
Computable permutations and word problems

Autor(en): Morozov, Andrey / Schupp, Paul

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 64 (2018)

Heft 1-2

Persistenter Link: https://doi.org/10.5169/seals-842090

PDF erstellt am: 01.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-842090

L'Enseignement Mathématique (2) 64 (2018), 143-160 DOI 10.4171/LEM/64-1/2-6

Computable permutations and word problems

Andrey Morozov and Paul Schupp

Abstract. This is an expository paper whose goal is to explain some interesting interconnections

between group theory and the theory of computability. Let C denote the group
of all computable permutations of N. A basic question is: What can one say about the

finitely generated subgroups of C Partially answering this question involves ideas from the

theory of computability such as Turing degrees and truth-table degrees. We want to make

this paper accessible to both group theorists and computability theorists so we carefully

explain all the needed concepts.

Mathematics Subject Classification (2010). Primary: 20F36; Secondary: 03D35.

Keywords. Computable permutation, Turing degree, truth-table degree, HNN extension.

1. Introduction

We consider the group C of all computable permutations of N, so we have to

begin with a precise definition of "computable". In his famous 1936 paper Turing
[Turl] formulated the idea of the universal digital computer, the Turing machine.

It is not necessary to have in mind the exact details of how Turing machines

work and one can think of such a machine as an ordinary computer with a fixed

program but with infinite memory and no time limit on computations. The crucial
fact is that a Turing machine is completely defined by its finite program and that

there are therefore only countably many Turing machines and one can make an

effective list of all of them. (For example, see [Soa] for precise details.) One

does not need to have mind the exact working details of a Turing machine when

thinking about computability and computability theorists don't worry about them

when proving theorems. It is now accepted that computable by a Turing machine

is the correct precise definition of the word "computable".
There are essentially two ways to use Turing machines. First of course, to

compute functions. If S and A are finite alphabets then £* and A* denote

the set of all words over S and A respectively. A function /:£*-» A* is

144 A. Morozov and P. Schupp

computable if there exists a Turing machine M which, when started with an

arbitrary input w e S halts with output f(w). A set S ç Z* is computable if
its characteristic function is computable.

The second basic way of using Turing machines is as enumerators. A set

S ç S* is computably enumerable if there exists a Turing machine with a special

output tape, which successively writes elements of £*, say separated by spaces,

on its output tape, and the set of words eventually listed is exactly S. In other

words, one can effectively list the elements of S. Note that there is no constraint

on the order in which elements are listed and that a given element may be listed

many times, even infinitely often.

A first basic lemma of computability theory is that a set S c £* is computable

if and only if both S and its complement .V are computably enumerable. If both
S and its complement S are computably enumerable, we can start running both

enumerations. Any given word w will occur in exactly one of the enumerations
and when it does, we can correctly answer if w e S. If S is computable, then

an enumeration of either S or S is obtained by enumerating £* and listing
according to whether or not a word is in S. (Note that this proof uses no technical

details about how Turing machines work.)

Returning to the group C, note that C is countable since there are only

countably many Turing machines. The general question which we consider is:

What can one say about the finitely generated subgroups of C The word problem,

WP(G), of a finitely generated group G (X; R) is the set of all words over the

group alphabet £ 4UI"1 which are equal to the identity element of G in the

given presentation. The word problem for G is computable, (solvable, decidable)

if WP{G) is a computable set. Although the exact set WP(G) depends on the

given presentation, whether or not the word problem is computable, indeed its

exact complexity, does not depend on the presentation. Indeed, if H (F; S) is

a finitely generated presentation of a group isomorphic to a subgroup of G then

there is an embedding <j> : H -> G. So a word u z\ • • zn equals the identity
in H exactly if (p(u) <p(z\) (p(zn) equals the identity in G, and <p(u) is

calculable in linear time.

To say that we are given finitely many generators of a subgroup G of C, we

mean that we are given the algorithms (Turing machines) which compute the

permutations. From this information we cannot decide when an element is the identity,
but we can computably enumerate those elements which are not the identity. If g is

defined as a product of the given generators, we can start enumerating the images

of natural numbers under the permutation g. This method would never determine

that an element is the identity, but if g is not the identity we know this as soon as

g moves some number. So the word problem of any finitely generated subgroup

of C is the complement of a computably enumerable set, that is, it is a co-c.e. set.

Computable permutations and word problems 145

The first result just comes down to considering the left regular representation
of a group, so the proof was essentially given by Cayley [Cay] in 1878.

Theorem 1.1. Every finitely generated group with computable word problem is

embeddable in C.

Proof. We use the short-lex order for words from a finitely generated group
G (jci,... ,xm; R). That is, fix a linear ordering of the generators and their
inverses. The order on words is then first by length, and then by lexicographical
order on words of the same length.

If G has computable word problem we can effectively make a list

1 w0, Wi,W2,...

of the distinct elements of G. Fix an element w, of G. We can then effectively
calculate the index k where wtwj in the above list. Then the permutation
corresponding to left multiplication by uy maps to the permutation j -> k of
N.

In short, we can effectively calculate the left regular permutation representation.

If G — (X;R) is a finitely generated group with a computably enumerable

set of defining relators then we can enumerate all the consequences of the

defining relators so the word problem WP{G) is computably enumerable. If G

is embeddable in C then its word problem is both c.e. and co-c.e and is thus

computable by the basic lemma of computability theory discussed above.

Corollary 1.2. A finitely generated group G with a computably enumerable set

of defining relators is embeddable in C if and only if G has computable word

problem.

So the question is now: Which other finitely generated groups are embeddable

in C?

2. Turing degrees and truth-table degrees

We often think in terms of relative computability: "I don't know how to

compute B, but if I could compute A then I could compute B ". Turing himself
[Tur2] formulated the general definition of relative computability in terms of
oracle Turing machines. Essentially, an oracle Turing machine is an ordinary
computer (Turing machine) equipped with a special hardware slot for an oracle,

146 A. Morozov and P. Schupp

which can hold total information about a set A of words over the input alphabet
S of the machine. The machine has a special query register and a new branch

instruction which says go to different states depending on whether or not the word

w in the query register is in the set A or not. Note that an oracle machine still
has a fixed finite program so there are still only countably many oracle machines

and there is an effective list of all of them. But the oracle can contain information
about an arbitrary set. We write MA to denote the oracle machine M with an

oracle for A.
In his fundamental 1944 paper, Emil Post [Pos] realized that oracle machines

give the basic foundation for a general theory of computability. A set B is Turing
reducible to a set A, written B <7* A, if there is some oracle Turing machine M
which, when given the oracle for A, computes B. Two sets A and B are Turing
equivalent, written A =j B, if A <t B and B <t A. This just says that given
total information about A, one can compute B, and given total information about

B, one can compute A. It is easy to see that =t is an equivalence relation on
the family of all subsets of words over finite alphabets, and equivalence classes

are called Turing degrees. Since there are only countably many Turing machines

and VÇE*) has the cardinality of the continuum, there are continuumly many
distinct Turing degrees. Turing degrees give a precise definition of when two sets

are "computationally equivalent".
The Halting Problem is the set K of all pairs (M,w), where M is a Turing

machine and w is a word on the input alphabet of M such that M eventually
halts when started with input w. Turing proved that the Halting Problem is not

computable in his original paper. Although it is not computable, we can see

that the Halting Problem is a c.e. set as follows. We can effectively enumerate

all triples (M,w,n) where A4 is a Turing machine, w is a word on the input
alphabet of M and n is a positive integer. When such a triple is enumerated,

simulate M on input w for n steps. If M halts during this process, we can

enumerate (M, w) as a halting pair. The Halting Problem is the basic example
of a computably enumerable set which is not computable.

A Turing degree is a c.e. degree if it contains a c.e. set. There are only
two "obvious" c.e. Turing degrees: the degree 0 of computable sets, and the

degree 0' of the Halting Problem. (A c.e. degree may contain many sets

which are not c.e. For example, the complement of the Halting Problem, which
consists of those pairs (M, w) such that M never halts when started with input
w.)

Post raised the basic question of whether or not there are any c.e. Turing
degrees besides 0 and 0'. This question became known as "Post's Problem"
and was not settled until 1957 when it was simultaneously resolved by Fried-

burg and by Muchnik [Soa], Computability theory has since shown that there

Computable permutations and word problems 147

are K0 distinct c.e. Turing degrees. Any set is Turing equivalent to its complement,

so the Turing degrees containing co-c.e. sets are exactly the c.e. Turing
degrees.

In the paper under discussion, Post introduced a stronger version of
computational equivalence, called truth-table equivalence. The set B is truth-table
reducible to the set A, written B <tt A, if there is an oracle Turing machine

Ma and a computable function ß : X * —» N such that, on input w, MA decides

if w e B in no more than ß(w) steps. One can think that, given w, we can

compute a loop-free flow chart of size at most ß(w) for deciding whether or
not w 6 B. Of course, some of the steps may be questions to the oracle for
A.

Bounding the number of steps in a computation is now the basis of
computational complexity and so is very natural, although we are here working in

a very general setting. To clarify the definition it is helpful to consider a Turing
reduction which is not a truth-table reduction. Suppose that B and C are any

two disjoint c.e. sets. We claim that B <t B U C. To decide if w e B, ask the

oracle if w e B U C. If not, then w B. If yes, start computably enumerating
both B and C. Since B and C are disjoint, w will occur in exactly one of
the two sets and we then know whether or not it belongs to B. This is not a

truth-table reduction since in general there is no computable bound on how far

we need to enumerate B and C.
Sets A and B are truth-table equivalent, written A =tt B, if A <tt B and

B <tt A, and equivalence classes are called truth-table degrees. Post introduced

this notion because he was able to solve Post's problem for truth-table degrees

by showing that there is a c.e. set B with 0 <tt B <tt K. It turns out that

the structure of truth-table degrees within a single Turing degree is very rich.
Jockusch [Joe] showed that any Turing degree either contains infinitely many
truth-table-degrees or is itself a single truth-table degree, and this later case is

very rare in a precise sense. Indeed, Degtev [Deg] showed that any nonzero

c.e. Turing degree contains infinitely many pairwise incomparable c.e. truth-table

degrees.

As with Turing degrees, any set is truth-table equivalent to its complement and

a truth-table degree is said to be a c.e. degree if it contains a c.e. set. We have

pointed out that the computational complexity of the word problem of a finitely
generated group is an invariant of the group and does not depend on a given

finitely generated presentation. In discussing the diversity of finitely generated

subgroups of C, we need the fact that the truth-table degree of the word problem
of a finitely generated group G is an invariant of the group.

148 A. Morozov and P. Schupp

3. HNN extensions

A basic construction in infinite group theory is that of taking an HNN
extension, introduced by G. Higman, B. Neumann and H. Neumann in 1949.

(See [LS] for a detailed discussion of HNN extensions.) Suppose that we have

a group G (X; K) and two subgroups A and B of G with an isomorphism

f : A -» B. The corresponding HNN extension is the group

H {X,t', R,tat~1 <p(a), a e A).

We have added a new generator t, called the stable letter, and new relations

saying that conjugating an element a e A by t gives <p(a). The first basic fact,

proved by Higman, Neumann and Neumann, is that G is embedded in H by the

map A non-empty sequence

go,te\gi,...,ten,gn

with the gi e G and e, ±1 is reduced if either n 0 (there are no t letters)
and go is not the identity in G, or, if n > 1, then there is no consecutive

subsequence t,gi,t~l with gi e A or t~1,gJ-,t with gj e B.
Complete information about the word problem in an HNN extension is given

by

Lemma 3.1. Britton's Lemma. If the sequence go, tei, gi,..., te", gn is reduced

then the product gotlgi---te"gn f 1 in H.

In general, computation of the word problem for H involves computing the

word problem for G, determining membership in the subgroups A and B,
and computing the isomorphisms f and If the subgroups A and B are

finitely generated then <f> and (p~] are certainly computable, but we want to take

HNN extensions over infinitely generated subgroups and then computability of
the isomorphisms also needs to be verified.

Our first application of HNN extensions is the following.

Observation 3.2. For any truth-table degree t, there is a two-generator group
G with word problem of truth-table degree t which is an HNN extension of the

free group of rank 2.

Proof. If 5 c {1,2,...}, let

G(S) [a,b,t',tat~l b,thlalhlt~l — albla',i e S).

The groups G(S) all have the structure of an HNN extension of the free

group F — {a, h). Any subset of {a.b'a'h' : i > 1} freely generates a

Computable permutations and word problems 149

free subgroup of F since no a can ever be cancelled in a reduced product
of the given generators. Similarly for the subset {h,alblal : i > 1}. Let
A gp{a,blalbl : i e S} be the subgroup of F generated by the displayed
elements and let B gp{b,alb'al : i e S}. We have added a new generator t
and the relations saying that conjugation by t sends each generator of A to the

corresponding generator of B. This map is an isomophism since A and B are

freely generated by the displayed sets of generators. Since G(S) is generated by

{a,b,t} we can use the first relation to eliminate the generator b, seeing that

G(S) is a 2-generator group.
We can use Britton's Lemma to show that the word problem of G(S) is

truth-table equivalent to membership in the set S. First of all, for any / > 1,

t bj a2 bJ t~l aJ'ZFa7

in G(S), that is,

t b^a^bJ t~1a~ib~ia~j e WP(G)

if and only if j e S, so S <tt WP(G).
Let «; be a nonempty freely reduced word on the group alphabet {a,bj}±l.

If w 1 in G(S), Britton's Lemma says that either w contains no f's and

w 1 in the free group or w must contain either a subword tutv where u e A

or a subword t~lvt where v e B. If w contains such a subword tut-1 then

we have tut~l — <p{u) in B. In our particular case, calculating (f>(u) involves

simply interchanging the letters a and b. So we can make a t-reduction by
replacing tut~1 by cp(u), thus reducing the number of t's. Of course, we then

freely reduce the result. Exactly the same remark applies if w contains a subword

of the form t~1vt where v e B.
But deciding if a reduced word of the free group (a,b} is in A or B can

be done in linear time given membership in S. Since no a is ever cancelled in
a reduced product of the generators of A, given a reduced product

a'1bJ^a'2b-'2 a'kbJka-'k

we can calculate if the exponents on the occurrences of a and h are correct for
membership in A or not, and similarly for B. So knowing membership in S

allows us to reduce an arbitrary word w in quadratic time. We either arrive at a

nonempty word in which no reductions are possible, so to / 1 in G(S), or we

arrive at the empty word and w 1 in G(S). Since we can compute the number

of possible steps in such a reduction from w, this is a truth-table reduction and

we have concluded that WP(G(S)) <tt S. Thus the word problem for G(S) and

S are truth-table equivalent.

150 A. Morozov and P. Schupp

Actually, the reduction above and the reductions which we later consider are

much stronger than general truth-table reductions. Since we are dealing with both

words in group generators and natural numbers, for measuring the size of inputs

we consider natural numbers as written in unary. Then the functions bounding the

number of steps in our reductions will be a single exponential or a polynomial
function of the length of inputs, which is the desired condition in complexity
theory. Since we are dealing with oracles for non-computable sets, we do not
stress this fact but simply point out that it is indeed the case.

Observation 3.3. For a group G(S) as above, if S is a co-c.e. set, then WP(G)
is also co-c.e.

Proof. As a first example of what we want to do, consider a word w with only
one possible reduction to the identity, say

h-20a-20h-20 t-l a20h20a20 a30fe30fl30 ^-30^-30^,-30
I

20 e SI
30 e SI

I

1

Now ir / 1 in G(S) only if 20 ^ S or 30 fi S. Since we can enumerate the

complement S of S, if either 20 or 30 is not in S this fact will appear in our
enumeration and we can then enumerate w as a word not equal to the identity.

In general, for each freely reduced word w we can construct the tree of all
possible reductions of w. On each edge write the exponents needed to be in S

in order to make the reduction. The reduction is not possible exactly if some

exponent in not in S. Since we can enumerate the complement S of S, we will
eventually discover any reduction which is not possible and cancel that branch.

Of course we cancel any branch that ends in a nonempty reduced word to which

no reductions could possibly be applied. A word w is equal to 1 in G(S) if
and only if some some branch is not eventually canceled. So enumerating each

word with all branches canceled exactly enumerates the complement of the word

problem.

This method also shows that the word problem is generically easy for all
the groups G(S). By this we mean that there is a partial algorithm which is

always correct and which works on a set of asymptotic density 1 (see [KMSS]).
Most reduction trees show that the starting word cannot possibly reduce to 1. In

particular, a freely reduced word w can equal the identity in G(S) only if the

exponent sum on t in w is exactly 0.

Computable permutations and word problems 151

The probability that a random word of length n has the exponent sum on t
exactly equal to 0 goes to 0 as n -» oo. So a linear time generic algorithm for
the word problem of G(S) is to check if the exponent sum on t in w is 0. If
not, answer id / 1, and if the exponent sum is 0 do not answer. Note that the

same generic algorithm works for all the groups G(S). Indeed, it works for all
HNN extensions of finitely generated groups.

We have seen that there are 2-generator groups of every possible truth-table

degree and indeed, there are 2-generator groups with co-c.e. word problem of
every possible c.e. truth-table degree. It is not at all clear if any of the groups
G(S) just considered are embeddable in C.

Higman, Neumann and Neumann introduced HNN extensions to prove, among
other things, that every countable group can be embedded in a 2-generator group.
After working through the example of the groups G(S) we see that the "standard"

HNN embedding of a given presentation of a countable group C into a two

generator group preserves the truth-table degree of the word problem. (Note that
the computational complexity of the word problem is not an invariant of the group
for infinitely generated presentations. Indeed, is easy to write down an infinitely
generated presentation of the cyclic group of order 2 for which the word problem
is not computable.)

Observation 3.4. Let G (X; R) be a group where the set X of generators is

either finite or is the infinite set {xi,... ,xn,...} where the indices range over
N+. The standard HNN embedding of G into a 2-generator group H preserves
the truth-table degree of the word problem of the given presentation of G.

Proof. We first take the free product G * F where F — (a, b) is a free group
on two generators, and then take the HNN extension

H (G * F,t\tat~l — b, th'a'b't"1 XiCilbla',i > l).

The relations are exactly the same as the relations we used in the groups G (S)
except that the generator x,• appears once in the i -th relation involving conjugation
by t. Now // is a 2-generator group since the first relation can be used to express
a in terms of t and h, and the i -th relation can be used to express x,- in terms of
a,b and t. And G is embedded in H by the basic property of HNN extensions.

We need to check that WP{H) =tt WP(G). First, WP(G) <„ WP(H)
since G is embedded in H by the map x-t —> xi. As before, the subgroups
A gp{a,blalb1} and B gp{b,Xi(ilbla1} are freely generated by the displayed
sets of generators because no a is ever cancelled in a reduced product of generators
from the first set and no h is ever cancelled in a reduced product of generators
from the second set. To see if a word w is in one of the subgroups we can
determine the product of generators needed from reading w. For example,

152 A. Morozov and P. Schupp

gxa5h5g2a2b 3a 3g3 e B

if and only if g3 x5 in G and both g2 and g3 are equal to the identity in

G. The map sending a generator of A to the corresponding generator of B, or
vice versa, again simply interchanges a and b and deletes or inserts an jc,-. We

can again test all possible t -reductions and WP(H) <tt WP(G).

4. Finitely generated groups embeddable and not embeddable in C

Nies and Sorbi [NS] have shown that for every c.e. truth-table degree there

is 3-generator subgroup of C with word problem of that degree. We give here a

simple construction for 2-generator subgroups of C.

Theorem 4.1. For every nonzero c.e. truth-table degree t there is a 2-generator
subgroup of C with word problem of degree t.

Proof. Let B {bij,i e N,j e Zj be a set of "blue" elements and let
R {rij,i e N,j e Z} and Y {yi,j,i N,j e Z} be respectively disjoint
sets of "red" elements and "yellow" elements. Let f ßufiuf be their

disjoint union. There is a computable bijection from P to N so we can consider

permutations of P. We think of P as initially arranged in rows

••• b{-i,ri-i,yi-i, bifi,rifi,yifi, biyi, riti, ytp,

of triples, where the i -th row consists of all elements with first index i.
Let A be any infinite c.e. subset of N with 0 f A and let / : N -* A be a

computable bijection.
Define computable permutations a and ß as follows:

(1) o(bij) bij+1, o(rij) riJ+i and ctO,j) ytj+i- Thus a is the shift

map on the Z indices.

(2) ß n£0(ô',o. yi,o)(bi,f(i), r,,/(0) (An infinite product of 2-cycles.)

For each i, ß interchanges the elements bip and yip and also interchanges

hi,m and rum.
Both a and ß are computable since / is computable. Note that neither a nor
ß ever move an element out of its row, that is, they never change an i index.

We need to show that the word problem for the subgroup G generated by a
and ß has the same truth-table degree as A.

Claim 4.1. For any m e N, the permutations ß and o~mßom commute if and

only if m f A — range /. Thus A <tt WP{G).

Computable permutations and word problems 153

Proof. That ß and a~mßom commute means exactly that jt\ ßcr~mßom and

1x2 — (i~mß(jmß are the same permutation.
Suppose that m > 0 is not in A, that is, m is not equal to f(i) for any /.

By successively applying the permutations in ii\ and jr2, check that both 7ri
and 7r2 fix all triples (bi,j,rij,yij) where j is not equal to one of the values
0,—m,f(i) or f(i) — m. Now check that both jt\ and tt2 send ri,(h }'i,o)
to (yi,o,bi,o,ri,0) and {bt _m, r,- _m, yt _m) to (y{ -m,ri -m,biim), while sending

(bi,f(i), yitf(i)) tO fi,/(o) **nd yi,f(i)—m)
tO (bij(i)-m, yi.f(i)-m) •

If m f(i') for some just check that 7Ti sends (è;,o, r,-,o, >';,o) to

(ri,o,yi,o,bi,0) while n2 sends (bifi, n,0, yifi) to (yi,o,bi>0,rit0) so ß and

o~mßam do not commute.

To solve the word problem for G given A as an oracle, first note that, since

ß has order 2, given a word w in the generators of G, we can effectively reduce

w to an equivalent word v of the form

CTm0ßamiß...amk-ißam^

by successively combining adjacent powers of a or ß, deleting even powers of
ß, and replacing odd powers of ß by ß.

Since a is the shift map on Z indices, v cannot equal the identity unless the

sum of the exponents m,- equals 0. If the exponent sum is 0, let m be the sum
of the positive exponents on rr occurring in v. We use the oracle to determine
which of the numbers \,... ,2m are in A. It is important to note that we only
need to know whether or not these numbers are in A and we do not need to
know the values of i for which /(/) is one of the given numbers. Finding such

a value of i would require an unbounded search and would not give a truth-table
reduction.

The first observation is that if i and i' are any two indices with /(/) > 2m

and /(/') > 2m, then v acts as the identity on row i if and only if v acts as the

identity on row This is because v can only interchange elements with subscripts
differing from 0 or /(i by at most m, and since /(/) > 2m, these exchanges

cannot interact. The action of v on triples with j in the interval, mirrors the

action of v on elements with j in the interval [—m,m\. If v is not the identity
on the elements {bij,nj, yij) with j e [—m,m] or with j e [f(i)—m,f(i)+m]
then v is not the identity.

If we need to check further then, for each number l, \ < I <2m which is in

A, suppose that /(/) / and check the effect of v on elements with second

indices ranging from (i,—m) to (i,l + m). Then v is the identity in G if and

only if it acts as the identity on each of these intervals. We have specified a

154 A. Morozov and P. Schupp

bounded, indeed polynomially bounded, number of elements to check, so we have

WP{G)<„A.

If G and H are groups which are both embeddable in C then their direct

product G x H is also embeddable in C. (There is a bijection N^NxN and

G x H permutes NxN by letting G permute the first factor and H permute
the second factor.) Taking the direct product of two-generator examples with a

free group of finite rank r shows that there are k -generator subgroups of C with
word problem of truth-table degree t for all k > 2.

Morozov [Mor] constructed two-generator groups with co-c.e. word problem
which are not embeddable in C, answering a question posed by Graham Higman.
We show here that this construction preserves truth-table degree, so we have

Theorem 4.2. For every nonzero c.e. truth-table degree t, there is a two-generator

group with word problem of degree t which is not embbedable in C.

Proof. Let A be a c.e. set of truth-table degree t and let

P (£){Xn\X„Pn)
n> 1

where pn is equal to 2 if n £ A and otherwise pn is the least prime greater
than 2s if n appears in A at step ,v of the enumeration of A. This is a direct

sum of finite cyclic groups of prime order and so all the generators x,- commute.
We note that P itself is embeddable in C. Indeed, any countable, locally

finite group G is embeddable in C. That G is locally finite means that every
finitely generated subgroup of G is finite. Fix an enumeration gi,g2,--- of the

non-identity elements of G. Let G\ (gi) be the subgroup of G generated by

gi. Let /] be the initial segment of N of cardinality |G]|. Fix a bijection rp
from Gi to I\ which sends the identity element to 0 and let pi be the induced

permutation representation of Gi on f. If G„_i has already been defined, let

gin be the first element in the enumeration of G which is not in G„_i and

let G„ — (Gn—i, gin). Let /„ be the initial segment of N of cardinality |G„|
and choose a bijection r]n from G„ to ln which extends r]n-\, so the induced

permutation representation of Gn on In extends pn-\. Define : G -* C as

follows. If gi eG, let Gyfe be the first group for which g,- e GT. Then VF (g, is

the permutation of N which agrees with pt on Ik and fixes all elements of N
outside of Ik. For every g,, 4>(g; moves only finitely many elements so is

an embedding of G into the subgroup of Unitary permutations and all finitary
permutations are computable.

Returning to the group P as given, we need to check that the word problem
for P has the same truth-table degree as A. First, xj2 — 1 in P if and only if

Computable permutations and word problems 155

j ^ A so A <tt WP(P). Since all the generators commute, we can write any
element in the form

Such a product is not the identity if and only if some xj mJ A 1.

Now Xjk A 1 if and only if (j A and k is odd) OR j e A and pj \ k).
So first, for each j, ask the oracle if j e A. For those j <jÉ A, we just check if
mj is odd, and if so, w A 1 in P. If this does not determine the status of w, let

m be the maximum of all the exponents mj in w and set s [y]. Enumerate

A for s steps. If j appears in A in this process, we know the value of pj and

can thus check if pj | mj .If j e A but has not appeared in s steps of the

enumeration then pj > m and so xjPj A 1 in P. We have bounded the number

of steps in this computation from the form of w so this is indeed a truth-table

reduction and WP(P) <tt A and therefore we have WP(P) =tt A.
We can now do the standard HNN embedding of the group P {x\R)

into a two-generator group. Let

H{P) — (P * (a,b),t\tat~l — b,t Xib'a'b1 t~l a'b'a',i > l).

The Observation on the standard HNN embedding into a two-generator group
shows that the word problem for H(P) is truth-table equivalent to A.

Since H(P) has two generators, an embedding <p : H(P) C would be

effectively calculable. In this case, {(p(xi)} would be a computable family of
computable permutations. We write o(n) for the order of a permutation n. We

now observe that if {7r,-} is a computable family of computable permutations of
N, all of which have prime order, then the function i -> ofjr, is computable.
To check this, first start enumerating elements of N until we find an m with

jti(m) / m. Now enumerate the images jii' (m), j 1 where the first

repetition is the k -th. Then k must be the order of jt; since the order is a prime.
But cp{xn) has order 2 if and only if n £ A, so we conclude that II(P) cannot
be embeddable in C.

Consider the group A of computable automorphisms of the free group
F — (y\, >'2,...) of rank K0. Then C is embeddable in A by just permuting
the generators. To see that A is embeddable in C we consider computable

permutations of N2.
List the nonempty words of F in the following way. Fix the lexicographic

order

w Xjri...xjrmr

5. Other groups of computable automorphisms

y i < y i -i < < yk < yk -i <

156 A. Morozov and P. Schupp

on the set Y of generators and their inverses. Let LL^ consist of all freely
reduced words on y\,...,yk, listed in shortlex order, which contain yy or its
inverse and no generators with higher subscript. Let wiy be the i -th word in

list LL/ç. If a is a computable automorphism of F, let a(Wjy) wr,s then a

corresponds to the permutation which sends 0 to 0 and (/, k) —> (r,s).
Since each of C and A is embeddable in the other, up to isomorphism they

have the same set of subgroups. To see that C and A are not isomorphic we
consider normal subgroups. Schreier and Ulam [SU] investigated the group S

of all permutations of N in 1933. They showed that the only normal subgroups

of <S other than {1} and the whole group are the group of all finitary
permutations of N, and the group of alternating finitary permutations. Note
that these last two groups are torsion groups where all elements have finite order.

Clement Kent [Ken] showed that the normal subgroup structure of C is the same

as that of S. The group of inner automophisms of F is a normal subgroup of
A and is torsion-free. So C and A are not isomorphic.

Similarly, we have mutual embeddability with C for many other groups of
computable automorphisms. For example, the group of computable automorphisms
of the free abelian group of rank X0 or the computable automorphisms of the

direct sum of K0 cyclic groups of order p for p a fixed prime.

6. Groups with a co-c.e. presentation

The following observation is well-known.

Observation 6.1. A finitely generated group G (X;R) where the set R of
defining relators is computably enumerable has a presentation with a computable
set of defining relators.

Proof. Since R is computably enumerable, there is a computable function

/ : N+ -> R which is onto R. We check that G is isomorphic to

X,z;z,zl f(i)
which is a computable presentation. This is a presentation of G since we have

just added a new generator and set it equal to the identity. So the relations

are equivalent to {/(/), i e N+} which is just R. This second presentation is

computable since to check if a word of the form z'w is a defining relation we

just compute /(/') and see if it is w.

Computable permutations and word problems 157

This raises the natural question of what one can say about groups which have

a co-c.e. presentation. The situation now becomes very different from that of c.e.

presentations. To explain the result we need to introduce some more computability
theory.

The original complexity hierarchy is of course the Borel Hierarchy [Bor], The

corresponding hierarchy in computability theory is the Arithmetic Hierarchy. We

list here a few basic facts but see Soare [Soa] for a detailed discussion. Since

we are considering words in groups, we consider subsets of £*, the set of all
words on a nonempty finite alphabet T. The basic family of sets is the family
Ai of all computable subsets of T*. The family Si of all c.e. subsets of T* is

the family of all subsets of the form

{x : 3yR(x,y)}

where y is a sequence y,-,...,y/ of variables and R{x,y) is an arbitrary
computable relation. The family üi of co-c.e. sets is the family of subsets

of the form

{x : WyR(x,y)}.

Note that Ai Si (T üi by the basic lemma of computability theory.
The hierarchy is continued by alternating quantifiers. Thus the family S2 is

the family of all subsets of the form

[x : 3 y Vz/?(x,y,z)}

where where R{x,y,z) is a computable relation and the family n2 of is the

family of subsets of the form

[x : V y 3zR{x, y, z)}.

By definition, A2 S2nn2.
K', the jump of the Halting Problem K, is Halting Problem for oracle Turing

machines with an oracle tor K. The Turing degree of K' is denoted by 0". Post's

Theorem shows that S2 is the family of sets enumerable by Turing machines

with an oracle for K and A2 is the class of sets computable by Turing machines

with an oracle for K.
The Arithmetic Hierarchy is continued by repeatedly alternating quantifiers

and the sets obtained are all distinct. A remarkable theorem about A2 is the

Shoenfield Limit Lemma: A set S A2 if and only if there is a computable
function f : NxS* {0,1} such that w e S if and only if limn^.oof(n,w) — 1.

We can think that at each stage n, f is trying to determine whether or not w e S,
(f(n,w) — I) or w j S, (f(n, w) — 0) and for each w the value is eventually
correct.

158 A. Morozov and P. Schupp

Figure 1

The Arithmetic Hierarchy

Note that a finitely generated group with a E2 set of defining relators has

a presentation with a À2 set of defining relators. The proof is the same as

before by replacing the word "computable" by "computable from an oracle for
the Halting Problem". The following theorem arose in a conversation with Carl
Jockusch during the preparation of this paper.

Theorem 6.1 (Jockusch). A finitely generated group G with a S2 set of defining
relators has presentation with a co-c.e. set of defining relators.

Proof. We can suppose that we have a A2 presentation G {X: R) for G.
The Shoenfield Limit Lemma says that a set R is A2 if and only if there is a

computable {0,1 (-valued function f(s,u) of two variables such that w e R if
and only if lim^oo /(s, w) 1.

Given the above A2 presentation and /, let

G (X,z;z,zsw)

such that f(t, w) 1 for all t > s.
First, the above presentation is indeed a presentation of the given group G.

Since z 1 in G, there is a relation zsw setting w I in G exactly if
f(t,w) 1 for all t greater than or equal to some s. By the property of the

function /, this happens if and only if w e R. We just have to check that we can

enumerate the complement of the displayed relators. We begin listing all words

on the generators X U {z} and their inverses in short-lex order and start listing

Computable permutations and word problems 159

all pairs (n,w). We never enumerate z. If a word u does not have the form

zsw,s > 1, we enumerate u. Otherwise, if f(s, w) — 1 we do not enumerate u.
If f(s, w) — 0, we enumerate all words z7 w with 1 <j<s. By the property of

/, we enumerate exactly the words which do not appear in the above presentation
of G.

References

[Bor] E. Borel, Leçons sur la théorie des fonctions. Gauther-Villars, Paris, 1898.

JFM 29.0336.01

[Cay] A. Cayley, On the theory of groups. Proc. London Math. Soc. 9 (1878), 126-133.

JFM 10.0104.01

[Deg] A.N. Degtev, Hereditary sets and tabular reducibility. Algehra i Logika 11

(1972), 257-269. Zbl 0283.02035 MR 0313033

fJocl C. G. Jockusch, Relationships between reducibilities. Trans. Amer. Math. Soc.

142 (1969), 229-237. Zbl 0188.02604 MR 0245439

|KMSS[I. Kapovich, A. Myasnikov, P. Schupp, and V. Shpilrain, Generic-case

complexity, decision problems in group theory and random walks. J.

Algebra 264 (2003), 665-694. Zbl 1041.20021 MR 1981427

I Ken] C. Kent, Constructive analogues of the group of permutations of the natural

numbers. Trans. Amer. Math. Soc. 104 (1962), 347-362. Zbl 0105.24802

MR 0140406

[Kle] S. C. Kleene, Recursive predicates and quantifiers. Trans. Amer. Math. Soc. 53

(1943), 41-73. Zbl 0063.03259 MR 0007371

[LS] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory. Classics in

Mathematics, Springer, 2001 Zbl 0997.20037 MR 1812024

IMor| A. S. Morozov, Once again on the Higman question. Algebra i Logika 39

(2000), 134-144.

[NS] A. Nies and A. Sorbi, Calibrating word problems of groups via the complexity
of equivalence relations. Math. Structures Comput. Sei. 28 (2018), 457-471.

MR 3778212

[Pos] E. L. Post, Recursively enumerable sets of positive integers and their decision

problems. Bull. Amer. Math. Soc. 50 (1944), 284—316. Zbl 0063.06328

MR 0010514

[SU] O. Schreier and S. Ulam, Über die Permutationsgruppe der natürlichen

Zahlenfolge. Studio Math. 4 (1933), 134-141. Zbl 0008.20003

[Soa] R. I. Soare, Turing Computability. Springer, 2016. Zbl 1350.03001 MR 3496974

[Turl| A.M. Turing, On computable numbers with an application to the Ent-

scheidungsproblem. Proc. London Math. Soc. 42 (1936), 230-265.
Zbl 0016.09701 MR 1577030

160 A. Morozov and P. Schupp

|Tur2| Systems of logic based on ordinals. Proc. London Math. Soc. 45 (1939),
161-228. Zbl 0021.09704 MR 1576807

(Reçu le 11 février 2018)

Andrey Morozov, Sobolev Institute of Mathematics,

Koptyug Prosp. 4, Novosibirsk 630090, Russia

e-mail: morozov@math.nsc.ru

Paul Schupp, Department of Mathematics, University of Illinois
at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, USA

e-mail: schupp@math.uiuc.edu

© Fondation L'Enseignement Mathématique

	Computable permutations and word problems

