Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 64 (2018)

Heft: 1-2

Artikel: Canonical idempotents of multiplicity-free families of algebras
Autor: Doty, Stephen / Lauve, Aaron / Seelinger, George H.

DOl: https://doi.org/10.5169/seals-842086

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-842086
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique (2) 64 (2018), 23-63 DOI 10.4171/LEM/64-1/2-2

Canonical idempotents of
multiplicity-free families of algebras

Stephen Doty, Aaron Lauve and George H. SEELINGER

Abstract. Any multiplicity-free family of finite dimensional algebras has a canonical
complete set of pairwise orthogonal primitive idempotents in each level. We give various
methods to compute these idempotents. In the case of symmetric group algebras over a field
of characteristic zero, the set of canonical idempotents is precisely the set of seminormal
idempotents constructed by Young. As an example, we calculate the canonical idempotents
for semisimple Brauer algebras.

Mathematics Subject Classification (2010). Primary: 16G99, 20C30; Secondary: 05EI0,
16Z05.

Keywords. Group algebras, Brauer algebras, primitive idempotents, Jucys—Murphy elements,
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Introduction

Given a finite dimensional unital associative algebra A over a field k, a
fundamental problem is to find a partition of unity, i.e., a complete set of pairwise
orthogonal primitive idempotents, in A. (This means finding a set {e;}ie; of
elements satisfying >, e; = 1 and e;e; = §;je; for i, j € I, with || maximal.)
The corresponding problem for the center Z(.A) is equally fundamental; in that
case the partition is unique. We study these two closely related problems under
the assumption that A is split semisimple; i.e., A is isomorphic to a direct sum
of matrix algebras over k.

Our main results are for the special case where A = A, fits into a multiplicity-
free family {A, | n > 0} (see Definition 1.1), which allows for induction on n.
Group algebras of symmetric groups serve as the primary motivating example.
For a multiplicity-free family {A4,}, we find that:



24 S. Doty, A. Lauve and G. H. SEELINGER

(1) There is a canonical partition of unity of A, for all n (see Proposition 1.6).
This fact is implicit in [OV, VO] and explicit in [GG2]; we feel it deserves
to be more widely known.

(2) The two problems (calculating the canonical partitions of unity in 4, and
in Z(A,) for all n) are equivalent.

(3) Both problems can be solved recursively by “Lagrange interpolation” meth-
ods, in terms of the eigenvalues of a Jucys—Murphy sequence on a Gelfand—
Tsetlin basis of the irreducible representations.

(4) Both problems reduce to the computation of certain polynomials in the nth
Jucys—Murphy element, for all ». The polynomials depend only on a pair
(A, n) of isomorphism classes of irreducible representations, one for A4, and
the other for A,_;.

Many of the results of the paper are straightforward extensions of known
results scattered through the literature. Our approach is based on the insights
of Vershik and Okounkov [OV, VO] for symmetric group algebras; see also
[DJ, GdIHJ, RW, HR, LR, Ram4, Ram3, DG, OP, Gar, Mat, CSST, GG2] for
related work. Probably [GG2] overlaps the most with this paper.

The general theory of Lagrange interpolation methods for multiplicity-free
families is presented in Sections 1-3; this theory extends known results from
symmetric group algebras in characteristic zero to arbitrary multiplicity-free
families. Examples of multiplicity-free families abound in the literature (e.g.,
partition algebras, Temperley—Lieb algebras, various families of Weyl groups and
their associated Hecke algebras, Birman—Murakami—Wenzl algebras) so these
results should have wide applicability. For many of these families, suitable
candidates for Jucys—Murphy sequences (in our sense) have been found, which
should bring all of items (1)—(4) above to bear on their study. Due to space
constraints, we treat only two illustrative examples here: in Sections 4 and 5 we
apply our methods to study the symmetric group algebras and Brauer algebras,
respectively. Although we have chosen to avoid the language of cellular algebras,
in order to keep the exposition as elementary as possible, readers interested in
applying these results to other diagram algebras would be well-advised to utilize
the axiomatic framework of [GG2] and the related results of [GGl].

Appendix A outlines an alternative method of computing the partition of unity
of Z(A) in characteristic zero, based on trace characters instead of interpolation.
This is valid without any assumption that the split semisimple algebra .4 fits into
a multiplicity-free family; however, it requires inverting a possibly large matrix.
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1. Multiplicity-free families of algebras

Let k be a field and A an algebra over k. All the algebras considered in
this paper are assumed to be finite dimensional, semisimple, associative, unital,
and split over k. Write Irr(.A) for the set of isomorphism classes of irreducible
left' A-modules and V* for a representative of the class A e Irr(A). That is,
[VA] = A.

The general Wedderburn—Artin theorem expresses A as a finite direct sum
of matrix algebras over division rings; our assumption that A is split over k
means that each of the division rings is k (this is automatic if k is algebraically
closed), so

(1.1 A= P A = P Endi(VH).

Aelrr(A) A€lrr(A)

In the isomorphism (1.1), the central idempotent £(A) € A acts as the identity
in Endg(V*) and zero in the other components, so {s(1) | A € Irr(A4)} is the
(unique) partition of unity of the center Z(A).

The main objective of this paper is to study the situation where A = A, fits
into an infinite family of algebras satisfying the following properties.

Definition 1.1. A family {A4, | » > 0} of finite dimensional split semisimple

algebras over a field k is a multiplicity-free family of algebras if the following

axioms hold:

(a) (Triviality) Ay =~ k.

(b) (Embedding) For each n, there is a unity preserving algebra embedding
Ap = Any1.

(c) (Branching) The restriction to A,_; of an irreducible A, -module V is

isomorphic to a direct sum of pairwise non-isomorphic irreducible A,_;-
modules.

Whenever (c) above holds, we say that restriction from A, to A,—; is
multiplicity-free. The following general criterion characterizes this property.

Proposition 1.2 ([VO, Prop. 1.4]). Restriction from A, to A,_, is multiplicity-free
if and only if the centralizer algebra

Z(An—1,An) = {x € Ay | xy = yx, forall y € Ay}

Is commutative.

I We could just as well work with right modules, and will do so in Sections 4, 5.
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To ease notation, whenever we have a multiplicity-free family we write Irr(n)
short for Irr(A,). Extending [OV, VO], we define the branching graph B (or
Bratteli diagram) of the given family to be the directed graph with vertices and
edges as follows:

e the vertices are the isomorphism classes | |, Irr(n);

e there is an edge u — A from the vertex p to the vertex A if and only if
V# is isomorphic to a direct summand of the restriction of V*.

Given A € Irr(n), let Tab(A) denote the set of paths in the branching graph
starting from the unique element @ € Irr(0) and terminating at A.2 Concretely,
an element of Tab(A) has the form

T=(Ro > A1 > Az = -+ = Ag1 = Ap),

where 19 = @ and A, = A. Set Tab(n) = |l;cirr(n) Tab(A). We say that
T € Tab(n) is a path of length n (a path on n + 1 vertices). We sometimes
write T > A to indicate that T € Tab(1). We also write T for the path in
Tab(n—1) obtained from T by deleting its last edge, A,—1 — An.

We now describe how to use branching to produce bases of irreducible
modules. Let V' be a given irreducible .4, -module. By the branching rule 1.1(c)
and Schur’s Lemma, the decomposition

(1.2) reSAn_l V = @[W]—)[V] W

is canonical. Decomposing each W on the right hand side upon restriction to
An—» and continuing inductively all the way down to Ay =~ k, we obtain a
canonical decomposition

(1.3) ress, V = @1 Wr

into irreducible .4y-modules, which are the 1-dimensional subspaces Vi, where
the index T runs over the set of T € Tab(n) terminating in [V]. Note that the
A -submodule of V generated by Vi is isomorphic to VA% = g(Ag)---e(A,)V,
where Ay is the kth vertex in the path T, for each £ = 0,1,...,n—1,n. Choosing
a nonzero vector vy € Vr for each T in Tab(n), we get a basis

{or | T [V]}

of each V, called the Gelfand-Tsetlin basis; this idea goes back to [GT2, GT1].
We note that the choice of vr is uniquely determined only up to a scalar multiple.

2 The set Tab(A) is analogous to the set of standard tableaux of shape A in the representation
theory of symmetric groups.
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In what follows, an important role is played by the Gelfand—Tsetlin subalgebra
X, (n > 1). Following [VO], this is the subalgebra of A, generated by the
centers

Z(A1), Z(A2), ..., Z(Ap).

It is easy to see that A, is a commutative subalgebra of A,, for all n. Clearly
Xn C Xy, for all n.

Definition 1.3. To each path T: @ = Ay > A; — --- — A, of length n in the
branching graph, we associate a unique element &y := g(A1)e(A2)---&(A,) of the
Gelfand-Tsetlin subalgebra A, .

Remark 1.4. Equivalently, ¢y can be defined recursively by:

er-e(Ap)  if n >0,
ET =
1 ifn=0

in terms of the notation T introduced above.

Given an irreducible module V =~ V4 for A, and any T +— A, the element
et € A, is the projection mapping V onto Vr. In [VO, Prop. 1.1], Vershik and
Okounkov use these canonical projections to prove the following result.

Proposition 1.5. The Gelfand-Tsetlin algebra X, is the algebra of all elements
of A, that act diagonally on the Gelfand—Tsetlin basis {vr} for each irreducible
Ap-module V. In particular, the algebra X, is a maximal commutative sub-
algebra of A, .

Proof. Suppose that T > A € Irr(n). Since e projects V = V2 onto its one-
dimensional subspace V7, it follows that ey sends vy to itself. Also, er acts as
zero on all vs such that S # T. So with respect to the Gelfand—Tsetlin basis
{vr} for V, the operators er are diagonal matrices. In view of (1.1), the algebra
generated by {er | T € Tab(n)} is a maximal commutative subalgebra of A4,.
Since A}, is commutative and contains this subalgebra, we have equality, which
completes the proof. U

The following result did not explicitly appear in [VO], although it is implicit
in their setup. It provides an explicit and canonical partition of unity in A4, for
each n, in terms of the primitive central idempotents.

Proposition 1.6. The set {er | T € Tab(n)} is a family of pairwise orthogonal
primitive idempotents in A, that sums to 1 (the unit in A,). It is also a k-basis
for the Gelfand-Tsetlin subalgebra X, .
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Proof. 1t is clear from Definition 1.3 that et = &(A,)---&(4,) is idempotent for
any T, since its factors commute. The commutativity of the factors is also used
to check that erep = 0 if either

T—Aand = A" with A #)

or
Ti>Aand T+ A with T#T.

So the idempotents are pairwise orthogonal.

For any T+ A, er acts as one on VTA and zero on all Vsl, for S # T. Since
VA = @r, V2, it follows that Y 5., er and e(A) both act as one on V*,
Furthermore, both act as zero on V*#, for each A # u € Irr(n). This shows that
> 1sa &1 = €(4). It follows that } remupm) T = Xremmmy) €4A) = 1.

Finally, the various ey are primitive since we have precisely the right number,
namely 3, cir(n dimi V4 = | Tab(n)].

The last claim in the proposition follows from the proof of Proposition 1.5,
since the er are linearly independent and dimg X, = ) _; cjrr(n) dimk VA, (|

Corollary 1.7. The canonical idempotents {e1 | T € Tab(n)} satisfy the following
properties:

(1) Y ruaer =€), for all A € Irr(n).
(2) eger =e1, for all T— A, A €Irr(n).

Furthermore, {7 | T € Tab(n),n > 0} is the unique set of pairwise orthogonal
idempotents satisfying these two properties.

Proof. Property (a) was proved already in the proof of the previous proposition.
Property (b) follows immediately from the definition of ey and the definition
of T.

Suppose that {g7 | T € Tab(n),n > 0} is another set such that for each fixed
n, the set {gr | T € Tab(n)} is a set of pairwise orthogonal idempotents in A,
satisfying properties (a) and (b). For the unique path @ of length 0, we have
go = &g = 1. Proceeding by induction on n, suppose that » > 0 is fixed and
assume that gs = gs for all paths S of length strictly less than n. Then for
T € Tab(n) with T+ A, we have

er=er(\) = g7 > gs =gr ) &s8s

S=A S>A
= ) grgsgs = D Sr358s8s = gr&T = &1
S>A S—A

Note that the penultimate equality above is valid because T is the only path of
shape A whose restriction of length n —1 is T. ]



Canonical idempotents of multiplicity-free families 29

It is illuminating to introduce a global Gelfand-Tsetlin basis for A, at this
point.

Fix a Gelfand-Tsetlin basis {vr | T+ A} for each irreducible V*, A € Irr(n).
We may identify the algebra Endy (V) with the matrix algebra Maty; 2 (k) by
means of the basis. Let ¢, be the k-linear endomorphism of V* mapping vr
to vs and all other vy to 0. The set

{ﬁﬂé,T |S, T )‘}

is a basis of Endg(V*); under the identification Endy(V*) = Matgy, 2 (k), it
corresponds to the basis of matrix units. The desired global Gelfand-Tsetlin basis
of A, under the isomorphism (1.1) is the disjoint union

(1.4) || {ok 15T}
A€elrr(n)

This basis is uniquely determined by the choice of Gelfand—Tsetlin basis {vr} for
each V* e Irr(n), but it depends on those choices. Note that gagl,T . ¢5,T' =0 for
A # p; this follows from the equality Hom A,,(VA, V#) = 0, which is true by
Schur’s Lemma. Hence the basis (1.4) satisfies

(1.5) 0er- 0k =81 brs vh

where § is the usual Kronecker delta. In particular, each @{T is an idempotent.
We note that (1.5) implies that the basis (1.4) is a cellular basis in the sense of
[GLI.

The above allows us to model the algebra A, isomorphically as the
matrix algebra consisting of all N x N block diagonal matrices, where
N = et dimk V4, such that the block indexed by each A is a full matrix
algebra of d x d matrices over k, where d = dim V*. Of course, since the
Gelfand-Tsetlin bases of the irreducible representations are unique only up to
choice of scalars, this model depends on those choices. However, being products
of the unique central idempotents, the &7 themselves are independent of the
choices.

Corollary 1.8. Under the identification A, = @ ciermy Endx (V?) of (1.1), the
primitive central idempotent (1) corresponding to any A € Irr(n) satisfies the

identity
s(A) =Y ¢t

T—A

Likewise, for any path T+ A in B we have the identity

A
ET — (pT,T'
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Proof. To prove that e(A) = > 1, w{T observe that both sides act as one on V4
and as zero on all other irreducibles W 2 V*. Similarly, the equality e = G”%,T
follows from the fact that both sides act the same on all V# (u € Irr(n)). [

Remarks 1.9. (a) Let &, be the maximal commutative subalgebra of A,, defined
above. By Proposition 1.6, it is spanned by the idempotents er. Then it is
clear from (1.5) and Corollary 1.8 that the global Gelfand—Tsetlin basis {rpé’T}
is a basis consisting of simultaneous (left or right) eigenvectors for the action
of &, by left or right multiplication. To be explicit: an arbitrary element
Y ucuey of &, acts on qog}’T by left multiplication as the scalar c¢s and by
right multiplication as the scalar cy.

(b) Similarly, as already noted in Proposition 1.5, the basis {vr : T — A} of
V* is a basis of simultaneous eigenvectors for the action of A, . To be
explicit, the element ) ;crer as above acts as cr on the basis element vr,
for each T.

(c) The decomposition A, = @Drejy(y) AneT, Which is a decomposition of A,
into a direct sum of irreducible left ideals, is actually a “weight space”
decomposition for the action of &, by right multiplication, in the sense that
each element of A,er is an eigenvector for the right action of an arbitrary
element ZUEIrr(n) cyéy of A&,, of eigenvalue cy. A similar remark, with left
and right interchanged, holds for the decomposition Ay = @Drejr(n) ETAR -

Thus, we see that in some sense the role of the Gelfand-Tsetlin algebra &), in
the theory of multiplicity-free families is analogous to that of a Cartan subalgebra
in the theory of Lie algebras.

2. Central idempotents via interpolation

The primitive central idempotents can be computed by a type of Lagrange
interpolation, provided that a generator of the center is available. This applies
to an arbitrary split semisimple finite dimensional algebra A, so we temporarily
drop the assumption that the algebra fits into a multiplicity-free family.

Note that {¢(A) | A € Irr(A)} is a basis for the center Z(.A). So any element
z € Z(A) is uniquely expressible in the form

o Z aj;e(A).

A€lrr(A)

It follows that z -&(1) = a; e(A) for all A € Irr(A). Call the tuple (“l)xelrr(A)
the (eigen)spectrum of z. A spectrum is simple if it has no repeated entries.
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Lemma 2.1. (a) An element z € Z(A) generates Z(A) if and only if its
spectrum is simple.

(b) If k has at least as many elements as |Irr(A)|, the center Z(A) is generated
(as an algebra) by a single element.

Proof. (a) Regarded as a linear operator on Z(.4) by multiplication, the

element z is diagonal with respect to the basis {s(1) | A € Irr(A4)}. Let

S ={a) | A € Irr(A)} be the set of distinct eigenvalues of z. The minimal

polynomial of z is [[,cg(z —a). Let m = |Irr(A)| = dimy Z(A). Clearly,

the element z generates Z(A) if and only if the set {I,z,...,z""!} is

linearly independent. This is true if and only if the minimal polynomial of z

has degree m. So z generates Z(.A) if and only if it has simple spectrum.

(b) Choose m distinct elements of k, say ay,...a,. Choose any enumeration

Al,..., Ay of the elements of Irr(A). Then z = a;e(A1) + -+ + ame(An)
has simple spectrum, hence generates Z(A).

O

Remarks 2.2, (a) If z =), a; ¢(A) is a generator of Z(A) then the change of
basis matrix expressing the powers 1,z,...,z™"! in terms of the idempotents
g(A) is a Vandermonde matrix in the a,’s.

(b) If the field k is large compared to m = |Irr(A)|, there are many generators
of Z(A). In fact, if k is a finite field of g elements, then the probability
P(q) that a randomly chosen element of Z(.A) actually generates the center

is
—1D-(g—m+1) 1 m— 1
P(q):q(q ) mq =(1——)---(1_—),
q q q
Evidently, limg_o P(q) = 1.

The lemma leads immediately to an interpolation formula for the ¢(1), provided
that one can find a generator and compute its spectrum.

Proposition 2.3. Suppose that z is a generator of Z(A), with spectrum
(ax | A € Irr(A)). Then the polynomial

@@= ]

ay —da
pelr(A): ustd “A T Cw

Z—ay

is equal to (L), for each A € Irr(A).

Proof. 'This is immediate from the fact that [ ¢j.p4)(z —@yu) = 0, which implies
that
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01 (2) - &(p) = 8y, (R).
Hence Q;(z) = Q1(2) -1 =2 cirr(a) Qa(2) - £(n) = (2). [

The formula in Proposition 2.3 is useful only if we have a way of retrieving
z’s spectrum without already knowing the central idempotents. At least in
characteristic zero, this can be done whenever the irreducible trace characters
are known.

Proposition 2.4 ([Ram4, Lemma 1.9]). Let x* be the trace character of V* for

any A € Irr(A). Suppose that k has characteristic zero. Writing z = ), a; e(4),
x*(2)
x*(1)°

we have a) =

Proof. For any v € V*, z acts as ay; i.e., z-v =a(A)v, so trace(z) on V* is
equal to (dimk V*)a, . In other words, x*(z) = y*(1)a,. O

The above analysis leads to a probabilistic algorithm for computing the
primitive central idempotents.

Algorithm 2.5. Suppose that k has characteristic zero. Then to compute all the
central idempotents &(A),

(a) Pick a random z € Z(A) and compute its spectrum (using Proposition 2.4
or otherwise). If the spectrum is not simple, try again.

(b) Once a generator z with simple spectrum is found, use Proposition 2.3 to
compute the £(A) for all A € Irr(A).

If this can be carried out, the formulas thus obtained will express the (1)
in terms of polynomial expressions in some random central element. One would
usually prefer to have expressions for the e(A) in terms of elements that are
understood in some explicit way. At the least, one would prefer to understand
how the chosen central generator z interacts with some set of standard generators
for the algebra A.

Example 2.6. Let A = H,(n) be the Iwahori-Hecke algebra corresponding to the
symmetric group &,, over a field k such that 0 # g € k, and assume that H,(n)
is split semisimple. In [DJ], certain g-analogues of the original Jucys—Murphy
elements in k&S, were constructed in H,(n). As pointed out in [OP, §8.1], their
sum Z, has simple spectrum, hence is a generator of the center Z(#,(n)).
Thus the formula in Proposition 2.3 computes the primitive central idempotents
e(A) € Hy(n) for each A Fn.
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Example 2.7. Let A = k&, be the group algebra of a symmetric group over a
field k of characteristic zero. Let z, be the formal sum of all the transpositions in
Gy, regarded as an element of kS, . This is precisely the element obtained from
the element Z, in the previous example, if ¢ is specialized to 1. The central
element z, generates Z(kS&,) for n = 2,3,4, and 5, but for n = 6 it fails to
do so. The eigenvalues of zg on the irreducible modules indexed by partitions
(4,12%) and (3,3) coincide. Likewise for (3,13) and (2%). At this writing, we do
not know of any satisfactory uniform choice of elements z, € k&, generating
the respective centers. This seems to be an interesting open problem.

To conclude this section, we mention an alternative approach to computing
the primitive central idempotents for A. Recall that if A = CG for a finite
group G, Frobenius gave a formula for £(A) in terms of the simple character
X‘(l;. This result was extended to split semisimple finite dimensional algebras in
characteristic zero by Kilmoyer; however, it involves inverting a (dim .4) x (dim .A)
matrix. See Appendix A for a brief exposition.

3. Generalized Jucys—Murphy sequences

Now we return to the study of multiplicity-free families {A4,}n,>0 and the
problem of computing the canonical idempotents {ey | T € Tab(n)}, which form
a basis of the (commutative) Gelfand—Tsetlin subalgebra X, (n > 0). Extracting
key elements from the work of Jucys and Murphy, we show how a carefully
selected sequence of elements (one from each A, ) can be used to effectively
solve this problem.

Before we begin, we apply the results of the previous section to this end.
Given a sequence (z, € &, | n > 1) of center-generating elements, i.e., elements
satisfying (z,) = Z(A,), we reach the &7 in two steps:

(i) use Propositions 2.3 and 2.4 to compute the g(1);

(ii) use Definition 1.3 to compute the &r.

So the problem is solved, provided one can find a sequence of center-generating
elements. However, as noted in Example 2.7, even for the family of group algebras
of symmetric groups, such a sequence is not known.

Murphy [Mur] found a non center-generating sequence of elements — known
independently to Young [You] and Jucys [Juc] — and applied them to give a
new construction of Young’s seminormal form of symmetric group algebras. In
recent years, analogues of such elements have been found in a number of other
multiplicity-free families. The two key properties of the Young—Jucys—Murphys
elements are abstracted in the next definition. But first, some notation.
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From the definition of A}, we have a sequence of inclusions

(3]) X1 C---C Xyq C A,

Now given Jy € &1, Jo € &»,...,J, € &), the inclusions (3.1) imply that
Ji,Jay ..., Iy € &y . Since {er} is a basis of X,, we have scalars cy(k) € k, for
each k = 1,...,n, such that

(3.2) Jk — ZTGT&b(n) CT(k) 8]’.

In this way we associate an n-tuple cr to each T € Tab(n),

(3.3) &y = (cT(l), e ,cT(n)) e k".

We call this n-tuple the T-content for the sequence Jy,...,J,.

Definition 3.1. Let (J, | » € N) be a sequence of elements such that J, € &,
for each n. We say that the sequence is:

(a) additively central?® if the nth partial sum Jy +--- + J,—1 + J, belongs to
Z(A,), for all n € N; and

(b) separating it X, = (J1,J2,...,Jp), for all n € N.

The sequence is a Jucys—Murphy sequence (JM-sequence for short) if it is both
additively central and separating.

To explain our terminology, we mention that additively central sequences allow
for ease of computation of the content vectors (Proposition 3.3), while separating
sequences allow content vectors to distinguish different paths S,T € Tab(n)
(Proposition 3.5).

Proposition 3.2. JM-sequences in multiplicity free families always exist, provided
that the underlying field is infinite.

Proof. Let (zp)nen be a center-generating sequence, which exists by Lemma
2.1(b). Then putting J, := z, — z,—1 (and stipulating that zo = 0), it is easy to
check that (J,)nen is a sequence that is additively central. Assuming inductively
that X,_; = (J1,...,Jp—1), we have

Xn = (Xn—la Z(An)) = (Xn—lazn) == (X!b—ls Jn) = (']19"" Jn)
This shows that (J,),en is also separating. Ll

3 In some multiplicity-free families, one can find multiplicatively central sequences. These sequences,
which were considered in [GG2], have the property that the partial product J; J2 --- J, belongs to Z(A,),
for all » € N, and furthermore that it acts as a nonzero scalar on each ¥+, A € Irr(n). The results in
this section are equally valid in the multiplicative case, modulo a few adjustments that we leave to the
reader.
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We next investigate the independent notions of additively central and separating
sequences before returning to JM-sequences for our main result (Theorem 3.11).

Let (Ji)ken be an additively central sequence. As z, = Y p_, Jk € Z(An),
it acts as some scalar a; on any irreducible representation V*, for A € Irr(n).
Similarly, z,—; = 2;11 Jr € Ay—1, S0 z,—1 acts as a scalar a, on any V¥, for
w € Irr(n—1). The next proposition shows how these scalars determine the nth
eigenvalue cr(n). (Recall from Section 1 the construction of T € Tab(n—1) for
any T € Tab(n).)

Proposition 3.3. Let (Ji | k € N) be an additively central sequence of elements
in a given multiplicity-free family {A, | n > 0}. For any n, let A € Irr(n). For
any T A we have c1(n) = a; —a,, where T u.

Proof. By hypothesis, we have J, = z, —z,—; for all n € N (where we set
zo = 0). Then z, acts by right multiplication as a; on vr. By hypothesis we
have vy = vy since T has the form

T=Ao—> A1 = - = Ay1 = Ap),

where A, = A and A,_; = p. So the element z,_; acts as the scalar a, on
vr, and thus by linearity J, = z, —z,—1 acts on vy as the scalar a; —a, . The
result is proved. Ll

Remark 3.4. Note that Proposition 3.3 says that the eigenvalue cr(n) depends
only on the last edge A,—; — A, of the path T in the branching graph. So,
whenever we have an additively central sequence in our multiplicity-free family,
it makes sense to label each edge in level n of the branching graph by its
corresponding eigenvalue cr(n). Figure 1 gives an example of such a labeled
graph.

Let (Jn)nen be any sequence with J, € &), for each n. In the proof of the
following result, which characterizes separating sequences, we will focus on the
T-contents one coordinate at a time. Put Wt(k) := {cr(k) | T € Tab(n)}. This is
the set of eigenvalues of the operator J; acting on the various er.

Proposition 3.5. Given a sequence J, € Xy, Jo € X>,...,Jy, € Xy, and
corresponding content vectors ct, the following are equivalent.

(a) For all S,T€Tab(n), S=T < c¢s =cr.

®) (J1y...,J5) = Xy.
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Proof. (a) = (b). We aim to show that er € (J1,...,J,) for each T € Tab(n),
which would complete this half of the proof. To this end, note that the polynomial
ET(J) = ET(Jl, 5340 Jn) defined by

Jy—c
Erld) = H [ CT(I;C)_C

k=1 ceWt(k)
cF#cr(k)
is well-defined as an operator on A, (acting by multiplication). Given S # T,
Et(J) acts on the basis element &g as

cs(k) —c)e
Ev(J)es = 1_[ l—[ ( i(())_) - 0,
k=1 ceWt(k) )=
cFcr(k)
since cs(k) is among the ¢ € Wt(k) and c¢s(k) # cr(k) for at least one k, by (a).
A similar calculation shows that E7(J) et = er. Hence

Er(J) = Ex(J) - ) & = Y _ Er(J)es = er,

SeTab(n) SeTab(n)
and hence &7 € (Jq,...,Jy), as required.

(b) = (a). Assume that S, T are paths such that ¢cs = ¢t. We show that S=T.
Note that for any polynomial F(Jq,...,J,) € {J1,...,Jn), F acts on vy and vs
by the same scalar, namely F(cy(1),...,c1(n)) = F(cs(1),...,cs(n)). Under the
hypothesis (b), i.e., {J1,...,Jn) = X, we know that ey is such a polynomial.
Since

er-vy=vr and é&r-vs = 8rsvs,

we must have §rs = 1. So S =T. The converse implication, that S =T implies
¢s = ¢, is trivial. L]

Note that if X, = (Jy,..., J,) then the above proof gives the explicit formula

(3.4) =B =[] [] 22,

k=1 cewigey STH) — ¢
c#er(k)
expressing the canonical idempotents er in terms of the separating sequence.
(A similar interpolation formula appears in [Mur] in the context of symmetric
group algebras.) We find another interpolating polynomial for the ey, having
significantly lower degree than this one, in Theorem 3.8.

Proposition 3.6. Let (J; | k € N) be a separating sequence in the multiplicity-
free family { A | k > 0}. Suppose that S, T € Tab(n). Then
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(@) cr(k) = cs(k) for all k <n.
) If S=T but S#T then cs(n) # cr(n).

Proof. (a) This follows from (3.2) and its analog for Tab(n—1), and the recursive
description et = er&(A) in Remark 1.4. Specifically, we have

CT(k)ET =Jr-e1=Jr- STS(A) = Cf(k){;‘f&(/‘\) = Cf(k) ET

for any k <n.

(b) Since S =T, it follows from part (a) that cs(k) = cr(k) for all k < n.
If S# T and cs(n) = c1(n), then ¢s = ¢r and we reach a contradiction with
Proposition 3.5. ]

Proposition 3.6 implies that the following polynomial is well-defined.

Definition 3.7. Let (J, | n € N) be a separating sequence in a multiplicity-free
family. For any T € Tab(n), put

Pr(Jy) = ]]

Jn —cs(n)
SETibi cr(n) —cs(n)
SAT =T

The next theorem shows that these polynomials can be used to recursively
compute the idempotents er. It extends [Gar, Theorems 3.4, 3.5] from symmetric
group algebras to multiplicity-free families. First, we record some basic properties
of the Pr(Jy). Given S, T € Tab(n), we have

(3.5) Pr(Jp) - e1 = er
(3.6) Pr(Jp)-es=0if SEZTbut S=T.
The proof is an easy calculation from the definition.

Let T= (1 = A1 = -+ — A,) € Tab(n). In the next result, T[k] denotes the
subpath up to vertex A; of the path T, so, e.g., T[n—1]=T.

Theorem 3.8. Assume that (J, | n € N) is a separating sequence. Then, for any
T € Tab(n), er = e7 Pr(Jn). Hence, e = [x—; Priy(Ji) -

Proof. We prove the first equality, as the second equality follows immediately
from the first by induction on n. We claim that et Pr(J,) acts the same as et
on all basis elements {es | S € Tab(n)} of A, . That is,

g7 Pr(Jy) - &8s = 815 85
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for any S € Tab(n). There are three cases to the claim. First, if S =T, then by
(3.5) we have
&T PT(J,I) CET = EFET = STETS(X) = €T,

which proves the claim in case S = T. Next, if S# T but S=T then the claim
is immediate from (3.6). So only the case S # T and S # T remains. In this case
we note that X,_; C A, and so &7 and J, commute. Then

&7 Pr(Jn) - &s = Pr(Jy) e5e58(n) = 0,

where S +— . This completes the proof of the claim. The recursion formula now
follows, since the claim implies that

er Pr(Jn) = &7 Pr(Jn) - 1 = Yseaben) &7 Pr(Jn) - &5 = &1,
as required. ]

We now return to JM-sequences. Our main result (Theorem 3.11) is a recursive
formula for the primitive central idempotents analogous to Theorem 3.8. The
following lemma holds the key ingredients. If T € Tab(A) we say that T has type
A and write type(T) = A.

Lemma 3.9. Assume that (J, | n € N) is a JM-sequence in a multiplicity-free
family {A, | n > 0}. Given any T € Tab(n), the content c1(n) depends only
on type(T) and type(T). In particular, the polynomial Pr(J,) in Definition 3.7
depends only on type(T), type(T).

Proof. The first statement follows immediately from Proposition 3.3. The second
is immediate from the first and the definition of the Pr. [

Hence, the following notation is well-defined.

Definition 3.10. Suppose (J, | n € N) is a JM-sequence and T € Tab(n). If
A = type(T) and p = type(T) then we write P}(J,) = Pr(J,).

We now arrive at the promised recursive description of the central idempo-
tents &(A).

Theorem 3.11. Assume that (J, | n € N) is a JM-sequence in a multiplicity-free
family. For any A € Irr(n), we have

e(A) = ) PiUn) (),
W

where |1 varies over the set of immediate predecessors of A in the branching
graph B.
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Proof. We have (1) = Ztype(T)= 3 €1- By Theorem 3.8 and the above lemma, we

have
s = Y sfPT(J,,)=Z( > ef)P;(Jn).

T: type(T)=A w T: type_(T)=/1,
type(T)=u

To complete the proof, it suffices to show that

> er=e).

T: type(T)=A,
type(T)=p

This conclusion is justified since any path T € Tab(n—1) of type u extends
uniquely to a path T € Tab(n) of type A by the branching rule 1.1(c). Thus, the
sum on the left hand side above is a complete sum over all paths in Tab(rn—1)
of type . The result follows. ]

4. Application: Symmetric group algebras

Let G, be the symmetric group on n letters and k a field of characteristic
zero. It is well known that the family {kS, | » > 0} is multiplicity-free (we take
kSo = k); see [VO, Theorem 2.1] for a proof of this fact from first principles.
Indeed, this multiplicity-free family is the motivating example for our paper.

Vershik and Okounkov [VO] give a complete and compelling account of the
representation theory of symmetric groups from the multiplicity-free inductive
viewpoint. In particular, they

e Compute the spectrum of the Young—Jucys—Murphy generators.

e Show that the set of standard tableaux with n boxes is in bijection with
the set of all paths in the branching graph of length n; this also proves the
branching rule.

e Construct Young’s seminormal and (when k = C) orthogonal forms for the
irreducible representations.

e Compute the irreducible characters (Murnaghan—Nakayama rule).

We cannot improve upon their story. But our story is about idempotents in
multiplicity—free families, so we are content to explain just enough representation
theory to be able to compute the canonical idempotents

{er | T a standard tableau with n boxes}

constructed in Definition 1.3. We also show that these idempotents coincide with
the classical seminormal idempotents constructed by Young.
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We work with right modules in this section, in deference to Schur—Weyl
duality, discussed in the first paragraph of Section 5. Writing i? for the image
of i under a permutation o, we define the product ot of two permutations
by i’" = (i?)", in order that products of permutations agree with products of
their Brauer diagrams. We take for granted that the partitions of »n index the
isomorphism classes of irreducible representations and the set of standard tableaux
with n boxes is in bijection with the set of all paths in the branching graph of
length n. Under this bijection, the path T as defined in Section 1 corresponds
to the standard tableau T obtained from the standard tableau T by discarding
the box containing the number 7. The labeled branching graph for this family is
depicted in Figure 1.

FiGure 1
Branching graph for the multiplicity-free family {k&;,}.
The edge labels are computed in Proposition 4.3.

Young’s construction of the irreducible representations is in terms of the
so-called Young symmetrizers. Let us recall the definitions; see, e.g., [Ful].

Definition 4.1. Given a tableau T of n boxes, let R(T) be the subgroup of G,
consisting of all w which stabilize the rows of T; similarly, let C(T) be the
subgroup of &, consisting of all w which stabilize the columns of T. Put

a1 = > werm W br = > wecqn sgn(w) w.
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The sums ar, by and their products arby, brar taken in either order are called
Young symmetrizers. We put

1 1
¥1 = maTbT = m Z v Z sgn(w) w,

veR(T) weC(T)

where h(A) = #’1) and n(A) is the number of standard tableaux of shape A.
(Then h(A) is equal to the product of all the hook lengths in T; this depends
only on the shape A of T.)

If we &, and T is a tableau with n boxes then w - T is the tableau
obtained by replacing each number i € T by w(i), for i = 1,...,n. We have
R(w-T) = wR(Mw™! and C(w-T) = wC(T)w~!. Thus

4.1) Oy T = waTw_l, byt = whrw ™!
for any w € G,,. The yy are idempotents in kS, ; these idempotents are sometimes
called Young’s idempotents. The right ideal

(4.2) S* = y1k&,

is an irreducible k&, -module, where T is any standard tableau of shape A. It
is known that y1k&, =~ yrk&, if and only if T,T’ have the same shape, so the
isomorphism type of the right ideal yrk&, depends only on the shape of T. It
is also well known (see, e.g., [CR2, §28]) that

(4.3) kG, =P yrk&n,
T

where the sum is taken over the set of all standard tableaux T of n boxes. This
is a decomposition as a direct sum of simple right ideals, but unfortunately the
family {yr} of primitive idempotents is not pairwise orthogonal,* as already noted
by Young; see [Ste] for an explicit counterexample.

We put z, equal to the formal sum of all transpositions in &,, regarded as
an element of k&, . This conjugacy class sum is an element of the center of
k&, for each n. We wish to show that the elements

4.4) Jh=zp—zp1=0,n)+2,n)+---+(n—1,n)

(written in the cycle notation for permutations) define a JM-sequence in the sense
of Definition 3.1.

4 Not quite, but almost! It can be shown (see, e.g., [Ste, Prop. 1]) that for each pair T, T’ of standard
tableaux of n boxes, at least one of the products yr-yy, yr -yr must be zero.
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Proposition 4.2. Let A be a partition of n and T a standard tableau of shape
A. Then the central element z, acts by right multiplication on ytk&, as the
scalar ay = E(A) — £()), where A is the transpose of A and £€(A) = Y (Ag”),
summed over the parts A = (A1, A2,...) of A.

Proof. Since z, is in the center of k&, , we know there is a scalar a; € k with
v-z, =ayv, for all v € ytk&,,. In particular, yt-z, = a, yr. By definition of
y1, this equality becomes

Yo Y senBap - D G.j) = ax ), Y sga(B)ap,

aeR(T) BeC(T) 1<i<j=<n aeR(T) BeC(T)
where (i, j) denotes the transposition interchanging i and j. To compute a; we
compare coefficients of the identity permutation on both sides of the equation,

which gives
Z Z Z sgn(B) dup,i,j) = aAr,

a€R(T) BeC(T) 1<i<j<n
where 6, =1 if 0 =t and 0 otherwise (for 0,7 € G,). It is easy to see that
Sap,i,jy = 0 unless i and j lie in the same row or column of T, since otherwise
the product aff must change more than just i and j. So we are reduced to
counting solutions of the equation «f = (i, j) of the form o = (i, j) where i, j
lie in the same row of T or 8 = (i, j) where i, lie in the same column of
T. In other words, we need to count the number of pairs (i, j) with i < j ina
row of T, and, with opposite sign, the number of pairs (i, j) with i < j in a
column of T. This gives the desired result ay = §(1) — £(1'). ]

Here is a combinatorial procedure for computing the statistic £(1) for a given
shape A. Insert the numbers 0,1,2,...,A,, — 1 in order into the mth row of the
diagram of shape A, for each m. Then clearly £(A) is equal to the sum of the
numbers in the boxes. Note that the insertion process just described is equivalent
to inserting a j — 1 in each box of the jth column of the diagram. So £(A) is
the sum of all the numbers in this numbering.

On the other hand, if we insert i — 1 in each box of the ith row of the
diagram of shape A, then £(A’) is the sum of all the numbers in this numbering,
where A’ is the transpose of A.

This implies that if we attach the statistic (j —1)—( —1) = j —i to the box
in row i and column j in T (this statistic is called the content of the box) then
the sum of all the statistics is ay = £(A) — &(A’). Thus, we see that

where the sum is taken over the positions (i, j) indexing all the boxes in the
diagram of shape A. This interpretation of a; will be used to prove the following
result.
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Proposition 4.3. Suppose that T € Tab(n) has shape A. For any 1 <k <n, the
eigenvalue cy(k) of the action of Ji on the Gelfand—Tsetlin basis element vy
indexed by T is the content j —i, where the box containing k is located in row
i and column j in the tableau T.

Proof. We proceed by induction on n. For n = 1 the result is clear: ¢1(1) =0
as J; =0.Let n > 1 and let T € Tab(n) be a standard tableau of shape A, some
partition of »n. By the inductive hypothesis, cs(k) has the desired value for any
k <n—1. By Proposition 3.6(a), c1(k) = c5(k) for all k <n, so cr(k) has the
desired value for all £ < n. Thus, it suffices to compute the value ct(n).

By Proposition 3.3 we have cr(n) = ap —a,, where T — p. By equation
(4.5), it follows that ct(n) = aj —ay, = j —i, where the box in T containing n
occurs in position (i, j). The result is proved. (]

Remark 4.4. If we record the statistic j —i in each box (i, j) of the Young
diagram of shape A, then the resulting tableau is constant along diagonals. Recall
that a box in a Young diagram of shape A is removable if excising it results
in another Young diagram. Similarly, a box not in the shape A is addable if
including it results in a Young diagram. Since removable boxes are always the
last box in their row or column, it is clear that no two removable boxes in A can
lie on the same diagonal. The same conclusion applies to addable boxes. Hence,
no two removable (or addable) boxes for a shape A can have the same content.
This is needed in the proof of Corollaries 4.5 and 5.10.

Corollary 4.5. The sequence (Ji | k € N) is a JM-sequence in the sense of
Definition 3.1.

Proof. Since Ji = zx —zx_1 and zx € Z(kSy) for all 1 < k < n, it follows that
each Jr € A, and that (Ji)gen is additively central. We use Proposition 3.5 to
verify that it is also a separating sequence. Proposition 4.3 computes the content
vectors c1 = (c7(1),...,c1(n)) for each T € Tab(n).

Let T[k] denote the standard tableau obtained from T € Tab(n) by removing
all boxes containing numbers larger than k. Assume that S # T. We show
¢s # cr. Find the smallest k < n at which the tableaux S,T differ. That is,
Slk — 1] = T[k — 1], yet S[k] # T[k]. By Remark 4.4, the contents of the addable
boxes yielding S[k] and T[k] differ. Appealing to Proposition 4.3, we conclude
that cs(k) # cr(k). This completes the proof. ]

For the sake of completeness, we give another formula for the central
idempotent £(A) in terms of Young symmetrizers; it was obtained by Young
in his first two papers, published in 1900 and 1901. (See [Cur, Ch. II, §5] for a
historical account of these developments.)
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Proposition 4.6 (Young). For each At n, g(A) = ﬁ > 1 Y1, where the sum is
taken over all tableaux T (not necessarily standard) of shape A.

The proof is an easy exercise, cf. [Sim, Cor. VI.3.7].

Recall that Young [You] found a family of primitive idempotents {er}, also
indexed by the set of standard tableaux of n boxes, which are pairwise orthogonal
and sum to 1. These idempotents are part of Young’s seminormal form, so we
call them Young’s seminormal idempotents. R. M. Thrall [Thr] (see also [Gar,
2.16], [Las]) found the following recursive description of the ey. For each standard
tableau T of n boxes, the element er of k&, may be defined by

er-yr-eyf ifn>1,

4.6 etrT =
e ! {1 if n =1,

where T is the standard tableau obtained from T by removing the box contain-
ing n.

So we now have two families {er}, {e7} of pairwise orthogonal primitive
idempotents, both indexed by the set of standard tableaux of n boxes. One might
ask how the two families are related. Here is the answer.

Proposition 4.7. For any standard tableau T of n boxes, we have &1 = er. So
the canonical idempotents of Definition 1.3 are Young’s seminormal idempotents
in the case of symmetric group algebras.

Proof. This follows immediately from Corollary 1.7 once we observe that eser = et
for all standard tableaux T. Indeed, this relation is clear from Thrall’s recursive
definition of the er; see (4.6). ]

Remark 4.8. Thrall’s recursive description of the seminormal idempotents depends
on the Young symmetrizers, while the simpler recursion obtained by the methods
of this paper does not.

Examples 4.9. We compute a number of (1) recursively using Theorem 3.11 and
Proposition 4.3, referring to the branching graph in Figure 1. Of course ¢(n) = 1.

Primitive central idempotents for n = 2:
e(@) = PPe(@) = PP = %(Jz +1)
¢@ = Ple@ =Pl =15 —1).

Primitive central idempotents for n = 3:

eEm) = PEP @) = $(J3 + 1) £()
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@) = PS e(@) + B 6@ = —L(J5 - e@) + 1 (/3 +2) @

() = B} o = 13— 1) 0.
Primitive central idempotents for n = 4:

e(mm) = P  e(am) = 3(J4 + 1) e(m)
e@) = PO e(am) + PBEFDS(BH) =—1(Js—3)e(am) + t(Js + 2)Js e

e®) = Bz o) = ~4(Js +2) (Vs — ) s@)

e(f) = PBEJS(EP) . Pﬁﬁjs(ﬁ) = §(Ja = 2Jae@) + ;(Ja + 3 &(f)

i

s(f]) = B e(B) = —5(a = D).

We note that the summands in each &(A) are the various &7 in that block, so the
&1 are recoverable from the above expressions.

5. Application: Brauer algebras

In [Bra], Brauver defined a finite dimensional algebra 8,(m) over C in order
to quantify the invariants of orthogonal groups. If E is an m-dimensional vector
space over C then GL(E) = GL,,(C) acts naturally (on the left) on E, this action
extends diagonally to one on E®". The group &, acts by place-permutation (on
the right) on E®" . These actions commute, so by linearly extending the actions to
representations, the tensor space E®" is a (CGL(E),CS,)-bimodule. Classical
Schur-Weyl duality [Sch] says that the image of each representation in End¢ (E®")
is equal to the full centralizer of the other. This duality elegantly expresses the
fundamental duality between the representation theories of general linear groups
and symmetric groups.

Brauer extended the action of the symmetric group algebra to one of the algebra
B,(m) such that when the left action of GL(FE) is restricted to the orthogonal
group O(E), Schur—Weyl duality also holds for the resulting (CO(E),*B,(m))-
bimodule structure on E®". This duality relates the representation theory of
orthogonal groups and Brauer algebras. Brauer algebras also have connections to
low-dimensional topology and knot theory; see, e.g., [Kau, BW, FG].

Let k,l be positive integers of the same parity, so that k +/ is even. A Brauer
(k,1)-diagram is an undirected graph with k +/ vertices, such that each vertex is
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an endpoint of exactly one edge. Conventionally, the vertices are arranged in two
rows within a rectangle, with k vertices (the fop vertices) along the top boundary
and [ vertices (the bottom vertices) along the bottom boundary, with the edges
drawn in the interior of the rectangle in such a way that intersecting edges cross
transversally. For example, the graph

a_»
(5.1)

is a Brauer (6,8)-diagram. Edges connecting two vertices in the same row are
called horizontal edges. All other edges must have one top and one bottom
endpoint, such edges are through edges. 'The rank of a diagram is the number of
through edges.

Let k be aring and 8 € k a distinguished parameter. Multiplication of Brauer
diagrams is defined as follows. Given a (k,[)-diagram » and an (/,m)-diagram
b’, place b above b’ and identify the ith bottom vertex of » with the ith top
vertex of b’. Let N = N(b,b’) be the number of interior loops in the new graph
and let b” be that graph with its loops and intermediate vertices omitted. Then
b"” is a (k,m)-diagram, and we define

(5.2) bb' =8N (b ob'), where hbobh' =b".

The (k,m)-diagram b” = b o b’ is the composite diagram of b,b’. Note that
the parameter 8 keeps track of the number of discarded interior loops. In case
k = m we call the diagram b” simply an m -diagram.

The Brauer algebra over k with parameter 8 is denoted by B,(8), and
is defined to be the k-span of the set of n-diagrams. Extended linearly, the
multiplication rule (b,5’) — bb’ in (5.2) defines an associative multiplication on
B,(8). An identity edge in an n-diagram is an edge connecting the ith vertices
in the top and bottom rows; the n-diagram in which all edges are identity edges is
the unit element of B, (8). Brauer n-diagrams in which every edge is a through
edge will be identified with permutations; note that multiplication of Brauer
diagrams coincides with multiplication of permutations in case both diagrams are
permutations, so k&, is a subalgebra of 9B,(8). Clearly B;(8) =~ k; we agree
to interpret By (8) = k.

Let By ;(8) be the k-span of the set of (k,/)-diagrams. Multiplication of
Brauver diagrams makes this into a (B (8),B;(8))-bimodule with B (8) acting
by left multiplication and ‘B;(8) by right multiplication. This bimodule structure
will be used below to construct representations of Brauer algebras.

Semisimplicity of 8,(8) over C was studied in [Bro] in the case when § is
a positive integer: he showed that ®5,(8) is semisimple if and only if § >n —1.
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Still working over C, Hanlon and Wales [HW] conjectured that 8, (5) is always
semisimple if § € C is not an integer; the conjecture was proved by Wenzl [Wen],
who also parametrized the simple modules and established the branching diagram.
Further work on semisimplicity of Brauer algebras, including semisimplicity over
other fields, can be found in [DWH, Rui, CMPX].

We assume for the remainder of this section that k is a field of characteristic
zero and § € k is not an integer. This assumption ensures that ‘B, () is split
semisimple over k. Under this assumption, we show that the Brauer algebras
form a multiplicity-free family, identify a JM-sequence for this family, develop
eigenvalue formulas, and compute central idempotents using Theorem 3.11.

In order to simplify the notation, we suppress the parameter 8, writing
B, = B,(8) from now on. There is a natural unital embedding

t: By = By

given by sending an n-diagram to the corresponding (n+1)-diagram obtained by
appending an identity edge on the right (connecting two additional vertices). We
identify 8, as a unital subalgebra of B, ,, for each n, without further mention
of ¢.

We write (i, j) for the n-diagram corresponding to a transposition (i, j) € G, ;
this is the diagram with through edges connecting the ith and jth top vertices
to the jth and ith bottom ones, respectively, with all other edges identity edges.
Similarly, (i, j) is the n-diagram with horizontal edges connecting the ith and
j th vertices in each row, and all other edges identity edges. We set

(3.3) si=,i+1);, e =C(1i+1), any i <n.

It is easy to see that B, is generated by the s;,e; for 1 <i <n — 1. Defining
relations satisfied by these generators can be found in [Naz]. Note that ei2 = de; , SO
§le; is idempotent. Any ¢; generates the two-sided ideal spanned by all diagrams
with at least two horizontal edges; the quotient by this ideal is isomorphic to
k&, -

Our next task is to construct the irreducible (right) B,-modules. For this
purpose it is useful to apply some general observations from [Gre, §6.2].
The applicability of these ideas to diagram algebras was demonstrated in
MS, Mar, DWH, MRH, CMPX, CDVM]; here we more or less follow the
summary outline at the beginning of [CMPX]. In general, then, let A be an
algebra over a field k and e € A an idempotent. The rule

M= Me

defines an exact functor F (often called the “Schur functor”) from right 4-modules
to right edAe-modules. The functor F takes irreducible modules to irreducible
modules, or zero. More precisely, we have the following result.
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Theorem 5.1 ([Gre, (6.2g)]). Let {L(A) : A € A} be a full set of pairwise
non-isomorphic irreducible right A-modules, and let

A ={A e A:L(A)e #0}.

Then {L(A)e : A € A€} is a full set of pairwise non-isomorphic irreducible right
eAe -modules.

Note that right A-modules annihilated by e are equivalent to right A/AeA-
modules. Thus, the irreducible right A-modules L(A) with A € A\A¢ are a full
set of irreducible A/AeA-modules. If A is finite dimensional, this reduces the
problem of finding an indexing set A for the irreducible A-modules to the same
problem for the smaller algebras ede, A/AeA.

There is another functor G going from right e Ae-modules to right A-modules,
defined by G(N) = N ®.4.e¢A. This functor, which was also considered in [Gre,
§6.2], is a right inverse to F, i.e., F(G(N)) =~ N, so G is a full embedding.5
Furthermore, [Gre, (6.2e)] shows that G(/N) always has a unique maximal proper
submodule whenever N is irreducible.

In case A is semisimple, it follows that G must take irreducible eAe-modules
to irreducible A-modules (and the unique maximal proper submodule is zero).
Thus, for irreducible 4-modules M such that Me # 0, we have G(F(M)) =~ M .
So, G is also a left inverse to F. Thus, in the semisimple case, the functors F
and G implement an equivalence of categories between A-modules not killed
by e and eAe-modules. Since A =~ AeAP A/AeA by semisimplicity , and the
A-modules killed by e are the A/AeA-modules, it follows that the A-modules
not killed by e are the same as the AeA-modules. To summarize:

Proposition 5.2. If A is semisimple, then:
(a) G rakes irreducible to irreducibles.

(b) The functors ¥, G induce an equivalence of categories between AeA-modules
and eAe-modules.

Now we apply the above observations to the algebra B, , taking e to be the
idempotent &, = §~1le,_1, with e,—; as in (5.3). This immediately gives functors
F,,G,_» as above, defined by the rules

Fn(M) = Mgn’ Gfl—Z(N) = N ®En%n§n %‘n%n

for any right ®8,-module M, any right 8,_,-module N. A crucial fact about
the idempotent &, is that there is an isomorphism of algebras

5 In [CMPX], the functors F,G are called “localization” and “globalization” functors, respectively.
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(54) %n—2 = gn%ngn

for each n > 2. The isomorphism is given by the rule b — £,b§,, for b € B,_>;
note that it maps the unit element of 9B,_, to &,. Furthermore, £, commutes
pointwise with 23, _,:

(55) snb - bgl’ls fOI' all b = %n—z.

In consequence, we have B,_, = B, _2&, = §,Bp—2§, . If Irr(n) is a set indexing
the irreducible 9B, -modules and Irr" a set indexing the irreducible 8, /%5,&,B, -
modules, then it follows from (5.4) and the preceding remarks that

Irr(n) = Irt” U Irr(n — 2).

Since B, /BnénB, is isomorphic to kS, , we can set Irt” = {A | A - n}. It is
trivial to compute Ao and A; (as By = B; = k), so it immediately follows by
induction on n that

Irr(n) = {A|AFn—21 and 0<2l <n).

Now that we know an indexing set for the irreducible 8, -modules, we turn to the
problem of constructing them. We will follow the approach of [DWH], using the
(Bi, B,)-bimodule By, = By ,(8) discussed above, where k < n has the same
parity as n. Let ‘Bg’n be the span of the (k,n)-diagrams of rank (number of
through edges) strictly smaller than k. Since multiplication of diagrams cannot
increase the number of through edges, %g’n is a sub-bimodule of ‘B ,, and
hence the quotient
an = QSk,n/‘Bz,n

is a (*Bg,*B,)-bimodule. The set of (k,n)-diagrams of rank k is a complete
set of representatives of the quotient. If k¥ = n, then V' =~ k&, and
F,(V,}) = V'&, = 0. Furthermore, if k < n, then we have an isomorphism

(5.6) By {2y = V25, = VI™

as (Bg,B,—»z)-bimodules. The isomorphism arises from forgetting the rightmost
horizontal edge in b&,, for each (k,n)-diagram b. (There is a factor of §~! which
does not matter.) By restriction, since k& is contained in By, the bimodule
Vi is a (k&y, B,)-bimodule. Therefore, if A -k, we define

MO = st @ye, VY.

This is a right ‘B, -module, where S* is the Specht module considered in the
previous section. If A - n, then k = n and V! = k&,, so M*" =~ g4 a5
right B, -modules (with B,£,B, acting trivially). Clearly this is an irreducible
B, -module; indeed, it is irreducible as a k&, -module.
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Proposition 5.3. A full set of irreducible right B, -modules is the set of M®™
such that Ak, 0 <k <n, and n, k are of the same parity.

Proof. Assume that k,n have the same parity. To show that the M“" are
pairwise non-isomorphic and irreducible, we proceed by induction. We consider
the two cases kK < n and k = n. (Modules between the two cases are non-
isomorphic by Theorem 5.1.)

If Kk <n and A k, then it follows from (5.4), (5.6), and the definition of
M@ that

F, (M(/l,n)) — M(A,n)gn — S)L Ok, anén ~ S)L Ok, Vl:_z — M(A,n—2)

as right B,_,-modules. Since B, is semisimple, and M“"=2 £ 0 by the
inductive hypothesis, it follows that

Gn—2 (M(A,n—Z)) ~ M(A,n)

as right %8, -modules. Furthermore, by Proposition 5.2(a), M*" is irreducible
as a right 8, -module. Appealing to Proposition 5.2(b), we see that the distinct
MM are pairwise non-isomorphic.

In the case k = n and A F n, we have M®™ ~ §* Such modules are
pairwise non-isomorphic (and irreducible) by the remarks preceding the theorem.
This completes the proof. [

Remark 5.4. Although not needed in the sequel, to complete the picture we
describe a k-basis for M 4" This requires finding a complete set of orbit
representatives for the left action of & on the set of (k,n)-diagrams of rank k.
If b is a (k,n)-diagram, we let w(b) in & be the permutation obtained from
b by removing the horizontal edges and their endpoints. Recall from [FG, Xi]
that a (k,n)-diagram b is a flat (k,n)-dangle if 7 (b) is the identity. Then the
set of flat (k,n)-dangles is the desired set of representatives. Any (k,n)-diagram
b is uniquely expressible as a product

b = n(b)d(b),
where d(b) is a flat (k,n)-dangle d(b). It follows that the set
lved|ve §* d aflat (k,n)-dangle}

is a k-basis for M®"  where S* is any k-basis of S*.

Next, we explain why the family {8, | n > 0} is multiplicity-free. Recall that
if B is a subalgebra of an algebra A and if M is a right B-module, then the
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induced module is the right A-module Indg M defined by Indg M=M®®pA.
The functor Indﬁ from B-modules to A-modules is a left adjoint to the usual
restriction functor Resj from A-modules to B-modules, meaning that Frobenius
reciprocity holds:

Homy (Indj M, N) = Homg (M, Resj N),

where M is any right B-module, N any right A-module.

We can apply these generalities to the inclusion ¢ : ‘B,_; — B,, which
identifies B, with a subalgebra of B,. Wenzl [Wen] observed that §,°8, =
£,°B,—1 and also that the map

5.7 B,—1 — &8, defined by x — £,x

gives an isomorphism ‘B,_; = §,B, of (B,—2,B,—1)-bimodules. Note that
EnBn—1 is a left B,_»-module since &, commutes with B,_,, by (5.5). Let
Ak where k < n and k has the same parity as »n. If we restrict the B, -module
isomorphism

M(A,n) ~ Gn_z(M()L,n—Z)) — M(A,n—z) R, _, Sn%n
to B,_1, it follows that
(5.8) Resp”  MO™ o Indy#—t @2
as right *8,_; -modules. In light of Frobenius reciprocity this says that
Homg, , (Res M*" M #n=D) ~ Homg, , (M*"72) Res M ¢-"~1)

for any u 1 <n—1 where [ has the same parity as n—1. Here, we omitted the
sub and superscripts on the restriction functors for readability. Since the algebras
are semisimple, this says that

(59  [ResM@m : yaD]  — [Res MWD : pgGn=2)]

n— n—2’

where we write [M : S], for the multiplicity of an irreducible ‘B, -module S
in another ‘B, -module M . By induction, we may assume that the right hand
side of (5.9) is always O or 1. This shows that restriction from B, to B,_; is
multiplicity-free, at least for the case of k <n.

If k=n and A Fn, then M*™ =~ §* with B,£,%, acting trivially. That
is, its restriction to B,_; is a module with B, _1&,_1B,—1 C 8,&,'B, acting
trivially, so the restriction is a k&,_;-module. This means that the restriction rule
in this case is the same as the usual restriction rule for symmetric groups (which
is also multiplicity-free). This completes the proof that the family {5, | n > 0}
is a multiplicity-free family, in the sense of Definition 1.1.
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In fact, the above analysis shows that the restriction of an irreducible
B, -module M@ to B,_; breaks up into a direct sum of irreducible *B,_; -
modules M#»~1 indexed by all partitions p obtained from A by removing
or adding one box. This justifies the branching graph for this family, which is
displayed in Figure 2 below.

FiGUrE 2
Branching graph for the family {5,}

Since {B, | n > 0} is a multiplicity-free family, each B, has canonical
idempotents e7 given by Definition 1.3. These idempotents are indexed by paths
T of length n in the branching graph. The set Tab(n) may be identified with the
set of up-down tableaux, which are sequences of partitions of the form

(5.10) T= (Ao, A1, s An—1,An)

such that g = @ and, for each k, the partition Ay, is obtainable from the
preceding partition A by adding or removing exactly one box.

We wish to compute the idempotents ey by means of a sequence of JM-
elements, according to the results of Section 3. Following Nazarov [Naz], we
define elements Ji € B (k > 1) by

k—1 k—l_
(5.11) Te = (i,k)= ) G,k
i=1 i=1
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We define J; as zero. Our definition of these elements differs slightly from
Nazarov’s, in that we have removed an unnecessary shift by (§ — 1)/2. For any
n € N, the elements Jy,...,J, may be regarded as elements of 2, by means
of the embeddings B, C --- C B,—1 C B,. The following easy results can be
checked by direct computations.

Lemma 5.5 ([Naz, Lemma 2.1]). Forany k = 1,...,n, the element J; commutes
with any b € B,_,. Hence, the elements Jy,...,J, pairwise commute in ‘B, .

We omit the easy proof, which is given in [Naz]. The lemma immediately
gives the following commutation relations between the J; and the generators s;,
e; defined in (5.3). Note that the relations in part (c) differ from those given by
Nazarov because our definition of Ji differs slightly from his.

Proposition 5.6 ([Naz, Prop. 2.3]). The following relations hold in the algebra
B

(@) spJyp = s, exJ = Jeg (I #k,k+1).

®) sk —Jr+15x = ex — 1, spJer1 — Jisk = 1 — e

©) ex(Jk + Ji4+1) = (1 = 8ex = (Jk + Je+1)ek-
Proof. 'The commutation relations (a) follow from Lemma 5.5 if / > k + 1 and

from the definitions otherwise. Furthermore, it is easy to check from the definition
that the elements J; can be defined by the recursion

J1 =0, Jrv1 = SeJgsk +5p —exp (K= 1).

This implies the relations (b). Turning to (c), we have by direct computation for
any [ =1,...,k — 1 the equalities

e (k,) =ex (k +1,1) and e (k,]) =e; (k +1,]).

Combining these equalities with the obvious identities egsy = ex, e,% = 8er and
the definition of the Ji produces the leftmost equality in (c). The rightmost
equality in proved similarly. ]

Relations (a) and (b) of the proposition immediately imply the following.

Corollary 5.7 ([Naz, Cor. 2.4]). The sum z, = J1 + -+ Jy—1 + Jn is a central
element of *B,.

It remains to compute the eigenvalues of the J; on the irreducible modules
and prove that the sequence (Ji)ren iS separating.
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Proposition 5.8. Let A+ k where k =n—2] and 0 < 2] <n. Suppose that a,
is the eigenvalue of equation (4.5). Then the central element z, = J1 + -+ Jy
of B, acts on M*" = 54 Rkey Vi as the scalar By = ay + (1 -38).

Proof. This argument follows the proof of [GG2, Theorems 5.3, 5.1]. We proceed
by induction on n. The base cases n = 0, 1 are trivial, so assume that n > 2.
There are two cases.
If ] =0, then A -n and M®™ =~ S* with the ideal 9B,&,8, acting
trivially. We can write
Zy = ZnG” —Zn,
where zo" = Zi<j(i, j) is the sum of all the transpositions in &, and

Zn = Y i<j(i,j) € BpaBy. It follows from Proposition 4.2 that z, acts as
the scalar a,, so the proof is complete in case [/ = 0.
Now suppose [ > 0. In this case we use the isomorphism

MO = Gy (MP"D) = §* @, Vi ®g, 0t £nBn

from the proof of Proposition 5.3. Since the central element z, acts by a
fixed scalar on the entire module, it suffices to compute its eigenvalue on any
nonzero vector in the module, so we consider its action on ¥ ® v ® &,, where
0#£u®veS*®ge, V2. By induction we have

(u @ V)zp— = (a;L + (-1 - 8)) u® .
It follows that

U®V®E)zyn = (U BV ®E)(zn—2 + Jn—1 + Jn)
=uUuV&)in2+URVR Sn)(-]n—l -1 Jn)-

By Proposition 5.6(a) we know that &, = %e,,_l commutes with z,_,, so the
first term in the right hand side of the above is

UBVREn)zZn—2=URV)Zyp—2 ® & = (al e i == LKL == 6)) URV® En.
The second term in the right hand side is computed by Proposition 5.6(c) as
U®v®&)(Jn—1+Jn)=(1-8)u®vRE&,.

Hence, by combining the equations in the last three displays, we obtain the
equality
URv®&n)zy = (GA +1(1 _8))u®v®§n

and the proof is complete. [
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This result will now be applied to compute the eigenvalues of the J; on the
Gelfand-Tsetlin basis of the irreducible ®B,-modules.

Proposition 5.9. Suppose that A € Irr(n) and {vr | T — A} is the Gelfand—Tsetlin
basis of M*™ _ Let T = (Ao, A1,...,An) be an up-down tableau with A, = A.
Suppose that A, and Ay_, differ by a box in row i and column j. Then the
eigenvalue of Ji on the eigenvector vy is

j—i if Ay has one more box than Ay_q,

cr(k) = . .
(1=8)4+i—j if Ay has one fewer box than Ap_;.
Proof. Set zz = Zle J; and note that Jy = zx —zx_y, forany 1 <k <n.

We proceed by induction on n. For n = 1 the result is clear: cy(1) =0 as
J1i =0.Let n>1 and let T € Tab(n). By the inductive hypothesis, c5(k) has
the desired value for any k < n — 1. By Proposition 3.6(a), cr(k) = c5(k) for all
k <n, so cr(k) has the desired value for all k < n. Thus, it suffices to compute
the value ct(n).

By Propositions 3.3 and 5.8 we have cr(n) = By — B, where T~ u, and
B = ay + (1 —38). There are two cases to consider: if A = A, has one more
box or one fewer box than w = A,—;. In the first case, Propositions 5.8 and 4.3
give us B, =a, +1(1-12), and

cr(n) = Br—Bu=Jj —1I.
In the second case, f,, =a, + (I —1)(1 — &), and hence

cr(m) =Br—Bu=0-8) +i—.

This complete the proof. L]

Corollary 5.10. The sequence (Jix | k € N) is a JM-sequence in the sense of
Definition 3.1.

Proof. Since Jy =z —z;—; and zx € Z(®B¢) for all 1 <k <n (Corollary 5.7),
it follows that each J; € X, and that (Ji)ren is additively central. To prove that
it is also a separating sequence, we use Proposition 3.5. That is, we verify that
S =T if and only if ¢s = ¢y. (One direction is automatic.)

Proposition 5.9 computes the content vectors ¢t = (c1(1),...,cr(n)) for each
TeTab(n). If T= (Ao = --- = A,), we write Tlk] = (A9 — --- — Ag) for
the truncated path. Assume S # T are distinct paths of length » and find the
first level k < n at which the paths S,T diverge. So S[k — 1] = Tk — 1], yet
S[k] # Tlk]. Let S[k] — A and T[k] + v be the terminal shapes of the paths,
and let T[k — 1] — w. There are three cases.



56 S. Dory, A. Lauve and G. H. SEELINGER

Case 1: A, v are obtained by adding different boxes to w. Here cs(k) and
cr(k) are both computed using the first formula in Proposition 5.9. Appealing to
Remark 4.4, we see that cs(k) # cr(k).

Case 2: A, v are obtained by removing different boxes from . We must use
the second formula in Proposition 5.9. Appealing to Remark 4.4, we again have

cs(k) # cr(k).

Case 3: One of A, v is obtained by adding a box and the other by removing
one. Here ¢s(k) and cr(k) cannot possibly be equal, as Proposition 5.9 says that
one value is an integer and the other is not (recall that § e k \ Z).

All cases reach the conclusion that cs # ct, so the proof is complete. ]

Examples 5.11. To avoid ambiguity, we write ¢®™ (1) for the primitive central
idempotent (1) in B, . The ™ (1) can be computed recursively using Theorem
3.11 and Proposition 5.9, referring to the branching graph in Figure 2. Of course
1) (n) —

Y@ =1.

Primitive central idempotents for n = 2:

Jr—1 Jr+1
8(2)(@) = Puz 8(1)('3) = Puz = (1—28)—1 ) (1—28j;+1

Jo—(1-=-8) J
() = PP eW(g) = BP = 2500 . L]

B_ 5»-(0-8  J—
@) = PV = Py = SR 4

Primitive central idempotents for n = 3:

£¥) = PSP @) + P PE) + Py (o)

_ G332 2 U3+2)(J3-1) @) 2
= G @ + ety £ 0 +1-£92)

J
8(3)([31,) = p&" 8(2)(|:|:|) (13;-5)5_234-1) (2)(m)

@) = PEPEO)(ED) + PBjs(z)(El)

J3+8—2)(J
(J%-g(ﬁ)iff —2) (2)( ) + ( 3+3 2_)5)3+2) (2)(5)

J3+8 J
8(3)(5) ey PE? 8(2)(5) i 3+3( 2_)£ 3—1) (2)(8)
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Primitive central idempotents for n = 4:
There are eight idempotents at this level; we compute two of them:

eW(@) = PSP e¥) + PR ) + PR e

 (JaF8=1)(Ja+1) (3 et D(Ta—=3) .(3) (Ja+8)(J7—DJs (3
= St D Og) + st e Do) — Sagamar O @)

£9@) = PY e O@) + PE eV(am)

_ T -
— (J4+8)(J§?éi22)%(14+2)14 8(3)(EF') _( 4+8+418)(J4 3) 8(3)(m)_

We note that the summands in each £ (1) are the various et in that block, so
the er are recoverable from the above expressions.

Remark 5.12. The recent paper [KMP] explores a completely different technique
for computing central idempotents in semisimple Brauer algebras. Their technique
is specific to that context.

A. Primitive central idempotents via trace characters

We give a brief exposition of another approach to computing the primitive central
idempotents in a split semisimple finite dimensional algebra A. The approach
generalizes a classical formula of Frobenius for the central idempotents of group
algebras CG for finite groups G (see Corollary A.2 below) in terms of the
irreducible characters of G. We show that the irreducible trace characters of A
still uniquely determine its central idempotents, provided its defining field k has
characteristic zero.

Here, it is not necessary that A fits into a multiplicity-free family. The
requirement on k guarantees invertibility of the (dim.A) x (dim.4) matrix of the
natural trace form on A. A slightly more general result (due to Kilmoyer) can
be found in [CRI, Proposition (9.17)]; see also [Raml].

Definition. Given any (not necessarily irreducible) finite dimensional .4-module
V, let x¥ be the trace character of V, defined by

x" (a) = trace(p" (a)),

where ¢¥ : A — Endg(V) is the representation corresponding to the .4-module
V.If [V]=A for A € Irr(A), we write y* in place of yV .

Let p = y* be the trace character of the left regular module; i.e., the
character of A regarded as a module over itself by left multiplication. Since
Endg (V*) = (V)* ® V4, it follows from (1.1) that
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A= @, (dim vyt

as left .A-modules. Since characters are additive on direct sums of modules and
since x*(1) = dim V%, it follows that

(A1) p=23,dimV*) =3, )yt

The problem of finding central idempotents £(A) is now framed as follows.
Given a fixed basis B = B(A) of A, write

(A2) g(A) = Y pepchb

and try to compute the coeflicients c;} € k. To that end, we may multiply both
sides of (A2) by a basis element »’ € B, and then apply p to both sides to get

(A3) PE@IB) = Ypep 0B €}

On the other hand, we can use (A1) to express p(g(A)b’) as

(A4) pe()b') = 3, x* (M x*(e(Mb') = x*(1) x* ().

(The last equality in (A4) comes by multiplying the equation 1 = Z,u e(p) on
the right by »’, then applying y* to both sides.) Note that y*(e(u)b’) = 0 for
A # u, since ()b’ belongs to a block upon which y* acts as zero.

Finally, we combine (A3) and (A4) to obtain

(AS) > pep pbB) e} = (1) ).

For fixed A, we may regard (A5) as a linear system (one equation for each »’)
that govern the values CZ}- This leads to the following result.

Proposition A.l. Suppose a split semisimple finite dimensional algebra A has
underlying field k of characteristic zero. Then the primitive central idempotents
g(A) of A are uniquely determined by its irreducible characters.

Proof. Given a basis B of A, let M = (p(bb'))p pcp be the square matrix
of coefficients in the linear system (AS5), with rows indexed by A’ and columns
by b. This is just the matrix of the natural bilinear trace form, i.e., (a,a’) =
plad’) Ya,a' € A, with respect to the basis B. As A is split semisimple over
a field of characteristic zero, a classical argument, as in [Vin, Theorem 11.54],
shows that the trace form is nondegenerate. Hence M is invertible.

Let r* be the column vector (x*(1) y*(»")),, - Then the column vector
(c})pep defining £(1) in (A2) is uniquely determined and equal to M~'rt. [
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We note that the vector r* in the proof of Proposition A.l is just the A-row of
the character table of A, scaled by y*(1) = dimg V*. So we have an alternative
method of producing the irreducible characters, provided this table is known. See,
e.g., [Ram2] for the case of Brauer algebras.

In the case of group algebras, Proposition A.l recovers the classical formula
of Frobenius (see [Fro, III, pp. 244-274]). In that case, the matrix M of the
natural trace form is easy to invert.

Corollary A.2 (Frobenius). Suppose that A = kG is a split semisimple group
algebra over a field k of characteristic zero, where G is a finite group. Then for
any A € Irr(kG),

1 i
W) =g L XM He.

|G geG

Proof. This follows from the observation that p(g) is zero for any g # lg,
while p(l1g) = |G|, where 1g denotes the identity element of G. Indeed, let
B(A) = G be the basis of A given by the group elements. Then the matrix
M = (p(gg’))g,,geG in the proof of the proposition is |G| times the permutation
. _ -1 _ 1 pT
matrix P = ((Sg—l,g/)g,’geG, so M~ = g7 P'- Then
p(gg') = 1G| 8g_1,g’

in terms of the usual Kronecker delta. The formula for ¢(A) now follows by an
easy calculation. ]
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