eigenvalues

In this section, we will make use of the Theorem 4.2 as applied to a particular
family of test functions which come from analytic number theory and spectral

theory. In this particular case, the functions mentioned in Theorem 4.2 are called

spectral weighted counting functions with parameter w > 0. For these functions
and their associated degenerating component, we can explicitly determine the

asymptotic behavior for fixed T > 0 and all w > 0.
Consider the following family of functions with parameter w > 0

fw(t) (w + 1 )tw.

It follows immediately that the corresponding Laplace transform and cumulative

distribution are given by

%(fw)(z) T^w+lT> and Fw(t) tw+1
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respectively. With these remarks in mind, we can now define the regularized
weighted spectral counting function on a hyperbolic Riemann surface M by

1 pa+ioo pr 2) dz
Nm,w+i(T) NM(fwU))(T) — / \+1 'StiKM(z)ezT—.

LitI Ja—ioQ Z Z

In a similar fashion, we define the degenerating elliptic weighted spectral counting
functions on the family Mq, by using DtrKm„{z) instead of StrAT^(z). By
Theorem 3.6, these weighted spectral counting functions are defined for values of
the parameter w > 3/2.

If the surface M is compact, the regularized trace equals the trace of the heat

kernel (see the Remark 3.3). Using the spectral side of the Selberg trace formula

(see Equation (3.9)) together with the mechanism of the inversion formula for the

Laplace transforms, one can show that

(5.1) Nm,w(T) J2 (T-\n)w.
A„<r

In the non-compact case, the regularized trace equals the trace of the heat kernel

minus the contribution to the trace of the parabolic conjugacy classes. Using the

spectral side of the trace as given by equation (3.12) together with the inversion

formula, we obtain

(5.2) El r-JT—1/4 i/
(T-Xn)w-— / (T-\/4-r2r^-(\/2 + ir)dr

rj*
4?r J-vrUTÏ <t>

fi-n 'S. 1

r V7*-l/4 p/
+ T~ (T — 1/4 — r2)®" —(1 + ir)drIn J-jT-1/4 1

_I(^-Tr<D(l/2))(r-l/4r
p log(2) T(u; + 1)

_ +l/2
v^T(w + 3/2)

1 ]

whenever T > 1/4, and

Nm,w(T) ^(T-A„r
if T < 1/4.

As a direct application of Theorem 4.2 we have the following result.

Theorem 5.1. Let Mq denote an elliptically degenerating family of compact or
non-compact hyperbolic Riemann surfaces of finite volume converging to the

non-compact hyperbolic surface Moo- For any w > 3/2 define

j pa+ioo p/^ I j\
GMq,w(T) NMq,D(fW-i(0)(T) — / ———-D\xKMq(z)ezT — •

Z7t I Ja—ioo % Z
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Then for T > 0 we have that

lim [NM w(.T) - GMq,w{T)\ NM^wiT).
q—^oo

The next result establishes the asymptotic behavior of the function GMq,w(T)
for fixed T > 1/4 and weight w > 0.

Proposition 5.2. Let Mq denote an elliptically degenerating family of compact
or non-compact hyperbolic Riemann surfaces of finite volume converging to the

non-compact hyperbolic surface M^. For any degenerating elliptic representative

y e DE(Tq) let qy denote the order of the corresponding finite cyclic subgroup.

(a) For any w > 0 and 7" >1/4 we have

Gmq,w{T)

n -1 ~JT-1/4If o e~2nnr/qy

1 + e~2nr

"Y~ i r
~ ^jr.) S2"(T ~ 1 /4 ~ r > l+«-2"rfr

(b) For any w > 0 am/ 7 <1/4 we have Gmq,w CO 0, independently of q.

(c) For fixed w > 0 and T > 1/4 we fiave

GMc,,w(T)

fT=rpi
è'°g( IT ft) / (r-l/4-r^r—±3-^ + 0(1)

'6M<r> -v4T75

as t/ze qy s torcz/ to infinity.

Proof. We are studying the inverse Laplace transform of

e~'!A T°°
F>trKMq{t) j: T. ^nn/qy)!^ 1

-dr.
yzDE(rq) t[ 2(ly sin(W<7y) J-oc 1 + e 2-

Using the definition of the degenerating elliptic spectral counting function together
with the mechanism of the Laplace inversion formula allows us to write

n -i Vr-i/41y} n -Innr/qy

^ n_1 -Vt=Î74

provided that T > 1/4. In the case T < 1/4, the properties of inverse

Laplace transform imply that the integral over the vertical line equals zero,
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hence Gmq,w(T) 0. Recall that, from the definition of the weighted spectral

counting function, we know that such functions are only defined for w > 3/2.
However, the above formula is defined for any w > 0. This in turn, allows us to
extend the definition of the degenerating (as well as elliptic) weighted spectral

counting function to any non-negative weights w. This proves parts (a) and (b)
of the theorem.

To prove part (c), we start by fixing T > 1/4. We note that e~2nnrlqy
1 -I- 0(r/qY) if r2 < T — 1/4, so then

(5.3)

°xMT)= E /».oTÎr >
2<l'

sm
o—2nr

«y-i
JLW 0(r)

t. ~2nr'

-VT=ï/4

^ 9y_1
1 Y

+ E E 2q2 sln(nji/^ / <r "'/4 "
y6D£(r<?)«=l

K

To continue, we focus on estimating the sum

S(qY) E
<?y-l

J

Y 2^ysin(nw/flfy)

as qy -» oo, since such an estimate would apply to estimate the function

Gmc,,W{T).
Let us write

fey/4] [3«y/4]

7 ^ 2qYsm(nn/qy) n=[^A]+l 2ctv sin(n7r/^y)

9y-l jE
We recognize the middle sum as a Riemann sum. As such we can write its

limiting value as

[34V/4] 3?r/4
\—4 ^ ^ f UX

/ ^ • 7 ;—7 ^ — / —— 0(1) as qY -> oo.
,4^-' 2<7y sin(«7r/öv) /7T j sinx

»=fey/4] + l ^ v y'
k/4

Using the identity sin(jc) sin(rr — x), we then have that

fey/4] j
•%y) E —w—as Qy °°-^ qYsm(nn/qY)
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For x e [0, jt/4], we have that x — x3/6 < sinx < x, so then

for x [0, 7t/4]— < <
x sinx x—x3/6

which further implies

0 - ~ -J72 ~ ~
X

2 ko for x e t°'71
sinx x x —xJ/6 x 6(1—xz/6)

With all this, we take x njt/qY with 1 < n < [qy/4] and arrive at the bounds

fey/4] / t 1 \ 1 by/4] /0<± v I !—)< - Y ^<5V ^ Vsm(«^/^r) Vy 6(1 — (/7tt/^x)2/6)

This upper sum is also recognizable as a Riemann sum, so then we can write

1 '^41 nn/q, 1 f x
<iy 6(1 - trm/qy)2/6) n J 6(1 - x2/6)' * as ^

0

The above integral is clearly finite. Therefore, we have shown that

j by/4]
1

^(<7y) ^2 - 0(1) as <7,, -> oo.
7T 11—' n

n 1

It is elementary to show that

by/4]

V - log(^y) + O(l) as qY -> oo.
«=1

Thus the first inner sum in the right-hand side of equation (5.3) has the asymptotic

S(qy) — — log(<7y) + 0(1) as qY -» oo.
71

Consequently, the second inner sum in the right-hand side of (5.3), namely
q~lS(qY) approaches zero as qy approaches infinity. Applying these estimates to

equation (5.3) completes the proof.

Our next task is to study the behavior of the weighted spectral counting
functions MMq,w(T) for weights 0 < w < 3/2 in both compact and non-compact
cases. We start by making the following observations coming from Proposition 5.2.

Consider the integral in the formula for Gmq,w{T)

VT=T74
I r e-2nnrlqY

Cw(T) — — / 6T — 1/4 — r2)w dr.
7x J 1 + e znr

-VT=Tj4
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Let f(T,r) denote the integrand above. Since f(T,r) as well as the limits of
integration are C1 in both variables we have that

(5.4) —cw+l(T) =f (t, y/T - 1/4) ^ (y/T - 1/4)

- / (TWL-1/4) (-7^1174)
V7^ï74

1 r d
+

n J dT

=(w + l)cw(T),

p—lnnr/qy
(T - l/4-r2)(u,+1) —v ' ' 1 + e-2jrr

for any w > 0. Setting g Y\qy, where the product runs over all the

degenerating elliptic elements of Tq, we can write

(5.5) Gm„w(T) cw(T)\og(Q) + 0(1)

as the q tends to inhnity. Furthermore, in the special case u; 0, we can apply
the mean value theorem to estimate the integral the defines cq(T) Namely, for

some value c in the domain of integration, we get

coOO
e -2nnc/qy 2^/T - 1/4
1 + e~2nc 7t

This allows to rewrite the behavior of the weight 0 degenerating elliptic counting
function as

Gm„o(T)
2C^T~ 1/4

log(g) + 0(1),q 71

as q tends to infinity and for some 0 < C < 1.

We continue by making the following observation. For w > 1/2, the expression
for the weighted counting function associated to the compact family Mw as given

by (5.1) implies

~~r ' NMq,w+i(.r) — E OT-W-w + l dT "
t

The left-hand side above is defined since w + 1 > 3/2. It is also clear that

the right-hand side above is a well defined function. This allows us to define

NMq,w(T) for values of the weight above 1/2, namely,

(5.6) NMq,w(T)
—i— —%,„+i(r).v w+ 1 dT
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By repeating the above argument, we can extend NMq,w{T) to any w > 0.

In particular, Nmv,o(T) counts with multiplicity the eigenvalues of the Laplace

operator on Mq which are less than T. With the above remarks in mind, we

are now ready to give the behavior of the counting function Nmw,w(T) for any

weight 0 5 w < 3/2 in the compact case.

Theorem 5.3. Let Mq denote an elliptically degenerating family of compact
hyperbolic Riemann surfaces offinite volume. Then for T > 1/4 and 0<ir<3/2
we have that

NMq,w(T) ~ cw{T)\og{Q)

as q tends to infinity.

Proof. Given any w > 0, the counting function NMq,w(T) is increasing for
T > 0. Choose any e > 0. The mean value theorem applied to NMq,w(T) on the

interval [T, T + e\ together with the differential equation satisfied by the counting
functions (see Formula (5.6)) as well as the monotonicity imply

TZ1A AT tT\ ^
1 NMq,W+\{T +S)-NM w + 1(T)

(5.7) NM W(T) < —— q- < NM W(T + e).q w + 1 £ q

Now fix a weight w > 1/2. Then we can write the inequalities in (5.7) above as

5 g.
Nmc,,w(T)

<
1 NMq,w+i(T + g)/ log(g) - NMqtW+\(T)/ log(g)

•og(2) ~ w + 1 s

<
NMq,w(T + B)

Iog(ß)

Taking the limit as q goes to infinity in (5.8), together with the convergence
of counting functions of weight w > 3/2 (see Theorem 5.1) and the asymptotic

coming from (5.5) applied to the middle term imply that

/£- m
1 Cu,+i(T + e) — cw+i(T)

(5.9) lim sup ————— <
oo log(ô) w + 1 s

Nm„,w(T + £)
< limint ——

q^oo log(ß)

Letting e go to zero and using the differential equation satisfied by cUI+l(T)
(coming from (5.4)), to obtain

te 1 n\ I- Nmq,w(T) h!Mq,w(T)
(5.10) hrnsup q < cw(T) < liminf "

oo log(0) log(Q)

This proves that for weights w > 1/2 we have
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Nmq,w(T)
hm "1—77rT~ cw(r)-

«->•oo log(ô)

Fix vu > 0 and repeat the above argument to extend the result to any non-negative
weight w.

Let us continue by investigating the behavior of the counting functions for
weights 0 < w < 3/2 associated to the non-compact family Mq. In this case,
the spectrum of the Laplace operator has both a discrete part and a continuous

part. The distinction between the spectral counting functions in the compact and

non-compact settings is reflected in the Formulas (5.1) and (5.2) respectively.
Consequently, the arguments in the compact setting do not apply in the non-

compact case.

Theorem 5.4. Let Mq denote an elliptically degenerating family of non-compact
hyperbolic Riemann surfaces offinite volume. Then for T > 1/4 and 0 < w < 3/2
we have that

Nm9,w(T) ~ cw(T)log(Q)

as q tends to infinity.

Proof. We need to show that for fixed T > 1/4 and 0 < vu < 3/2 the following
limit holds

(5.11) lim / =cw(T).
q-+oo fog (Q)

Recall that for T > 1/4 and w > 3/2, the spectral counting function NMq,w(T)
is given by Formula (5.2). Let us look at the 5 terms that amount the counting
function. For the third term we have that

'

r'(l) y

where y denotes the Euler-Mascheroni constant (see p. 114 1JL1 ]). This shows

that this term in the expression of the spectral counting function is finite and

independent of q. Consequently, the contribution of this term to the limit (5.11)

is zero. The fourth term in (5.2) involves the trace of the scattering matrix at

s 1/2. The p x p matrix A 43(1/2) is orthogonal and symmetric ([Kub]).
Then A2 — Id which implies that the only eigenvalues of the matrix A are ± 1.

Since the trace of the matrix equals the sum of its eigenvalues, it follows that

|Tr 0( 1/2)| < p. Consequently, the fourth term in (5.2) is bounded independently
of q, so that its contribution to the limit (5.11) is zero. The contribution of the

fifth term of the spectral counting function to the above limit is clearly zero.

r' r' N

yrO +ir) <
T7
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So far we have shown that only the first two terms in the right-hand side of
equation (5.2) have a significant contribution to the spectral counting function.
To this end, let us define

(5.12)
1 r*JT-1/4 il

Nm,w(T)= J2(T-X»)W-^r (T -1/4-r2)w~(l/2 + ir)dr.
A^V 471 J-VT=T74 <t>

By the previous remarks, it remains to show that

/C ION 1- NMQ ,w (T)
(5.13) hm « cw(T).

log(g)

Quoting Lemma 5.3 of [HJL] (see pp. 160 of [Hej3]), we have the following
result

J-0/2+ ,» - £ >_ 2 logfw,) > 0,

where 1/2 < Sk,q < 1 and qMq > 1. This allows to write

(5.14) N^ÀT) E
K<T

fVT=lj4 è, N

~T / (T-l/4-r2r 5-0/2+ /r) + E 24?r J-Jt- 1/4 \4> ('sk,q - 1/2) + >"2

rVT=T/4 JL 1 _ y.
+ —- / (T - 1 /4-r2)w V — dr.

4;r i-yr=I74 - I/2)2 + r2

Consequently, the hat spectral counting function, as given by (5.14), is increasing
whenever w > 0 and T > 0. Furthermore, the hat function (5.12) satisfies the

differential equation as in (5.6). For w > 3/2, the result of the Theorem 5.1

applies. Fix a weight w > 1/2 and proceed as in (5.7) through (5.10) to show

that

r/r

j. ^Mq,W (T)
fim \ cw(T).

q^oo log(g)

Repeating the argument, but now with w > 0 fixed, completes the proof.

As an immediate consequence of Theorem 5.1 and Proposition 5.2 together
with the fact that these counting functions extend to any non-negative weight, we
obtain the following corollary.
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Corollary 5.5. Let Mq denote an elliptically degenerating family of compact
or non-compact hyperbolic Riemann surfaces of finite volume converging to the

non-compact hyperbolic surface Then for T < 1/4 and it >0 we have

that

lim NM W(T) NMao,w(T).
q—^oo

In addition to this, if T is not an eigenvalue of we get that

lim NMq,o(T) NMoo,o(T).
q—>00

In the case T < 1/4, the weighted spectral counting functions for Mq in both

compact and non-compact case (see Equations (5.1) and (5.2)) turn out to be

NMq,w(T)= (T-^cfT
hn,q<rT

The above corollary implies the convergence of these small eigenvalues through
elliptic degeneration. In particular, if the eigenvalue XnA has multiplicity one,
then we have

lim Xn q — Xn qq.
q—>oo

Remark 5.6. We note that Theorems 5.3 and 5.4 present the asymptotic behavior
of the counting function NMq,w{T) for T > 1/4 and weights 0 < w < 3/2,
in both the compact and non-compact case. These two results only mention the

behavior of the leading term and nothing about the error term. Modifications in
the course of the proof of the two theorems can lead to results about the error
term. To get such results, one needs to assume something extra about the rate at

which e approaches zero. More precisely, e should approach zero at a rate that

depends on the degenerating parameter q. A similar situation had been studied

in [HJL] in the context of hyperbolic degeneration.
From Theorem 5.1, we have that for w > 1/2, T > 1/4, and arbitrarily large

values of the degenerating parameter q

NMq,w+i(T) Nm0o.uj+i^) + Gmq,w+i(T) + 0(f(q)),
for some function f(q) which approaches zero when q approaches infinity.
Choose e(q) > 0. Applying the mean value theorem on the interval T + s(q))
allows us to write

AT OTA ^ ' ^Moo,W + l {T + £0?)) — ^Moo.UI + l (T)
NMq,w(I < — 7-Tw+\ e(q)

1 GMq,w+i(T + e(q)) - GMq,w+i(T) I f(q)\
w + 1 s(q) V £(<?) J '
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Using a linear approximation for the first two terms in the middle of the above

inequality gives

Na1c,w(T) < NMoo,w(T) + s{q) — NMoo,w(T])

+ GMq,w{T) + s(q)-^GMq<w(T2) + O

for some TX,T2 e [T, T + s(q)]. In a similar fashion, by applying the mean value

theorem this time on the interval [T — s(q),T], it follows that

NMqAT) - ^Moo,U)(T) + e(q)~jf NMOO,w(T3)

+ GMq,w(T) + s(q)-rpj;GMg,w(fa) + O

for some fa, fa [T — s(q),T]. Theorems 5.3 and 5.4 applied to the derivative

terms imply the following asymptotic formula

NMq,w(T) NMoo,w(T) + GMqtW(T) + O (ß(?)log(ß)) + O

One needs to optimize the way in which e(q) approaches zero so that the amount
of error is minimized, namely by setting e(q) y/f(q)/ log(<2). Optimizing the

error in the case w > 1/2 allows then for the improvement of the error in the

case w > 0.

Theorem 5.7. Let Mq denote an elliptically degenerating family of compact

or non-compact hyperbolic Riemann surfaces of finite volume converging to the

non-compact hyperbolic surface Then

NMqfi{T) co(T) log(ß) + o((log(g))3/4).

Proof The proof uses two applications of Remark 5.6. In the first step we set

w 1. Following the computations of Proposition 5.2, we can take /(q) 1.

In this case, Remark 5.6 begins with

NMq,2(T) NMoo,2(T) + GMq,2{T) + 0(1)

and ends with

NMq,i(T) NMoo,i(T) + GMq>1(T) + 0(s(q)\og(Q)) + O (-L}
I/O

Minimizing the error term implies s(q) (log(g))
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In the second step, Remark 5.6 starts with

NMg,i(T) NMoo,x{T) + GMq,i(T) + o((log(Ô))1/2)

and ends with

NMq,»{T) NMoo,o(T) + GM„o(r) + O(sfo)log(0)) + O ^'°ëe((^))) j
Minimizing the error term implies e(q) log(g)) Consequently,

NMq,o(T) NMoo,o(T) + GMq,o(T) + o((log(ß))3/4).

By Formula (5.5) together with Theorems 5.3 and 5.4, the first two terms on the

right-hand side above grow like c0(T) \og(Q).

Remark 5.8. Let Gn be the Hecke triangle group, which is the discrete group
generated by

z I—> — 1/z and + 2cos(n/N)

for any integer N >3. The group is commensurable with PSL(2,Z) only in the

three cases when N 3,4,6. In all other instances, the non-arithmetic nature
of Gn is such that certain precise, theoretical computations may be impossible.
However, the explicit nature of the group theoretic definition of Gn is such that
numerical methods can be employed (see for example [Hej4]). It can be shown

that for each N, the quotient space Gjv\H has genus zero with one cusp and two

elliptic points of order 2 and N respectively (see [Hej3], [Hej4], and references

therein). As such, the results in the present paper apply. Specifically, Theorem 5.7

determines the accumulation of the spectral densities as a function of N, a result
which is attributed to Selberg (see p. 579 of [Hej3]). In other words, Theorem 5.7

above can be viewed as providing precise quantification of Selberg's result.

6. Spectral functions

In this section, we investigate the behavior through degeneration of the spectral
zeta function and Hurwitz spectral zeta function, the former being a special case

of the latter. After we recall definitions, we present the analytic properties these

functions posses as well as describe their behavior on a family of elliptically
degenerating surfaces. The main ingredient in the process is the analysis of the

various integral transforms of the trace of the heat kernel that realize these spectral
functions.
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6.1. Spectral zeta function. Let us assume first that the surface M is compact
(with one connected component). In this case, the spectrum of the Laplace

operator consists of a discrete sequence of finite multiplicity real eigenvalues
0 A0 < Ai < A2 < that accumulate at infinity. The positive eigenvalues can
be used to form a Dirichlet series, the spectral zeta function 'Çm(s) which is

defined by

ïm(S) x; ks-
\„>0

By Weyl's law (3.19), the series converges absolutely and uniformly for Re(.v) > 1.

Hence Cm (s) is an analytic function in this right half-plane.
Furthermore, we can write

fOO J,
r(s)Çm(S) J2 vr(i) E xns / e'ts~

Xn>0 Xn>0 0

roc jf poo it/ J2e~Xn'tST= [StxKM(t)-W-.
Jo

X,i >0
1 Jo 1

The behavior of SixKm (t) near t 0 and t oo (see (3.17) and (3.18)

respectively) shows that the above integral is defined for Re(.s) > 1. Parenthetically,

if the surface had cm connected components, then the value 1 (coming from the

zero eigenvalue) in the above integrand would be replaced by cm For simplicity
of notation, we assume that cm — 1

• That said, the above manipulations show that
the spectral zeta function is (up to a multiplicative factor) the Mellin transform

of the standard trace of the heat kernel. More precisely, one has

i r°° dt
(6.1 Cm iß) —- / [SixKm (0 - I]?" —-

i (M Jo i

Proposition 6.1. Suppose that M is a compact hyperbolic Riemann surface. Then

the spectral zeta function Çm{s) has meromorphic continuation to all se C,

except for a simple pole at s 1 with residue vol(A/)/(47r).

Proof The proof follows from the analysis of the integral representation of the

spectral zeta from (6.1) above. We start by splitting the domain of integration as

follows

(6.2)

If1 11 f°°
Cm(.v) z-- / StrKM(t)t'-ldt - —— + — / [StrtfaKO - 1 )ts~ldt

r(s) Jo +1) r(s) Jx

l l f°°
C(s) ' rxT+ï) + rw J,[SaKM<,)'1"*"



Spectral asymptotics 195

The second term above is entire. Since StrKm (t) — 1 has exponential decay at

infinity (see (3.18)), the third term is also analytic. So we only need to continue
the term containing the integral over [0,1], which we call G(s). For the latter,

we recall (3.18), namely at t 0

(6.3) StrAjv/(t) ———|- bo + bit + b212 +

where for simplicity we use in place of vol(M)/(4jr). That said, we can

write for Re(.v) > 1

(6.4) G (s) / StiKM(t)ts ldt
(s) Jo

ts xdt.
r(.v)(.v -1)

The first term in the right-hand side of (6.4) is analytic except for a simple pole
at s — 1 with residue b-1 vo1(M)/(47t). The second term, call it G\(s), is

analytic for Re(.v) > 0. We continue this term as follows

p StrAji/(t)
_ b-1

t2
(6'5) C^ W)l'[^T

hL

tsdt

r(s)s rev) ,/0 L

1 r StiKajt) b-1 b0

t
tsdt.

The first term in the right-hand side of (6.5) is entire, while the second term,
call it G2(s), is analytic for Re(.v) > —1. By the n -th iterate (n 0,1,2,...),
the function G(s) satisfies the formula

ç,, s _
1 f1 T StrKm (t

^
b^

~^ r(s)(s + k) FG) Jo L tn

with the right-hand side being analytic for Re(.v) > —n. In this fashion, the

spectral zeta can be continued to all s e C.

If the surface M is not compact, one defines the spectral zeta by the Mel lin
transform of the standard trace as in the formula (6.1) above. Similar arguments

may be employed to show the analytic continuation of the spectral zeta associated

to a non-compact surface.

For a e (0,1 /4) we define the a -truncated standard trace by

StrK^(t) StrKM(0 — J] e~x"'.
Xn<a

By considering the Mellin transform of the standard trace we can express the

truncated spectral zeta function as
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I f oo sdt

With these in mind, we have the following result concerning the behavior of the

truncated spectral zeta function through elliptic degeneration.

Theorem 6.2. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
Moo • Let a < 1/4 be any number that is not an eigenvalue of Then for
any s e C, we have

lim
Q—^OO q — f ]

\S) Jo

dt

Furthermore, the convergence is uniform in half-planes of the form Re(.v) > C.

Proof We have to show that

i r°° r ~i rJt i rcK 1 rs «K

Recalling Definitions (3.2) and (3.8), the bracket in the left hand side above may
be broken down as follows

(6.6) StrK$l (t) - DüKm, (t) vol(Mq)Kn(t, 0)

HtrKMq(t) + EtrKMq{t) — - DtrKMq(f)

For the volume containing term in the right hand side (6.6), we split the integral
as

1 r°° dt
—— / vol(M? X"h (G 0)t * —
A 1^7 J0 1

and make the following remarks. The volume is bounded by a universal constant

depending solely on the genus and the total number k of cusps and conical ends

of the family, namely vol(Mq) < 2n(2g — 2 + k) By (3.14), the kernel function
À/m (M)) decays exponentially as t goes to infinity, so that the integral over

[1, oo) is entire as a function of s. Using the same arguments as in the course

of the proof of Proposition 6.1, the integral over [0,1] is analytic for Re(.v) > 1

and may be continued to all s e C.
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The integral consisting of the rest of the terms in (6.6), namely

(6.7)
i rc

m Jo
HtrKMq (0 + EtrKMq (t) — J2 ~ DtrW)

dt
t

can be split over [0,1] and [l,oo). From Theorem 3.9, the bracket in (6.7) has

exponential decay; so then the portion over [0,1] is analytic for Re(s) > 0 and

may be continued to the whole complex plane, while the part of the integral over

[l,oo) is entire as function of s. By the dominated convergence theorem, we can

interchange the limit and the integral. The proof then follows by the convergence
Theorem 3.6.

6.2. Hurwitz spectral zeta function. As in the case of the spectral zeta function,
we start in the compact setting where the Hurwitz spectral zeta function is

represented via the Dirichlet series

Çm(s,z) ^2 (z + A„)~s,
Aß >0

for z,s e C with Re(z) > 0 and Re(.v) > 1.

In the case when M is compact and connected, the Hurwitz spectral zeta

function may be expressed as the Laplace-Mellin transform of the standard trace

of the heat kernel
1 f°° dt

(6.8) fa(s,z) —- / [StrtfM(0 - 1 ]e~z'ts—.
1 (>?) Jo t

The above integral transform allows to extend the definition of the Hurwitz spectral
zeta function to the non-compact setting.

From Section 1 of [JL1] (see also [Sa]) we obtain the following result.

Proposition 6.3. For each z e C, the Hurwitz spectral zeta function extends to

a meromorphic function to all se C.

Proof Assuming first that z > 0 we expand the right-hand side of (6.8) as follows

(6.9) fa(s,z) =—- / [Str/fM(0 - 1 \e-z,t°-ldt
1 W J l

1 f1
+ —— / StrKM(t)e~z,ts^dt

By (3.18), the first term in the right hand side of (6.9) above is entire as a

function of s. For the second term, which is initially defined for Re(.v) > 1,
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we can follow the arguments starting with (6.3) in Proposition 6.1 to provide its

analytic continuation. The third term is entire as a function of s. Consequently,
these arguments extend the Hurwitz spectral zeta function to Re(z) > 0.

Next, we extend the Hurwitz spectral zeta to Re(z) > — Ai as follows:

(6.10)

1 c°°
fa(s,z)=-— / e^'[StiKM(t)-l],

1 W Jo

i r°°

m Jo

-(z+AO/,5-idt

— ^2 (z + A„)
Xn <X 1

E
Xn >X\

9~{Xn—X i )/ e-(z+X l),ts-ldt

The first sum in the right-hand side of (6.10) has finitely many terms (according
to the multiplicity of Ai). For the second term, the sum in the bracket has the

same asymptotic behavior as Sir Km (r — 1. Consequently, the second term is now
defined for Re(z) > —Ai and can be continued to all s e C. The process then

can be repeated to extend to Re(z) > —A&, with Xg being the first eigenvalue

surpassing Ai.

We end this section by presenting the behavior of the Hurwitz spectral zeta

through elliptic degeneration. For a e (0,1 /4) we define the a -truncated Hurwitz
spectral zeta function as

1 c°°
fâ}(s, Z) £ (z + X„)~s — strK (a)

M (t)e ZtV
,dt

X„>a

With these in mind, we have the following result concerning the behavior of the

truncated spectral zeta function through elliptic degeneration.

Theorem 6.4. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
Moo • Let a < 1/4 be any number that is not an eigenvalue of Then for
any s G C and Re(z) > —1/4, we have

lim
q—>oo «(«) rw

l r
V)Jo

I i *

DtrKMq{t)e~zttsT

Furthermore, the convergence is uniform in half-planes of the form Re(.v) > C

and fixed z with Re(z) > —1/4.

Proof The result follows using similar arguments as in Theorem 6.2.
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7. Selberg zeta and determinant of the Laplacian

In this section, we investigate the behavior of the Selberg zeta function and

the determinant of the Laplacian. After we recall definitions and some analytic
properties of these functions, we describe their asymptotics through elliptic
degeneration. It is worth mentioning that the spectral zeta, Selberg zeta, and

the determinant of the Laplacian, are very much connected. The determinant of
the Laplacian specialized to s(s — 1) is essentially the completed Selberg zeta

function, with additional factors coming from the volume and the conical points
([Sa], [Vor], [Koy]), while the spectral zeta function regularizes the determinant

product. This comes with no surprise since the aforementioned functions appear
in either the spectral side or the geometric side of the trace formula.

7.1. Selberg zeta function. The Selberg zeta function is defined by the product
OO

zM(s)= n n (i-*-^"^).
yeH(V) n=0

Following an elementary argument (see for example Lemma 4 in [JLul]), one

can estimate the number of closed geodesies of bounded length. It then follows
that the Euler product which defines the Selberg zeta function converges for
Re(.v) > 1.

Following [McK], the integral representation is derived by carefully manipulating

the logarithmic derivative of the Selberg zeta, namely

7' AO 00 0 p-(s+n)ly 00 00
_m}£1 _ xp lYe _ Y Wt „-(s+n)lyk
zM(s) \ - e-iß+n)iy Z^ Z^Z^ y

yH(T) n=0 y<=H(T) n=0 k \

°° 0 a—skty °° 0

^ V V 7 V V 7 C-U-U2)nlv
i _ e-klY Z_/ Z_, 2sinh(«fy/2)

yeH(F)k=l yeH(T)n=l v y/ '
Recalling the definition of the K -Bessel function

Ks(a,b) [°° e-(a2'+b2/,hs —
Jo t

as well as the fact that Ki/2(b,a) K^i/2(a,b) (^/jt/b)e~2ab, allows us to
write

Z'(s) v-^ ^ fv—= (2.S - 1) £ J2 y
K1/2(s — \/2,niy/2)

m('v)
yefl(r)n=i smh(nfy/2)

/»OO

(2s - 1) /
Jo

yeH(r)i

e-'t'-V'dt.
~ lye-fi/4+(„M2/(40)

^r)»o VlÔTTt sinh(nfy/2)
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Using the expression for the hyperbolic heat trace (3.6), the logarithmic derivative

of the Selberg zeta function can be expressed via the integral

Z' tvl f°°
(2s _ 1) / HtrKM(t)e-s(s-l*dt.

Zm(s) Jo

For a < 1/4, we define the a-truncated logarithmic derivative of the Selberg

zeta function, using the above integral representation minus the contribution to
the trace of the small eigenvalues. Consequently, we have

ZM} ('y)
_ p n /"°°HtrK(a)(^r~s(s~l)tdt - Z'M^ 2'v ~ 1

At v ' *-M,n<a

for Re(.v) > 1 or Re(.y2 — .v) > —1/4.

Theorem 7.1. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
Moo • Let a < 1/4 be any number that is not an eigenvalue of Then, for
any s with Re(.v) > 1 or Re(.v2 — ,v) > —1/4, we have

,im z£>)
^°° Z^Js) Z^Js)

Proof The proof follows from the integral representation of the logarithmic
derivative of the Selberg zeta function to which we apply similar arguments
as in Theorem 6.2.

As a direct corollary to Theorem 7.1 we obtain the following result.

Corollary 7.2. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
Moo.

(a) For any s with Re(.v) > 1 or Re(.v2 — ,v) > —1/4, we have

lim ZM (s) ZMoo{s).
q->oo

(b) At s — 1, we have

ÄZ^(1) Z^oo(1)-
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7.2. Determinant of the Laplacian. For a compact surface M, the determinant

of Laplacian Am is formally defined as the infinite product

(7.1) det Am ]~[ A„,
xn >o

(see for instance [Sa], [Vor], [JL1], [JLG], [Tsu]). To give meaning to such

divergent product, we observe that if the above product converged, than the

logarithm of the determinant could be written as

-log det Am - log(A„) X~s ^ ^(0).ds
A/j >0

Recalling from Proposition 6.1 that the spectral zeta £mCs) is analytic at s 0,
the above formal manipulation suggests that the divergent product in (7.1) be

regularized as

(7.2) det Am exp(—^(0)).

For 0 < a < 1/4, we can express the derivative of a-truncated spectral zeta

function as follows

^ ^ ^ f 9trI ' ^ f Str/C^ffV4^^SüKm y + [l SuK» «>< J '

At s 0 the Gamma function has a simple pole, so that 1 / T (,s) 0 and

consequently the second term above has no contribution to the logarithmic
determinant. Directly from the Weierstrass product definition of the Gamma

function, it follows that

r ' s—>o r(s) «->o i/s
where y denotes the Euler-Mascheroni constant. Consequently, the logarithmic
determinant can be rewritten as

f°° dt
(7.3) logdet(a)AM - / Str^}(0—-

Jo t

The integral representation (7.3) above together with Theorem 6.2 concerning the

behavior of the spectral zeta through elliptic degeneration, yield the following
result concerning the behavior of the regularized determinant.

Corollary 7.3. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
Moo Let a < 1 /4 be any number that is not an eigenvalue of Moo Then

lim
r°° ,it(a) i „ „ .at

T + jJo
logdetwAM„ + / DtrKmAt)- log det(a) Am,
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8. Integral kernels

As in the articles [HJL], [JLu2], and [JLu3], one can prove the asymptotic
behavior of numerous other spectral quantities having once established the heat

kernel convergence (see Theorem 3.5), and the regularized convergence theorem

of heat traces (see Theorem 3.6). For completeness, we list here some of the

questions that now can be answered and, for the sake of brevity, we outline the

method of proof.

The resolvent kernel. The resolvent kernel gM(w,x,y) is the integral kernel
which inverts the operator A + w on the orthogonal complement of the null

space of A + w. In the case w — 0, the resolvent kernel becomes the classical

Green's function. For Re(iu) > 0 and r/j, the resolvent kernel is defined by

If the surface is compact, we can use the spectral expansion of the heat kernel

as in Equation (3.1) to write

for Re(tu) > 0 and x / y. From the above, it follows that the resolvent kernel
has a meromorphic continuation to the entire plane with poles located at the

negative eigenvalues of the Laplacian. If the surface is not compact, there is a

similar spectral expansion for the resolvent kernel, coming from Equation (3.2)

together with the above integral representation.
Let 0 < a < 1/4. Then the a-truncated resolvent kernel g^\w,x,y) is given

It then follows that the truncated resolvent kernel inverts A + w on the orthogonal
complement of the space spanned by the eigenfunctions that correspond to the

eigenvalues of A which are less than a.
With the above remarks in mind, we have the following result.

Theorem 8.1. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of finite volume with limiting surface
Moo Let 0 < a < 1/4.

by
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(a) For all fixed w with Re(tc) > 0, we have

lim gMq(w,x,y) gMoo(w,x,y).

The convergence is uniform for x fi y hounded away from the developing

cusps and in half-planes Re(tc) > 0.

(b) For all fixed w with Re(ic) > —a, we have

The convergence is uniform for x fi y hounded away from the developing

cusps and in half-planes Re(u>) > —a.

Proof Part (a) follows from the convergence of the heat kernel as in Proposition

3.5 together with the dominated convergence theorem. Part (b) is similar
to part (a) with the addition of the convergence of the small eigenvalues and

eigenfunctions from Section 5.

The Poisson kernel. A Poisson kernel on the surface M is a smooth function

Pnf(w,x,y) defined on M+x M xM, satisfying the following conditions. Suppose
that / is a bounded and continuous function on M and define

uniformly on compact sets. For a more detailed discussion on the Poisson kernel

we refer the reader to [JL2],
The Poisson kernel is given through the G-transform

We conclude convergence of the Poisson kernel through elliptic degeneration. By
arguing as in the case of the resolvent kernel mentioned above, the region of
definition extends to all w e C.

J, {tv,x,y) g^l (w,x,y).

Then the Poisson kernel satisfies the differential equation

(Ax-dl)u(w,x) 0

and the Dirac condition
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The wave kernel. From the Poisson kernel we can define the wave kernel with
a rotation in the time variable w, namely

WM(w,x,y) PM(-iw,x,y).

The wave kernel Wnf(w,x,y) is a fundamental solution to the wave equation

A* + 32w 0.

As with the Poisson kernel, we obtain convergence of the wave kernel through
elliptic degeneration.
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