Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 64 (2018)

Heft: 1-2

Artikel: Computable permutations and word problems
Autor: Morozov, Andrey / Schupp, Paul

DOl: https://doi.org/10.5169/seals-842090

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-842090
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique (2) 64 (2018), 143-160 DOI 10.4171/LEM/64-1/2-6

Computable permutations and word problems

Andrey Morozov and Paul Scuupp

Abstract. This is an expository paper whose goal is to explain some interesting intercon-
nections between group theory and the theory of computability. Let C denote the group
of all computable permutations of N. A basic question is: What can one say about the
finitely generated subgroups of C? Partially answering this question involves ideas from the
theory of computability such as Turing degrees and truth-table degrees. We want to make
this paper accessible to both group theorists and computability theorists so we carefully
explain all the needed concepts.

Mathematics Subject Classification (2010). Primary: 20F36; Secondary: 03D35.

Keywords. Computable permutation, Turing degree, truth-table degree, HNN extension.

1. Introduction

We consider the group C of all computable permutations of N, so we have to
begin with a precise definition of “computable”. In his famous 1936 paper Turing
[Turl] formulated the idea of the universal digital computer, the Turing machine.
It is not necessary to have in mind the exact details of how Turing machines
work and one can think of such a machine as an ordinary computer with a fixed
program but with infinite memory and no time limit on computations. The crucial
fact is that a Turing machine is completely defined by its finite program and that
there are therefore only countably many Turing machines and one can make an
effective list of all of them. (For example, see [Soa] for precise details.) One
does not need to have mind the exact working details of a Turing machine when
thinking about computability and computability theorists don’t worry about them
when proving theorems. It is now accepted that computable by a Turing machine
is the correct precise definition of the word “computable”.

There are essentially two ways to use Turing machines. First of course, to
compute functions. If ¥ and A are finite alphabets then ¥* and A* denote
the set of all words over ¥ and A respectively. A function f: X* — A* is

144 A. Morozov and P. ScHurp

computable if there exists a Turing machine M which, when started with an
arbitrary input w € X halts with output f(w). A set S C X* is computable if
its characteristic function is computable.

The second basic way of using Turing machines is as enumerators. A set
S C X* is computably enumerable if there exists a Turing machine with a special
output tape, which successively writes elements of ¥*, say separated by spaces,
on its output tape, and the set of words eventually listed is exactly S. In other
words, one can effectively list the elements of S. Note that there is no constraint
on the order in which elements are listed and that a given element may be listed
many times, even infinitely often.

A first basic lemma of computability theory is that a set S C X* is computable
if and only if both S and its complement S are computably enumerable. If both
S and its complement S are computably enumerable, we can start running both
enumerations. Any given word w will occur in exactly one of the enumerations
and when it does, we can correctly answer if w € §. If S is computable, then
an enumeration of either S or S is obtained by enumerating £* and listing
according to whether or not a word is in S. (Note that this proof uses no technical
details about how Turing machines work.)

Returning to the group C, note that C is countable since there are only
countably many Turing machines. The general question which we consider is:
What can one say about the finitely generated subgroups of C? The word problem,
WP(G), of a finitely generated group G = (X; R) is the set of all words over the
group alphabet ¥ = X U X! which are equal to the identity element of G in the
given presentation. The word problem for G is computable, (solvable, decidable)
if WP(G) is a computable set. Although the exact set WP(G) depends on the
given presentation, whether or not the word problem is computable, indeed its
exact complexity, does not depend on the presentation. Indeed, if H = (Y;S) is
a finitely generated presentation of a group isomorphic to a subgroup of G then
there is an embedding ¢ : H — G. So a word u = z;---z, equals the identity
in H exactly if ¢(u) = ¢(z1)---¢(z,) equals the identity in G, and ¢(u) is
calculable in linear time.

To say that we are given finitely many generators of a subgroup G of C, we
mean that we are given the algorithms (Turing machines) which compute the per-
mutations. From this information we cannot decide when an element is the identity,
but we can computably enumerate those elements which are rot the identity. If g is
defined as a product of the given generators, we can start enumerating the images
of natural numbers under the permutation g. This method would never determine
that an element is the identity, but if g is not the identity we know this as soon as
g moves some number. So the word problem of any finitely generated subgroup
of C is the complement of a computably enumerable set, that is, it is a co-c.e. set.

Computable permutations and word problems 145

The first result just comes down to considering the left regular representation
of a group, so the proof was essentially given by Cayley [Cay] in 1878.

Theorem 1.1. Every finitely generated group with computable word problem is
embeddable in C.

Proof. We use the short-lex order for words from a finitely generated group
G = (x1,...,Xm; R). That is, fix a linear ordering of the generators and their
inverses. The order on words is then first by length, and then by lexicographical
order on words of the same length.

If G has computable word problem we can effectively make a list

1=U)0,U)1,U)2,...

of the distinct elements of G. Fix an element w; of G. We can then effectively

calculate the index k where w;w; = wy in the above list. Then the permutation

corresponding to left multiplication by w; maps to the permutation j — k of
N.

In short, we can effectively calculate the left regular permutation representation.

]

If G = (X;R) is a finitely generated group with a computably enumerable
set of defining relators then we can enumerate all the consequences of the
defining relators so the word problem WP(G) is computably enumerable. If G
is embeddable in C then its word problem is both c.e. and co-c.e and is thus
computable by the basic lemma of computability theory discussed above.

Corollary 1.2. A finitely generated group G with a computably enumerable set
of defining relators is embeddable in C if and only if G has computable word
problem.

So the question is now: Which other finitely generated groups are embeddable
in C?

2. Turing degrees and truth-table degrees

We often think in terms of relative computability: "I don’t know how to
compute B, but if I could compute A then I could compute B”. Turing himself
[Tur2] formulated the general definition of relative computability in terms of
oracle Turing machines. Essentially, an oracle Turing machine is an ordinary
computer (Turing machine) equipped with a special hardware slot for an oracle,

146 A. Morozov and P. Scuupp

which can hold total information about a set A of words over the input alphabet
Y of the machine. The machine has a special query register and a new branch
instruction which says go to different states depending on whether or not the word
w in the query register is in the set A or not. Note that an oracle machine still
has a fixed finite program so there are still only countably many oracle machines
and there is an effective list of all of them. But the oracle can contain information
about an arbitrary set. We write M4 to denote the oracle machine M with an
oracle for A.

In his fundamental 1944 paper, Emil Post [Pos] realized that oracle machines
give the basic foundation for a general theory of computability. A set B is Turing
reducible to a set A, written B <7 A, if there is some oracle Turing machine M
which, when given the oracle for A, computes B. Two sets A and B are Turing
equivalent, written A =7 B, if A <t B and B <7 A. This just says that given
total information about A, one can compute B, and given total information about
B, one can compute A. It is easy to see that =7 is an equivalence relation on
the family of all subsets of words over finite alphabets, and equivalence classes
are called Turing degrees. Since there are only countably many Turing machines
and P(X*) has the cardinality of the continuum, there are continuumly many
distinct Turing degrees. Turing degrees give a precise definition of when two sets
are “computationally equivalent”.

The Halting Problem is the set K of all pairs (M, w), where M is a Turing
machine and w is a word on the input alphabet of M such that M eventually
halts when started with input w. Turing proved that the Halting Problem is not
computable in his original paper. Although it is not computable, we can see
that the Halting Problem is a c.e. set as follows. We can effectively enumerate
all triples (M, w,n) where M is a Turing machine, w is a word on the input
alphabet of M and n is a positive integer. When such a triple is enumerated,
simulate M on input w for n steps. If M halts during this process, we can
enumerate (M,w) as a halting pair. The Halting Problem is the basic example
of a computably enumerable set which is not computable.

A Turing degree is a c.e. degree if it contains a c.e. set. There are only
two “obvious” c.e. Turing degrees: the degree 0 of computable sets, and the
degree 0’ of the Halting Problem. (A c.e. degree may contain many sets
which are not c.e. For example, the complement of the Halting Problem, which
consists of those pairs (M, w) such that M never halts when started with input
w.)

Post raised the basic question of whether or not there are any c.e. Turing
degrees besides 0 and 0. This question became known as “Post’s Problem”
and was not settled until 1957 when it was simultaneously resolved by Fried-
burg and by Muchnik [Soa]. Computability theory has since shown that there

Computable permutations and word problems 147

are N, distinct c.e. Turing degrees. Any set is Turing equivalent to its comple-
ment, so the Turing degrees containing co-c.e. sets are exactly the c.e. Turing
degrees.

In the paper under discussion, Post introduced a stronger version of com-
putational equivalence, called truth-table equivalence. The set B is truth-table
reducible to the set A, written B <;; A, if there is an oracle Turing machine
M4 and a computable function $: ¥* — N such that, on input w, M4 decides
if w € B in no more than SB(w) steps. One can think that, given w, we can
compute a loop-free flow chart of size at most B(w) for deciding whether or
not w € B. Of course, some of the steps may be questions to the oracle for
A.

Bounding the number of steps in a computation is now the basis of
computational complexity and so is very natural, although we are here working in
a very general setting. To clarify the definition it is helpful to consider a Turing
reduction which is not a truth-table reduction. Suppose that B and C are any
two disjoint c.e. sets. We claim that B <r B U C. To decide if w € B, ask the
oracle if w € BUC. If not, then w ¢ B. If yes, start computably enumerating
both B and C. Since B and C are disjoint, w will occur in exactly one of
the two sets and we then know whether or not it belongs to B. This is not a
truth-table reduction since in general there is no computable bound on how far
we need to enumerate B and C.

Sets A and B are truth-table equivalent, written A =, B, if A <;,; B and
B <, A, and equivalence classes are called truth-table degrees. Post introduced
this notion because he was able to solve Post’s problem for truth-table degrees
by showing that there is a c.e. set B with 0 <,; B <; K. It turns out that
the structure of truth-table degrees within a single Turing degree is very rich.
Jockusch [Joc] showed that any Turing degree either contains infinitely many
truth-table-degrees or is itself a single truth-table degree, and this later case is
very rare in a precise sense. Indeed, Degtev [Deg] showed that any nonzero
c.e. Turing degree contains infinitely many pairwise incomparable c.e. truth-table
degrees.

As with Turing degrees, any set is truth-table equivalent to its complement and
a truth-table degree is said to be a c.e. degree if it contains a c.e. set. We have
pointed out that the computational complexity of the word problem of a finitely
generated group is an invariant of the group and does not depend on a given
finitely generated presentation. In discussing the diversity of finitely generated
subgroups of C, we need the fact that the truth-table degree of the word problem
of a finitely generated group G is an invariant of the group.

148 A. Morozov and P. ScHupp

3. HNN extensions

A basic construction in infinite group theory is that of taking an HNN
extension, introduced by G. Higman, B. Neumann and H. Neumann in 1949.
(See [LS] for a detailed discussion of HNN extensions.) Suppose that we have
a group G = (X; R) and two subgroups A and B of G with an isomorphism
¢ : A — B. The corresponding HNN extension is the group

H = (X,t; R, tat™! = ¢p(a),a € A).

We have added a new generator ¢, called the stable letter, and new relations
saying that conjugating an element a« € A by t gives ¢(a). The first basic fact,
proved by Higman, Neumann and Neumann, is that G is embedded in H by the
map x > x. A non-empty sequence

g07t619g19--':t€n7gn

with the g; € G and ¢; = +1 is reduced if either n = 0 (there are no ¢ letters)
and go is not the identity in G, or, if n > 1, then there is no consecutive
subsequence 7, g;,t! with g; € 4 or 171, g;,¢ with g; € B.

Complete information about the word problem in an HNN extension is given
by

Lemma 3.1. Britton’s Lemma. If the sequence go,t',g1,...,t", g, 1is reduced
then the product got€'g,---t*g, #1 in H.

In general, computation of the word problem for H involves computing the
word problem for G, determining membership in the subgroups 4 and B,
and computing the isomorphisms ¢ and ¢~!. If the subgroups A and B are
finitely generated then ¢ and ¢! are certainly computable, but we want to take
HNN extensions over infinitely generated subgroups and then computability of
the isomorphisms also needs to be verified.

Our first application of HNN extensions is the following.

Observation 3.2. For any truth-table degree ¢, there is a two-generator group
G with word problem of truth-table degree ¢ which is an HNN extension of the
free group of rank 2.

Proof. B 8 C41;2.:.) 16t
{8y = la.b. 18" = b,th'a’b't™' =d'b'd’,i € S).

The groups G(S) all have the structure of an HNN extension of the free
group F = (a,b). Any subset of {a,b'a’h’ : i > 1} freely generates a

Computable permutations and word problems 149

free subgroup of F since no a can ever be cancelled in a reduced product
of the given generators. Similarly for the subset {b,a'b'a’ : i > 1}. Let
A = gp{a,b'a'b’ : i € S} be the subgroup of F generated by the displayed
elements and let B = gp{b,a*h’a’ :i € S}. We have added a new generator ¢
and the relations saying that conjugation by ¢ sends each generator of A to the
corresponding generator of B. This map is an isomophism since A and B are
freely generated by the displayed sets of generators. Since G(S) is generated by
{a,b,t} we can use the first relation to eliminate the generator b, seeing that
G(S) is a 2-generator group.

We can use Britton’s Lemma to show that the word problem of G(S) is
truth-table equivalent to membership in the set S. First of all, for any j > 1,

t blalb! 7V =albial

in G(S), that is,
t b alb) T'a b/ a7l e WP(G)

if and only if j € §, so S <4 WP(G).

Let w be a nonempty freely reduced word on the group alphabet {a,b,?
If w=1 in G(S), Britton’s Lemma says that either w contains no ¢’s and
w = 1 in the free group or w must contain either a subword rut~! where u € 4
or a subword t~lvst where v € B. If w contains such a subword fut~! then
we have tut™! = ¢(u) in B. In our particular case, calculating ¢(u) involves
simply interchanging the letters ¢ and b. So we can make a t-reduction by
replacing rut~! by ¢(u), thus reducing the number of #’s. Of course, we then
freely reduce the result. Exactly the same remark applies if w contains a subword
of the form r~!'vt where v € B.

}:l:l.

But deciding if a reduced word of the free group (a,b) is in A or B can
be done in linear time given membership in S. Since no a is ever cancelled in
a reduced product of the generators of A, given a reduced product

a11b11a12b12 . alk b]kalk

we can calculate if the exponents on the occurrences of a and b are correct for
membership in A or not, and similarly for B. So knowing membership in §
allows us to reduce an arbitrary word w in quadratic time. We either arrive at a
nonempty word in which no reductions are possible, so w # 1 in G(S), or we
arrive at the empty word and w = 1 in G(S). Since we can compute the number
of possible steps in such a reduction from w, this is a truth-table reduction and
we have concluded that WP(G(S)) <, S. Thus the word problem for G(S) and
S are truth-table equivalent. 0

150 A. Morozov and P. ScHUPP

Actually, the reduction above and the reductions which we later consider are
much stronger than general truth-table reductions. Since we are dealing with both
words in group generators and natural numbers, for measuring the size of inputs
we consider natural numbers as written in unary. Then the functions bounding the
number of steps in our reductions will be a single exponential or a polynomial
function of the length of inputs, which is the desired condition in complexity
theory. Since we are dealing with oracles for non-computable sets, we do not
stress this fact but simply point out that it is indeed the case.

Observation 3.3. For a group G(S) as above, if S is a co-c.e. set, then WP(G)
is also co-c.e.

Proof. As a first example of what we want to do, consider a word w with only
one possible reduction to the identity, say

p20,~204—20 ;~1 ,20320,20 ,30530,30 4 §—30,~30}~30
|
20 € §?
30 §?

|
1.

Now w # 1 in G(S) only if 20 ¢ S or 30 ¢ S. Since we can enumerate the
complement S of S, if either 20 or 30 is not in S this fact will appear in our
enumeration and we can then enumerate w as a word not equal to the identity.

In general, for each freely reduced word w we can construct the tree of all
possible reductions of w. On each edge write the exponents needed to be in S
in order to make the reduction. The reduction is not possible exactly if some
exponent in not in S. Since we can enumerate the complement S of S, we will
eventually discover any reduction which is not possible and cancel that branch.
Of course we cancel any branch that ends in a nonempty reduced word to which
no reductions could possibly be applied. A word w is equal to 1 in G(S) if
and only if some some branch is not eventually canceled. So enumerating each
word with all branches canceled exactly enumerates the complement of the word
problem. U

This method also shows that the word problem is generically easy for all
the groups G(S). By this we mean that there is a partial algorithm which is
always correct and which works on a set of asymptotic density 1 (see [KMSS]).
Most reduction trees show that the starting word cannot possibly reduce to 1. In
particular, a freely reduced word w can equal the identity in G(S) only if the
exponent sum on ¢ in w is exactly 0.

Computable permutations and word problems 151

The probability that a random word of length n has the exponent sum on ¢
exactly equal to 0 goes to 0 as n — oo. So a linear time generic algorithm for
the word problem of G(S) is to check if the exponent sum on ¢ in w is 0. If
not, answer w # 1, and if the exponent sum is 0 do not answer. Note that the
same generic algorithm works for all the groups G(S). Indeed, it works for all
HNN extensions of finitely generated groups.

We have seen that there are 2-generator groups of every possible truth-table
degree and indeed, there are 2-generator groups with co-c.e. word problem of
every possible c.e. truth-table degree. It is not at all clear if any of the groups
G(S) just considered are embeddable in C.

Higman, Neumann and Neumann introduced HNN extensions to prove, among
other things, that every countable group can be embedded in a 2-generator group.
After working through the example of the groups G(S) we see that the “standard”
HNN embedding of a given presentation of a countable group C into a two
generator group preserves the truth-table degree of the word problem. (Note that
the computational complexity of the word problem is not an invariant of the group
for infinitely generated presentations. Indeed, is easy to write down an infinitely
generated presentation of the cyclic group of order 2 for which the word problem
is not computable.)

Observation 3.4. Let G = (X; R) be a group where the set X of generators is
either finite or is the infinite set {x;,...,X,,...} where the indices range over
N*. The standard HNN embedding of G into a 2-generator group H preserves
the truth-table degree of the word problem of the given presentation of G.

Proof. We first take the free product G * FF where F = (a,b) is a free group
on two generators, and then take the HNN extension

H ={G % F,t:tat™! = b, thia' bt~ = x;d'bidl i > 1).

The relations are exactly the same as the relations we used in the groups G(S)
except that the generator x; appears once in the i -th relation involving conjugation
by t. Now H is a 2-generator group since the first relation can be used to express
a in terms of ¢ and b, and the i -th relation can be used to express x; in terms of
a,b and t. And G is embedded in H by the basic property of HNN extensions.
We need to check that WP(H) =, WP(G). First, WP(G) <, WP(H)
since G is embedded in H by the map x; — x;. As before, the subgroups
A = gpla,b'a’h’} and B = gp{b,x;a'b'a'} are freely generated by the displayed
sets of generators because no a is ever cancelled in a reduced product of generators
from the first set and no b is ever cancelled in a reduced product of generators
from the second set. To see if a word w is in one of the subgroups we can
determine the product of generators needed from reading w. For example,

152 A. Morozov and P. ScHupp
g1a’b’gra’b3a3g; € B

if and only if g; = x5 in G and both g, and g3 are equal to the identity in
G . The map sending a generator of A to the corresponding generator of B, or
vice versa, again simply interchanges @ and b and deletes or inserts an x;. We
can again test all possible ¢-reductions and WP(H) <, WP(G). L]

4. Finitely generated groups embeddable and not embeddable in C

Nies and Sorbi [NS] have shown that for every c.e. truth-table degree there
is 3-generator subgroup of C with word problem of that degree. We give here a
simple construction for 2-generator subgroups of C.

Theorem 4.1. For every nonzero c.e. truth-table degree t there is a 2-generator
subgroup of C with word problem of degree t.

Proof. Let B = {b;j,i € N,j € Z} be a set of “blue” elements and let
R=1{r;,ieN,jeZ}) and Y = {y;;,i € N,j € Z} be respectively disjoint
sets of “red” elements and “yellow” elements. Let P = BU RUY be their
disjoint union. There is a computable bijection from P to N so we can consider
permutations of P. We think of P as initially arranged in rows

cubi—1,ri—1,Yi—1, bio,rio. Vi, biasTia,Yin, -

of triples, where the i-th row consists of all elements with first index i .

Let A be any infinite c.e. subset of N with 0 ¢ A and let f : N — A be a
computable bijection.

Define computable permutations ¢ and B as follows:

(1) ()'(b,',j) = bi,j+1) U(ri,j) =Tij+1 and U(y,-,j) = Yi,j+1. Thus o is the shift
map on the Z indices.

(2) B =T172i,0. ¥i,0)(bi, £i)» Ti, 7)) (An infinite product of 2-cycles.)
For each i, B interchanges the elements b; o and y;o and also interchanges
bi, iy and ri ry.

Both ¢ and S are computable since f is computable. Note that neither ¢ nor

B ever move an element out of its row, that is, they never change an i/ index.

We need to show that the word problem for the subgroup G generated by o
and B has the same truth-table degree as A.

Claim 4.1. For any m € N, the permutations 8 and o~ f0™ commute if and
only if m ¢ A = range f. Thus A <, WP(G).

Computable permutations and word problems 153

Proof. That B and o™ fBc™ commute means exactly that 7; = Bo~™ o™ and
m, =0 MBo™pPB are the same permutation.

Suppose that m > 0 is not in A, that is, m is not equal to f(i) for any i.
By successively applying the permutations in 7; and m», check that both
and m, fix all triples (b; ;,ri j,i,j) where j is not equal to one of the values
0,—m, f(i) or f(i) —m. Now check that both 7=y and m» send (b;g,7i.0,Yi0)
to (¥i,0,bi0,ri0) and (bj—m, ri,—m; Yi,—m) tO (Vi,—m:¥i,—~m>bim), while sending
(Bi, fys T, £G)» Vi £ @) 0O (Fi, 2G> biy pyiys Vispiy) and (B, gy—ms Ti, £ () —ms Vi, £G)—m)
to (ri, fGy—m> bi, f(i)—m> Vi, £(i)-m) -

If m = f(i’) for some i’, just check that m; sends (b;0,7i0,yi0) tO
(ri,0. yi0,bio) while m sends (bio,7i0,¥i0) t© (¥i0.bi0.7i0) so B and
o ™Bo™ do not commute. (]

To solve the word problem for G given A as an oracle, first note that, since
B has order 2, given a word w in the generators of G, we can effectively reduce
w to an equivalent word v of the form

(Im”ﬁ(fml ﬁ sregy o1 ﬁo-mk

by successively combining adjacent powers of o or 8, deleting even powers of
B, and replacing odd powers of B by B.

Since o is the shift map on Z indices, v cannot equal the identity unless the
sum of the exponents m; equals 0. If the exponent sum is 0, let 7 be the sum
of the positive exponents on ¢ occurring in v. We use the oracle to determine
which of the numbers 1,...,2m are in A. It is important to note that we only
need to know whether or not these numbers are in A and we do not need to
know the values of i for which f(i) is one of the given numbers. Finding such
a value of i would require an unbounded search and would not give a truth-table
reduction.

The first observation is that if i and i’ are any two indices with f(i) > 2m
and f(i") > 2m, then v acts as the identity on row i if and only if v acts as the
identity on row i’. This is because v can only interchange elements with subscripts
differing from 0 or f(i) by at most m, and since f(i) > 2m, these exchanges
cannot interact. The action of v on triples with j in the interval, mirrors the
action of v on elements with j in the interval [—m,m]. If v is not the identity
on the elements (b; ;,r; ;, yi,j) with j € [-m,m] or with j € [f(i)—m, f(i)+m]
then v is not the identity.

If we need to check further then, for each number /,1 </ < 2m which is in
A, suppose that f(i) = and check the effect of v on elements with second
indices ranging from (i,—m) to (i,/ +m). Then v is the identity in G if and
only if it acts as the identity on each of these intervals. We have specified a

154 A. Morozov and P. ScHupp

bounded, indeed polynomially bounded, number of elements to check, so we have
WP(G) <4 A. L]

If G and H are groups which are both embeddable in C then their direct
product G x H is also embeddable in C. (There is a bijection N — N x N and
G x H permutes N x N by letting G permute the first factor and H permute
the second factor.) Taking the direct product of two-generator examples with a
free group of finite rank r shows that there are k -generator subgroups of C with
word problem of truth-table degree ¢ for all k > 2.

Morozov [Mor] constructed two-generator groups with co-c.e. word problem
which are not embeddable in C, answering a question posed by Graham Higman.
We show here that this construction preserves truth-table degree, so we have

Theorem 4.2. For every nonzero c.e. truth-table degree t, there is a two-generator
group with word problem of degree t which is not embbedable in C.

Proof. Let A be a c.e. set of truth-table degree ¢ and let

P= EB(xn;an")

n>1

where p, is equal to 2 if n ¢ A and otherwise p, is the least prime greater
than 2s if n appears in A at step s of the enumeration of A. This is a direct
sum of finite cyclic groups of prime order and so all the generators x; commute.

We note that P itself is embeddable in C. Indeed, any countable, locally
finite group G is embeddable in C. That G is locally finite means that every
finitely generated subgroup of G is finite. Fix an enumeration gy, g»,... of the
non-identity elements of G. Let G; = (g;) be the subgroup of G generated by
g1. Let I; be the initial segment of N of cardinality |G;|. Fix a bijection n
from G; to I; which sends the identity element to 0 and let p; be the induced
permutation representation of G; on [;. If G,—; has already been defined, let
gi, be the first element in the enumeration of G which is not in G,—; and
let G, = (Gp-1,8i,).- Let I, be the initial segment of N of cardinality |G|
and choose a bijection 7, from G, to I, which extends n,—;, so the induced
permutation representation of G, on I, extends p,—;. Define ¥ : G — C as
follows. If g; € G, let Gy be the first group for which g; € Gi. Then W(g;) is
the permutation of N which agrees with p; on I; and fixes all elements of N
outside of I . For every g;, W(g;) moves only finitely many elements so ¥ is
an embedding of G into the subgroup of finitary permutations and all finitary
permutations are computable.

Returning to the group P as given, we need to check that the word problem
for P has the same truth-table degree as A. First, x;? =1 in P if and only if

Computable permutations and word problems 155

j ¢ Aso A<, WP(P). Since all the generators commute, we can write any
element in the form
= iRy L eanfy T E L

Such a product is not the identity if and only if some x;™/ # 1.

Now x;* # 1 if and only if (j ¢ A and k is odd) OR (j € A and p; } k).
So first, for each j, ask the oracle if j € A. For those j ¢ A, we just check if
m; is odd, and if so, w # 1 in P. If this does not determine the status of w, let
m be the maximum of all the exponents m; in w and set s = [5]. Enumerate
A for s steps. If j appears in A in this process, we know the value of p; and
can thus check if p; | m;. If j € A but has not appeared in s steps of the
enumeration then p; > m and so x;?/ # 1 in P. We have bounded the number
of steps in this computation from the form of w so this is indeed a truth-table
reduction and WP(P) <,; A and therefore we have WP(P) =, A.

We can now do the standard HNN embedding of the group P = (x;,...; R)
into a two-generator group. Let

H(P) = (P x {(a,b),t;tat™" = b,t x;p'a'b’ 7' =d'b'a’,i > 1),

The Observation on the standard HNN embedding into a two-generator group
shows that the word problem for H(P) is truth-table equivalent to A.

Since H(P) has two generators, an embedding ¢ : H(P) — C would be
effectively calculable. In this case, {¢(x;)} would be a computable family of
computable permutations. We write o() for the order of a permutation n. We
now observe that if {z;} is a computable family of computable permutations of
N, all of which have prime order, then the function i — o(7;) is computable.
To check this, first start enumerating elements of N until we find an m with
w;j(m) # m. Now enumerate the images m;/(m),j = 1,...,k where the first
repetition is the k-th. Then k& must be the order of z; since the order is a prime.
But ¢(x,) has order 2 if and only if n ¢ 4, so we conclude that H(P) cannot
be embeddable in C. L]

5. Other groups of computable automorphisms

Consider the group A of computable automorphisms of the free group
F = (y1,y2,...) of rank 8y. Then C is embeddable in A by just permuting
the generators. To see that A is embeddable in C we consider computable
permutations of N2,

List the nonempty words of F in the following way. Fix the lexicographic

order

e .2y L.

156 A. Morozov and P. ScHUPP

on the set Y of generators and their inverses. Let LLj; consist of all freely
reduced words on yi,..., yr, listed in shortlex order, which contain y; or its
inverse and no generators with higher subscript. Let w;; be the i-th word in
list LLy. If o is a computable automorphism of F, let a(w;x) = w,s then «
corresponds to the permutation which sends 0 to 0 and (i,k) — (r,s).

Since each of C and A is embeddable in the other, up to isomorphism they
have the same set of subgroups. To see that C and A are not isomorphic we
consider normal subgroups. Schreier and Ulam [SU] investigated the group S
of all permutations of N in 1933. They showed that the only normal subgroups
of S other than {1} and the whole group are S.,, the group of all finitary
permutations of N, and A, the group of alternating finitary permutations. Note
that these last two groups are torsion groups where all elements have finite order.
Clement Kent [Ken] showed that the normal subgroup structure of C is the same
as that of S. The group of inner automophisms of F is a normal subgroup of
A and is torsion-free. So C and A are not isomorphic.

Similarly, we have mutual embeddability with C for many other groups of
computable automorphisms. For example, the group of computable automorphisms
of the free abelian group of rank 8y or the computable automorphisms of the
direct sum of R¢ cyclic groups of order p for p a fixed prime.

6. Groups with a co-c.e. presentation

The following observation is well-known.

Observation 6.1. A finitely generated group G = (X; R) where the set R of
defining relators is computably enumerable has a presentation with a computable
set of defining relators.

Proof. Since R is computably enumerable, there is a computable function
f :NT — R which is onto R. We check that G is isomorphic to

(X,z;2,2" (i))

which is a computable presentation. This is a presentation of G since we have
just added a new generator and set it equal to the identity. So the relations
are equivalent to {f(i),i € N1} which is just R. This second presentation is
computable since to check if a word of the form z‘w is a defining relation we
just compute f(i) and see if it is w. Cl

Computable permutations and word problems 157

This raises the natural question of what one can say about groups which have
a co-c.e. presentation. The situation now becomes very different from that of c.e.
presentations. To explain the result we need to introduce some more computability
theory.

The original complexity hierarchy is of course the Borel Hierarchy [Bor]. The
corresponding hierarchy in computability theory is the Arithmetic Hierarchy. We
list here a few basic facts but see Soare [Soa] for a detailed discussion. Since
we are considering words in groups, we consider subsets of X*, the set of all
words on a nonempty finite alphabet I'. The basic family of sets is the family
Aj of all computable subsets of I'*. The family X; of all c.e. subsets of I'* is
the family of all subsets of the form

{x :3FR(x,7)}

where y is a sequence y;,...,y; of variables and R(x,y) is an arbitrary
computable relation. The family IT; of co-c.e. sets is the family of subsets
of the form

{x : VYR(x,7)}.

Note that Ay = X, N I1; by the basic lemma of computability theory.
The hierarchy is continued by alternating quantifiers. Thus the family X, is
the family of all subsets of the form

{x :3¥YVZR(x,7,2)}

where where R(x,y,z) is a computable relation and the family [T, of is the
family of subsets of the form

{x :VFIZR(x,7,2)}.

By definition, A, = ¥, N I1,.

K’, the jump of the Halting Problem K, is Halting Problem for oracle Turing
machines with an oracle for K. The Turing degree of K’ is denoted by 0”. Post’s
Theorem shows that X, is the family of sets enumerable by Turing machines
with an oracle for K and A, is the class of sets computable by Turing machines
with an oracle for K.

The Arithmetic Hierarchy is continued by repeatedly alternating quantifiers
and the sets obtained are all distinct. A remarkable theorem about A, is the
Shoenfield Limit Lemma: A set S € A, if and only if there is a computable
function f : NxX* — {0, 1} such that w € S if and only if /im, e f(n,w) = 1.
We can think that at each stage n, f is trying to determine whether or not w € §,
(f(m,w)=1) or w¢ S, (f(n,w)=0) and for each w the value is eventually
correct.

158 A. Morozov and P. ScHupp

Ay

FiGcure 1
The Arithmetic Hierarchy

Note that a finitely generated group with a X, set of defining relators has
a presentation with a A, set of defining relators. The proof is the same as
before by replacing the word “computable” by “computable from an oracle for
the Halting Problem”. The following theorem arose in a conversation with Carl
Jockusch during the preparation of this paper.

Theorem 6.1 (Jockusch). A finitely generated group G with a X, set of defining
relators has presentation with a co-c.e. set of defining relators.

Proof. We can suppose that we have a A, presentation G = (X; R) for G.
The Shoenfield Limit Lemma says that a set R is A, if and only if there is a
computable {0, 1}-valued function f(s,u) of two variables such that w € R if
and only if limg—oo f(s,w) = 1.

Given the above A, presentation and f, let

G=(X,z;z,2°w)

such that f(r,w) =1 for all t > s.

First, the above presentation is indeed a presentation of the given group G.
Since z = 1 in G, there is a relation z'w setting w = 1 in G exactly if
f(t,w) =1 for all ¢ greater than or equal to some s. By the property of the
function f, this happens if and only if w € R. We just have to check that we can
enumerate the complement of the displayed relators. We begin listing all words
on the generators X U {z} and their inverses in short-lex order and start listing

Computable permutations and word problems 159

all pairs (n,w). We never enumerate z. If a word u does not have the form
z5w,s > 1, we enumerate u. Otherwise, if f(s,w) =1 we do not enumerate u.
If f(s,w) =0, we enumerate all words z/w with 1 < j <s. By the property of
[, we enumerate exactly the words which do not appear in the above presentation

of G.

[Bor]

[Cay]

[Deg]

[Joc]

[KMSS]

[Ken]

[Kle]

[LS]

[Mor]

[NS]

[Pos]

[SU]J

[Soa]
[Turl]

]

References

E. BoreL, Lecons sur la théorie des fonctions. Gauther-Villars, Paris, 1898.
JEM 29.0336.01

A. CayLEY, On the theory of groups. Proc. London Math. Soc. 9 (1878), 126-133.
JFEM 10.0104.01

A.N. Decrev, Hereditary sets and tabular reducibility. Algebra i Logika 11
(1972), 257-269. Zb10283.02035 MR 0313033

C.G. JockuscH, Relationships between reducibilities. Trans. Amer. Math. Soc.
142 (1969), 229-237. Zb1 0188.02604 MR 0245439

I. KarovicH, A. Mvyasnikov, P. Scuupp, and V. SupILRAIN, Generic-case
complexity, decision problems in group theory and random walks. J.
Algebra 264 (2003), 665-694. Zbl1041.20021 MR 1981427

C. KenT, Constructive analogues of the group of permutations of the natural
numbers. Trans. Amer. Math. Soc. 104 (1962), 347-362. Zbl 0105.24802
MR 0140406

S.C. KLEENE, Recursive predicates and quantifiers. Trans. Amer. Math. Soc. 53
(1943), 41-73. Zb1 0063.03259 MR 0007371

R.C. Lynoon and P.E. Scuupp, Combinatorial Group Theory. Classics in
Mathematics, Springer, 2001 Zbl 0997.20037 MR 1812024

A. S. Morozov, Once again on the Higman question. Algebra i Logika 39
(2000), 134-144.

A. Nies and A. Sorsi, Calibrating word problems of groups via the complexity
of equivalence relations. Math. Structures Comput. Sci. 28 (2018), 457—471.
MR 3778212

E.L. Posrt, Recursively enumerable sets of positive integers and their decision
problems. Bull. Amer. Math. Soc. 50 (1944), 284-316. Zbl 0063.06328
MR 0010514

O. Scureier and S. Uram, Uber die Permutationsgruppe der natiirlichen
Zahlenfolge. Studia Math. 4 (1933), 134-141. Zbl 0008.20003

R. L. Soarg, Turing Computability. Springer, 2016. Zbl1350.03001 MR 3496974

A.M. Turing, On computable numbers with an application to the Ent-
scheidungsproblem. Proc. London Math. Soc. 42 (1936), 230-265.
Zb10016.09701 MR 1577030

160 A. Morozov and P. ScHupP

[Tur2] —— Systems of logic based on ordinals. Proc. London Math. Soc. 45 (1939),
161-228. Zbl 0021.09704 MR 1576807

(Recu le Il février 2018)

Andrey Morozov, Sobolev Institute of Mathematics,
Koptyug Prosp. 4, Novosibirsk 630090, Russia

e-mail: morozov@math.nsc.ru

Paul Scuupp, Department of Mathematics, University of Illinois
at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, USA

e-mail: schupp@math.uiuc.edu

© Fondation L’ENSEIGNEMENT MATHEMATIQUE

	Computable permutations and word problems

