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The Tits alternative for finite rank median spaces

Elia FiorRAVANTI

Abstract. We prove a version of the Tits alternative for groups acting on complete, finite
rank median spaces. This shows that group actions on finite rank median spaces are much
more restricted than actions on general median spaces. Along the way, we extend to median
spaces the Caprace—Sageev machinery [CS] and part of Hagen’s theory of unidirectional
boundary sets [Hagl].
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1. Introduction

CAT(0) cube complexes provide an ideal setting to study non-positive
curvature in a discrete context. On the one hand, their geometry is sufficiently
rich to ensure that large classes of groups admit interesting actions on them.
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Right-angled Artin groups, hyperbolic or right-angled Coxeter groups, hyperbolic
3-manifold groups, random groups at sufficiently low density all act geometrically
on CAT(0) cube complexes [NRe, BW, OW], to name just a few examples.
Moreover, every finitely generated group with a codimension one subgroup
admits an action on a CAT(0) cube complex with unbounded orbits [Sagl,
Ger, NRo].

On the other hand, the geometry of finite dimensional CAT(0) cube complexes
is much better understood than general CAT(0) geometry, even with no local
compactness assumption. For instance, groups acting properly on finite dimensional
CAT(0) cube complexes are known to have finite asymptotic dimension [Wri],
to satisfy the Von Neumann-Day dichotomy and, if torsion-free, even the Tits
alternative [SW, CS]. It is not known whether the same are true for general
CAT(0) groups.

Three features are particularly relevant in the study of CAT(0) cube complexes.
First of all, they are endowed with a metric of non-positive curvature. Secondly,
the 1-skeleton becomes a median graph when endowed with its intrinsic path-
metric; this means that, for any three vertices, there exists a unique vertex that
lies between any two of them. This property is closely related to the existence
of hyperplanes and allows for a combinatorial approach that is not available in
general CAT(0) spaces. Finally, cube complexes are essentially discrete objects,
in that their geometry is fully encoded by the O-skeleton. In particular, the
automorphism group of a cube complex is totally disconnected.

It is natural to wonder how much in the theory of CAT(0) cube complexes
can be extended to those spaces that share the second feature: median spaces.
These provide a simultaneous generalisation of CAT(0) cube complexes and real
trees; for an introduction, see, e.g., [Nic, CDH, Bow3] and references therein.
The class of median spaces is closed under ultralimits and also includes all L!
spaces, so certain pathologies are bound to arise in this context. Bad behaviours
seem however to be restricted to spaces of “infinite rank”.

The notion of rank of a median space was introduced in [Bowl]; for CAT(0)
cube complexes it coincides with the usual concept of dimension. It was recently
shown that connected, finite rank median spaces are also endowed with a canonical
CAT(0) metric [Bow3]. Moreover, any finite rank median space can be canonically
completed to a connected median space (Corollary 2.16). Thus it seems that, in
finite rank, the only true difference between CAT(0) cube complexes and general
median spaces lies in the discreteness of the former. Most of the results of the
present paper support this analogy.

For our purposes, it will be essential to restrict to median spaces of finite rank.
Indeed, we wish to obtain a version of the Tits alternative, while every amenable
group admits a proper action on an infinite rank median space [CMV, CDH].
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Nontrivial examples of group actions on connected median spaces of finite rank
are generally obtained by taking limits of actions on CAT(0) cube complexes
of uniformly bounded dimension. This phenomenon is the higher-dimensional
analogue of actions on real trees arising as limits of actions on simplicial trees.
For instance, Casals-Ruiz and Kazachkov proved the following generalisation of
Rips’ Theorem: a finitely generated group I' acts freely, essentially freely and
co-specially on a finite rank median space if and only if I" is a subgroup of a
graph product of cyclic and surface groups [CRK].

Note that one can alternatively take limits of spaces that only “coarsely”
resemble CAT(0) cube complexes. Indeed, ultralimits of hierarchically hyperbolic
spaces [Bow4, BHS2, BHSI] and coarse median spaces [Bowl] have canonical
median metrics of finite rank [Zei]. This applies for instance to asymptotic
cones of hyperbolic groups, cubulated groups, most irreducible 3-manifold groups
and mapping class groups. In the latter case, this was observed already in
[BM, BDS2, BDSI].

One last example of connected finite rank median spaces is provided by
Guirardel cores of pairs of actions of a group I' on real trees [Gui]. When I'
is a surface group and the two real trees arise from two transverse measured
laminations L, £, on the surface §, this space is also known as the Culler—
Levitt-Shalen core. The corresponding median space is an £! version of the
singular Euclidean metric on S arising from £; and £, lifted to the universal
cover. Guirardel’s construction generalises to actions of a group I' on any (finite)
number of real trees; it is likely that the median spaces arising this way can be
studied along the lines of [HW].

Our main result is the following version of the Tits alternative:

Theorem A. Let X be a complete, finite rank median space. Let T" be a group with
an isometric action I' ~, X . Suppose that I" has no nonabelian free subgroups.

(1) If the action is free, T" is virtually finite-by-abelian. If moreover X is
connected or T is finitely generated, then T is virtually abelian.

(2) If the action is (metrically) proper, T is virtually (locally finite)-by-abelian.

(3) If all point stabilisers are amenable, 1" is amenable.

Note that properness of the action cannot be used to conclude that I' is
virtually abelian like in part (1) of Theorem A. Indeed, every locally finite,
countable group admits a proper action on a simplicial tree; see Example 11.7.11
in [BrH]. An analogous construction can be used to obtain finitely generated
examples: for every finite group F, the wreath product F?Z acts properly on
the product of a tree and a line.
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To the best of our knowledge, Theorem A does not yield the Tits alternative
for any new families of groups, or at least not any families that one may naturally
be led to consider. Indeed, it seems that most groups acting nontrivially on a finite
rank median space also act just as nontrivially on a finite dimensional CAT(0)
cube complex. We are aware of only one exception to this pattern, namely the
group L constructed in Section 2 of [Min]. Indeed, L acts with unbounded
orbits on a real tree, but every action of L on a finite dimensional CAT(0)
cube complex must fix a point; the latter property follows from recent results on
Thompson’s group V [Kat, Gen].

However, when a group I' does act nontrivially on a CAT(0) cube complex,
the collection of I'-actions on finite rank median spaces tends to be much richer
than the collection of cubical I'-actions. It is in the study of such actions that
the techniques developed in this paper become most useful; see Theorems B to F
below.

Theorem A also sheds new light on the relationship between finite and infinite
rank median spaces. It shows that actions on finite rank median spaces are a lot
more restrictive than actions on general median spaces. Indeed, a discrete group
I' has the Haagerup property if and only if it admits a proper action on a median
space [CMV, CDH]. Thus, every torsion-free amenable group I' acts properly
and freely on a median space, but the latter will never be finite rank if I" is not
virtually abelian.

In fact, there even exist groups I with the Haagerup property, such that every
action of " on a complete, connected, finite rank median space has a global fixed
point. A simple example is provided by irreducible lattices in SLoR x SLyR; see
[Fio2].

Our proof of Theorem A follows the same broad outline as the corresponding
result for CAT(0) cube complexes, as it appears in [CS, CFI]. Given an action
I' n X, either ' has a finite orbit within a suitable compactification of X, or
the space X exhibits a certain tree-like behaviour. In the former case, one obtains
a “big” abelian quotient of I'; in the latter, one can construct many nonabelian
free subgroups with a ping-pong argument.

We remark that the first proof of the Tits alternative for CAT(0) cube
complexes was due to M. Sageev and D. T. Wise [SW] and follows a completely
different strategy. It relies on the Algebraic Torus Theorem [DS] and a key fact
is that, when a group I' acts nontrivially on a CAT(0) cube complex, some
hyperplane stabiliser is a codimension one subgroup of I'. Unfortunately, this
approach is bound to fail when dealing with median spaces: there is an analogous
notion of “hyperplane” (see Section 2.1), but all hyperplane stabilisers could be
trivial, even if the group I' is one-ended. This happens for instance when a
surface group acts freely on a real tree [MS].
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Many of the techniques of [CS] have proven extremely useful in the study of
CAT(0) cube complexes, for instance in [NS, Fer, CFI, KS1, KS2] to name just a
few examples. We extend some of this machinery to median spaces, in particular
what goes by the name of “flipping”, “skewering” and “strong separation”; see
Theorems B and D below. We will exploit these results in [Fio2] to obtain a
superrigidity result analogous to the one in [CFI].

To state the rest of the results of the present paper, we need to introduce some
terminology. In [Fiol] we defined a compactification X of a complete, finite rank
median space X ; we refer to it as the Roller compactification of X . For CAT(0)
cube complexes, it consists precisely of the union of X and its Roller boundary
0X in the usual sense; see [BCG*, NS] for a definition.

Roller compactifications of median spaces strongly resemble Roller compacti-
fications of cube complexes. For instance, the space X has a natural structure of
median algebra and dX is partitioned as a union of median spaces (“components”
in our terminology), whose rank is strictly lower than that of X . These properties
will be essential when extending the machinery of [CS] as they enable proofs by
induction on the rank.

For CAT(0) cube complexes, our approach is slightly different from that of
[CS], in that we work with Roller boundaries rather than visual boundaries. This
is not due to any technical obstructions related to the latter. Rather, we believe
that Roller boundaries provide slightly more transparent and elementary proofs
even in the context of cube complexes. Indeed, many of our arguments work in
any finite rank median algebra.

Let T' be a group. We say that an isometric action I' ~, X is Roller elementary
if T has at least one finite orbit in X. An action I' ~ X is Roller minimal
if X is not a single point and I' does not leave invariant any proper, closed,
convex subset of X ; for the notion of convexity in the median algebra X, see
Section 2.1. In CAT(0) cube complexes, Roller minimal actions are precisely
essential actions (in the terminology of [CS]) with no fixed point in the visual
boundary.

Like CAT(0) cube complexes, median spaces are endowed with a canonical
collection of halfspaces J#. We say that ' ~ X is without wall inversions if
there exists no g € I' such that gh = h* for some h € #. Here h* denotes
the complement X \ b of the halfspace h. Actions without wall inversions are a
generalisation of actions on 0-skeleta of simplicial trees without edge inversions.
We remark that, perhaps counterintuitively, every action on a connected median
space is automatically without wall inversions (see Proposition 2.4 below); this
includes all actions on real trees.

We have the following analogue of the Flipping and Double Skewering
Lemmata from [CS].
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Theorem B. Let X be a complete, finite rank median space with a Roller minimal
action I' ~ X without wall inversions.

e For “almost every” halfspace Y, there exists g € I' with h* € gh and
d(gh*,b*) > 0.

e For “almost all” halfspaces h,t with h C t there exists g € T' with
gt hCt and d(gt h*) > 0.

Positivity of distances is automatic in cube complexes, but not in general
median spaces. Theorem B cannot be proved for all halfspaces; counterexamples
already appear in real trees, see Section 5. The notion of “almost every” should
be understood with respect to a certain measure on J; see Section 2.1 below
for a definition.

For every complete, finite rank median space X, we can define a bharycentric
subdivision X'; we study these in Section 2.3. The space X’ is again complete
and median of the same rank. There is a canonical isometric embedding X — X’
and every action on X extends to an action without wall inversions on X’. Thus,
the assumption that I' n, X be without wall inversions in Theorem B is not
restrictive.

Roller minimality may seem a strong requirement, but the structure of Roller
compactifications makes Roller minimal actions easy to come by:

Proposition C. Let X be a complete, finite rank median space with an isometric
action T'~, X. If T fixes no point of X, there exists a T -invariant component
Z C X and a closed, convex, T -invariant subset C C Z such that the action
I' n C is Roller minimal.

We remark that actions with a global fixed point in X have a very specific
structure, see Theorem F below.

Theorem B allows us to construct free groups of isometries, as soon as we
have “tree-like” configurations of halfspaces inside the median space X. More
precisely, we need strongly separated pairs of halfspaces. In the case of CAT(0)
cube complexes, these were introduced in [BC] and used in [CS] to characterise
irreducibility. We prove:

Theorem D. Let X be a complete, finite rank median space admitting a Roller
minimal action I ~, X without wall inversions. The median space splits as a

nontrivial product if and only if no two halfspaces are strongly separated.

Following well-established techniques [CS], Theorems B and D yield:
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Theorem E. Let X be a complete, finite rank median space with an isometric
action I' ~ X. Either T contains a nonabelian free subgroup or the action is
Roller elementary.

The last step in the proof of Theorem A consists of the study of Roller
elementary actions; we employ the same strategy as the appendix to [CFI]. To
this end, we need to extend the notion of unidirectional boundary set (UBS) to
median spaces.

In CAT(0) cube complexes, UBS’s were introduced in [Hagl]. Up to a certain
equivalence relation, they define the simplices in Hagen’s simplicial boundary
and provide a useful tool to understand Tits boundaries, splittings and divergence
[Hagl, BeH]. They can be thought of as a generalisation of embedded cubical
orthants.

We introduce UBS’s in median spaces and use them to prove:

Theorem F. Let X be complete and finite rank. Suppose that T ~, X fixes a
point in the Roller boundary of X. A finite-index subgroup Ty < " fits in an
exact sequence

11— N —Ty— R",

where r = rank(X) and every finitely generated subgroup of N has an orbit in
X with at most 2" elements. If X is connected, every finitely generated subgroup
of N fixes a point.

A more careful study of UBS’s will be carried out in [Fio2], where we show
that Roller elementarity is equivalent to the vanishing of a certain cohomology
class. In particular we prove that, if ' is a topological group acting with
continuous orbits, then 'y < I' is open and the homomorphism Ty — R”"
in Theorem F is continuous.

Structure of the paper. In Section 2 we review the basic theory of median
spaces and median algebras, with a special focus on our previous results [Fiol].
We use halfspaces to characterise when a finite rank median space splits as a
nontrivial product. We study barycentric subdivisions and a similar construction
that allows us to canonically embed finite rank median spaces into connected
ones. Section 3 is concerned with groups of elliptic isometries. In Section 4 we
study UBS’s and prove Theorem F; we also anticipate the proof of Theorem A,
relying on Theorem E. In Section 5 we introduce Roller elementarity and Roller
minimality; we prove Proposition C and Theorems B and D. Finally, Section 6
is devoted to constructing free groups of isometries; we prove Theorem E there.
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2. Preliminaries

2.1. Median spaces and median algebras. Let X be a metric space. A finite
sequence of points (xx)i<k<n 1S a geodesic if d(x1,x,) = d(x1,x2) + ...+
d(xn—1,%n). The interval I(x,y) between x,y € X is the set of points lying on
a geodesic from x to y. We say that X is a median space if, for all x,y,z € X,
the intersection /(x,y) N I(y,z) N I(z,x) consists of a single point, which we
denote by m(x,y,z). In this case, the map m: X3 — X endows X with a
structure of median algebra, see, e.g., [CDH, Bowl, Rol] for a definition and
various results.

In a median algebra (M, m), the interval I(x,y) between x,y € M is the set
of points z € M with m(x,y,z) = z; this is equivalent to the definition above
if M arises from a median space. A subset C C M is convex if I(x,y) € C
whenever x,y € C. Every collection of pairwise intersecting convex subsets of a
median algebra has the finite intersection property; this is Helly’s Theorem, see,
e.g., Theorem 2.2 in [Rol].

A halfspace is a convex subset h € M whose complement h* := M \ b is
also convex. We will refer to the unordered pair w := {h,h*} as a wall; we say
that h and h* are the sides of to. The wall w separates subsets A C M and
BCM if ACh and B C h* or vice versa. The wall w is contained in a
halfspace £ if h C € or h* C &€. We say, with a slight abuse of terminology, that
to is contained in & N...N €& if o is contained in € for each i.

The sets of halfspaces and walls of M are denoted H(M) and W(M)
respectively, or simply # and W. Given subsets A, B € M, we write #(A|B)
for the set of halfspaces with B C h and A C h* and we set o4 := H(T|A); we
will not distinguish between x € M and the singleton {x}. If A, B are convex
and disjoint, we have J(A|B) # &, see, e.g., Theorem 2.7 in [Rol]. We will
refer to the sets #(x|y), x,y € M, as halfspace-intervals.

A pocset (P, =<, *) consists of a poset (£, <) equipped with an order-reversing
involution *, such that every element a € # is incomparable with a* € £. If
E C P, we write E* := {a* | a € E}. Ordering # by inclusion, we obtain a
pocset where the involution is given by taking complements.

We say that a,b € &P are transverse if any two elements in the set
{a,a*,b,b*} are incomparable. Halfspaces h), €& € # are transverse if and only
if the intersections h N€&, hNE*, h* NE, h* NE* are all nonempty subsets
of M. We say that two walls are transverse if they arise from transverse
halfspaces.

A subset o C & is a partial filter if there do not exist a,b € o with a < b*.
A partial filter o is an wltrafilter it # = o Uo™*.
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Lemma 2.1. Let (P,=<,%) be a pocset. Let o C P be a partial filter and let
o C &P contain P\ (o Uc™). If o C o, then there exists an ultrafilter o with
(o S

Proof. By Zorn’s Lemma, there exists a maximal partial filter o satisfying
0 Co Co. We now show that » = o Uc™, hence o is an ultrafilter.

Suppose for the sake of contradiction that there exists ¢ ¢ o U o*. By
maximality of o, neither o U {a} nor ¢ U {a*} can be a partial filter. Thus,
there exist by,b, € 0 with @ < bf and a* < b3 . In particular b, < a < by,
contradicting the fact that o is a partial filter. 0

According to the terminology above, a subset o C J is a partial filter if and
only if it consists of pairwise intersecting halfspaces. It is an ultrafilter if and
only if it moreover contains a side of every wall of M. For every x € M, the
subset oy C J is an ultrafilter. Note that, by the proof of Lemma 2.1, ultrafilters
are precisely maximal sets of pairwise intersecting halfspaces.

A subset Q C J is said to be inseparable if it contains all j € J such
that h Cj C ¢, for h, € e Q. The inseparable closure of a subset Q2 C JH is the
smallest inseparable set containing £2; it coincides the union of the sets # (¢*|h)
as h, € vary in Q.

The set {—1,1} has a unique structure of median algebra. Considering its
median map separately in all coordinates, we endow {—1,1}* with a median-
algebra structure for each k € N; we will refer to it as a k-hypercube. The rank
of M is the maximal k € N such that we can embed a k-hypercube into M .
By Proposition 6.2 in [Bowl] this is the same as the maximal cardinality of a
set of pairwise-transverse halfspaces. Note that M has rank zero if and only if
it consists of a single point. The following is immediate from Ramsey’s Theorem
[Ram]:

Lemma 2.2. If M has finite rank and 01,00 C H are two ultrafilters, every
infinite subset of o1\ 0, contains an infinite subset that is totally ordered by
inclusion.

If CC M and x € M, we say that y € C is a gate for (x,C) if y € I(x,z)
for all z € C. The set C is gate-convex if a gate exists for every point of
M ; in this case, gates are unique and define a gate-projection nc: M — C.
If C is gate-convex, we have H#(x|mc(x)) = #H(x|C) for every x € M. Every
interval I(x,y) is gate-convex with projection z > m(x, y, z). Gate-convex sets
are always convex, but the converse does not hold in general. We record a few
more properties of gate-convex subsets in the following result; see [Fiol] for
proofs.
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Proposition 2.3. Let C,C' € M be gate-convex.

(1) The sets {he HX(M) |hNC # @, h*NC # T}, {JTEI(f)) | heH(C)} and
H(C) are all naturally in bijection.

(2) There exists a pair of gates, i.e., a pair (x,x’) of points x € C and
x" € C' such that nc(x’) = x and mc/(x) = x'. In particular, we have
FH(x)x"y = H(C]C").

B)IfCcnNC' # @, we have nc(C') =CNC’ and nc oncr = necronc. In
particular, if C' C C, we have n¢' = mer o nc.

A topological median algebra is a median algebra endowed with a Hausdorff
topology so that m is continuous. Every median space X is a topological median
algebra, since m: X3 — X is 1-Lipschitz if we consider the £! metric on X3,
Every gate-convex subset of a median space is closed and convex; the converse
holds if X is complete. Gate-projections are 1-Lipschitz. If C,C’ C X are gate-
convex and X is complete, points x € C and x’ € C’ form a pair of gates if
and only if d(x,x’) = d(C,C’), see Lemma 2.9 in [Fiol]; this holds in particular
when C’ is a singleton.

Let X be a complete, finite rank median space. The following is Proposition B
in [Fiol].

Proposition 2.4. Every halfspace is either open or closed (possibly both). If
b1 2 ... 2 by is a chain of halfspaces with ﬁﬂ% # @&, we have k < 2-rank(X).

Lemma 2.5. Let C € H be totally ordered by inclusion and suppose that the
halfspaces in C are at uniformly bounded distance from a point x € X. The
intersection of all halfspaces in C is nonempty.

Proof. Tt suffices to consider the case when C does not have a minimum. By
Lemma 2.27 in [Fiol], we can find a cofinal subset {h,}n,>0 € C with b, S by
in other words, every € € C contains a halfspace of the form b,,.

Let x, be the gate-projection of x to b,. By Proposition 2.3, the sequence
(xn)n=0 is Cauchy; hence it converges to a point X € X, which lies in b, for all
n > 0. If X did not lie in every b,, there would exist N > 0 with X € b, \ b,
for all n > N. In particular, h* Nh,, # @ for all m,n > N and this would
violate Proposition 2.4. ]

Endowing R” with the ¢! metric, we obtain a median space. Like R”", a rich
class of median spaces also has an analogue of the £*° metric (see [Bow2]) and
of the 2 metric (see [Bow3]). We record the following result for later use.
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Theorem 2.6 ([Bow3]). If X is connected, it admits a bi-Lipschitz-equivalent
CAT(0) metric that is canonical in the sense that:

e every isometry of the median metric of X is also an isometry for the CAT(0)
metric;

e the CAT(0) geodesic between x and y is contained in 1(x,y); in particular,
subsets that are convex for the median metric are also convex for the CAT(0)
metric.

A pointed measured pocset (PMP) is a 4-tuple (#,D,n,0), where P is a
pocset, 0 € P is an ultrafilter, O is a o -algebra of subsets of # and n is a
measure defined on 9. Let M (£, D, n) be the set of all ultrafilters 6’ C & with
o' Ao € D, where we identify sets with n-null symmetric difference. We endow
this space with the extended metric d(o1,02) := n(o1A02). The set of points at
finite distance from o is a median space, which we denote M (P, D, n,0); see
Section 2.2 in [Fiol].

Let X be a complete, finite rank median space. In [Fiol] we constructed a
semifinite measure vV defined on a o -algebra B < 2% such that 7 (J(x|y)) =
d(x,y), for all x,y € X. There, we referred to elements of B as morally
measurable sets, but, for the sake of simplicity, we will just call them measurable
sets here. Note that this measure space is different from the ones considered in
[CDH].

Every inseparable subset of # lies in B in particular, all ultrafilters on
H# are measurable. If C,C’ C X are convex (or empty), the set FH(C|C’) is
measurable and v (#(C|C’)) = d(C,C’). A halfspace is an atom for vV if and
only if it is clopen. The space X is connected if and only if V' has no atoms, in
which case X is geodesic. We say that a halfspace b is rthick if both h and h*
have nonempty interior; v -almost every halfspace is thick. We denote by H#*
the set of non-thick halfspaces. See [Fiol] for proofs.

Picking a basepoint x € X, we can identify X =~ M(H, :@, V,0x)
isometrically by mapping each y € X to the ultrafilter o, C J#, see Corollary 3.12
in [Fiol]. In particular, X sits inside the space M (¥, B, V), which we denote
by X.If I C X is an interval, we have a projection my: X — I that associates
to each ultrafilter 0 C J# the only point of I that is represented by the ultrafilter
oNH(I). We give X the coarsest topology for which all the projections 7; are
continuous. Defining

m(o1,02,03) := (01 No2) U (02 No3) U (03 Noy),

we endow X with a structure of topological median algebra. We have:
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Proposition 2.7 ([Fiol]). The topological median algebra X is compact. The
inclusion X < X is a continuous morphism of median algebras with dense,
convex image.

We call X the Roller compactification of X and X := X \ X the Roller
boundary. We remark that, in general, X < X is not an embedding and 3X is
not closed in X .

If C € X is convex, the closure of C in X coincides with the intersection
of X and the closure of C in X. If C C X is closed and convex, the closure
of C inside X is canonically identified with the Roller compactification C . The
median map of X and the projections m7: X — I are 1-Lipschitz with respect
to the extended metric on X .

Looking at pairs of points of X at finite distance, we obtain a partition of
X into components; each component is a median space with the restriction of
the extended metric of X . The subset X € X always forms an entire component
of X.

Proposition 2.8 ([Fiol]). Each component Z C 0X is a complete median space
with rank(Z) < rank(X) — 1. Moreover, Z is convex in X and the inclusion
Z < X is continuous. The closure of Z in X is canonically identified with the
Roller compactification Z and there is a gate-projection nz: X — Z that maps
X into Z.

Every halfspace h € # induces a halfspace E of X with F N X =b; thus,
we can identify # with a subset of #(X).

Proposition 2.9 ([Fiol]). Every thick halfspace of a component Z C 0X is of
the form b N Z, for some h e H.

Any two points of X are separated by a halfspace of the form F To every
£ € X, we can associate a canonical ultrafilter og C K representing & ; it satisfies
heog € h.

2.2. Products. Given median spaces X;, X,, we can consider the product
X1 x X, which is itself a median space with the ¢! metric, i.e.

dx,xx, ((x1, X2), (%7, x3)) := dx, (x1, x]) + dx,(x2, x3).

The space X; x X, is complete if and only if X; and X, are. We say that
subsets A, B C J¢ are transverse if ) and € are transverse whenever hh € A and
t € B. We have the following analogue of Lemma 2.5 in [CS].
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Proposition 2.10. The following are equivalent for complete, finite rank median
spaces:

(1) X splits as a product X, x X», where each X; has at least two points;

(2) there is a measurable, *-invariant partition # = J U H,, where the H;
are nonempty and transverse;

(3) there is measurable, *-invariant partition JH = H; U > U K, where the
H; are nonempty and transverse, while K is null.

Proof. If X = X; x X5, part (1) of Proposition 2.3 provides subsets H#(X;)
and #(X,) of #(X). They are nonempty, disjoint, *-invariant, transverse and
measurable. Every h € #(X) must split a fibre X; x{*} or {*}x X, nontrivially
and thus lies either in J(X;) or in H(X3).

We conclude by proving that (3) implies (1), since (2) tr1VIally implies (3).
Let B; be the o -algebra of subsets of J¢ that lic in B ; fixing x € X, we
simply write M; for M(H#;, B i» V,0xNH;). Define amap ¢: X — M;xM; by
intersecting ultrafilters on # with each J¢; . Since X is null, this is an isometric
embedding. Given ultrafilters o; C J#;, the set oy U o, consists of pairwise
intersecting halfspaces and is therefore contained in an ultrafilter o C #; see
Lemma 2.1. Recall that 0 € B8 as X has finite rank. We conclude that ¢ is
surjective and X ~ M x M,.

We are left to show that each M; contains at least two points. We construct
points x;,x; € X such that v (H#(x;|x;) N J;) > 0. Pick any bh; € J;; by
Proposition 2.4, replacing h; with its complement if necessary, we can assume
that there exists x; € h;. Let x/ be the gate-projection of x; to h;. None of the
halfspaces in #(x;|x;) is transverse to b;, thus H#(x;|x;) \ K is contained in
H; and has positive measure. (]

In particular, rank(X; x X,) = rank(X;) + rank(X,). We say that X is
irreducible if it cannot be split nontrivially as a product X; x X,. We remark
that in parts (2) and (3) of Proposition 2.10, the sets J¢; are not required to
have positive measure, but simply to be nonempty. The following is immediate
from Proposition 2.10:

Lemma 2.11. If X = X, x X5, we have X = X1 x X».
We can also use Proposition 2.10 to characterise isometries of products. The

following is an analogue of Proposition 2.6 in [CS] (also compare with [FL],
when X is connected and locally compact).
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Proposition 2.12. If X is complete and finite rank, there exists a canonical
decomposition X = Xy x ... X X, where each X; is irreducible. Every isometry
of X permutes the factors X;; in particular, the product of the isometry groups
of the factors has finite index in Isom X .

Proof. The existence of such a splitting follows from the observation that, in
any nontrivial product, factors have strictly lower rank. By Proposition 2.10, this
corresponds to a transverse decomposition H = J; U ... U J, where we can
identify #; = J(X;). Given g € Isom X, the decompositions
k
Je = | | ngH
j=1
are transverse and each piece is measurable and x*-invariant. Since X; is
irreducible, we must have J; N g#; = @ for all but one j, again by
Proposition 2.10, and the result follows. ]

2.3. Splitting the atom. In this section we describe two constructions that allow
us to embed median spaces into “more connected” ones. We will only consider
complete, finite rank spaces.

Given a median space X, let A C # be the set of atoms of V. The idea
is to split every atom into two “hemiatoms” of half the size. We thus obtain
a new measured pocset (J’', B’,1v"), whose associated median space generalises
barycentric subdivisions of cube complexes. We now describe this construction
more in detail.

As a set, #' consists of J¢\ 4, to which we add two copies a4, a_ of every
a € A. We have a projection p: #' — H with fibres of cardinality one or two.
We give H#’ a structure of poset by declaring that j < i’ if p(j) € p(i'), or j =a_
and i’ = a4 for some a € A. We promote this to a structure of pocset by setting
i* =3 if p(G)* = p(’) € A and, in addition, (a_)* = (a*)4, (ap)* = (a¥)—
if a € 4. Observe that each intersection between 4 and a halfspace-interval
is at most countable; thus +A and all its subsets are measurable. In particular
B ={ECH'|p(E)\HE B is a o-algebra of subsets of J’, on which we
can define the measure

V(E) = T (pEV\A) +5- 3 P a5 TP (e,

ach acAh
Cl_|_€E a—_ek

If F € J# is measurable, we have v'(p~1(F)) = v (F). Given z € X, we
set X' := M(J¥’', B',v', p~(0,)); note that this does not depend on the choice
of z. Taking preimages under p of ultrafilters on J¢, we obtain an isometric
embedding X — X'.
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Lemma 2.13. For each x € X'\ X there exist canonical subsets C(x) C X,
C (x) C X’ and isomorphisms of median algebras

tx: {—1,1) = C(x),
i {—1,0, 1% > C(x).

Here 1 <k <r :=rank(X) and the map i, extends i, taking (0,...,0) to x.
Moreover, C(x) is gate-convex in X and C (x) is gate-convex in X'.

Proof. Let 0 C #' be an ultrafilter representing x. Since x ¢ X the set

W(x):={{a,a*} e W(X)|aecA and ay €0 and (a*)4 €0}

is nonempty. Any two walls in W(x) are transverse, so k = #W(x) < r.
Choose halfspaces a,...,a;r € H representing all walls in W(x). The set
p(@) \ {a},...,a;} is an ultrafilter on # and it represents a point g € X.

This will be the point ¢y(1,...,1) in C(x). To construct ¢’ € C(x), simply
replace a; € o, € H with af whenever the i-th coordinate of ¢’ is —1; the
result is an ultrafilter on J representing ¢’ € X .

To construct a point # € C (x) € X', consider the point u’ € C(x) obtained
by replacing all the zero coordinates of u with 1’s. Whenever the i -th coordinate
of u is 0, we replace (a;)— € p~ (o) with (a7)+, obtaining an ultrafilter on
J¢' that represents the point u.

We are left to check that C(x) and C (x) are gate-convex. Let H(x) C H#
be the set of halfspaces corresponding to the walls of W(x). We define a
map n: X' — C (x) as follows: given an ultrafilter o/ C H#’, the intersection
o’ N p~1(H(x)) determines a unique point of C (x) and we call this (o).
Note that the restriction of = to X takes values in C(x). It is straightforward
to check that # and x|y are gate-projections. [

When x € X, we set C(x) = C (x) = {x}.
Lemma 2.14. Every halfspace of X' arises from an element of ¥’.

Proof. Observe that Hully/(X) = X’ since, for every x € X’, the hull of C(x) in
X'is C (x). Thus, every halfspace of X’ intersects X in a halfspace of X . Given
h € ¥, we consider F(h) := {Ee€ H(X') | €N X = b}; note that F(h) # & by
Lemma 6.5 in [Bowl]. If h € 4, we can construct halfspaces of X’ corresponding
to hy,h— € H'. For instance, hy corresponds to the set of ultrafilters on #’
that contain h; ; this is well-defined as hy has positive measure. Thus, we only
need to show that #¥(h) =1 if he H \ A and F(h) ={h_,hy} if h € A.

If, for some ¢ € H(X’') and x € X', both €N C (x) and & N C (x)
are nonempty, there exists h € A such that ¢ € {h_,hy}, by part (1)
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of Proposition 2.3. Thus, we can suppose that, for every x € X', we either
have C (x) St or C (x) € £*. Suppose, for the sake of contradiction, that the
same is true of ¢ € #H(X’), with ¥ A€ and ¥ N X =N X. Let z € LAY be
a point; observe that z ¢ X and, by our assumptions, the hypercube C (z) is
entirely contained in EA® . This implies that C(z) C ¢A¥, violating the fact that
FaX=gnx. O

Given a subgroup I' < Isom X, we say that the action I' ~ X is without
wall inversions if gh # h* for every g € I' and h € #H. We denote by a(X) the
supremum of the vV -masses of the elements of .

Proposition 2.15 (Properties of X’). (1) The median space X' is complete and
rank(X") = rank(X).
(2) There is an isometric embedding X < X' and Hullx/(X) = X'.

(3) Every isometry of X extends canonically to an isometry of X' yielding
Isom X < Isom X'. Moreover, the induced action Isom X ~ X' is without
wall inversions.

4) We have a(X') < %-a(X).
(5) The inclusion X — X' canonically extends to a monomorphism of median

algebras X <> X'. For every § € X'\ X there exists a canonical cube
{—1,0,1}* < X7 centred at &, with {—1,1}* < X and 1 <k < rank(X).

Proof. We have already shown part (2) and part (4) is immediate. Part (5) can
be proved like Lemma 2.13 since we now have Lemma 2.14. If g € Isom X and
h € J satisty gh = h*, Proposition 2.4 implies that the halfspace b is clopen;
as clopen halfspaces are atoms, part (3) immediately follows. By Lemma 2.14,
the only nontrivial statement in part (1) is the completeness of X’, which we
now address.

Let 0, C J¢’ be ultrafilters corresponding to a Cauchy sequence in X’. The
sets ¢ := liminfo, and @ := limsupo, lie in B’. Any two halfspaces in o
intersect and o contains the complement of o Uo*. Lemma 2.1 implies that o
is contained in an ultrafilter 0 € #’ with o C &. If we show that v/(g\ o) =0,
it follows that 0 € B8’ and the points of X’ represented by o, converge to the
point of X’ represented by o. Note that it suffices to show that a subsequence
of (on)n>0 converges; in particular, we can assume that v'(0, Agy4q) < zl,, for
all n > 0. In this case, o \ ¢ = limsup (6,A0,+1) has measure zero by the
Borel-Cantelli Lemma. ]

We will refer to X’ as the barycentric subdivision of X . Indeed, if X is
the 0-skeleton of a CAT(0) cube complex, X’ is the 0O-skeleton of the usual
barycentric subdivision.
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A variation on this construction allows us to embed median spaces into
connected ones. We define a sequence (X,)»>0 by setting Xo := X and
Xn+1 = X,. These come equipped with compatible isometric embeddings
Xm — X, , for m < n; thus, we can consider 1i_r>nX,, and call X” its completion.
It is a complete median space by Proposition 2.21 in [CDH].

We have projections J(X,+1) — H(X,) with fibres of cardinality one or
two; setting, H” := l(iﬂl]f(Xn) we still have a projection po,: H” — H. It is
one-to-one on pl(J \ ), while, if h € A, the preimage p2'(h) is canonically in
one-to-one correspondence with {—, +}~. Let P the standard product probability
measure on {—, 4+, defined on the o-algebra &. For every E C J" with
Poo(E)\ A € B and E N pl(h) € P for all h € A, we can set

V'(E) = T (p(E)\ A)+ > _P(ENpL®).

heA

This defines a measure on a o -algebra B”  2#” . Each point of X, is represented
by a B”-measurable ultrafilter on #” and the measure v” applied to symmetric
differences of such ultrafilters recovers the metric of X, .

Every point of x € X” is represented by a B”-measurable ultrafilter on F" .
Indeed, we can find points x; € X; converging to x and these are represented
by B”-measurable ultrafilters o € H#”. The argument in the proof of part (1)
of Proposition 2.15 shows that liminfo; can be completed to a B”-measurable
ultrafilter 0 € #” and v/(0cAog) — 0.

Retracing our proofs of Lemmata 2.13 and 2.14, it is not hard to show that
Hullg~(X) = X” and that, for every x € X”, there exists a monomorphism
(: [-1,1]¥ < X", 1 < k < rank(X), with gate-convex image satisfying
t2°(0,...,0) = x and ()" 1(X) = {1, 1% . One can also identify all halfspaces
of X”: they correspond either to elements of J¢ \ /4 or to pairs consisting of an
element of # and an element of #([—1,1]). In particular, rank(X"”) = rank(X).
Since (#(X”),v”) has no atoms, we have obtained:

Corollary 2.16. There exists a connected, complete median space X" of the same
rank as X such that X — X" isometrically and every isometry of X extends
canonically to an isometry of X", yielding Isom X — Isom X".

Corollary 2.17. Let T" be a group of isometries of X and r := rank(X). The
action I' ~ X has bounded orbits if and only if it has an orbit of cardinality at
most 2.
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Proof. if T ~ X has bounded orbits, so does the action I' ~ X” arising from
Corollary 2.16. Theorem 2.6 and Cartan’s Theorem imply that I" fixes a point
x € X”. We showed above that x is the centre of a canonical cube with vertices
in X ; these vertices are at most 2" and provide a finite orbit for I' n, X. [

3. Groups of elliptic isometries

Let X be a complete median space of finite rank r. This section is devoted to
the following result; in the case of CAT(0) cube complexes, this is well-known
and due to M. Sageev (see Theorem 5.1 in [Sagl]).

Theorem 3.1. Let I be a finitely generated group of elliptic isometries of X.
There exists a finite orbit for I' ~ X and, if X is connected, a global fixed point.

We start with the following observation, compare the proof of Theorem 5.1 in
[Sagl].

Proposition 3.2. If T' is finitely generated and acts with unbounded orbits on
X, there exist g € I" and b € H such that gh < §.

Proof. Let S = {s51,...,5;} be a generating set for I'. Choose a basepoint x € X
and some g € ' with

k
d(x,gx)>r- Zd(x,s,-x).

i=1
We write ¢ = s;,...5;, and set g; := s, ...5; and x; := g;jx. We define
inductively the points y;, starting with yo = xp = x and declaring y;;; to
be the projection of x;4; to I(y;,gx). In particular (yj)o<j<n iS a geodesic
from x to gx and H(y;|lyj+1) € H(xjlxj+1) = giH(x]si;,,x). The sets
Uj := g7 ' H(yjlyj+1) all lie in |J; #(x|s;x) and, since

n

n—1 n—1 k
D VW) =Y dyy.yi+) =d(x,gx)>r- T (U Jf(xlsix)) ,
Jj=0

J7=0 i=1

there exist t € {l,...,k} and a measurable subset Q C J(x|s;x) such that
V() >0 and Q C U; for r +1 indices j; < j» < ... < jr4+1. Denote by
hi,...,hr41 the corresponding elements of I' such that 4;Q2 € H(yj; |yj;+1)-
Pick any b € Q. The halfspaces h1b,...,h,+1h are pairwise distinct, as
(¥j)o<j<n is a geodesic. Moreover, they all lie in o.x \ 0x and cannot be pairwise
transverse. Hence, there exist 1 <i < j <r + 1 such that either s;h S h;bh or
hih < h;h. We conclude by setting g := hj'lh,- or g:=hi'h;. O
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Lemma 3.3. If g € Isom X and b € H satisfy gh S 0, then g is not elliptic.

Proof. For every k > 1, we have gkh < h. If g¥h N bh* # @, Proposition 2.4
implies that k 4+ 1 < 2r; hence d(g?"h,h*) > 0. Given x € gh*Nh and n > 1:
n—1
|_| Je(g2rkh*|g2r(k+l)h) c %(X|g2rn.X).
k=1
Thus d(x, g2™x) > (n—1)-d(g?>"h,h*) and the (g)-orbit of x is unbounded. []

Proof of Theorem 3.1. The action I' n, X has bounded orbits or Proposition 3.2
and Lemma 3.3 would provide a non-elliptic isometry in I'. The conclusion
follows from Corollary 2.17. 1

In CAT(0) cube complexes, Proposition 3.2 above implies that the stabiliser
I'y of h is a codimension one subgroup of I'. This fails in general for actions
on median spaces.

For instance, surface groups have free actions on real trees [MS]; in these,
all halfspace-stabilisers are trivial. One can still conclude that I'y is codimension
one as in [Sagl] if, in addition, for every x,y € X we have gh € #(x|y) only
for finitely many left cosets gI'y.

4. Stabilisers of points in the Roller boundary

Let X be a complete median space of finite rank r. Let £ € X be a point
in the Roller boundary; we denote by IsomgX the subgroup of Isom X fixing
the point £. The main result of this section will be the following analogue of a
result of P.-E. Caprace (see the appendix to [CFI]).

Theorem 4.1. The group IsomzX contains a subgroup K¢ of index at most r!
that fits in an exact sequence

1— Ng — K¢ — R

Every finitely generated subgroup of Ng¢ has an orbit with at most 2" elements.

In order to prove this, we will have to extend to median spaces part of the
machinery developed in [Hagl].

Definition 4.2. Given & € 0X, a chain of halfspaces diverging to £ is a sequence
(Bn)nso of halfspaces of X with b, 2 b,41 and § € Fn for all » > 0 and
such that d(x,b,) - +oo for x € X. A undirectional boundary set (UBS) for
£ € X and x € X is an inseparable subset Q2 C o \ 0, that contains a chain of
halfspaces diverging to &.
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This is an analogue of Definition 3.4 in [Hagl], except that we consider sets
of halfspaces instead of sets of walls. For cube complexes, our definition is a bit
more restrictive than Hagen’s, since we assume by default that Q2 lie in some
o¢ \ 0x. This is enough for our purposes and avoids annoying technicalities.

We denote by U(&,x) the set of all UBS’s for £ and x and we define a
relation <:

21 XQ, fe:t; sup d(x,h) < o0,
he2\ Q2

which we read as “Q; is almost contained in Q,”. If Q1 < Q> and Q5 < Qq,
we write Q27 ~ Q, and say that €; and 2, are equivalent. The relation <
descends to a partial order, also denoted <, on the set (£, x) of ~-equivalence
classes. We denote the equivalence class associated to the UBS 2 by [R2]. A
UBS is said to be minimal if it projects to a minimal element of (£, x). Two
UBS’s are almost disjoint if their intersection is not a UBS.

We will generally forget about the basepoint x and simply write @ &), f).
Indeed, if x,y € X, we have a canonical isomorphism (&, x) ~ U(&,y) given
by intersecting UBS’s with oz \ 0, or o¢ \ 0y.

Lemma 4.3. Let Q21,Q2, C 0¢ \ 0x be UBS’s.

() If Q1 <R3, we have V(21 \ Q2) < +00. In particular, if 2, and Q, are
equivalent, we have VvV (21AQ3) < +00.

(2) The UBS’s 21,2, are almost disjoint if and only if 21 N Qy consists of
halfspaces at uniformly bounded distance from x.

Proof. We first prove part (1). By Dilworth’s Theorem [Dil], we can decompose
Q; \ Q, as a disjoint union C; Ul... U Cr, where each C; is totally ordered by
inclusion and k£ <r. If Q; < Q,, Lemma 2.5 implies that the intersection and
union of all halfspaces in C; are halfspaces h; and ¢;, respectively. Thus, €\ Q2
is contained in the union of the sets J(¥7|h;), which all have finite measure.
We now prove part (2). Since 1N, is inseparable, 2; and 2, are almost
disjoint if and only if €2; N, does not contain a chain of halfspaces diverging
to £. By Lemma 2.2, this is equivalent to €2; N £, being at uniformly bounded
distance from x. W

Part (1) of Lemma 4.3 is in general not an “if and only if”” since UBS’s can
have finite measure. An example appears in the staircase in Figure 3 of [Fiol],
where the UBS is given by the set of vertical halfspaces containing the bottom
of the staircase.

The inseparable closure of a chain of halfspaces diverging to & is always a
UBS and every minimal UBS is equivalent to a UBS of this form. However, not
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all UBS’s of this form are minimal. For instance, consider the CAT(0) square
complex in Figure 1, which is a variation of the usual staircase with a one-
dimensional flap. The inseparable closure of {f,},>0 is not a minimal UBS,
since it also contains all €,, while the inseparable closures of {b,},>1 and
{€n}n>1 are minimal.

Lemma 4.4. Let (h)m=0 and (8,)n=0 be chains of halfspaces in o \ oy that
diverge to &. Suppose that no b, lies in the inseparable closure of {€,}n>0.
Either almost every %, is transverse to almost every b,,, or almost every b, is
transverse to almost every €,.

Proof. We first suppose that there exist n,m > 0 such that hz C &;; without loss
of generality, m = n = 0. An inclusion of the type £, C h,, can never happen, or
we would have ¢, C h,, C hy C €y and ho would lie in the inseparable closure of
{n}n>0. Since the sequence (£,),>o0 diverges, for every m there exists n(m) such
that €, does not contain h,, for n > n(m); thus, for n > n(m), the halfspaces
¢, and b, are transverse.

Now suppose instead that an inclusion of the form §,, C £, never happens.
For every n, there exists m(n) such that €, is not contained in b,, for m > m(n);

thus, for m > m(n), the halfspaces ¢, and b,, are transverse. L]

Following [Hag2], we construct a directed graph G(§) as follows. Vertices
of G(§) correspond to minimal elements of (U(£), <). Given diverging chains
(Bm)m=0 and (£,),>0 in minimal UBS’s © and €', respectively, we draw an
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oriented edge from [Q2] to [R'] if almost every b,, is transverse to almost every
£,, but the same does not happen if we exchange (hm)m>o and (8,)n>0. This
does not depend on which diverging chains we pick, as €, Q' are minimal.

By Lemma 4.4, the vertices corresponding to £ and ' are not joined by
any edge if and only if almost every b, is transverse to almost every ¢, and
almost every £, is transverse to almost every b, . It is clear that there are no
directed cycles of length 2 in G(§).

Lemma 4.5. If there is a directed path from [Q2] to [E], there is an oriented
edge from [Q2] to [E]. In particular, G(§) contains no directed cycles.

Proof. It suffices to prove that, if there is an edge from [2] to [Q2/] and from
[Q] to [Q"], there is also an edge from [Q2] to [Q2”]. Pick diverging chains
(Dn)n>0, (0))n>0, (B)n>o in 2, ', Q”, respectively. By hypothesis, there are
infinitely many b; that are not transverse to almost every b’; thus, for every
k there exists j such that by 2 h’. A similar argument works for £ and Q';
hence, for every k there exist i, such that by 2 h; 2 b;. If no oriented edge
from [R] to [Q2"] existed, almost every b; would be transverse to almost every
h; and this would contradict the previous statement. Ll

Remark 4.6. A graph like G(£) above can be constructed whenever we have a
family of diverging chains (h})s>0, i € I, with the property that, if i # j, either
no b, lies in the inseparable closure of {b{;},,zo or vice versa. Lemma 4.5 and
part (1) of Proposition 4.7 below still hold in this context.

We say that a collection of vertices V C G(£§)©@ is inseparable if, for every
v,w €V, all the vertices on the directed paths from v to w also lie in V. The
following extends Lemma 3.7 and Theorem 3.10 in [Hagl].

Proposition 4.7. (1) The graph G(§) has at most r vertices.

(2) For every UBS Q2 there exists a minimal UBS Q' < Q. If Q is the inseparable
closure of a diverging chain (h,)n>0, we can take Q' to be the inseparable
closure of (bp)a>n, for some N > 0.

(3) Given a UBS Q2 and a set {21, ..., 2} of representatives of all equivalence
classes of minimal UBS’s almost contained in 2, we have

sup d(x,h) < +o0.
heQA(R21U...UQg)

(4) There is an isomorphism of posets between (L—{(’g‘), j) and the collection of
inseparable subsets of G(£)@, ordered by inclusion. It is given by associating
to [2] the set {[21],...,[2]} of minimal equivalence classes of UBS’s
almost contained in Q.
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Proof. To prove part (1), we show that every finite subset V C G(£)©@ satisfies
#) < r. More precisely, we prove by induction on k that, if Q;,...,Q; are
UBS’s representing the elements of V', we can find pairwise-transverse halfspaces
hi € Q;. The case k = 1 is trivial; suppose k > 2. By Lemma 4.5 we can
assume, up to reordering the 2;, that there is no edge from [Q;], i <k —1, to
[Q]. There exist h € Qi and diverging chains {¥ },>0 € Q;, i <k —1, that are
transverse to b; in particular, h is transverse to every element in the inseparable
closure of {¥ },>¢, for i <k —1. By the inductive hypothesis, we can find b; in
the inseparable closure of {Ef,},,zo so that hy,...,hr_; are pairwise transverse.
Hence h,by,...,hx—1 are pairwise transverse.

We now prove part (2). If Q; < ... < Q is a chain of non-equivalent UBS’s,
we have k < r. Indeed, we can consider diverging chains in ; and in ;\ 2;_;
for 2 <i <k, which exist by Lemma 2.2, and appeal to Remark 4.6 to produce
k pairwise transverse halfspaces.

This implies the existence of minimal UBS’s almost contained in any UBS.
It also shows that, for every diverging chain (h,),>o, there exists N > 0 such
that the inseparable closures 2y of (h,)n>m are all equivalent for M > N. In
particular, every diverging chain in 25 has a cofinite subchain that is contained
in Qp,if M > N. By Lemma 4.4, the UBS Qp is equivalent to the inseparable
closure of any diverging chain it contains, i.e., 2y is minimal.

Regarding part (3), it is clear that the supremum over (2; U...U Qg) \ Q
is finite. If the supremum over 2\ (2; U...U Q) were infinite, Lemma 2.2
and part (2) would provide a diverging chain in €\ (2; U...U Q) whose
inseparable closure ' is a minimal UBS. Thus Q' < Q, but Q' « Q; for all i,
a contradiction.

Finally, we prove part (4). The map [Q2] — {[21],...,[Q2]} is an injective
morphism of posets by part (3). The collection {[€2i],...,[Q2]} is inseparable
since the inseparable closure of (£2; N2)U (2, N ) contains all minimal UBS’s
corresponding to vertices on directed paths from [€;] to [Q;] and vice versa;
this follows for instance from the proof of Lemma 4.5.

Given an inseparable collection {[2;],...,[2¢]}, we construct a UBS Q such
that these are precisely the equivalence classes of minimal UBS’s almost contained
in Q. Let (h})n>0 be a diverging chain in ©;, for every i, and denote by Q¥
the inseparable closure of {hl}=n U... U {hX},=n. If N is large enough, every
minimal UBS almost contained in Q¥ is equivalent to one of the ;. Otherwise,
by part (1), we would be able to find a diverging chain {h,},>0 such that its

~

inseparable closure E is not equivalent to any of the €; and b}, < b, C h’ljﬂ , for

~

some j,k, with a,,b, — +oo. This implies that E lies on a directed path from
[€2;] to [2] and contradicts inseparability of the collection {[2;],...,[Q¢]}. O



112 E. FIORAVANTI

Let © € o \ oy be a UBS and let Ko < IsomgX be the subgroup of
isometries that preserve the equivalence class [2]. We introduce the map

rxa: Kg —R
gr—v(g'e\Q)-7(Q\g'Q).
Note that the definition makes sense due to part (1) of Lemma 4.3. We will refer

to xq as the transfer character associated to [2]. The terminology is motivated
by the following analogue of (part of) Proposition 4.H.1 in [Cor].

Lemma 4.8. The map yq is a homomorphism. Moreover,

xe(@) =7 (¢ 'TE\E)-7V (E\g'E)

—

for every g € Kq and every measurable subset 8 C J with V(QAE) < +00.

Proof. Given A C J#, let 14 denote its characteristic function. Given any

function f: # — R and g € Isom X, we employ the standard notation

(g- f)(x) = f(g7"x). Observe that yo(g) = [(g7' - 1lo—1g)d V.
Proving that ygo is a homomorphism amounts to the observation that

xa(gh) = f (h g™t 1g —1g)dv
= f (h_lg—l ‘1o — k™t ]lgz) dv + f (h_l -1 — ]lg)di)\
= f (¢7" 1o —1g) d"”[(h_l-ﬂsz —1g) d7 = xa(g) + xa(h),

since g,h € Kq and, in particular, & preserves the measure 7V . Regarding the
second statement, it suffices to consider the case & = QU F, with V (F) < +o00.
We then have

[ 1s-15)a = [ (¢ 1a—1a)a + [ (¢ 1r - 1p) a7
and
f(g_l-]lF—]lF)d’ﬁ :f(g“l-]lF)dﬁ—[]lpdﬁ =1,
O

Thus, the transfer character yq only depends on the equivalence class [Q2] of
the UBS Q. If {Q,,...,Qg} is a set of representatives of all equivalence classes
of minimal UBS’s almost contained in 2, we have yo = yo, +... + xqo, by
part (3) of Proposition 4.7.
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Now, let Q1,...,9% be UBS’s representing all minimal elements of 4(£).
The group IsomgX permutes the equivalence classes of the €2; and a subgroup
Kz <IsomgX of index at most k! < r! preserves them all. Note that, by part (4)
of Proposition 4.7, this is precisely the kernel of the action of IsomgX on U(§).
We define a homomorphism y¢ := (xq,,. .., xe,): K¢ — R¥.

Proposition 4.9. Every finitely generated subgroup T' < ker yg has an orbit in
X with at most 2" elements.

Proof. If T" did not have an orbit with at most 2" elements, all orbits would
be unbounded by Corollary 2.17 and Proposition 3.2 would provide h € # and
g € I' with gh € bh; hence d(g"h,h*) > 0 by Proposition 2.4. If § € F* we
replace h with h* and g with g7!. Now (g""h)n>0 is a sequence of halfspaces
diverging to & and, by part (2) of Proposition 4.7, the inseparable closure Q¥
of {g""h)s>n is a minimal UBS if N is large enough. Thus, Q¥ ~ Q; for some
i and we have 0= ygq,;(g) = xo~ (g). We obtain a contradiction by observing
that

rexan(g) = xan (@) = T (#OH*g D)\ {g"h}) > 0.
]

Theorem 4.1 immediately follows from Proposition 4.9. Relying on Theorem E,
we can already provide a proof of Theorem A. Theorem E will be proved in
Section 6.

Proof of Theorem A. By hypothesis, I' does not have any nonabelian free
subgroups; thus, the action I' ~, X is Roller elementary by Theorem E.
Theorem 4.1 yields a finite-index subgroup Iy < I' and a normal subgroup
N <1 Ty such that Ty/N is abelian and every finitely generated subgroup of N
has an orbit with at most 2" elements.

() If T ~ X is free, every finitely generated subgroup of N has at most 2’
elements. In particular, N is finitely generated and #N < 27; this shows
that T'y is finite-by-abelian. Finitely generated finite-by-abelian groups are
virtually abelian, see, e.g., Lemma II.7.9 in [BrH]; thus, we can conclude
that I' is virtually abelian as soon as I' is finitely generated. Alternatively,
if X is connected, N must be trivial by Theorem 2.6 and Cartan’s fixed
point theorem (Theorem 3.74 in [DK]); thus, we obtain that I' is virtually
abelian also in this case.

(2) Assume now instead that I" ~ X is proper. Every finitely generated subgroup
of N acts with bounded orbits and must therefore be finite. Hence N is
locally finite in this case, as required.
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(3) Suppose finally that I' acts with amenable point stabilisers. Every finitely
generated subgroup of N is virtually a point stabiliser, hence N is locally
amenable. Since direct limits preserve amenability and N is the direct limit
of its finitely generated subgroups, we conclude that N is amenable. Thus,
['o and I" are amenable as well. L]

5. Caprace-Sageev machinery

Let X be a complete median space of finite rank r. The goal of this section
is extending to median spaces Theorem 4.1 and Proposition 5.1 from [CS].

Our techniques provide a different approach also in the case of CAT(0) cube
complexes, as we use Roller boundaries instead of visual boundaries. This strategy
of proof was suggested to us by T. Fernos.

Let I' be a group of isometries of X. We say that g € I flips h € ¥ if
d (gh*,h*) >0 and gh* # b. The halfspace b is I -flippable if some g € T
flips it.

Theorem 5.1. Suppose " acts without wall inversions. For every thick halfspace,
exactly one of the following happens:

(1) b is T'-flippable;
(2) the closure of E* in X contains a proper, closed, convex, T -invariant
subset C C X.

Proof. If b is T'-flippable, h* and gh* are disjoint subsets of X ; let (x,x’) be
a pair of gates and 7 := I(x,x"). Observe that 7; maps the closure of E* to
x and the closure of gﬁbv* to x’. Hence, any wall of X separating x and x’
induces a wall of X separating the closures of ’f;* and gH* Thus, options (1)
and (2) are mutually exclusive. If (1) does not hold, we have gh* Nh* # @ for
every g € I, since the action has no wall inversions. Helly’s Theorem implies
that the closures of the sets gh*, g € I', have the finite intersection property
and, since X is compact, their intersection C is nonempty. It is closed, convex
and T -invariant; since b is thick, we have C # X. Ol

The thickness assumption in Theorem 5.1 is necessary. Consider the real tree
obtained from the ray [0, +o00) by attaching a real line £, to the point % for
every n > 1. Complete this to a real tree 7 so that there exist isometries g
with axes ¢,; let I" be the group generated by these. The minimal subtree for
I contains all the lines €, ; let X be its closure in 7. The action I" ~, X does
not preserve any proper, closed, convex subset of X, but the singleton {0} inside

the original ray is a halfspace that is not flipped by I'.
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We remark that any action on a connected median space is automatically
without wall inversions by Proposition 2.4. When X is connected, we denote by
0ooX the visual boundary of the CAT(0) space arising from Theorem 2.6. If no
proper, closed, convex subset of X is ['-invariant, the following describes the
only obstruction to flippability of halfspaces.

Proposition 5.2. If X is connected, there exists a closed, convex, T -invariant
subset C C X if and only if T' fixes a point of 00X .

Proof. Suppose C C 0X is closed, convex and I -invariant. Lemma 2.6 in [Fiol]
implies that C is gate-convex, hence the set oc :={h e #H | C C E} is nonempty
as it contains all halfspaces separating x € X and n¢(x). By Theorem 5.1, any
h € o is not I'-flippable; thus {gh| b e€oc, geT) is a collection of subsets
of X with the finite intersection property. These subsets are convex also with
respect to the CAT(0) metric and their intersection is empty. The topological
dimension of every compact subset of X is bounded above by the rank of X,
see Lemma 2.10 in [Fiol] and Theorem 2.2, Lemma 7.6 in [Bowl]; thus, the
geometric and telescopic dimensions (see [CL]) of the CAT(0) metric are at
most 7. The existence of a fixed point in dooX now follows from Proposition 3.6
in [CS].

Conversely, suppose ¢ € dooX is fixed by I'. The intersection of a halfspace
of X and a ray for the CAT(0) metric is either empty, bounded or a subray.
Hence, given x € X, the subset o(x,{) C J of halfspaces intersecting the ray
x¢ in a subray is an ultrafilter; it represents a point £(x,¢) € X. If y € X is
another point and x,,y, are points diverging along the rays x{ and y¢, we
have o(x,{)Ac(y,{) C liminf (#H (x,|y,) U H(yn|x,)). For every n, the points
xn, and y, are at most as far apart as x and y in the CAT(0) metric; since
the latter is bi-Lipschitz equivalent to the median metric on X, we conclude that
vV (0(x,0)A0(y,0)) < +o00. Thus, £(x,¢) and £(y,¢) lie in the same component
Z C X, which is T -invariant. Moreover, £(x,¢) & X as H(x|z) C o(x,?{)
for every z on the ray x{; hence Z C 0X. Finally, it is easy to show that
Z CiX. 0

We are interested in studying actions where every thick halfspace is flippable,
see Corollary 5.4 below. To this end, we introduce the following notions of
non-elementarity.

Definition 5.3. We say that the action I" ~ X is:
e Roller nonelementary if T has no finite orbit in X ;

e Roller minimal if X is not a single point and I" does not preserve any

proper, closed, convex subset of the Roller compactification X .
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e essential if T" does not preserve any proper, closed, convex subset of the
median space X .

The action of I' is Roller elementary if and only if a finite-index subgroup
of T' fixes a point of X ; thus, Roller nonelementarity passes to finite index
subgroups. This fails for Roller minimality. For instance, consider the action of
I' = Z?2 x Z/4Z on the the standard cubulation of R?; the action of H := Z2
is by translations, whereas Z/4Z rotates around the origin. The action of T' is
Roller minimal, but H has four fixed points in the Roller compactification.

The same example shows that Roller minimal actions might not be Roller
nonelementary. Roller nonelementary actions need not be Roller minimal either:
Let T be the Cayley graph of a nonabelian free group F and consider the product
action of FF xZ on T x R. It is Roller nonelementary but leaves invariant two
components of the Roller boundary, both isomorphic to T.

By Proposition 5.2, an essential action I' ~ X is Roller minimal if and
only if no point of the visual boundary d.,X is fixed by I'. In particular, an
essential action with no finite orbits in do, X is always Roller minimal and Roller
nonelementary.

The following is immediate from Theorem 5.1 and the proof of the Double
Skewering Lemma in the introduction of [CS].

Corollary 54. If ' ~ X is Roller minimal and without wall inversions, every
thick halfspace is T -flippable. Moreover, if ) C ¢ are thick halfspaces, there
exists g € I' such that gt S h Ct and d(gt h*) > 0.

One can usually reduce to studying a Roller minimal action by appealing to
the following result.

Proposition 5.5. Either I' ~ X fixes a point or there exist a T -invariant
component 7 C X and a T -invariant, closed, convex subset C C Z such that
I' n C is Roller minimal.

Proof. Let K € X be a minimal, nonempty, closed, I'-invariant, convex subset;
it exists by Zorn’s Lemma. Corollary 4.31 in [Fiol] provides a component Z € X
of maximal rank among those that intersect K. Since Z must be I'-invariant, we
have Z N K = K by the minimality of K, i.e., K € Z. The set C := KN Z is
nonempty, convex, I'-invariant and closed in Z, since the inclusion Z <> X is
continuous. By minimality of K, we have K = C and the latter can be identified
with the Roller compactification of C (see Lemma 4.8 in [Fiol]). We conclude
that either I' ~n C is Roller minimal or C is a single point. []
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Corollary 5.6. If T' ~n X is Roller nonelementary, there exist a T -invariant
component Z C X and a T -invariant, closed, convex subset C C Z such that
I' n C is Roller minimal and Roller nonelementary.

We remark that the following is immediate from part (5) of Proposition 2.15:

Lemma 5.7. The action I" ~ X is Roller elementary if and only if the action
'~ X' is.

We now proceed to obtain an analogue of Proposition 5.1 from [CS], namely
Theorem 5.9 below. We say that h,€ € # are strongly separated if h NE = @
and no j € J¢ is transverse to both h and ¢.

Lemma 5.8. Halfspaces with disjoint closures are strongly separated if and only
if no thick halfspace is transverse to both.

Proof. Suppose that h; Nh, = @ and a nowhere-dense halfspace ¢ is transverse
to both ;. Pick points y; € h; N ¥* and observe that I := I(y;, y,) C £*; since
t is closed by Proposition 2.4, we have d(/,%) > 0. Thus, if (x;,x,) is a pair
of gates for (/,t), the set #(x;|x2) has positive measure and it contains a thick
halfspace ¥. It is easy to see that ¢ is transverse h; and b,. O

Theorem 5.9. If ' ~ X is Roller minimal and without wall inversions, the
following are equivalent:

(1) X is irreducible;
(2) there exists a pair of strongly separated halfspaces;

(3) for every h € H \ H*, there exist halfspaces § C h C b” so that v and
h"* are thick and strongly separated.

Note. The proof of Theorem 5.9 closely follows the proof of Proposition 5.1 in
[CS]. Only minor changes are required to address the pathologies that may arise
in non-cubical median spaces. We only give what we feel are the relevant bits,
referring the reader to Caprace and Sageev’s paper for complete proofs. Their
arguments can be repeated word by word when we omit them. We advise the
reader to make themselves familiar with the entire Section 5 of [CS] before
attempting to read what follows.

Proof of Theorem 5.9. Observe that (3) clearly implies (2) and (1) follows from
(2) using Proposition 2.10. We are left to prove that (1) implies (3). Suppose for
the sake of contradiction that, for some h € K \ #>, we cannot find " and h”.
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We reach a contradiction as in the last paragraph of the proof of Proposition 5.1
in [CS], once we construct sequences (h))n>0, (hy)n>0 and (€,)n>0 of thick
halfspaces such that

(1) &, is transverse to b,_, and bh,_, for n > 1;
(2) &y € H(by*[by) for n = 0;

3) b Shy ShSh,_ Shy for n>1.

By Corollary 5.4, we can find g € I' such that g7'h € h € gh and we set
by := g~ 'h and by := gh. Now suppose that we have defined b, b and &,_;.
Corollary 5.4 yields g’ € I with b, S h S h” < g’ S g'b! and h/Ng'h* = @.
By hypothesis, h;, and g’'h.* are not strongly separated, but they have disjoint
closures; thus there exists ¢ transverse to b, and g’h. By Lemma 5.8, we can
assume that € is thick.

The construction of the sequences can be concluded as in [CS] once we obtain
analogues of their Lemmata 5.2, 5.3 and 5.4. Lemmata 5.3 and 5.4 can be proved
using our Corollary 5.4 as in [CS], with the additional requirement that all input
and output halfspaces be thick.

Lemma 5.2 of [CS] requires more care. The rest of the proof of Theorem 5.9
will therefore be devoted to obtaining the following version of it:

“If b, € are thick transverse halfspaces, one of the four sectors
determined by b and t contains a thick halfspace.”

Let H be the set of thick halfspaces that are not transverse to h and K the set of
thick halfspaces that are not transverse to £. As in [CS], we can assume that every
halfspace in H is transverse to every halfspace in K. Let H’ be the collection
of thick halfspaces that either contain or are contained in some halfspace of #;
we define K’ similarly.

Observe that a € J# lies in #H’ if and only if there exist b, b’ € # such that
b € a C b’; again, this is proved as in [CS]. Thus, halfspaces in (€ \ #*)\ H’
must be transverse to all halfspaces in 7. We conclude that we have a *-invariant
partition

Ho=H U (H\H UH))LH,

where the first two pieces are transverse and the third is null. Since h € H’
and t € J€ \ (H' U J€*) this partition is nontrivial. Finally, observe that #' is
inseparable and, thus, measurable. Proposition 2.10 now violates the irreducibility
of X. O
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6. Facing triples

Let X be a complete median space of finite rank r, let ' be a group and
let I' »» X be an isometric action without wall inversions.

In this section we study certain tree-like behaviours displayed by all median
spaces that admit a Roller nonelementary action. These will allow us to construct
nonabelian free subgroups of their isometry groups, proving Theorem E.

We say that the median space X is lineal with endpoints £, € X if

X CI.n).

Lemma 6.1. Every action on a lineal median space is Roller elementary.

Proof. The elements of ¥ := {{£,n} C X | X cI, n)} # @ are permuted by
each isometry of X. If {&1,m}, {£2,7m2} are distinct elements of ¥, the sets
H(§1,m2lm, &) and FH (&1, E2|n1, n2) are transverse and their union is F#(&1]n1),
which contains a side of every wall of X. By Proposition 2.10, X splits as a
product X; x X,. Thus, if X is irreducible, we have #¥ = 1 and an index-two
subgroup of I' fixes two points of X .

In general, let X = X x...x X be the decomposition of X into irreducible
factors and I' a group of isometries of X. By Proposition 2.12, a finite-index
subgroup I'y < T' leaves this decomposition invariant. Since X = X| x ... x Xz
by Lemma 2.11, if X is lineal so is each X;. The previous discussion shows that
a finite-index subgroup of I’y fixes points &; € T,-, for all i; in particular, it fixes
the point (£1,...,&) € X, hence I" », X is Roller elementary. ]

Halfspaces b1, b2, h3 are said to form a facing triple if they are pairwise
disjoint; if each bh; is thick, we speak of a thick facing triple. If X is lineal, ¢
does not contain facing triples. On the other hand, we have the following result;
compare with Corollary 2.34 in [CFI] and Theorem 7.2 in [CS].

Proposition 6.2. (1) If ' ~ X is Roller nonelementary, there exists a thick
facing triple.

(2) If X is irreducible and T ~, X is Roller nonelementary and Roller minimal,
every thick halfspace is part of a thick facing triple.

Proof. We prove part (1) by induction on the rank; the rank-zero case is
trivial. In general, let C € Z be as provided by Corollary 5.6. If Z C dX,
we have rank(C) < rank(X) — 1 by Proposition 2.8; in this case, we conclude
by the inductive hypothesis and Proposition 2.9. Otherwise, we have C C X,
let C = C; x...x Cy be its decomposition into irreducible factors. By
Proposition 2.12, a finite-index subgroup I'y < I' preserves this decomposition
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and, since C = C; x ... x Cy, there exists i < k such that Iy ~ C; is Roller
nonelementary. If k > 2, we have rank(C;) < rank(X)—1 and we conclude again
by the inductive hypothesis. If C is irreducible, Corollary 5.4 and Theorem 5.9
provide h € H(C)\ H#*(C) and g € I' such that gh and h* are strongly
separated. Since C is compact, there exists a point £ € C that lies in the closure
of every g”F , n € Z; similarly, we can find n € C lying in the closure of every
g"ff;* , neZ.

By Lemma 6.1, there exists x € C with m := m(x,§,n) # x. Picking
j € H(m|x)\ H*(C), neither & nor n can lie in T Since g"h and g™b* are
strongly separated for n < m, the halfspace j can be transverse to g"h for at
most one n € Z. Hence j C g"t2h\ g"h for some n € Z and j, g"h, g"t2ph*
form a thick facing triple in J#(C) C J.

We now prove part (2). Let T C H \ H* be the set of halfspaces that are
part of a thick facing triple; it is nonempty by part (1). It is also inseparable,
hence measurable. Observe moreover that 7 = 7* by part (1) of Corollary 5.4;
indeed, if € ¢, form a facing triple and g&* C €, the halfspaces ¢*,g¥, g¢”
also form a facing triple. If h € # \ ™ and € € T are not transverse, then
h € 7; indeed, up to replacing h and € with their complements, we can assume
that h C €. Thus, if T # J \ K, Proposition 2.10 yields a contradiction. ]

We will refer to facing triples of pairwise strongly separated halfspaces as
strongly separated triples. Strongly separated n-tuples are defined similarly for
all n > 4.

Lemma 6.3. Suppose T" ~ X is Roller nonelementary and Roller minimal. If
X is irreducible, for every n > 3 every thick halfspace is part of a strongly
separated, thick n-tuple.

Proof. Each thick halfspace b is part of a thick facing triple h,b;,H by
Proposition 6.2. Theorem 5.9 and Corollary 5.4 yield thick halfspaces & C b;
such that € and b7 are strongly separated; we obtain a strongly separated triple
b, €1, €. We conclude by showing that, if » > 2, any (n + 1)-tuple b, by,...,b,
can be upgraded to a (n+2)-tuple. By Corollary 5.4, there exists g € I' such that
gh* C b,. It is immediate to check that b, by,...,H,—1,2h1,gh2 is a strongly
separated, thick (n + 2)-tuple. 0

The following result allows us to construct free subgroups of I'; in the case
of CAT(0) cube complexes, compare with Theorem 6 in [DP] and Theorem F in
[CS]. Note that only part (1) is needed to prove the Tits alternative; we will use
part (2) in [Fio2] to characterise Roller elementarity in terms of the vanishing
of a certain cohomology class.
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Proposition 6.4. (1) Suppose that I' ~ X is Roller minimal and Y is part of
a thick facing triple. A subgroup of 1" is free on two generators and has
trivial intersection with the stabiliser of the wall {h,h*}.

(2) Suppose that T' ~, X is Roller minimal and Roller nonelementary; assume
moreover that X is irreducible. There exists a free subgroup H = (a,b) <T
and a measurable partition H = | |,cg Hn, where Hy = Hp and
gHp = Hgp, for all g.h € H. In particular, H acts freely on 'W.

Proof. Any thick facing triple including § can be upgraded to a thick facing
4-tuple b, b/, ¢ ¥ as in the proof of Lemma 6.3. Corollary 5.4 gives us a,b €T’
with ah* C i’ and b¢* C ¥; in particular, h,ab*, € bt* form a facing 4-tuple.
Set w:={h,h*}eW and Q:=h*NahnNe*NhtC X.

Claim. For every nontrivial, reduced word u in a and b,

o if u=au', we have u2 C ah*;

1

o if u=a'u, we have uQ2 C b;

o if u=bu', we have uQ2 C bt*;

o if u=>b"1u', we have uQ2 C ¢.

Proof of claim. We proceed by induction on the length |u| of the word u. If
|lu| = 1, the statement is obvious. In the inductive step, we can assume that the
statement holds for u’. Moreover, in cases (a) and (b), the word u’ cannot begin
with a~! or a, respectively, and in cases (c) and (d), the word u’ cannot begin
with b=1 or b, respectively. We conclude by observing that

a (ab* Ubt* U ’E) C abh*,
a l(hubt* UE) Ch,
b (ab™ Ubh U bt*) C be*,
b~! (ah*UhUE) C L

]

As a consequence of the claim, if there existed a nontrivial, reduced word
u in a and b with uto = w, then we would have u = a '’ and ubh* = .
However, this would violate the assumption that I' act without wall inversions.
This concludes the proof of part (1).

Under the hypotheses of part (2), Lemma 6.3 provides a strongly separated
4-tuple h,b’,e, ¢ and we can again construct @,b € I' and Q C X as above;
in particular, h,ab*, € bt* form a strongly separated 4-tuple. Let #; the set of
halfspaces j € J# satisfying one of the following two conditions:
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FIGURE 2

e j is transverse to h or £, or j € {h,h*, € €*};
e the wall {j,j*} is contained in Q and j & H - {h, h*, & €*}.

We set Hy, := h-J¢, for every h € H . From part (1), we have that AQ NA'Q = &
whenever h # h’. Moreover, H is free on a and b and intersects trivially
the stabilisers of the walls {h,b*} and {&€*}. Any two distinct walls in
H -{h,h*} U H - {€,€*} correspond to a strongly separated pair of halfspaces,
hence #, N K, = @, whenever h # h'.

We are left to prove that every j € J# lies in some J,. The intersection
graph of the regions A2, h € H, is canonically isomorphic to the Cayley graph
of (H,{a,b}). In particular, DCC ultrafilters (in the sense of [Sag2]) on the
pocset H - {h,h*, ¢ t*} are in one-to-one correspondence with regions hSQ. If j
is not transverse to any element of H - {h,h* & ¢*}, then the set of halfspaces
in H-{h,h* & ¢*} that contain either j or j* is a DCC ultrafilter and, by the
previous discussion, it corresponds to some 22, h € H. We conclude that the
wall {j,j*} is contained in h$2. L

Corollary 6.5. Either T" has a nonabelian free subgroup or T' ~ X is Roller
elementary. In the latter case, T" is virtually locally-elliptic-by-abelian.

Proof. If T' ~, X is Roller nonelementary, Corollary 5.6 yields C € X such that
I' ~ C is Roller minimal and Roller nonelementary. Part (1) of Proposition 6.2
and part (1) of Proposition 6.4 yield a nonabelian free subgroup.
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If, instead, I" ~ X is Roller elementary, I has a finite-index subgroup fixing
a point £ € X. If £ € X, the group I' is elliptic. Otherwise & € dX and
Theorem 4.1 yields a further finite-index subgroup I'q < I' that is locally-elliptic-
by-abelian. L

One can remove the assumption that T" act without wall inversions by passing
to the barycentric subdivision X’ and appealing to Lemma 5.7 and part (3) of
Proposition 2.15. This yields Theorem E.
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