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Some Kähier structures on products of 2-spheres

Jean-François Lafont, Gangotryi Sorcar and Fangyang Zheng

Abstract. We consider a family of Kahler structures on products of 2-spheres, arising
from complex Bott manifolds. These are obtained via iterated P1 -bundle constructions,

generalizing the classical Hirzebruch surfaces. To each such Kahler structure, we associate

a Bott diagram, which is a rooted forest with an edge labelling by positive integers. We

show that the Bott diagrams classify these Kähier structures up to biholomorphism.

Mathematics Subject Classification (2010). Primary: 32Q15; Secondary: 32L05, 32Q10,

53C55.

Keywords. Hirzebruch surface, products of spheres, Bott manifolds, Chern classes, projec-
tivized vector bundles, reconstruction conjecture, rooted forests.

1. Introduction

In complex geometry, it is interesting to study the class of complex structures

(or Kähier structures) supported on a fixed smooth oriented manifold M. Since

the basic invariants of a complex manifold are the Chern classes, it is tempting to

try and use these to distinguish complex structures on M. In complex dimension

two, the Hirzebruch surfaces Fm are topologically either diffeomorphic to S2 x S2

(if m is even), or to P2#P2 (if m is odd). Focusing on the Hirzebruch surfaces

diffeomorphic to S2 x S2, a celebrated result of Hirzebruch [Hirl] shows that
all the F2jfc for k >0 are distinct as complex manifolds, even though they have

identical Chern classes.

In the present paper, we extend Hirzebruch's result, by considering 1-trivial
complex Bott manifolds. Bott manifolds first appeared in work of Bott and

Samelson [BS, Ch. III, Sections 3, 4, 5], though the terminology was introduced

by Grossberg and Karshon |GK, Section 2|. In complex dimension two, the

Z -trivial complex Bott manifolds are precisely the Hirzebruch surfaces ¥2k In
complex dimension n, these are compact Kähier manifolds diffeomorphic to
S2 x • • • x S2 — (S2)n To each n -dimensional Z -trivial complex Bott manifold
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M, we associate a Bott diagram, which is a rooted forest equipped with an edge

labelling by positive integers. Our main result is the following:

Main Theorem. Every n -vertex rooted forest equipped with an edge labelling
by positive integers arises as the Bott diagram of some n -dimensional Z-trivial
complex Bott manifold. A pair of n -dimensional Z-trivial complex Bott manifolds
M\, M2, are biholomorphic if and only if their Bott diagrams are isomorphic.
Moreover, there is a dijfeomorphism cp : M\ —>• M2 with the property that
<p*(c(M2)) c(Mi), where c denotes the total Chern classes.

Our result provides a combinatorial classification of a certain family of Kahler
structures on the products S2 x ••• x S2 (S2)". When n 2, the only Kähler
structures on S2xS2 are those arising from the Hirzebruch surfaces. When n > 3,
we do not know whether these products of 2-spheres support any other Kähler
structures. Our result also shows that these Kähler structures are indistinguishable
as far as Chern classes are concerned.

Our paper is structured as follows. We review some background material in
Section 2, and prove our main theorem in Section 3. Our argument requires
a reconstruction result for labelled rooted forests, a combinatorial result which
is explained in the Appendix (Section A). Finally, in Section 4, we formulate

a generalization of a well-known problem of Hirzebruch (recently solved by
Kotschick [Kotl], [Kot2]), and explain how it led us to the results in this paper.

2. Background material

2.1. Bott manifolds. Recall that a Bott manifold Mn is a complex n -manifold
that admits a Bott tower, namely, Mn Bn and

(2.1) Bn Bn-i ^ ^ Bi ^ B0 {a point}

where for each 1 <j<n, Bj P(0 © Sj) is the projectivization of the direct

sum of the trivial line bundle O with a holomorphic line bundle Sj over Bj-i,
with itj the projection map.

Example. Let us consider the two dimensional Bott manifolds. Clearly Bi P1,
and let us denote by öPi(m) the line bundle over P1 with first Chern class

m}?1] e //2(P1;Z). Then B2 is the Hirzebruch surface Fm P((D © CPi (—m))

over P1, where m is any integer. Since P(E) is biholomorphic to \?(E 0 L) for

any line bundle E, tensoring with the dual bundle (öv\(—m))* — Ov\(m) we
see that there are canonical biholomorphisms Fm F_m. Thus when considering
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Hirzebruch surfaces as complex manifolds, it is sufficient to consider ¥m with
m > 0. Hirzebruch showed these are all distinct as complex manifolds [Hirl]. He
also showed that all W2k are diffeomorphic to Fo-P'xP1^ S2x.S2, while
all F2jfc—i are diffeomorphic to Fi P2#P2, the one point blow up of P2.

Definition 2.1. A Bott manifold Mn is called Z-trivial, if its integral cohomology
ring H*(M\ Z) is (graded) ring isomorphic to //*((P1)"; Z).

By the work of Masuda and Panov [MP, Theorem 5.1], a Bott manifold Mn
is Z-trivial if and only if it is diffeomorphic to (P1)". In fact, it follows from
Choi and Masuda [CM, Cor. 5.1] that every graded ring isomorphism between

the (integral) cohomology rings of two Z-trivial Bott manifolds is induced by a

diffeomorphism. This can also be seen directly from the corresponding statement
for (S2)".

2.2. Projectivization of vector bundles. Let us recall some general facts

concerning projectivizations of vector bundles.

Let E be a holomorphic vector bundle of rank r over a compact complex
manifold B, and let it : M P(E) B be the projectivization of E, where n
is the projection map. We adopt the algebro-geometric convention here, namely,
7T_1(x) ¥(EX) is the set of all the hyperplanes (instead of lines) through the

origin in the fiber Ex s <Cr. Then M is again a compact complex manifold, a

holomorphic fiber bundle with fiber Pr_1 over B.
Denote by L the dual of the tautological line bundle, then we have the

following two short exact sequences of holomorphic vector bundles over M :

where TM\B is the relative tangent bundle, namely, the kernel of the differential
of jr. The first Chern class £ cj(L) satisfies the Grothendieck equation

m := r" - r1 • it *Cl(E) + r2 n*c2{E) -... + (-l)r7t*cr(E) 0,

while the cohomology ring (or the Chow ring) of M is generated by the pullback
of that of B and £ :

Recall that a section of 7r is a complex submanifold Z ç M such that
TT I z : Z ß is a biholomorphism. Equivalently, a section of jt is given
by a holomorphic map i : B —> M such that n oi — idB In this case the image

(2.2)

(2.3)

0 —> Ö —> 7z*E* (8) E —> Tm\B 0

0 -» Tm\b Tm 7t*TB -» 0

(2.4) H*(M,7j) n*H*(B,Z) [£] / (/(£)).
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i(B) is the submanitbld in M biholomorphic to B. Note that the sections of ix

correspond to quotient line bundles of E.
To see this, let Q be a holomorphic line bundle on B which is a quotient

bundle of E. As we are using the hyperplane convention for projectivizations,
so P(Q) ^ B is a submanifold of P(E) M, which gives a section of n.
Conversely, given a section i : B —M of n, since the tautological line bundle

L* is a subbundle of jt*E* on M, Q i*L would be a quotient line bundle

of i*n*E E on B.
Next, let us specialize to the situation when the vector bundle on B is

E Ö ® S, the sum of the trivial line bundle with another line bundle S.

Writing s —n*C\(S), the above short exact sequences (2.2), (2.3), along with
the Grothendieck equation, gives us

(2.5) c1(Tm\b) 2Ç+s, c(M) (1 + 2£ + s) jt*c(B), and £2 -£ • s

in the cohomology (or the Chow) ring H*(M, Z).

2.3. Cohomology ring of Bott manifolds. Now let us apply these formula to
the j -th stage itj : Bj -a- Bj_x which is the projectivization of the splitting rank
2 vector bundle Ö © Sj on Bj-i. We get the following:

Z) jt*H*(Bj-i,Z)[Çj]/(£j + ÇjSj)

c(Bj) — (1 + 2%j + Sj) njc(Bj-i),

where —Sj and are the first Chern class of it*Sj and Lj Obj( 1), the dual

of the tautological line bundle on Bj
Given a Bott manifold Mn with Bott tower (2.1), let us write

xi Oty+i ° • • • °

hj {Jtj+i o • • • o Jln)*Sj

for each 1 < j <n. Note that x\ is the first Chern class of the pull back to

M of Cpi(l) on Bi, and h \ 0. By an inductive argument, we obtain the

following:

(2.6) H*(M, Z) Z[x\,...,x„]/(x\,X2 + x2h2,... ,x\ + xnhn)

(2.7) c{M) (1 + 2x0(1 + 2x2 + h2) (1 + 2x„ + h„)

where xi,..., x„ is a set of generators for H2(M, Z) Zn, and each hj satisfies

(2.8) hj Ujixi + Uj2x2 H h ajj-iXj-i
where all cijk are integers.
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Example. In the special case where all the line bundles Sj are trivial, we get
the product P (P1)" of n -copies of the complex projective line P1. In this

case, all hj 0 and we will denote the corresponding xy by yj. The above

computations give us:

This entire section is devoted to the proof of the Main Theorem. Throughout
this section, all Bott manifolds will be Z-trivial.

3.1. The structure of Z-trivial Bott manifolds. We start by analyzing how the

Z -triviality condition affects the cohomology elements hj.
For a given a Bott tower on Mn, assume that 2 | hj and hj 0 for all j.

Write zj xy + \hj. Since h\ 0, and for each 2 < j < n the corresponding

hj is generated by x\,..., Xj-\, it follows that {z\,...,zn) generates H*{M, Z).
Also, each zj — 0 by the Grothendieck equation. So defining cp(yj) Zj
gives a graded ring isomorphism (p : H*(P;Z) -> Z), and Mn is

Z-trivial. By the result of Choi and Masuda [CM], there is a diffeomorphism
: Mn P ^ (S2)n, which induces 4>* cp. Moreover, by the Chern class

formula, we see that p{c(P)) c{M).
Conversely, if there exists an isomorphism (p : H*(P, Z) -»• H*(M, Z), then

we claim that 2 | hj and hj 0 for all j. To see this, let us write <p(y'j) Zj.
We have

For each 1 < k < n, the group H2k(M, Z) is a free abelian group generated

by products zj — Zj1---Zjk for all multi-indices I (i\ ••• i^) of length k,
where 1 < /i < i2 < • • < ik < n. Note that for any integer linear combination
z li\Z\ -\ \-anzn, if z2 0, then a,ay 0 for all / / j. Thus at most one

of these a,- could be non-zero.
Now we proceed to show that 2 | hj and hj 0, by induction on j, where

j e A {1,2,...,«}. First we have h\ 0. For j — 2, since jc2 0, we
know that there must be a unique A e A such that x\ E\zi{, where s\ ±1
since x\ is a primitive element in H2(M, Z). Write X2 azj, +z, where z is

a linear combination of zy for j e T\{/'i}. We have h2 hzjx since h2 is a

multiple of x\. Since x2(x2 + h2) 0, we have

(2.9)

(2.10)

H*(P,Z) — Z[yi,..., yn\/(yj, ,)>%)
c(P) (1 + 2yi) • • • (1 + 2yn).

3. Proof of the Main Theorem

H*(M, Z) Z[zi,..., z„]/(zj,..., z2).

(2a + h)zj1z + z2 — 0.
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Since H4(M, Z) is a free abelian group with generators z,-zj for 1 < i < j <n,
we conclude from the above equality that 2a + b — 0 and z2 0. So 2 | h2,
/7§ — 0, and z X2 + 5/22 satisfies z2 0, thus equals to e2z,2 for some

22 i 1, and £2 ±1.
Now assume that for a fixed 2 < k < n, we already have 2 | hj, hj 0 for

each j < k, and xj := Xj + |/2y - £y z,y. where 21, are all distinct in d

and Ej ±1. Since hk+\ is a linear combination of xj,... ,x(, we can write

hk+i =bizh H h bkzik

Also, let us write xk+i alZfl + • • • + akzik + z, where z is a combination of
those zj for j in A\{ii,...,ik}. Now by applying the Grothendieck equation,
namely, xk+i(xk+\ + bk+\) — 0, we get the equation

k k

y^S2ai + bj)zijZ + z2 + jjT a 1 (aj + bj)zijzil 0.

7=1 7,2=1

Since z cannot be zero, we know that bj — —2Uj for each j < k, so 2 | hk+\
and hk+l 0. Furthermore, x'k+l z is a square zero primitive element, thus

must be of the form ±z,-/c+I for some ik+1 in /I \ {21,..., ik)
To summarize, we have established the following (also independently obtained

by J. H. Kim [Kim]):

Lemma 3.1. If Mn is a Bott manifold and f is an isomorphism between the

integral cohomology rings of P (P1 )n and M, then for any Bott tower (2.1)
with M Bn, we have 2 | hj and h2- 0 for each j, and <p(c(P)) c(M).

Note that for any holomorphic line bundle Q on B, the projectivizations P(E)
and F(E <g> Q) are isomorphic to each other. In particular, for Bj P(C © Sj)
over Bj-1, one can replace Sj by its dual S*, as

0 ® Sj ^ (S* © 0) 0 Sj.

This replacement will not change Bj, but will affect the choice of sections Lj
thus affecting xj, while hj is replaced by —hj.

By the proof of the lemma above, we know that for any Z -trivial Bott manifold
Mn and any Bott tower (2.1) on M, if we write Zj — Xj + 2hj » then {z\,..., zn\
is a set of generators for the cohomology ring, with zj — 0 for each j. For

any 2 < j <n, since hj =0, we know that either hj =0, or hj 2qjza(j)
for some positive integer qj and o{j) < j. Here we used the fact that we can

replace Sj by Sj without changing the Bott tower to ensure that these qj be

positive (compare with the Example in Section 2.1). From now on, we will make
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these choices, so qj > 0 whenever hj f 0. That is, under our choices of these

Sj each xj is represented by the central sections of itj and each z; xj + \hj
is represented by an effective divisor.

Next let us notice that xj as a hypersurface is represented by an (n — 1)-
dimensional Z -trivial Bott manifold. Indeed, we have that xj is represented by the

hypersurface /_1|/, the preimage of the central section of :xj : Bj —> Bj-i, via
the composition / — nno-- -ojtj+i. We thus obtain a Bott tower B'n_1 -> -» B'0

for this hypersurface, by setting

(1) B- Bi for i < j — 1,

(2) B]_x Çj ss and

(3) B'k TZklx(B'k_x) c Bk+1 for j <k <n — \.

To see this Bott tower is Z-trivial, we recall from our discussion above that

this property is characterized in terms of the elements h't associated to the Bott

tower - it is necessary and sufficient that 2 | h't and (ff)2 0 (for all i When

i < j — 1, the elements h't for this Bott tower B' coincide with the elements hi

of the original Bott tower B. On the other hand, when k > j, the elements h'k

for the Bott tower C are the pull-backs, via the inclusion maps B'k c Bk+[, of
the elements hk+i of the original B. In either case, the condition 2 | h\ and

(/z-)2 is inherited by the Bott tower B', giving us the desired Z-triviality. We

summarize our discussion so far in the following Lemma.

Lemma 3.2. For any Bott tower (2.1) we can choose the generator sets

{x\,... ,xn) and {z\,...,zn} so that (i) each zj 0, (ii) each Zj is represented

by an effective divisor, and (iii) each xj is represented by a smooth hypersurface,
which is itself a Z -trivial Bott manifold of dimension n — 1.

Obviously, for a given Bott manifold Mn, there are many Bott towers on
it. So to sort out all distinct complex structures on P (S2)" given by the

Bott manifolds, we need to find canonical representatives for the Z-trivial Bott
manifolds. This is the goal of the next section.

3.2. Bott diagrams for Z-trivial Bott manifolds. Let us denote by A

{1,2,...,«} and write A0 — {j A \ hj 0}. When A0 ^ A, we have a

map rr : A \ A0 -» A satisfying o(j < j, given by the equation hj 2qjZa(j).
Let us denote by A\ CT_1(ri0), A2 o~l(Ai), and so on. It is easy to see

that there exists some positive integer r such that A is the disjoint union of
non-empty sets A0, Ai, Ar.

We will say that the level of j e A is k if j e Ak. It takes o exactly k

times to send a level k element into A0.
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Definition 3.3. For a given Bott tower (2.1), we define its Bott diagram to be

the following data: each element of A gives a vertex, each j e A \ Aq gives a

vertical edge from j to a (j), marked with a positive integer qj.

In other words, a Bott diagram G in dimension n is a disjoint union
A 4 o U A i U • • • U Ar into r + 1 nonempty subsets, along with maps

Ar -»• Ar-i —> •••-> Ai -> 40 and a map q : A \ A0 -» Z+. Here A is

the set of n elements and r > 0.

Two Bott diagrams are considered isomorphic, if there is a bijection from A

to A which commutes with the partition of A and the maps.
We can arrange all the dots in A^ at the same height, and will refer to that

(imagined) horizontal line the level k line (when k — 0 we will also call it
the base line). The diagram is a graph, with finitely many connected components
which are trees. Each tree has a distinguished vertex, lying in 40, which is the

root of the tree. Thus from a combinatorial viewpoint, a Bott diagram is a rooted

forest. Clearly, the Bott manifold is a product of lower dimensional ones, with
each factor corresponding to a connected component of the Bott diagram. So Mn
is irreducible (in the sense that it is not the product of lower dimensional Bott
manifolds) if and only if the Bott diagram is connected, which occurs if and only
if do contains only one element.

Example. To illustrate how these diagrams work, let us first consider the case

n — 2. In this case we have only two possibilities for the Bott diagram: the first

one just has two dots lying horizontally, with no edges, representing the surface
P1 x P1 ; and the second one is two dots with a vertical edge connecting them,
marked by a positive integer q. This corresponds to the Hirzebruch surface ¥2q.

Example. For n — 3, we have three horizontal dots, corresponding to P1 x P1 x
P1 ; two dots on the base line, the third dot on top of the left one with a vertical

edge marked q, corresponding to F2(? x P1 ; one dot on the base line, two dots

on the level 1 line joining the base point by edges marked with q and p, which

corresponds to the fiber product F2p xPi F2q\ and finally, we have three dots

lined up in a vertical line, with two edges marked with p and q (with p on

top). In this case the threefold is M3 P(Ob ® 0b(—2/?(C0 + qF))), where

B F2q is the Hirzebruch surface with F the ruling and C0 the central section

(so Cq —2q). See Figure 1 for an illustration of the possible Bott diagrams.

3.3. Determining biholomorphism type of Z -trivial Bott manifolds. Our goal
here is to complete the proof of our main theorem, by showing the following:
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O

q

o o o Ô o

P'xP'x P1

Q

P

q

0

Ô

p xpl q F(OB®OB(-2p(C0 + qF)))

Figure 1

Bott diagrams for 3-dimensional Z-trivial Bott manifolds

Theorem 3.4. Two Z-trivial Bott manifolds of dimension n are biholomorphic
to each other if and only if they have isomorphic Bott diagrams.

Since one can build up a Bott tower from the data of a Bott diagram, we just
need to prove the "only if' part of the statement, namely, if / : M' -> M is a

biholomorphism between Z -trivial Bott manifolds, then M' and M must have

isomorphic Bott diagrams.
Let us fix a Bott tower on M. By our previous discussion, we know that each

Xj is represented by a smooth hypersurface Xj in the sense that xj — c\(Xj),
where the divisor Xj is identified with the line bundle associated with it, and

each Zj is represented by an effective divisor. To be more precise, for any j e /10

of level 0, Zj — Xj is irreducible. For any j e A\, Zj Xj + qjXa(jy For

any j e A2, we have

Note that each Xj is itself a Bott manifold of dimension n — 1, and the support
of each Zj is a normal crossing divisor.

In the case of a Bott tower, X\ is a fiber of the composition map
7T jr2 o jt3 o o from Mn to P1, and M is covered by the pencil
of the divisor X\. Given a Bott diagram, for any j e A(), we can choose a Bott
tower on M so that j corresponds to the bottom layer, so we know that M is

Zj Xj + q,(X[ + qiXa(i)), where I cr(j) e /f.
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covered by a pencil \Xj j of the smooth hypersurface Xj, which we denote by

Yt for t e IP1. These Yt do not intersect with each other.

We claim that, if D is any effective divisor in M homologous to Xj,
then D e \Xj\, namely, O is a member of the pencil. To see this, first
consider the special case when D is irreducible. If D is not in \Xj\, we

may choose a member Y in the pencil so that D n Y / ([>. This codimension
2 subvariety is homologous to 0, since D ~ Xj and xj 0, which is a

contradiction since M is projective. The same argument works when D is just
effective.

Now suppose / : M' -> M is a biholomorphism. It induces a graded

isomorphism cp — f* between the cohomology rings. We want to show that

/ induces an isomorphism between the Bott diagrams as well. First we claim
that / induces a bijection between A'0 and A0, the set of level 0 vertices.

Let {zi zn) and {z[,... ,z'nj be generators on M and M' as before. Then

<p (Zj for some permutation r on A (the sign is positive since zj, zj are

all represented by non-trivial effective divisors). If j e T0, then M is covered

by the pencil Xj Zj of non-intersecting divisors. Consider the effective divisor
D f(Z'r(j)) in M. D represents Zj, thus is homologous to Zj. By the claim
above, we know that D must be irreducible and is a member of the pencil \Xj\.
This means that r(j) lies in A'0. So the level 0 sets of M and M' are bijective
to each other.

Note that in the above argument, we furthermore obtained the fact that

f^X't(j)) ~ Xj for j e To- For j G A0, the smooth hypersurface Xj is itself
an (n - 1)-dimensional Bott manifold. Its Bott diagram is obtained from that of
M" by deleting the vertex corresponding to j, and pulling down one level in
the tree above this vertex, while keeping everything else unchanged. We will call
this new Bott diagram the card at vertex j. Now since f(X'z^j) — Xj, the two
Bott {n — 1)-manifolds X',..> and Xj are biholomorphic, so by induction on the

dimension of the Bott manifolds, we see that the card of the Bott diagram G'

at vertex r(j) must be isomorphic to the card of the Bott diagram G at the

vertex j.
When To has more than one elements, we have at least two cards, and we

can use the set of cards to reconstruct the Bott diagram, see Proposition A.3 and

Remark A.4. This implies that G and G' must be isomorphic to each other. When

T0 has only one element, the Bott diagrams agree as graphs, but we additionally
need to show that the marking numbers qj for j e A\ should match those on

M' (see Remark A.4).
Without loss of generality, let us assume that T0 {1} T'0. We already know

that f(X[) Xi, and the card of the Bott graph G at vertex 1 is isomorphic to
the card of the Bott graph G' at vertex 1. So / gives a bijection between Ti
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and A\. Again without loss of generality, let us assume that 0(z2) z2, where

2 6 A i and 2 e 1,. We have

Z2 X2 + Z'2 — X'2 + q'2X[.

Consider the irreducible divisor D — f(X2). We have D + q'2X\ ~ X2 + q2X\. If
D X2, then D n X2 is an effective cycle of codimension 2 (could be trivial),
and the intersection

DXi + q'2XiX2 ~ Z2X2 ~ Z2(Z2 — q2X1) ~ —q2Z2X1 ~ —q2X2X1,

so the non-trivial effective cycle Dn2f2 + (?2 + ^)^inY2 would be homologous

to 0 - which is impossible since M is projective. So £> must be equal to X2,
forcing q2 q2. So the Bott diagrams of M and M' are indeed isomorphic to

each other. This completes the proof of the theorem.

4. Concluding remarks

Recall that the rational Pontrjagin classes of a smooth manifold are defined

using the smooth structure. A celebrated result of Novikov [Nov] shows however

that these classes in fact only depend on the underlying topological structure

(other proofs were given in [Gro], [Ran], [RY], and [RW]). More precisely, if one
has a pair of homeomorphic smooth manifolds, then the homeomorphism can be

chosen to take the total rational Pontrjagin class to the total rational Pontrjagin
class. In the complex setting, the natural analogue to ask is the following:

Question. Which rational polynomials in the Chern classes are smooth invariants

on the class of n -dimensional closed complex manifolds?

Note that we are not assuming the degree of the polynomial equals the

dimension of the manifold. Indeed, in the top degree case, this question was a well-
known conjecture of Hirzebruch - that the only rational linear combinations of the

Chern numbers that are (oriented) smooth invariants are the linear combinations

of the Euler number and Pontrjagin numbers. This conjecture was conhrmed

by Kotschick (see [Kotl], [Kot2]). Kotschick's result was recently extended by

Schreider and Tasin [ST], who analyzed, within the class of smooth projective
varieties, which Chern numbers are determined up to hnite ambiguity by the

underlying smooth manifold.
The situation for lower degrees seems a lot less clear. In lower degree, the

diffeomorphism group of the manifold can act non-trivially on cohomology, so

invariance means up to the action of Diff(M) on H*(M). Borel and Hirzebruch
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[BH, §13.9] (see also [Hirl]) constructed examples of 5-dimensional complex

flag manifolds that are diffeomorphic, but have distinct c\. One can also use

Kotschick's result to argue that certain homogenous polynomials, whose degree

divides the dimension of the manifolds, cannot give smooth invariants.

Part of the difficulty in addressing this question is the lack of examples. Indeed,
several classes of manifolds are known to support unique Kahler structures - see,

for instance, the rigidity results of Hirzebruch-Kodaira [HK], Yau [Yau] and

Siu [Siu]. In contrast, there are relatively few smooth manifolds that are known

to support multiple distinct Kähler structures. This motivated our interest in

distinguishing Kähler structures on products of S2, leading us to complex Bott
manifolds. Note that the space K, of Kähler structures on (S2)n S2 x ••• x S2

remains rather mysterious when n > 3. For example, we do not know whether
the Kähler structures discussed in this paper lie in distinct connected components
of /C (since they all have the same total Chern class).

A. Appendix: Reconstruction of rooted forests

A famous open problem in graph theory is the reconstruction conjecture. This

conjecture asserts that finite graphs with at least three vertices are completely
determined by their collection of vertex deleted graphs, see [Har], [BH], [Man]. In
this short appendix, we formulate and prove the analogous conjecture for rooted

forests.

Definition A.l. A contractible connected graph is called a tree. If such a graph
is marked with a distinguished vertex (the root), we call it a rooted tree. If every
connected component of a graph is a (rooted) tree, then we call the graph a

(rooted) forest.

Given a rooted tree T with n vertices, we can form an associated rooted

forest with n — 1 vertices by deleting the root v of T (and all incident edges).

Ibis leaves a forest with connected components 7),..., 7)., and we can pick a

root on each tree 7] to be the unique vertex w,- of 7) that was incident to v.
We denote this rooted forest by T and call its individual trees the children of
the original tree T.

Definition A.2. Let F be a rooted forest, with connected components the rooted

trees 7),..., 7),. Given a component 7], we define the associated card to be the

rooted forest with components 7),..., 7]_i, T 7)+i,..., 7]t, i.e. we replace the

rooted tree 7] by its collection of children. The forest F has k associated cards,

each of which is a rooted forest.
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A graph is finite if it has finitely many vertices. We can now establish the

reconstruction conjecture for rooted forests.

Proposition A.3. Let F be a finite rooted forest. Then the set of cards of F
uniquely determines the forest F.

In other words, if one has a pair of forests F\, F2, and a bijection between the

set of cards of F\ and those of F2, which has the property that corresponding
cards are isomorphic (as rooted forests), then the original forests have to be

isomorphic.

Proof We prove the statement using mathematical induction on the number of
cards. Note that the number of cards coincides with the number of roots (and
hence the number of connected components) in the original rooted forest F.

Base case: When there is only one card, we know that there is only one tree T
in the original forest F. The individual trees in the single card are the children
of T. We can thus reconstruct T by taking a root vertex v, and for each of the

children of T, connecting its root to the vertex v. The resulting rooted tree is

the single tree in the forest F.

Inductive step: Let there be n > 2 cards in total. We run through the n cards

and locate a maximal tree (i.e., with the maximal number of vertices) among all
the trees appearing on all the cards. Of course there could be more than one
such tree, but we pick one of them. Let us call this chosen maximal tree T. Our
claim is that T must be a rooted tree present in the original forest. If not, then

T appeared on the card after eliminating the root of one of the original trees

Tj of the forest. This means that T is a proper subgraph of 7), and that 7)

contains more vertices than T (as the root v, of 7) is not in T). Since n >2,
there is at least one other card, arising from the deletion of another root vj. The

corresponding card contains 7) as a rooted tree, contradicting the fact that T
was a maximal tree from all the cards. Note that this argument also shows that

T is not a child of any of the rooted trees in the original rooted forest.

Now that we have established T is one of the original trees in the forest we

are trying to rebuild, let us try and identify the multiplicity with which it occurs
in the forest. Assume the forest consists of n rooted trees, and that r of them

are isomorphic to T (where 1 < r <k). Then there are precisely r cards that

contain r — 1 copies of T, and n — r cards that contain r copies of T. Thus,

we may compute the integer r from the set of cards.

Let F' denote the forest obtained from the original forest F by removing
the r copies of T. If we can reconstruct F', then by adding in r copies of
T, we will have reconstructed F. But note that the cards of F' are easy to
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identify: just take the n — r cards of F that contain exactly r copies of T, and

remove from each of these cards the r copies of T. The resulting n — r rooted
forests are the cards of F'. Since r > 1, the rooted forest F' has n — r < n

cards, so by the inductive hypothesis, F' can be reconstructed from its cards.

Adding in r disjoint copies of T then produces F, and completes the proof of
the Proposition.

Remark A.4. Note that the proof of the proposition also holds for labelled rooted

forests, where the cards are equipped with the natural induced labelling. In this

setting, you need to additionally assume that the number of cards is n > 2 (i.e.,
this is the base case of the induction, and is argued exactly like the inductive

step above). When n 1, the only indeterminacy lies in the labels for the edges

in the rooted tree which are connected to the root vertex. These are obviously
not recoverable from the single corresponding card. This is the reason for the

additional argument at the end of the proof of Theorem 3.4.
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