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Checkerboard graph monodromies

Sebastian Baader, Lukas Lewark and Livio Liechti

Abstract. We associate an open book with any connected plane checkerboard graph, thus

providing a common extension of the classes of prime positive braid links and positive
tree-like Hopf plumbings. As an application, we prove that the link type of a prime positive

braid closure is determined by the linking graph associated with that braid.

Mathematics Subject Classification (2010). Primary: 57M25; Secondary: 20F36.

Keywords. Positive braid, linking graph, monodromy, Artin group, Coxeter element,

arborescent link.

Braid groups play an important role at the interface between geometry, topology
and algebra. While being special cases of mapping class groups, braid groups
allow for a complete formulation of knot theory, via their geometric realisation in
the 3-sphere [Bir], Our main objects of interest are positive braids, which form
a monoid that captures the essence of braids while being relatively small. It is
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1. Introduction
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Figure 1

A positive braid, its brick diagram and linking graph. Regions are coloured

black/white to indicate clockwise/anticlockwise orientation of the boundary cycle.

big in that every braid can be written as a product of a central element with
a positive braid, e.g., by the Garside form [Gar], It is small in that closures of
positive braids - positive braid links - share very special features with algebraic
links, which they include [EN]. One of these features is that positive braid links
bound canonical genus-minimising Seifert surfaces [Sta], which happen to be

fibre surfaces in the case of non-split braids. These surfaces can be constructed

as unions of discs and twisted ribbons by the well-known Seifert algorithm [Sei],

They serve as a starting point for a graph theoretical model for positive braid

links, which is the main topic of this article, and which we now describe in a

slightly informal way.
A positive braid can be encoded in a plane graph with vertical lines and

horizontal edges, called brick diagram, see Figure 1. The number of bricks, i.e.,

innermost rectangles, equals the first Betti number of the Seifert surface. Since

all crossings are positive, we can reconstruct a braid word from its brick diagram.
The linking graph of a brick diagram is a subgraph of its dual graph, where all

edges corresponding to non-linked bricks are deleted. Here a pair of adjacent
bricks is non-linked if their intersection is contained in the interior of a side of
one of the bricks, see again Figure 1.

Linking graphs come with a natural orientation consistent with a checkerboard

colouring (see Section 2 and Figures 1 and 2). Throughout this paper, the term

linking graph refers to the embedded linking graph together with its orientation.
The isotopy type of the linking graph does not determine the original braid word,

as demonstrated by the pair of positive braids of and oio^oqo^, whose linking
graph is a single edge. However, these two braids have isotopic closures: the

positive trefoil knot. This is a special case of our main result.

Theorem 1. The linking graph of a prime positive braid word ß determines the

oriented link type of the closure of ß.

It is worth noting that the two standard braid representatives of the torus link
T(p,q), (o\a2.. .(7p-\)q and (ctict2 .oq-i)p, have very similar linking graphs:
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An alternative diagram of T(4,5)

one is the mirror of the other. What is more intriguing, both graphs are realised

by precisely one more braid word:

(OpOp-(-1 • • • (yp^.q—i)((Jp—\Gp • Cip+q—2) ' • * ' ' ' ®q)i

(PqVq + l ' ' • fiq+p—l)(°y—\(Jq • • • Gq+p—2) " • {p\&2 ' ' ' &p)-

The former is depicted in Figure 2 for (p, q) (4,5). It is not too difficult to
check that these braid words indeed represent the same torus link. In fact, some

linking graphs are realised by many different braid words, for example trees.

The way of proving Theorem 1 is by reconstructing the monodromy of a prime
positive braid link from its linking graph. With a connected linking graph, we will
associate an abstract surface S with boundary together with a homeomorphism
(p : S ->• S. Such a pair (E, <p) is called an open book and determines a fibred link
in a 3-manifold. Our description makes crucial use of the bipartite nature of the

dual graphs of linking graphs. As we will see, the construction of the open book

(S,ip) extends to all connected checkerboard graphs, i.e., finite simple connected

plane oriented graphs whose bounded regions carry a checkerboard colouring.
The orientation of an induced boundary cycle of a black or white face is required
to be in the clockwise or anticlockwise sense, respectively. Furthermore, we
need an additional technical assumption, which is discussed in Section 2. As a

consequence, we obtain a natural extension of the class of prime positive braid
links.

Theorem 2. Every connected checkerboard graph F determines a unique open
book (£, <p) of a strongly quasipositive fibred link L in S3. If F is the linking
graph of a positive braid word ß, then L is isotopic to the closure of ß.

Here a strongly quasipositive fibred link is a fibred link whose corresponding

open book supports the unique tight contact structure on S3 [Hed], The class of
links associated with connected checkerboard graphs also includes the class of
weight two arborescent links, i.e., links arising as the boundary of a plumbing
of positive Hopf bands along plane trees. Indeed, we will see that for T a plane
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tree with a certain orientation, the corresponding fibred link L coincides with
the fibred arborescent link obtained by plumbing positive Hopf bands along the

tree, as described in [BS].
The next section makes the definition of checkerboard graphs and their relation

to positive braids precise. In order to associate an open book with connected

checkerboard graphs, we need to single out a conjugacy class of Coxeter elements

in certain Artin groups. This is done in Section 3 and is based on an extension

of Steinberg's Lemma for trees to checkerboard graphs [Ste], The construction
of open books is then carried out in Section 4, and Section 5 contains the core

of the proof of Theorem 2. We observe that Theorem 2 implies Theorem 1.

Section 6 discusses the significance of the orientation of checkerboard graphs, in

particular for trees. In Section 7, we exhibit an example of a checkerboard graph
whose associated knot is neither the closure of a positive braid, nor a weight two
arborescent knot. For this purpose, we discuss how to recover the Seifert matrix
of a knot from its checkerboard graph, and we present a list of all weight two
arborescent knots and positive braid knots of genus five or less. The paper closes

with a list of problems and questions in Section 8.

2. Brick diagrams, linking and checkerboard graphs

A positive braid word is a finite product of positive generators ay, ay,..., ct„-i
of the braid group Bn on n strands. We may think of a positive braid word

(up to commuting non-adjacent braid generators) as a brick diagram, i.e., a plane

graph with n vertical lines connected by horizontal arcs, one for each crossing.
Brick diagrams are special cases of fence diagrams for strongly quasi-positive
braids, as introduced by Rudolph [Rudi], They naturally embed as retracts into
the canonical Seifert surface associated with the closure of positive braids. The

bricks thereby correspond to embedded positive Hopf bands, whose core curves
form a basis for the first homology group of the Seifert surface. We call two
bricks linked if the intersection number of their core curves is non-zero. This

happens precisely if they are arranged in the same pattern as the two bricks of
the braids of, a,a, + ia,a( + i, erj+iO/CTj+iO/. The linking graph associated with a

positive braid word is a subgraph of the plane dual graph of the brick diagram,
with one vertex for each brick and one edge for each pair of linked bricks, see

Figures 1, 2 and 3. This can be seen as a generalisation of Dynkin diagrams for
links of plane curve singularities, compare [Lön, Ex. 1].

As mentioned in the introduction, the plane isotopy type of the linking graph
does not determine the original braid word. If the linking graph is not connected,

it does not even determine the link type of the positive braid's closure. For
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Figure 3

An intersection tree

example, the two braid words <T1<T2<T201 e Z?3, 0101/7303 e B4 define two non-

isotopic positive braid links (one of which is split) with the same linking graph:

two points. Restricting oneself to non-split positive braids does not alleviate this,
since, e.g., o^o|o| and of0^3 define two non-isotopic non-split positive braid

links, but have the same linking graph (a disjoint union of two isolated vertices
and a path of length two). We will therefore only deal with positive braid words
whose closure is prime. These are precisely those positive braid words with a

connected linking graph, since positive braids are visually prime [Cro]. By a

theorem of Stallings [Sta], this condition guarantees that the canonical Seifert
surface of the braid closure is a fibre surface.

An important feature of linking graphs is that they come with a checkerboard

colouring, i.e., a black-and-white colouring of their bounded regions, with
alternating colours at all internal edges. Indeed, all regions of a linking graph are

bounded by cycles that look like triangles with a distinguished vertex on the left
or right. We colour these black and white, respectively. Triangles sharing an edge

are of different type, compare Figures 1 and 2. There are three types of edges in

a linking graph: vertical edges, edges with positive slope and edges with negative

slope. We orient vertical edges downwards, and the other two types upwards
(see Figure 3): in this way, the boundary cycles of black and white regions are

oriented in the clockwise and anticlockwise sense, respectively. Moreover, an edge

corresponds to a non-trivial intersection of the two homology classes associated

with its endpoints - and this orientation reflects the sign of that intersection. This

will be more fully discussed in Sections 4 and 5.

Linking graphs are the motivation for the following definition of checkerboard

graphs.

Definition. A checkerboard graph is a finite simple oriented plane graph satisfying
two conditions:

• Every bounded region has a coherently oriented induced cycle as boundary.

• There exists a set of edges that contains exactly one edge out of the boundary
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of every bounded region, and contains at least one, but not all, edges out of
any oriented cycle.

Some comments on this definition are in order. The set of edges in the second

condition is not part of the data - its existence is required, but no choice of a

specific set is made. Note that the second part of the second condition is equivalent
to the requirement that reversing the orientation of the selected edges yields an

acyclic graph. The first condition leaves the orientation of bridges free; on all
other edges, the first condition means precisely that the orientation is induced

by a checkerboard colouring of the bounded regions, where the boundaries of
black and white regions are oriented in the clockwise and anticlockwise sense,

respectively.

A linking graph satisfies both conditions, and is thus a special case of a

checkerboard graph. For the second condition, one may select, e.g., all edges

with positive slope. Each of the triangle-shaped regions contains exactly one of
those edges, and reversing the orientation of all those edges means that every
non-vertical edge is oriented towards the left - so there can be no oriented cycles.

Another special case of a checkerboard graph is an embedded tree. It satisfies

both conditions, no matter how the edges are oriented, and so we call oriented

plane trees checkerboard trees. Some plane trees arise as linking graphs of positive
braid words (for example a star with four edges, obtained from o^oio^o^oio-i,
see Figure 3), but not all (for example a star with five or more edges). In any

case, the degree of a vertex of a linking graph cannot exceed six.

In the next two sections, we will associate an open book with any connected

checkerboard graph.

3. Coxeter elements for checkerboard graphs

Let T be a checkerboard graph. We consider the right-angled Artin group
T(T) defined by F, i.e., the group given by the following presentation. There is

one generator for every vertex of T, and two generators commute if and only
if there is no edge connecting the corresponding vertices in V. There are no

other relations. We are interested in elements of T(r) which are represented

by words in which every generator appears exactly once (and to the power 1

Such elements have been widely studied in the context of Coxeter groups, and are

called Coxeter elements. We will call the corresponding words Coxeter words. The

remainder of this section is devoted to the proof of the following lemma, which
associates a unique conjugacy class of Coxeter elements with each checkerboard

graph.
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Lemma 3. There is an enumeration v\,...,vn of the vertices of a given
checkerboard graph F that traverses the vertices on the boundary cycle of any
black {or white) region of F in clockwise {or anticlockwise) order. The graph F

determines the Coxeter element vi V2 • vn e A{F) uniquely, up to conjugation.

As we will see, this enumeration is reflected in the product order of positive
Dehn twists in a positive braid monodromy.

Proof. The main tool for the proof is a one-to-one correspondence (due to

Shi [Shi]) between acyclic orientations on F (not to be confused with the given
checkerboard orientation on F) and enumerations vi,..., vn of the vertices of
T, up to shuffling, i.e., switching the indices of v, and v,-+1, if there is no edge

between them. The correspondence is defined as follows: given an enumeration,

we orient an edge towards its endpoint of higher index. Note that this does give

an acyclic orientation, and shuffling the enumeration does not change the resulting
orientation. Conversely, with an acyclic orientation, we associate the following
enumeration: start the enumeration with all sources, in any order. Remove the

sources, and continue inductively with the sources of the remaining graph. Here,

we use that any acyclicly oriented finite graph has at least one source. Note that

at any stage, no two sources are connected by an edge; so enumerating them in

a different order just gives a shuffled enumeration. One easily checks that these

two assignments are mutually inverse.

Now, let us prove the existence of the enumeration as claimed. By the second

condition of the definition of a checkerboard graph, we may select a set of
edges containing exactly one edge out of the boundary of every bounded region
and at least one, but not all edges of every oriented cycle. Then, starting from
the checkerboard orientation of T, one can reverse the orientation of every
selected edge. This yields an acyclic orientation, and we claim that the associated

enumeration of vertices has the desired property. To see this, consider a region
of T. Its boundary is an induced cycle C. The acyclic orientation disagrees with
the checkerboard orientation of F for exactly one of the edges in C, so that

C has one sink, and one source. The source must come first in the enumeration

of vertices; then all the other vertices must follow in clockwise or anticlockwise

Figure 4

Pushing down a maximal vertex in an acyclic
orientation yields another acyclic orientation
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order, for a black or white region, respectively. This is precisely the condition

imposed on the enumeration.

Finally, let us show that all such enumerations define the same Coxeter element

vi x>2 v„ e d(r), up to conjugation. Note that the associated acyclic orientation
o gives the enumeration back, up to shuffling. Moreover, shuffled enumerations

define the same Coxeter element. In this way, we can associate Coxeter elements

with acyclic orientations. Suppose we are given another enumeration satisfying
the condition of the lemma, and denote its associated acyclic orientation by p.
We now have to show that the Coxeter elements associated with o and p are

conjugate.
For this purpose, we consider a local move transforming one acyclic orientation

of T into another, called pushing down a maximal vertex. By this, we mean

reversing all the edge orientations around a maximal vertex, i.e., a sink, see

Figure 4. Suppose o' is obtained from o by pushing down v. Since v is a sink,

we may assume after shuffling that the enumeration associated with o

satisfies v — vn. Then vn,vi,... ,vn~i is an enumeration associated with o'. So

the Coxeter elements associated with o and o' are conjugate.
Thus it remains to prove that o and p are related by a sequence of pushing

down maximal vertices. For that, it is sufficient that o and p have the same flow
difference, as proven by Pretzel [Pre]. Here, the flow difference of an orientation

assigns to each oriented cycle in F the number of edges traversed in the positive
sense (with respect to the orientation) minus the number of edges traversed in
the negative sense (with respect to the orientation). Note that due to its linearity
properties, the flow difference is determined by its values on a cycle basis of T.
A natural cycle basis is given by the boundary cycles of the bounded regions,
and the condition the enumerations satisfy immediately implies that they have the

same flow differences: each clockwise or anticlockwise boundary cycle around

a black or white region, respectively, has flow difference equal to its length
minus 2.

4. Checkerboard open books

The goal of this section is to associate an open book with each connected

checkerboard graph. Furthermore, if we start with the linking graph of a positive
braid, we wish to obtain the open book associated with the fibre structure of the

complement of its closure.

4.1. Constructing the surface and the twist curves. Let T be a connected

checkerboard graph. For each vertex u, of F, let A, be an oriented annulus
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Figure 5

The embedding into the plane determines a circular ordering of edges

around a vertex, which is the circular order in which the annuli are glued.

and let y,- c d; be a core curve of d,-, oriented in the anticlockwise sense. We

construct the surface £ by suitably gluing the annuli Ai.
For every vertex r of F, the planar embedding of Y determines a circular

ordering of the incident edges. We glue two annuli d,- and Aj along a rectangle
Rk if their corresponding vertices ?;, and Vj, respectively, are connected by an

edge e/c in Y. The rectangle R^ is taken so that its four edges alternatingly belong
to the boundary of d;- and Aj. Furthermore, we want our gluing to respect the

circular orderings induced by the planar embedding of F. More precisely, let

Vi be a vertex of degree I and let e/Cl e^2 • e/Ce be the circular ordering of the

incident edges. Then, the circular ordering of the gluing rectangles on Aj should
read Rkx Rk2 • ' • ^kf, see Figure 5 for an example.

A priori, there are two possibilities for two annuli d,- and Aj to be glued
together along a rectangle R^. Either the intersection of the corresponding core
curves y,- and y7- is positively or negatively oriented. In order to determine how

we glue, we make use of the orientation of T. If is an oriented edge starting
at Vi and ending at vj, we choose the core curve y, to intersect the core curve

Yj positively, as shown in Figure 6.

Figure 6

The orientation of an edge determines in which
of the two possible ways two annuli are glued.



Figure 7

A checkerboard graph T and the corresponding abstract

surface S. Discs are glued in along the red (fine dashed)
and the blue (coarse dashed) boundary components.

As a last step, for each coloured region of T, we glue one disc along the

boundary of the surface we obtained so far. More precisely, for a white region, we

glue a disc along the inner boundary of the annuli corresponding to the vertices

on the boundary of the region, for a black region, we glue a disc along the outer

boundary. This is shown for an example in Figure 7.

4.2. Choosing the twist order. So far we have constructed a surface E and a

collection of simple closed curves y, from a connected checkerboard graph T.
In order to define an open book, we also have to specify a mapping class (up to

conjugation) on E. We want to define the mapping class as a product of positive
Dehn twists along the curves y,- such that every curve gets twisted along exactly

once. What we have to do is choose a product order, i.e., enumerate the vertices

of T. Note that the two twists along y;, yj commute if the corresponding vertices

are not connected by an edge. Therefore, the subgroup of the mapping class group
of E generated by Dehn twists along the y, is a quotient of the Artin group
A(r). Applying Theorem 3 now gives a mapping class of E, uniquely defined

up to conjugation. We call this conjugacy class the checkerboard monodromy
associated with the connected checkerboard graph F. Recalling Theorem 3, one

sees that the checkerboard monodromy comes from a product order in
which the vertices on the boundary of a bounded region of F occur in cyclic
order - clockwise for a black region, and anticlockwise for a white region.
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Remark. Our construction of an open book can be generalised in several ways. The

orientation of a checkerboard graph simultaneously determines the intersection of
the core curves of the annuli and the twist order of the monodromy. But of course

one can specify these two parameters in a different fashion, and independently
from each other. More generally, one can allow different types of graphs or even

negative Dehn twists, cf. constructions of Hironaka [Hirl, Hir2], Our focus is to

capture the features of open books associated with positive braids.

5. Proof of Theorem 1 and Theorem 2

This section is devoted to the proof of Theorem 2. We first deal with the

case where T is the linking graph of a positive braid word. We show that the

checkerboard monodromy defined in Section 4 equals the monodromy of the

fibred link defined by the closure of the positive braid.

Let T,ß be the canonical Seifert surface associated with a prime positive braid

word ß. By a theorem of Stallings, the closure of ß is a fibred link and E^ is

a fibre surface [Sta]. Furthermore, the monodromy is a product of positive Dehn

twists along certain curves a, corresponding to bricks in the brick diagram.
The canonical Seifert surface and the twist curves are depicted for the braid

ß fj2I o'3a2o j a2o~302 in Figure 8. More precisely, the canonical Seifert surface

is obtained by successive positive Hopf plumbing via adding hook-like handles

from bottom to top within every column, proceeding from the rightmost column

to the leftmost. Every added handle after the first within a column describes a

positive Hopf plumbing, with the core curve passing through the added handle

and the one just below, compare with Figure 8. This leads to a Hopf band //,
with core curve a, per brick of the brick diagram of ß. By definition, two core

curves a, and aj intersect if and only if their corresponding bricks are linked. In

particular, there is a one-to-one correspondence between vertices of the linking
graph T and Hopf bands //, with core curves a, in the plumbing construction

of the canonical Seifert surface of ß.
The monodromy of a single positive Hopf band is a positive Dehn twist along

its core curve. Therefore, the monodromy of a positive braid is a product of positive
Dehn twists along the core curves of the Hopf bands in the plumbing construction,
since the monodromy of a plumbing is the product of the monodromies of the

plumbing summands [Gab, Sta], We remark that in the cyclic order of this Dehn

twist product, the twists corresponding to a boundary cycle around a black or
white region appear in a clockwise or anticlockwise order, respectively.

Let Er and y,- be the surface and the twist curves, respectively, obtained

by the construction described in Section 4 applied to the linking graph T of
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Figure 8

The canonical Seifert surface of the positive braid

(J2<J\03<72ff 1020302 's the fibre surface. The monodromy
is a product of positive Dehn twists along the grey curves.

ß. By Theorem 3, we are done if we can show that abstractly, the surface Xyj

and the core curves a,- agree with the surface and the twist curves obtained by
the construction discussed in Section 4 applied to the connected checkerboard

graph T associated with ß. Here we orient the core curves a,- so that they run
anticlockwise when drawn as in Figure 8.

Claim. There exists a homeomorphism from X^ to Xp, sending the oriented

core curves a,- to the oriented twist curves y,-.

Define a bijection / from the intersection points of the core curves a, to
the intersection points of the twist curves y,-. Such a bijection exists, since by

construction, both sets of intersection points are in a natural bijection with the

set of edges of F. This bijection / can be extended to a homeomorphism
F : |J at -> U Yi, respecting the orientations of the curves a,- and y,-. This

extension is possible since the cyclic order in which a core curve a, intersects

other core curves ctj equals the cyclic order of the edges incident to the vertex

corresponding to a,. By construction, the same holds for the curves y,.
Note that the unions (Ja,- and [J y,- fill the surfaces X^ and Xp, respectively,

i.e., the complement consists of discs and boundary-parallel annuli. To prove the

claim, it therefore suffices to show that a boundary cycle of X^ \ (J a,- bounds
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a disc if and only if its image under F bounds a disc in Sr. This is indeed
the case, since both (J a, and (J y,- bound exactly one disc for every bounded

region of the complement of the checkerboard graph V. Furthermore, in both

cases, the disc lies to the right or to the left of the curves depending on whether
the region is coloured black or white, respectively, compare with Figures 7 and 8.

This proves the claim and hence the part of Theorem 2 concerning positive braids

and their linking graphs.
We still need to prove that open books associated with arbitrary connected

checkerboard graphs define strongly quasipositive fibred links in S3. For this,

we use that a positive stabilisation of an open book does not change the type
of the resulting contact 3-manifold (see, e.g., [Etn, Section 2]), and preserves

strong quasipositivity [Hed, Rud2], We claim that the open book associated with
a connected checkerboard graph with n vertices is obtained from the trivial open
book (D2, Id) by n times iterated positive stabilisations. Indeed, every connected

checkerboard graph Y C K2 contains a vertex v adjacent to the unbounded

region such that T \ v is still a connected checkerboard graph. By construction,
the surface Er is obtained from Ep\„ by adding several 1-handles and 2-handles.

By cancellation, one may equivalently add a single 1-handle. The monodromy of
Er is given (up to conjugation) by composing the monodromy of Ep\„ with a

Dehn twist along a curve that runs once through that 1-handle. This is precisely
a positive stabilisation. Therefore, we are done by induction on the number of
vertices.

6. Orientation, invertibility and mutants

In this section, we discuss the effect a change of orientation or of the embedding
of a checkerboard graph has on the associated link. Let us first focus on bridges.

Throughout this section, let Y be a connected checkerboard graph with a bridge
e and let Ti, Y2 be the connected components of Y \ e, which are also connected
checkerboard graphs.

Lemma 4. The fibre surface Er is a plumbing of Ep, and Ep2.

Proof. The edge e determines a square on each of Epj and Ep,, as indicated
in Figure 5. Those squares lie on the annuli corresponding to the endpoints of
e. Note that there are two ways to plumb Ep,, Ep2 in an orientation-preserving

way along those squares. Those two ways are distinguished by the sign of the

intersection of the core curves of the two annuli corresponding to the endpoints of
e. Consider the plumbing surface for which that sign conforms with the orientation
of the edge e in the sense of Figure 6. This plumbing surface is a fibre surface in
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S3 whose monodromy is the product of the monodromies of Ep,, Ep2 [Sta], It
is canonically homeomorphic to Ep, and the order in which Dehn twists appear
in the product of the monodromies respects the condition of Section 4.2. Thus

the product of monodromies equals the checkerboard monodromy. This concludes

the proof, since the monodromy uniquely determines the isotopy type of the fibre
surface.

Proposition 5. Reversing the orientation of e yields a checkerboard graph F'
whose associated link L' is a positive mutant of L.

Proof By Theorem 4, the fibre surfaces Ep, Ep/ arise as the two different possible

plumbings of Epj, Ep2 along the squares given by e. There is a ball in S3 whose

intersection with Ep is one of those plumbed fibre surfaces. The boundary of
this ball intersects Ep in the plumbing square, and L in four points; cutting
the ball out, rotating it by 180° and regluing it yields Ep/. So L and L' are

mutants, and since the mutation was performed without reversing the orientation
of the tangle contained in the ball, they are positive mutants.

Next, let us consider — T, the checkerboard graph obtained from V by reversing
the orientation of all edges. Denote by —L the inverse of L, i.e., the link obtained

by reversing the orientation of all components of L.

Proposition 6. The link associated with — F is —L.

Proof Let <p be the checkerboard monodromy of Ep. Reversing the orientation
of Ep yields a Seifert surface — Ep for —L, which is a fibre surface with
monodromy q>~1. Indeed, one easily sees that the mapping torus of (—Ep,<p_1)

is homeomorphic to the mapping torus of (Ep, <p). Thus it suffices to check that

the open book associated with —F is equivalent to (-Ep,^-1). To this end, we

first observe that the surface associated with —r differs from Ep merely by the

intersections of core curves of annuli - all of them are of opposite sign. So the

surface associated with —r is indeed canonically homeomorphic to — Ep. Next,

we note that the monodromy <p is defined as a product T\T2---Tn of Dehn twists

in a certain order. From the construction of checkerboard open books it is evident
that taking the reverse order yields the monodromy of the surface associated with
—T. Moreover, if we identify that surface with — Ep, each individual twist is

the inverse of the corresponding twist on Ep, because all Dehn twists on Ep
as well as on —Ep are positive. Hence the monodromy associated with —F is

771 • • • Tf1 If1 (p~l. This concludes the proof.

The two previous propositions immediately yield the following.
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Theorem 6 Theorem reflection

13n24l — 13n24i — 13n24i 13n24i

13n3oo — 13n3 — 13 n 3oo 13 n 3oo

Theorem 6 Theorem 8

Figure 9

The first row shows the invertibility of the weight two arborescent

knot 13« 241, using its checkerboard tree. In the second row, an

attempt to show the invertibility of 13«3oo (a mutant of 13«24t)
in a similar fashion fails - and indeed, 13« 300 is not invertible.

Corollary 7. A weight two arborescent link is a positive mutant of its inverse.

Note that every knot is a mutant of its inverse, but not necessarily a positive
one. To wit, positive mutants have S-equivalent Seifert forms [KLi], whereas

general mutants need only have algebraically concordant Seifert forms [KL]; so a

knot such as the P(7,3,19) pretzel knot, whose Seifert form is not S-equivalent
to its transpose [Tro], is not a positive mutant of its inverse.

Let us now come to the relevance of the embedding of a checkerboard graph
T. As a first observation, we claim that the open books associated with T and

the mirror image of T in the plane are equivalent. Indeed, reflecting P has the

effect of reversing for all vertices the cyclic orders of incident edges. The same

effect is achieved by reversing the orientations of all core curves, which does not

change the open book.

Reflecting only part of T, however, may change the open book. Take a bridge

e, and denote as before the connected components of T \e as T^ T2. One may
attach Fj along e to a mirror image of P2, forming a connected checkerboard

graph r". The surface Sp2 is unchanged by reflecting r2, but Ep, and Sp2
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are plumbed differently in F". So the link associated with F" equals the link
associated with f (the graph obtained from T by reversing the orientation of e).

Corollary 8. Reversing the orientation of e, and taking the mirror image of one

of the connected components of T\e yields a connected checkerboard graph F

The links associated with F and Y are isotopic.

In particular, if Fi or F2 is symmetric under reflection, the orientation of e

does not matter for the link type of L. In those cases, we omit the orientation
of e from drawings of F. Figure 9 shows example applications of Theorem 6

and Theorem 8.

Corollary 9. Let F be a checkerboard tree. Let V be a subset of the vertices,

containing exactly one endpoint of each edge. Reversing the cyclic orderings

of edges around all vertices in V yields a checkerboard tree with associated

link —L.

Proof. Apply Theorem 8 successively to every edge e of T, obtaining a graph
T with associated link L. At every step, half of F is reflected, and the cyclic
ordering of edges around vertices in that half changes. If this happens an even

number of times for some vertex - so the cyclic ordering around that vertex has

not changed in total - then it must have happened an odd number of times for
all adjacent vertices. So the cyclic ordering is reversed for precisely the vertices

in V (or precisely for those not in V, in which case we replace Y by its mirror
image). Finally, reversing the orientations of all edges of F yields the graph

given in the statement, and so the associated link is —L by Theorem 6.

Aside from Theorem 5, there are other moves on checkerboard graphs that

yield mutants. Namely, let Y be a connected checkerboard graph with a cut-vertex

v. Let Ti,..., Yn be the connected components of r \ v, and T, the subgraph

of T induced by T, U {u }. One may glue together the 1) along their copies of
the vertex v, in any cyclic order around v. In this way one obtains a family
of (n — 1)! connected checkerboard graphs, whose associated links are positive
mutants. Up to reflection, at most (n — l)!/2 of these graphs are different, so this

will yield non-isotopic mutants only for vertices of degree 4 or higher. One may
also reverse the orientations of the T,, which will result in mutants which are

generally not positive.

Finally, let us compare the oriented links associated with checkerboard

trees with Bonahon-Siebenmann's unoriented arborescent links [BS], which are

associated with plane unoriented weighted trees. First off, since the weights give
the self-linking of the plumbed bands, we will set all weights equal to +2, so all
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bands are positive Hopf bands. With this restriction on the weights, Bonahon and

Siebenmann associate links with unoriented plane trees 0. The bands are plumbed
in such a way that the core curve of any fixed band intersects the core curves
of all adjacent bands with the same sign. We choose an orientation of 0 that
makes every vertex a sink or a source, and denote the tree with this orientation by
T. There are precisely two such orientations for 0. Our construction associates

with T an oriented link - and forgetting its orientation gives the unoriented link
the Bonahon-Siebenmann construction associates with 0. Conversely, given an

oriented plane tree T, one may simultaneously change its embedding and its

orientation using Theorem 8, without changing the associated link. By a repeated

application of this move, one obtains an oriented plane tree C, all whose vertices

are sinks and sources. Forgetting the orientation gives an unoriented tree 0 with
which Bonahon and Siebenmann associate a link of the same unoriented type as

the link we associate with T.

Hence our and Bonahon-Siebenmann's construction give the same set of
(unoriented) links. Still, the orientation of edges is crucial for the purpose of
recovering positive braid links from their linking graph. Indeed, there exist pairs
of positive braid words (see, e.g., Figure 10) whose linking graphs are trees that

are isotopic as unoriented plane graphs - but not as oriented plane graphs. The

associated links must then be mutant, but they may be of different unoriented

link types. Consequently, one cannot recover the unoriented link type of a prime
positive braid link from its linking graph deprived of its orientation.

13«24i :

ofof0,20203of O3

Y

u"

A

;
— 13«3OO :

a?a2 a\ ff3°2O4ofO4

Figure 10

Two positive braid words with the same unoriented checkerboard

graph, and closures of different unoriented knot type
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7. Positive braids of small genus

This section is devoted to an example of a connected checkerboard graph whose

associated link is neither a positive braid link, nor a weight two arborescent link.
A linking graph has maximal degree at most 6; so it is easy enough to come

up with checkerboard graphs V that are neither linking graphs nor trees. But the

link associated with such a F could nevertheless be isotopic to one associated

with a linking graph or a checkerboard tree.

More concretely, let us consider the checkerboard graph shown in Figure 11.

Splitting along the bridge that is drawn thick, one can see that the associated knot
AT is a plumbing of the trefoil and the knot 13«5oi6 • In general, it is difficult to
show that a given fibred positive knot such as K is not the closure of a positive
braid. Moreover, our construction does not directly give a knot diagram of K.
Fortunately, it is possible to compute the Seifert matrix and hence the Alexander

polynomial of K from T, see Theorem 10 below. There are only finitely many
positive braid knots of any fixed genus g, and one can list them (see below
for details). It turns out that no positive braid knot of genus 6 has the same

Alexander polynomial as K - and so K is not the closure of a positive braid.

Proposition 10. Let F be a connected checkerboard graph. Fix an enumeration

V \..... vn of its vertices as in Theorem 3. The corresponding core curves yi,...,yn
of Hopf bands give a basis of the first homology group of the associated fibre
surface E (cf. Section 4). With respect to this basis, one finds the following
matrices:

• The intersection form of E has the antisymmetric Gram matrix B given
by Bjj 1 if there is an edge vt —> vj, and Bij 0 if there is no edge

between Vi and vj.

• The Dehn twist along y^ acts on //i(E) by the matrix Sk with Sjj equal
to 1 if i j, equal to Bjj for i k f j, and equal to 0 otherwise.

• The monodromy acts on Hi(E) by the matrix S — S" S1.

Figure 11

A connected checkerboard graph whose associated knot is

neither weight two arborescent, nor a positive braid knot
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• If (S — 1) is invertible {e.g., for a knot), then Y C S3 has Seifert matrix
A B-(S-l)-1.

Proof. The formulae for the matrix of the intersection form and of the monodromy
are evident from the construction of Er. For the matrices of Dehn twists, note
that a twist along y,- changes precisely the homology classes of those yj that

intersect y, non-trivially. The formula for the matrix of the Seifert form is taken

from [Lev]; it follows from the well-known relationships B — AT — A and

S A~lAJ.

To exclude that the knot is associated with a checkerboard tree, one could use

a similar brute-force argument. However, we have a more conceptual obstruction
at our disposal: the signature of the knot is 8, and we claim that a weight
two arborescent knot of genus 6 has signature 10 or 12. Indeed, let T' be a

checkerboard tree. Let (i>i, be an edge of f and denote the components of
r'\(ui,u2) by Tj, V'2 with v, e V[. Suppose neither Tj nor V2 has signature
defect, i.e., the symmetrised Seifert form restricted to the subspace of homology
generated by T- is positive definite. Then T' has signature at least 10. The case

remains that at least one of Tj, V2 has defect, w.l.o.g. take TJ. Trees with five or
less vertices have no defect, and there are precisely two trees with six vertices and

defect (cf. [Baa]). So if V2 has defect, too, then F] and V2 must both be equal

to one of two possible trees with six vertices; but those trees correspond to links
with three and five components, respectively, and their plumbing cannot yield a

knot. So T2 cannot have defect. Now assume that (vi,v2) has been chosen such

that Tj has the minimal number of vertices. Then TJ \ v\ has no defect, and so

r' \ rI does not have defect, either. Thus V \ v has signature at least 10.

Figure 12 shows all positive braid knots and all weight two arborescent knots

(for that class, such a list is much easier to compile than for braids) with genus

up to 5. Let us give some details on how it was obtained. A positive braid knot
K of genus g can be written as the closure of a positive braid word on n strands

for some n, with the property that all generators ay,..., <t„_i appear at least

twice. It follows that n <2g, which means that there is only a finite number of
braid words one has to consider to find all braid knots of a fixed genus. Using a

computer, one may iterate through all these words, and use knotscape to identify
the knots. To save time, one may restrict oneself to a smaller set of braid words,

e.g., using conjugation, one may suppose that every word begins with oy. We

compiled a list of prime positive braid knots of genus 6 or less, which will
be made available on the second author's homepage. Such a list has also been

compiled by Stoimenow. The two lists are in complete agreement.1

1 Personal communication, June 22, 2017.
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g= 1,2,3:

g 4: 9i
7(2,9)

3i
7(2, 3)

IO124

7(3,5)

5l
7(2,5)

7l
7X2,7)

Ö19

7(3,4)

ffl • ffl

- 10l39 Y

1

IO152
o

0-

,0
1 1 /177 p

}
jE v'

_2 jr

2 5:
1 1«367

7(2, 11)

12« 242 12« 472 12« 574 12«679 —12«679

1

tl
12«688 —12«688 12«725 12«888 13«241 13« 300 -13« 300 13« 604

13« 981 13«ho4 —13«i 104 13« 1176
13« 1291 13«1320 13« 2405

13«4587

\
14« 5644

13« 5016

Figure 12

Ail positive braid knots and all weight two arborescent knots with genus
five or less, including all such knots with twelve or fewer crossings.

Only the edge orientations which matter for the knot type are drawn.

All knots on this page except the last three are both positive braids

and weight two arborescent. Boxes contain groups of mutant knots.
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8. Perspectives

The classification of arborescent links allows for a complete understanding of
when two plane trees define the same link [BS] (see also [Ger]). Namely, two
unoriented trees give the same positive fibred link if and only if they are related

by the move described in Theorem 9. We are looking for a refined move in the

oriented setting to distinguish oriented isotopy classes of checkerboard tree links.

Problem 11. Are any two checkerboard trees with isotopic associated oriented

links related by the reverse-and-reflect move of Theorem 8?

One may check on the basis of Figure 12 that this does indeed hold for
checkerboard trees whose associated links are knots of genus 5 or less. If it
did hold in general, as a consequence one could decide the invertibility of a

weight two arborescent link, and more generally find and distinguish its weight
two arborescent mutants, just by considering the combinatorics of its checkerboard

tree. Stoimenow [Sto], on the other hand, has found mutant positive braid knots,
such that the mutation cannot be seen directly from a positive braid representation.

However, these knots (16n93564 and 16n 179454) are also weight two arborescent,

and the mutation is indeed visible from their checkerboard trees. This is a case

in point that some properties of positive braid knots are more easily visible from
their linking graphs than from their braid representations.

The situation is more complicated for connected checkerboard graphs which

are not trees - there are pairs of checkerboard graphs that are different, even

disregarding orientation and embedding, with isotopic links. One reason for that

is braid conjugation, which has a somewhat mysterious effect on linking graphs,
but does not change the link type. For example, the linking graph associated

with the two conjugate braids o\o2a"o2oi and o^a2o1a2 is a cycle and a tree

of Dynkin type Dn+2, respectively. On the other hand, a Markov move has no
effect on the linking graph of a positive braid.

Problem 12. Find a complete set of moves relating connected checkerboard graphs
with equivalent links.

The description of checkerboard graph links being not very explicit, it is hard

to localise them in knot tables. Nevertheless, one can say that many of them

admit diagrams with positive crossings only, e.g., the ones associated with plane
trees and positive braid links. We do not know to what extent the classes of
checkerboard graph links and positive fibred links coincide.

Problem 13. Construct natural diagrams for checkerboard graph links. Are they
all positive?
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Positive braid links and weight two arborescent links have a variety of common
features. Some of these are likely to extend to checkerboard graph links, e.g.,

positivity of the signature invariant. In view of Boileau, Boyer and Gordon's

work on L-space knots, it is interesting to classify checkerboard graph links
with positive definite Seifert form [BBG]. For positive braid links, this boils
down to the classification of simply laced Dynkin diagrams [Baa], In the case

of positive braid knots, the maximality of the signature invariant is equivalent to
the maximality of the topological 4-genus [Lie].

Problem 14. Classify checkerboard graph links with maximal signature invariant

(a — 2g) and maximal topological 4-genus (#4 g). Do we recover the simply
laced Dynkin diagrams, i.e., trees of type A, D, El

Baker's recent result on concordance of positive braid links extends to
checkerboard graph links, since their fibre surfaces are plumbings of positive
Hopf bands [Bak]. In particular, the existence of two non-isotopic, concordant
checkerboard graph links would give a counterexample to the Slice-Ribbon

conjecture. Our last problem is therefore mildly provocative.

Problem 15. Find a pair of smoothly concordant, non-isotopic checkerboard graph
links.

Acknowledgements. We thank Filip Misev for explaining us the fibre surface

of a cycle, Peter Feller for confusing us with fake cycles, Francis Bonahon for
discussing the symmetries of trees, and Pierre Dehornoy for pointing out that

linking graphs admit a checkerboard colouring.
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