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Canonical idempotents of
multiplicity-free families of algebras

Stephen Doty, Aaron Lauve and George H. Seelinger

Abstract. Any multiplicity-free family of finite dimensional algebras has a canonical

complete set of pairwise orthogonal primitive idempotents in each level. We give various

methods to compute these idempotents. In the case of symmetric group algebras over a field

of characteristic zero, the set of canonical idempotents is precisely the set of seminormal

idempotents constructed by Young. As an example, we calculate the canonical idempotents

for semisimple Brauer algebras.
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16Z05.

Keywords. Group algebras, Brauer algebras, primitive idempotents, Jucys-Murphy elements,

tower of algebras.

Introduction

Given a finite dimensional unital associative algebra A over a field k, a

fundamental problem is to find a partition of unity, i.e., a complete set of pairwise
orthogonal primitive idempotents, in A. (This means finding a set {e,-};6/ of
elements satisfying Yliei 1 and Gej SyCj for i,j el, with |/| maximal.)
The corresponding problem for the center Z{A) is equally fundamental; in that

case the partition is unique. We study these two closely related problems under
the assumption that A is split semisimple; i.e., A is isomorphic to a direct sum
of matrix algebras over k.

Our main results are for the special case where A — An fits into a multiplicity-
free family {A„ \ n > 0} (see Definition 1.1), which allows for induction on n.
Group algebras of symmetric groups serve as the primary motivating example.
For a multiplicity-free family {An\, we find that:
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(1) There is a canonical partition of unity of An for all n (see Proposition 1.6).

This fact is implicit in [OV, YO] and explicit in [GG2]; we feel it deserves

to be more widely known.

(2) The two problems (calculating the canonical partitions of unity in An and

in Z(An) for all n) are equivalent.

(3) Both problems can be solved recursively by "Lagrange interpolation" meth¬

ods, in terms of the eigenvalues of a Jucys-Murphy sequence on a Gelfand-
Tsetlin basis of the irreducible representations.

(4) Both problems reduce to the computation of certain polynomials in the nth
Jucys-Murphy element, for all n. The polynomials depend only on a pair
(A, /i) of isomorphism classes of irreducible representations, one for A„ and

the other for An~\.

Many of the results of the paper are straightforward extensions of known
results scattered through the literature. Our approach is based on the insights
of Vershik and Okounkov [OV, VO] for symmetric group algebras; see also

[DJ, GdlHJ, RW, HR, LR, Ram4, Ram3, DG, OP, Gar, Mat, CSST, GG2] for
related work. Probably [GG2] overlaps the most with this paper.

The general theory of Lagrange interpolation methods for multiplicity-free
families is presented in Sections 1-3; this theory extends known results from

symmetric group algebras in characteristic zero to arbitrary multiplicity-free
families. Examples of multiplicity-free families abound in the literature (e.g.,

partition algebras, Temperley-Lieb algebras, various families of Weyl groups and

their associated Hecke algebras, Birman-Murakami-Wenzl algebras) so these

results should have wide applicability. For many of these families, suitable
candidates for Jucys-Murphy sequences (in our sense) have been found, which
should bring all of items (l)-(4) above to bear on their study. Due to space
constraints, we treat only two illustrative examples here: in Sections 4 and 5 we

apply our methods to study the symmetric group algebras and Brauer algebras,

respectively. Although we have chosen to avoid the language of cellular algebras,

in order to keep the exposition as elementary as possible, readers interested in

applying these results to other diagram algebras would be well-advised to utilize
the axiomatic framework of [GG2] and the related results of [GG1].

Appendix A outlines an alternative method of computing the partition of unity
of Z(A) in characteristic zero, based on trace characters instead of interpolation.
This is valid without any assumption that the split semisimple algebra A fits into
a multiplicity-free family; however, it requires inverting a possibly large matrix.
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1. Multiplicity-free families of algebras

Let k be a field and A an algebra over k. All the algebras considered in
this paper are assumed to be finite dimensional, semisimple, associative, unital,
and split over k. Write Irr(A) for the set of isomorphism classes of irreducible
left1 A-modules and Vx for a representative of the class A e Irr(A). That is,

[Vx] A.

The general Wedderburn-Artin theorem expresses A as a finite direct sum

of matrix algebras over division rings; our assumption that A is split over k
means that each of the division rings is k (this is automatic if k is algebraically
closed), so

(1.1) A 0 e(A)A s 0 Endk(KÀ).
Aelrr(.4) Aelrr(y4)

In the isomorphism (1.1), the central idempotent e(A) e A acts as the identity
in Endfc(KA) and zero in the other components, so {e(A) | A e Irr(A)} is the

(unique) partition of unity of the center Z(A).
The main objective of this paper is to study the situation where A An fits

into an infinite family of algebras satisfying the following properties.

Definition 1.1. A family {An \ n > 0} of finite dimensional split semisimple
algebras over a field k is a multiplicity-free family of algebras if the following
axioms hold:

(a) (Triviality) Ao k.
(b) (Embedding) For each n, there is a unity preserving algebra embedding

An ^ A„+1

(c) (Branching) The restriction to A„-i of an irreducible An -module V is

isomorphic to a direct sum of pairwise non-isomorphic irreducible An-\ -

modules.

Whenever (c) above holds, we say that restriction from An to An~\ is

multiplicity-free. The following general criterion characterizes this property.

Proposition 1.2 ([VO, Prop. 1.4]). Restriction from An to An-\ is multiplicity-free
if and only if the centralizer algebra

Z(A„-i,An) {x e A„ I xy yx, for all y e An-1}

is commutative.

' We could just as well work with right modules, and will do so in Sections 4, 5.
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To ease notation, whenever we have a multiplicity-free family we write Irr(n)
short for Irr(^4„). Extending [OV, VO], we define the branching graph B (or
Bratteli diagram) of the given family to be the directed graph with vertices and

edges as follows:

• the vertices are the isomorphism classes U„>0 In(/t) ;

• there is an edge p -> A from the vertex p to the vertex A if and only if
Vß is isomorphic to a direct summand of the restriction of Vx.

Given À e Irr(n), let Tab(A) denote the set of paths in the branching graph

starting from the unique element 0 e Irr(O) and terminating at A ,2 Concretely,
an element of Tab(A) has the form

T (Ao —> Ai —> A2 —>•••• —* A„_i —> A„),

where A0 0 and A„ A. Set Tab(«) LUeinfn)Tab(A). We say that

T e Tab(n) is a path of length n (a path on n + 1 vertices). We sometimes

write T k A to indicate that T e Tab(A). We also write T for the path in

Tab(n—1) obtained from T by deleting its last edge, A„_i -* A„.
We now describe how to use branching to produce bases of irreducible

modules. Let V be a given irreducible ^„-module. By the branching rule 1.1(c)

and Schur's Lemma, the decomposition

(1-2) resA„_i y — ®[W]-».[K] W

is canonical. Decomposing each W on the right hand side upon restriction to

An-2 and continuing inductively all the way down to _40 k, we obtain a

canonical decomposition

(1.3) resA)L ©TKT

into irreducible Ao -modules, which are the 1-dimensional subspaces Vj, where

the index T runs over the set of T e Tab(n) terminating in [V]. Note that the

Aie -submodule of V generated by Vj is isomorphic to VXk — e(Ayt) • • e(A„)L,
where A& is the kth vertex in the path T, for each k 0,1,...,« — l,n. Choosing
a nonzero vector vj e Vj for each T in Tab(n), we get a basis

{uT I T H» [K]}

of each V, called the Gelfänd-Tsetlin basis; this idea goes back to [GT2, GT1].

We note that the choice of vj is uniquely determined only up to a scalar multiple.

2 The set Tab(A) is analogous to the set of standard tableaux of shape A in the representation
theory of symmetric groups.
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In what follows, an important role is played by the Gelfand-Tsetlin subalgebra

Xn (n > 1). Following [VO], this is the subalgebra of An generated by the

centers

Z(A\), Z(Af),..., Z(An).

It is easy to see that Xn is a commutative subalgebra of An, for all n. Clearly
Xn Q Xn+i, for all n.

Definition 1.3. To each path T : 0 A0 -» Ai -> • • • -> A„ of length n in the

branching graph, we associate a unique element Ej := e(Ai)e(A2)---£(A„) of the

Gelfand-Tsetlin subalgebra Xn.

Remark 1.4. Equivalently, eT can be defined recursively by:

(ej-e(A„) if n > 0,
£t {

[ 1 if n 0

in terms of the notation T introduced above.

Given an irreducible module V ^ Vx for An and any T A, the element

£i e An is the projection mapping V onto Vj. In [VO, Prop. 1.1], Vershik and

Okounkov use these canonical projections to prove the following result.

Proposition 1.5. The Gelfand-Tsetlin algebra Xn is the algebra of all elements

of An that act diagonally on the Gelfand-Tsetlin basis {wj} for each irreducible
An -module V. In particular, the algebra Xn is a maximal commutative
subalgebra of An

Proof Suppose that T i-> A e Irr(n). Since ey projects V V1 onto its one-
dimensional subspace Vf, it follows that ej sends uj to itself. Also, sT acts as

zero on all vs such that S / T. So with respect to the Gelfand-Tsetlin basis

{ut} for V, the operators ej are diagonal matrices. In view of (1.1), the algebra
generated by {sj | T Tab(n)} is a maximal commutative subalgebra of An.
Since Xn is commutative and contains this subalgebra, we have equality, which

completes the proof.

The following result did not explicitly appear in [VO], although it is implicit
in their setup. It provides an explicit and canonical partition of unity in An for
each n, in terms of the primitive central idempotents.

Proposition 1.6. The set {e-\ \ T e Tab(«)} is a family of pairwise orthogonal
primitive idempotents in A„ that sums to 1 (the unit in An It is also a k -basis

for the Gelfand-Tsetlin subalgebra X„.
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Proof. It is clear from Definition 1.3 that sj e(X\) e(Xn) is idempotent for

any T, since its factors commute. The commutativity of the factors is also used

to check that eiey 0 if either

T i-> A and T' i~> X' with A ^ A'

or
Th>A and T' h» X with T f T'.

So the idempotents are pairwise orthogonal.
For any T m- X, sj acts as one on Vj and zero on all KSÀ, for S / T. Since

Vx — ©Tm.^ Vj it follows that Etm>a £t an<ä £W both act as one on Vk.
Furthermore, both act as zero on Vß, for each X f p.e Irr(n). This shows that

Et~a £t e(X). It follows that ETsTab(«) £t EasUtC«)) £W 1
•

Finally, the various ej are primitive since we have precisely the right number,

namely EAeirr(H) dimk yX |Tab(n)|.
The last claim in the proposition follows from the proof of Proposition 1.5,

since the ej are linearly independent and dim^ Xn — EAsirr(n) dim^ Vx.

Corollary 1.7. The canonical idempotents {sj | T e Tab(«)} satisfy the fallowing
properties:

Etwa £t £W. for all X e Irr(n).

(2) eyej ej, for all T h-> A, X e Irr(n).

Furthermore, {ej I T e Tab(«), n > 0} is the unique set of pairwise orthogonal
idempotents satisfying these two properties.

Proof. Property (a) was proved already in the proof of the previous proposition.
Property (b) follows immediately from the definition of eT and the definition
of T.

Suppose that {#t I T e Tab(«),» > 0} is another set such that for each fixed

n, the set {gj \ T 6 Tab(«)} is a set of pairwise orthogonal idempotents in An

satisfying properties (a) and (b). For the unique path 0 of length 0, we have

g0 s0 1. Proceeding by induction on n, suppose that n > 0 is fixed and

assume that gs es for all paths S of length strictly less than n. Then for
T e Tab(«) with Th>A, we have

£t r.js{X) gT Ss gj J2 gsgs
Si—yX. Si->A

XI gTgsgs ST,sgsgs gjgi gi-
St—St—

Note that the penultimate equality above is valid because T is the only path of
shape X whose restriction of length n — 1 is T.
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It is illuminating to introduce a global Gelfand-Tsetlin basis for An at this

point.
Fix a Gelfand-Tsetlin basis {ttj I T i—^ A} for each irreducible Vx, X e Irr(w).

We may identify the algebra Endk(FA) with the matrix algebra Matdim vx (k) by

means of the basis. Let tp^T be the k-linear endomorphism of Vx mapping t)y

to vs and all other vy to 0. The set

{^s,t I S, T t-> A}

is a basis of Endfe(FA); under the identification Endfc(FA) Matdim^A(k), it
corresponds to the basis of matrix units. The desired global Gelfand-Tsetlin basis

of An under the isomorphism (1.1) is the disjoint union

(1.4) {^t|S,T^A}.
Aslrr(n)

This basis is uniquely determined by the choice of Gelfand-Tsetlin basis {vy} for
each Vx e Irr(n), but it depends on those choices. Note that çxT <p^ jr 0 for
A / fi ; this follows from the equality \\omAn{Vx, Vß) 0, which is true by
Schur's Lemma. Hence the basis (1.4) satisfies

(L5) <Ps,y ' Vs',V ~ ^A,/a $T,S' "Psj'

where 8 is the usual Kronecker delta. In particular, each (pxT is an idempotent.
We note that (1.5) implies that the basis (1.4) is a cellular basis in the sense of
[GL],

The above allows us to model the algebra An isomorphically as the

matrix algebra consisting of all N x N block diagonal matrices, where

N — J2xe irr(n) dim^ Vx, such that the block indexed by each A is a full matrix
algebra of d x d matrices over k, where d — dim Vx. Of course, since the

Gelfand-Tsetlin bases of the irreducible representations are unique only up to
choice of scalars, this model depends on those choices. However, being products
of the unique central idempotents, the ey themselves are independent of the

choices.

Corollary 1.8. Under the identification An S ©y.eIrr(«) Endfc(FA) of (1.1), the

primitive central idempotent s(A) corresponding to any A e Irr(n) satisfies the

identity
eW — ^2, ^t,T-

TM-A

Likewise, for any path T i->- A in B we have the identity

eT — «Pyj-
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Proof. To prove that s(A) Vjj observe that both sides act as one on VÀ

and as zero on all other irreducibles W Vx. Similarly, the equality gj (pj T

follows from the fact that both sides act the same on all V'1 (ji e Irr(w)).

Remarks 1.9. (a) Let Xn be the maximal commutative subalgebra of An defined

above. By Proposition 1.6, it is spanned by the idempotents y. Then it is

clear from (1.5) and Corollary 1.8 that the global Gelfand-Tsetlin basis {<Pst}
is a basis consisting of simultaneous (left or right) eigenvectors for the action

of Xn by left or right multiplication. To be explicit: an arbitrary element

y eu f-'u of Xn acts on cp^T by left multiplication as the scalar cs and by

right multiplication as the scalar cj.
(b) Similarly, as already noted in Proposition 1.5, the basis {ly : T t-> A} of

Vx is a basis of simultaneous eigenvectors for the action of Xn. To be

explicit, the element <"t £t as above acts as ct on the basis element vj,
for each T.

(c) The decomposition An ©ieirr(n) ^n£T, which is a decomposition of An
into a direct sum of irreducible left ideals, is actually a "weight space"

decomposition for the action of Xn by right multiplication, in the sense that
each element of Ans-\ is an eigenvector for the right action of an arbitrary
element Xmeirr(n)Cu f'u °f %n » °f eigenvalue cj. A similar remark, with left
and right interchanged, holds for the decomposition An — ®T6irr(«) £tA„

Thus, we see that in some sense the role of the Gelfand-Tsetlin algebra Xn in
the theory of multiplicity-free families is analogous to that of a Cartan subalgebra
in the theory of Lie algebras.

2. Central idempotents via interpolation

The primitive central idempotents can be computed by a type of Lagrange

interpolation, provided that a generator of the center is available. This applies
to an arbitrary split semisimple finite dimensional algebra A, so we temporarily
drop the assumption that the algebra fits into a multiplicity-free family.

Note that (s(A) | A e Irr(A)) is a basis for the center Z(A). So any element

z 6 Z(A) is uniquely expressible in the form

z ax EW-
Aelrr(yl)

It follows that z • e(A) ax e(A) for all A e ]rr(A). Call the tuple (ax)xe\n(A)
the (eigen)spectrum of z. A spectrum is simple if it has no repeated entries.
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Lemma 2.1. (a) An element z e Z(A) generates Z(A) if and only if its

spectrum is simple.

(b) If k has at least as many elements as | \rr(A) |, the center Z(A) is generated
(as an algebra) by a single element.

Proof, (a) Regarded as a linear operator on Z(A) by multiplication, the

element z is diagonal with respect to the basis {e(A) | À e Irr(X)}. Let
S — {ax I A e Irr(yl)} be the set of distinct eigenvalues of z. The minimal
polynomial of z is Y\a^siz~a)- Let m |Irr(„4)| dim|Z(A). Clearly,
the element z generates Z(A) if and only if the set {l,z,... is

linearly independent. This is true if and only if the minimal polynomial of z
has degree m. So z generates Z(A) if and only if it has simple spectrum,

(b) Choose m distinct elements of k, say a\,...am. Choose any enumeration

Ai ,Am of the elements of Irr(.A). Then z a\e(X\) + + ams(Am)
has simple spectrum, hence generates Z(A).

Remarks 2.2. (a) If z J2x ax e(A) is a generator of Z(A) then the change of
basis matrix expressing the powers 1, z,..., zm~' in terms of the idempotents
e(A) is a Vandermonde matrix in the ax's.

(b) If the field k is large compared to m — | Irr(yt) |, there are many generators
of Z(A). In fact, if k is a finite field of q elements, then the probability
P(q) that a randomly chosen element of Z(A) actually generates the center

,Ct) «(.-1)-^-+)(,.!)_^I).
Evidently, lim^^oo P(q)= 1.

The lemma leads immediately to an interpolation formula for the e(A), provided
that one can find a generator and compute its spectrum.

Proposition 2.3. Suppose that z is a generator of Z(A), with spectrum
(ax I A Irr(_4)). Then the polynomial

Qx(z) n
/ielrrfA):

is equal to e(A), for each A e Irr(yf).

ax-a^,

Proof. This is immediate from the fact that ri/ieirr(.4)(z — au) 0' which implies
that
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Qk(z)-e(ß) Sx,u,s(X).

Hence Qx(z) Qx(z) • 1 Eßei«(A) Qx(z) ' s(m) eW • D

The formula in Proposition 2.3 is useful only if we have a way of retrieving
z's spectrum without already knowing the central idempotents. At least in
characteristic zero, this can be done whenever the irreducible trace characters

are known.

Proposition 2.4 ([Ram4, Lemma 1.9]). Let yx be the trace character of Vx far
any A e Irr(yt). Suppose that Ik has characteristic zero. Writing z Ex e(A),

we have ax Xi iz,l
jr(i)

Proof. For any v eVx, z acts as ax', i.e., z-v a(X) v, so trace(z) on Vx is

equal to (dim^ Vx)ax. In other words, /A(z) xX(\)ax-

The above analysis leads to a probabilistic algorithm for computing the

primitive central idempotents.

Algorithm 2.5. Suppose that k has characteristic zero. Then to compute all the

central idempotents e(A),

(a) Pick a random z Z(A) and compute its spectrum (using Proposition 2.4

or otherwise). If the spectrum is not simple, try again.

(b) Once a generator z with simple spectrum is found, use Proposition 2.3 to

compute the e(X) for all A e Irr(^l).

If this can be carried out, the formulas thus obtained will express the e(A)

in terms of polynomial expressions in some random central element. One would

usually prefer to have expressions for the e(A) in terms of elements that are

understood in some explicit way. At the least, one would prefer to understand

how the chosen central generator z interacts with some set of standard generators
for the algebra A.

Example 2.6. Let A Hq(n) be the Iwahori-Hecke algebra corresponding to the

symmetric group &n, over a field k such that 0 / q e k, and assume that Pq(n)
is split semisimple. In [DJ], certain q -analogues of the original Jucys-Murphy
elements in k©„ were constructed in 'Hg(n). As pointed out in [OP, §8.1], their

sum Z„ has simple spectrum, hence is a generator of the center Z(Hq (n)).
Thus the formula in Proposition 2.3 computes the primitive central idempotents

e(A) e T-iq(n) for each Ah n.
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Example 2.7. Let A — k©„ be the group algebra of a symmetric group over a

field k of characteristic zero. Let zn be the formal sum of all the transpositions in

&n, regarded as an element of k©„. This is precisely the element obtained from
the element Z„ in the previous example, if q is specialized to 1. The central

element zn generates Z(k©„) for n — 2,3,4, and 5, but for n 6 it fails to
do so. The eigenvalues of z6 on the irreducible modules indexed by partitions
(4, l2) and (3,3) coincide. Likewise for (3, l3) and (23). At this writing, we do

not know of any satisfactory uniform choice of elements zn e k@„ generating
the respective centers. This seems to be an interesting open problem.

To conclude this section, we mention an alternative approach to computing
the primitive central idempotents for A. Recall that if A — CG for a finite

group G, Frobenius gave a formula for e(A) in terms of the simple character

Xq This result was extended to split semisimple finite dimensional algebras in
characteristic zero by Kilmoyer; however, it involves inverting a (dim A) x (dim A)
matrix. See Appendix A for a brief exposition.

3. Generalized Jucys-Murphy sequences

Now we return to the study of multiplicity-free families {An}n>o and the

problem of computing the canonical idempotents {eT | T e Tab(w)}, which form
a basis of the (commutative) Gelfand-Tsetlin subalgebra Xn (n > 0). Extracting
key elements from the work of Jucys and Murphy, we show how a carefully
selected sequence of elements (one from each Xn) can be used to effectively
solve this problem.

Before we begin, we apply the results of the previous section to this end.

Given a sequence (z„ e Xn \ n > 1) of center-generating elements, i.e., elements

satisfying (zn) Z(An), we reach the eT in two steps:

(i) use Propositions 2.3 and 2.4 to compute the e(A);

(ii) use Definition 1.3 to compute the ej.
So the problem is solved, provided one can find a sequence of center-generating
elements. However, as noted in Example 2.7, even for the family of group algebras
of symmetric groups, such a sequence is not known.

Murphy [Mur] found a non center-generating sequence of elements - known

independently to Young [You] and Jucys [Juc] - and applied them to give a

new construction of Young's seminormal form of symmetric group algebras. In
recent years, analogues of such elements have been found in a number of other

multiplicity-free families. The two key properties of the Young-Jucys-Murphys
elements are abstracted in the next definition. But first, some notation.
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From the definition of Xn we have a sequence of inclusions

(3.1) X\ C • • • C Xn-\ C Xn.

Now given J \ e X\, J2 e X2 e Xn, the inclusions (3.1) imply that

Ji, J2,..., Jn e Xn. Since {ej} is a basis of Xn, we have scalars cj{k) ek, for
each k 1,..., n, such that

(3-2) Jk 5ZïeTab(n) ct(&) «T-

In this way we associate an n -tuple cj to each T e Tab(n),

(3.3) cT (cT(l),...,cT(«)) ek".

We call this n -tuple the T-content for the sequence

Definition 3.1. Let (Jn \ n e N) be a sequence of elements such that Jn e Xn

for each n. We say that the sequence is:

(a) additively central3 if the nth partial sum J\ + ••• + Jn~\ + Jn belongs to

Z{An), for all ne N ; and

(b) separating if Xn (J\, J2, Jn). f°r all n N.
The sequence is a Jucys-Murphy sequence (JM-sequence for short) if it is both

additively central and separating.

To explain our terminology, we mention that additively central sequences allow
for ease of computation of the content vectors (Proposition 3.3), while separating

sequences allow content vectors to distinguish different paths S, T Tab(n)

(Proposition 3.5).

Proposition 3.2. JM-sequences in multiplicity free families always exist, provided
that the underlying field is infinite.

Proof. Let (z„)„eN be a center-generating sequence, which exists by Lemma

2.1(b). Then putting Jn := zn — z„_i (and stipulating that zo 0), it is easy to
check that (Jn)neN is a sequence that is additively central. Assuming inductively
that Xn-i (Ji,..., Jn-i), we have

Ä-n {Xn—i,Z{An)) (Xn—\,Zn) (Xn—i ,Jn) (Ji,...,Jn).

This shows that (Jn)neN is also separating.

3 In some multiplicity-free families, one can find multiplicatively central sequences. These sequences,
which were considered in [GG2|, have the property that the partial product J\ J2 Jn belongs to Z(An),
for all n N, and furthermore that it acts as a nonzero scalar on each Vx, A e Irr(n). The results in
this section are equally valid in the multiplicative case, modulo a few adjustments that we leave to the
reader.
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We next investigate the independent notions of additively central and separating

sequences before returning to JM-sequences for our main result (Theorem 3.11).

Let (Jk)ken be an additively central sequence. As z„ J2k=t Jk e Z(An),
it acts as some scalar a\ on any irreducible representation V*, for A e Irr(n).
Similarly, z„_i J2k=\ Jk e Ai-i, so zn-1 acts as a scalar aß on any Vß, for

/I e Irr(n—1). The next proposition shows how these scalars determine the «th
eigenvalue cy(n). (Recall from Section 1 the construction of T e Tab(n-l) for

any T Tab(n).)

Proposition 3.3. Let Jk \ k e N) be an additively central sequence of elements

in a given multiplicity-free family {An j n > ()}. For any n, let A 6 Irr(n). For

any T i-> A we have Cj(n) ax — aß, where T t-> p.

Proof By hypothesis, we have Jn zn — zn-i for all n e N (where we set

zo 0). Then z„ acts by right multiplication as ax on vj. By hypothesis we
have vj vj since T has the form

T (Ao —> Ai ->•••—> A„_i —> A„),

where A„ A and A„_i /i. So the element z„_i acts as the scalar aß on

uj, and thus by linearity Jn zn — z„_i acts on vj as the scalar ax—aß. The

result is proved.

Remark 3.4. Note that Proposition 3.3 says that the eigenvalue cj(«) depends

only on the last edge A„_j A„ of the path T in the branching graph. So,

whenever we have an additively central sequence in our multiplicity-free family,
it makes sense to label each edge in level n of the branching graph by its

corresponding eigenvalue cj(n). Figure 1 gives an example of such a labeled

graph.

Let (Jn)nen be any sequence with Jn e Xn for each n. In the proof of the

following result, which characterizes separating sequences, we will focus on the

T-contents one coordinate at a time. Put Wt(k) := {cj{k) \ T e Tab(n)}. This is

the set of eigenvalues of the operator Jk acting on the various êj.

Proposition 3.5. Given a sequence J\ e X\, J2 e X2,...,Jn e Xn, and

corresponding content vectors Cj, the following are equivalent.

(a) For all S,T e Tab(n), S T <<=> cs Cj.

(b) (Jl,...,Jn)=Xn.
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Proof, (a) => (b). We aim to show that sj G (J\,...,Jn) for each T G Tab(n),
which would complete this half of the proof. To this end, note that the polynomial
Ej(J) Jn) defined by

*«-n n ^k l CWt(fe)
V '

c/cT(fc)

is well-defined as an operator on Xn (acting by multiplication). Given S / T,

Ej(j) acts on the basis element es as

p cn p~f (cs(k) — c)es
Ej(J)ss 1 1 H -0,

k=1 ceWt(/fe) '
c^ct(k)

since cs(k) is among the c G Wt(k) and c$(k) f Cj(k) for at least one k, by (a).

A similar calculation shows that Ej(J)sj ej. Hence

Ej(J) Ej(J) J2 es E £T(/)£S >

SeTab(«) SeTab(«)

and hence ej g (J\,..., Jn), as required.

(b) => (a). Assume that S,T are paths such that cs cj. We show that S T.

Note that for any polynomial F(J\,..., Jn) e (J\ F acts on vj and rs
by the same scalar, namely F(cj(\),..., Cj(n)) F(cs(l),..., cs(«)). Under the

hypothesis (b), i.e., (Ji,...,Jn) — Xn, we know that ey is such a polynomial.
Since

eT • uT vj and eT • vs STtSvs,

we must have <$t,s 1. So S T. The converse implication, that S T implies
Cs cj, is trivial.

Note that if Xn — (J\ then the above proof gives the explicit formula

Jk~c
(3.4) £t Ej(J) I Cr(k) — C

k=l ceWt(fc) lv '
c^cT(fc)

expressing the canonical idempotents ey in terms of the separating sequence.

(A similar interpolation formula appears in [Mur] in the context of symmetric

group algebras.) We find another interpolating polynomial for the sj, having

significantly lower degree than this one, in Theorem 3.8.

Proposition 3.6. Let (Jk \ k G N) be a separating sequence in the multiplicity-
free family {Ak I k >0}. Suppose that S, T G Tab(n). Then
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(a) cj(k) — Cj(k) for all k < n.

(b) If S T but S ^ T then cs(n) f cY(n).

Proof, (a) This follows from (3.2) and its analog for Tab(n—1), and the recursive

description ej efs(X) in Remark 1.4. Specifically, we have

cT(k)eT — Jk £t Jk ej e(A) cY(k) Sjs(A) cY(k) sT

for any k < n.
(b) Since S T, it follows from part (a) that cs(k) — cj(k) for all k < n.

If S T and cs(n) cj(n), then cs cj and we reach a contradiction with
Proposition 3.5.

Proposition 3.6 implies that the following polynomial is well-defined.

Definition 3.7. Let (Jn \ n e N) be a separating sequence in a multiplicity-free
family. For any T e Tab(n), put

P j \ ._ n Jn~Cs^Pj(Jn) •— I I -7T TVsell\n)cT(n)-cs(n)
S^T,S=T

The next theorem shows that these polynomials can be used to recursively

compute the idempotents ej. It extends [Gar, Theorems 3.4, 3.5] from symmetric

group algebras to multiplicity-free families. First, we record some basic properties
of the Pj(Jn). Given S, T e Tab(w), we have

(3.5) PT(/„) • eT eT

(3.6) Pj(Jn) es 0 if S T but S T.

The proof is an easy calculation from the definition.
Let T (A0 Ai ->•••-> A„) Tab(«). In the next result, T\k] denotes the

subpath up to vertex A& of the path T, so, e.g., T[n — 1] T.

Theorem 3.8. Assume that (Jn \ n e N) is a separating sequence. Then, for any
T e Tab(n), £T £T Pj(Jn)- Hence, £T [\k=\ pJ[k](Jk)

Proof. We prove the first equality, as the second equality follows immediately
from the first by induction on n. We claim that eY Pj(Jn) acts the same as ej
on all basis elements {£s | S e Tab(n)} of Xn. That is,

Pj(Jn) ss 8j,sEs
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for any S G Tab(n). There are three cases to the claim. First, if S T, then by

(3.5) we have

£j Pj(Jn) • £t £f£T £j£j e(A) ej,

which proves the claim in case S T. Next, if S / T but S T then the claim
is immediate from (3.6). So only the case S / T and S / T remains. In this case

we note that Xn-\ C Xn, and so sy and Jn commute. Then

ST PjiJn) £s Pj(Jn) £j £s e(M) 0'

where S i-^- /x. This completes the proof of the claim. The recursion formula now
follows, since the claim implies that

eT Pj(Jn) — £j Pj(Jn) 1 2ZseTab(«) eT {Jn) ' ®S £ï>

as required.

We now return to JM-sequences. Our main result (Theorem 3.11) is a recursive

formula for the primitive central idempotents analogous to Theorem 3.8. The

following lemma holds the key ingredients. If T e Tab(A) we say that T has type
A and write type(T) A.

Lemma 3.9. Assume that (Jn \ n e N) is a JM-sequence in a multiplicity-free
family {An j n > ()}. Given any T e Tab(n), the content cj(n) depends only
on type(T) and type(T). In particular, the polynomial Pj{Jn) in Definition 3.7

depends only on type(T), type(T).

Proof. The first statement follows immediately from Proposition 3.3. The second

is immediate from the first and the definition of the If.
Hence, the following notation is well-defined.

Definition 3.10. Suppose (Jn \ n e N) is a JM-sequence and T Tab(n). If
A type(T) and p — type(T) then we write Pfr(Jn) — Ifidn)

We now arrive at the promised recursive description of the central idempotents

s(A).

Theorem 3.11. Assume that (./„ n e N) is a JM-sequence in a multiplicity-free
family. For any A e Irr(n), we have

e(A) Pß(Jn)-£(P)>
n

where p varies over the set of immediate predecessors of A in the branching
graph B.
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Proof. We have e(A) Xàype(T)=A eT • By Theorem 3.8 and the above lemma, we
have

s(A) £ ejpJ(Jn) Y^( X éf) Pß(Jn)-
T: type(T)=A ß T: type(T)=A,

'

type(T)=/x

To complete the proof, it suffices to show that

X eT £(M)-
T: typefD=A,

type(T)=/x

This conclusion is justified since any path T e Tab(n-l) of type /a extends

uniquely to a path T e Tab(n) of type A by the branching rule 1.1(c). Thus, the

sum on the left hand side above is a complete sum over all paths in Tab(n—1)

of type /a. The result follows.

4. Application: Symmetric group algebras

Let &n be the symmetric group on n letters and k a field of characteristic

zero. It is well known that the family {k6„ | n > 0} is multiplicity-free (we take

k6o k); see [VO, Theorem 2.1] for a proof of this fact from first principles.
Indeed, this multiplicity-free family is the motivating example for our paper.

Vershik and Okounkov [VO] give a complete and compelling account of the

representation theory of symmetric groups from the multiplicity-free inductive

viewpoint. In particular, they

• Compute the spectrum of the Young-Jucys-Murphy generators.

• Show that the set of standard tableaux with n boxes is in bijection with
the set of all paths in the branching graph of length n ; this also proves the

branching rule.

• Construct Young's seminormal and (when k C orthogonal forms for the

irreducible representations.

• Compute the irreducible characters (Murnaghan-Nakayama rule).

We cannot improve upon their story. But our story is about idempotents in

multiplicity-free families, so we are content to explain just enough representation
theory to be able to compute the canonical idempotents

{eT I T a standard tableau with n boxes}

constructed in Definition 1.3. We also show that these idempotents coincide with
the classical seminormal idempotents constructed by Young.
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We work with right modules in this section, in deference to Schur-Weyl
duality, discussed in the first paragraph of Section 5. Writing ia for the image
of i under a permutation a, we define the product a x of two permutations
by iax — (ia)x, in order that products of permutations agree with products of
their Brauer diagrams. We take for granted that the partitions of n index the

isomorphism classes of irreducible representations and the set of standard tableaux

with n boxes is in bijection with the set of all paths in the branching graph of
length n. Under this bijection, the path T as defined in Section 1 corresponds
to the standard tableau T obtained from the standard tableau T by discarding
the box containing the number n. The labeled branching graph for this family is

depicted in Figure 1.

0
0

Figure 1

Branching graph for the multiplicity-free family jkGn}.
The edge labels are computed in Proposition 4.3.

Young's construction of the irreducible representations is in terms of the

so-called Young symmetrizers. Let us recall the definitions; see, e.g., [Ful],

Definition 4.1. Given a tableau T of n boxes, let R(T) be the subgroup of 6„
consisting of all w which stabilize the rows of T ; similarly, let C(T) be the

subgroup of 6„ consisting of all w which stabilize the columns of T. Put

EW6R(T) W' bT Eu,6C(T) sgnC) w
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The sums aj.br and their products ajbj, bjox taken in either order are called

Young symmetrizers. We put

yT W)°Tbl=m ^ " £ S8n("')"'-
V y ' veR(T) ujeC(T)

where h(A) and «(A) is the number of standard tableaux of shape A.

(Then h(A) is equal to the product of all the hook lengths in T; this depends

only on the shape A of T.)

If w e 6n and T is a tableau with n boxes then w T is the tableau

obtained by replacing each number i eT by w(i), for i 1We have

R(u; • T) trR(T)w;_1 and C(w • T) wC(T)u;_1. Thus

(4.1) aw.i — tcoytü-1, buj.y icbytc-1

for any w 6 &„ The yj are idempotents in k6„ ; these idempotents are sometimes

called Young's idempotents. The right ideal

(4.2) yTk6„

is an irreducible k6„-module, where T is any standard tableau of shape A. It
is known that yik6„ yrk6„ if and only if T, T' have the same shape, so the

isomorphism type of the right ideal yTk6„ depends only on the shape of T. It
is also well known (see, e.g., [CR2, §28]) that

(4.3) k6„ =0yTk6„,
T

where the sum is taken over the set of all standard tableaux T of n boxes. This
is a decomposition as a direct sum of simple right ideals, but unfortunately the

family {yT} of primitive idempotents is not pairwise orthogonal,4 as already noted

by Young; see [Ste] for an explicit counterexample.
We put zn equal to the formal sum of all transpositions in 6n, regarded as

an element of k&n. This conjugacy class sum is an element of the center of
k6„ for each n. We wish to show that the elements

(4.4) Jn zn — zn—\ - (\,n) + (2,n) -| f (n - \ ,n)

(written in the cycle notation for permutations) define a JM-sequence in the sense

of Definition 3.1.

4 Not quite, but almost! It can be shown (see, e.g., [Ste, Prop. 1]) that for each pair T, V of standard
tableaux of n boxes, at least one of the products yT • yT', yv yj must be zero.
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Proposition 4.2. Let X be a partition of n and T a standard tableau of shape
X. Then the central element zn acts by right multiplication on yik©,, as the

scalar ax, £(A) —£(A'), where X' is the transpose of X and £(A) E )>

summed over the parts X (Ai, X2,. of X.

Proof. Since zn is in the center of k©„, we know there is a scalar ax, e k with
v zn ax v, for all v e yîk6„ In particular, yT zn ax yj. By definition of

yj, this equality becomes

H s£n(ß)aß'
aeR(T)ßC(T) 1 <!</'<« cügR(T) ßeC(T)

where (/, ./) denotes the transposition interchanging i and j. To compute ax we

compare coefficients of the identity permutation on both sides of the equation,
which gives

E E E sgn (ß)&aß,(i,j) «A»

aeR(T) j86C(T) 1 <i<j<n
where S„,T 1 if a x and 0 otherwise (for a, r e ©„ It is easy to see that

<W,(ij) 0 unless i and j lie in the same row or column of T, since otherwise
the product aß must change more than just i and j. So we are reduced to

counting solutions of the equation aß (/, ./) of the form a (i,j) where i,j
lie in the same row of T or ß (i,j) where i, j lie in the same column of
T. In other words, we need to count the number of pairs (i, j with i < j in a

row of T, and, with opposite sign, the number of pairs (/, /) with i < j in a

column of T. This gives the desired result ax £ (A) — £ (A').

Here is a combinatorial procedure for computing the statistic Ç (A) for a given
shape A. Insert the numbers 0,1,2,... ,Xm — 1 in order into the mth row of the

diagram of shape A, for each m. Then clearly £(A) is equal to the sum of the

numbers in the boxes. Note that the insertion process just described is equivalent
to inserting a j — I in each box of the y th column of the diagram. So £(A) is

the sum of all the numbers in this numbering.
On the other hand, if we insert i — 1 in each box of the i th row of the

diagram of shape A, then f (A') is the sum of all the numbers in this numbering,
where A' is the transpose of A.

This implies that if we attach the statistic (j — 1) — (i — 1) — j — i to the box

in row i and column j in T (this statistic is called the content of the box) then

the sum of all the statistics is ax Ç(X) — lj(X'). Thus, we see that

(4-5) ax E(i,y) j ~ i.
where the sum is taken over the positions (/, j) indexing all the boxes in the

diagram of shape A. This interpretation of ax will be used to prove the following
result.
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Proposition 4.3. Suppose that T e Tab(n) has shape A. For any 1 < k < n, the

eigenvalue cj(k) of the action of Jk on the Gelfand—Tsetlin basis element vj
indexed by T is the content j — i, where the box containing k is located in row
i and column j in the tableau T.

Proof We proceed by induction on n. For n 1 the result is clear: cy(l) 0

as J\ 0. Let n > 1 and let T e Tab(n) be a standard tableau of shape X, some

partition of n. By the inductive hypothesis, Cj(k) has the desired value for any
k < n — 1. By Proposition 3.6(a), cj(k) — Cj(k) for all k < n, so cj(k) has the

desired value for all k <n. Thus, it suffices to compute the value cj(n).
By Proposition 3.3 we have cj(n) ai — aß, where T |t. By equation

(4.5), it follows that cy(n) ax — aß — j —i, where the box in T containing n

occurs in position (/, ./). The result is proved.

Remark 4.4. If we record the statistic j —i in each box (/, j) of the Young
diagram of shape X, then the resulting tableau is constant along diagonals. Recall
that a box in a Young diagram of shape A is removable if excising it results

in another Young diagram. Similarly, a box not in the shape A is addable if
including it results in a Young diagram. Since removable boxes are always the

last box in their row or column, it is clear that no two removable boxes in A can
lie on the same diagonal. The same conclusion applies to addable boxes. Hence,

no two removable (or addable) boxes for a shape A can have the same content.
This is needed in the proof of Corollaries 4.5 and 5.10.

Corollary 4.5. The sequence [Jk \ k e N) is a JM-sequence in the sense of
Definition 3.1.

Proof Since Jk Zk — Z/t-i and Zk e Z(kS^) for all 1 < k < n, it follows that
each Jk e Xn and that (Jk)keN is additively central. We use Proposition 3.5 to

verify that it is also a separating sequence. Proposition 4.3 computes the content
vectors cj — (cy(l),..., cj(n)) for each T e Tab(n).

Let T[A] denote the standard tableau obtained from T e Tab(n) by removing
all boxes containing numbers larger than k. Assume that S / T. We show

Cs 7^ Cj. Find the smallest k < n at which the tableaux S,T differ. That is,

S[k — 1] T[k - 1], yet S[k] f T[/c]. By Remark 4.4, the contents of the addable

boxes yielding S[k] and T[A] differ. Appealing to Proposition 4.3, we conclude
that cs(k) f cj(k). This completes the proof.

For the sake of completeness, we give another formula for the central

idempotent e{A) in terms of Young symmetrizers; it was obtained by Young
in his first two papers, published in 1900 and 1901. (See [Cur, Ch. II, §5] for a

historical account of these developments.)
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Proposition 4.6 (Young). For each Ah n, e(A) ]Tt Yt. where the sum is

taken over all tableaux T (not necessarily standard) of shape A.

The proof is an easy exercise, cf. [Sim, Cor. VI.3.7].
Recall that Young [You] found a family of primitive idempotents {ej}, also

indexed by the set of standard tableaux of n boxes, which are pairwise orthogonal
and sum to 1. These idempotents are part of Young's seminormal form, so we
call them Young's seminormal idempotents. R. M. Thrall [Thr] (see also [Gar,
2.16], [Las]) found the following recursive description of the ej. For each standard

tableau T of n boxes, the element eT of k©„ may be defined by

where T is the standard tableau obtained from T by removing the box containing

n.
So we now have two families {eT}, {sj} of pairwise orthogonal primitive

idempotents, both indexed by the set of standard tableaux of n boxes. One might
ask how the two families are related. Here is the answer.

Proposition 4.7. For any standard tableau T of n boxes, we have ej ej. So

the canonical idempotents of Definition 1.3 are Young's seminormal idempotents
in the case of symmetric group algebras.

Proof. This follows immediately from Corollary 1.7 once we observe that eyej eT

for all standard tableaux T. Indeed, this relation is clear from Thrall's recursive

definition of the ej\ see (4.6).

Remark 4.8. Thrall's recursive description of the seminormal idempotents depends

on the Young symmetrizers, while the simpler recursion obtained by the methods

of this paper does not.

Examples 4.9. We compute a number of s(A) recursively using Theorem 3.11 and

Proposition 4.3, referring to the branching graph in Figure 1. Of course £() 1.

Primitive central idempotents for n — 2:

(4.6)

e(m) P^e(o) PDm \(J2 + 1)

£(0) PDa£(o) - Pn0 -\{J2 - 1).

Primitive central idempotents for n — 3:

e(cm) £(m) i(73 + 1) £(m)
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e(&) fi(m) + P0F£(0) -j(J3 - 2) e(uo) + j(J3 + 2) £(0)

fi(|) p|fi(B) -I(/3- l)e(B).

Primitive central idempotents far n — 4:

s(H «() + 1) £(on)

fi(EP) pJ^ £(œd) + Pp13 £(0^ —\{J4 — 3) £(cm) + |(/4 + 2)y4£(0D)

£(03) p^e(m -|(y4 + 2)(y4-2)£(0P)

e(W) s<F) + £(1) i(/4 -2)y4£(P) + \(J4 + 3)fi(g)

£(|) PgB£(§) -I(/4-l)£(g).

We note that the summands in each £(A) are the various £T in that block, so the

£t are recoverable from the above expressions.

5. Application: Brauer algebras

In [Bra], Brauer defined a finite dimensional algebra Q3„(m) over C in order

to quantify the invariants of orthogonal groups. If E is an m -dimensional vector

space over C then GL(P) GLm(C) acts naturally (on the left) on E, this action
extends diagonally to one on E®n. The group 6„ acts by place-permutation (on
the right) on E®n. These actions commute, so by linearly extending the actions to

representations, the tensor space E®" is a (CGL(P), C6„)-bimodule. Classical

Schur-Weyl duality [Sch] says that the image of each representation in Endc(£,<8>")

is equal to the full centralizer of the other. This duality elegantly expresses the

fundamental duality between the representation theories of general linear groups
and symmetric groups.

Brauer extended the action of the symmetric group algebra to one of the algebra
23n(m) such that when the left action of GL(P) is restricted to the orthogonal

group O(E), Schur-Weyl duality also holds for the resulting (CO(E),'i8n(m))-
bimodule structure on E®n. This duality relates the representation theory of
orthogonal groups and Brauer algebras. Brauer algebras also have connections to
low-dimensional topology and knot theory; see, e.g., [Kau, BW, FG].

Let k, I be positive integers of the same parity, so that k+l is even. A Brauer

(k, /) -diagram is an undirected graph with k + 1 vertices, such that each vertex is
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an endpoint of exactly one edge. Conventionally, the vertices are arranged in two
rows within a rectangle, with k vertices (the top vertices) along the top boundary
and / vertices (the bottom vertices) along the bottom boundary, with the edges

drawn in the interior of the rectangle in such a way that intersecting edges cross

transversally. For example, the graph

is a Brauer (6, 8)-diagram. Edges connecting two vertices in the same row are
called horizontal edges. All other edges must have one top and one bottom

endpoint, such edges are through edges. The rank of a diagram is the number of
through edges.

Let k be a ring and 8 e k a distinguished parameter. Multiplication of Brauer

diagrams is defined as follows. Given a (k, I) -diagram b and an (l,m) -diagram
b', place b above b' and identify the i th bottom vertex of b with the i th top
vertex of b'. Let N — N(b, //) be the number of interior loops in the new graph
and let b" be that graph with its loops and intermediate vertices omitted. Then

b" is a (k. m) -diagram, and we define

The (Cm)-diagram b" b o b' is the composite diagram of b,b'. Note that
the parameter 8 keeps track of the number of discarded interior loops. In case

k m we call the diagram b" simply an m -diagram.
The Brauer algebra over k with parameter 8 is denoted by (8), and

is defined to be the k-span of the set of «-diagrams. Extended linearly, the

multiplication rule (b,b') i-> hb' in (5.2) defines an associative multiplication on
*33„ (8). An identity edge in an n -diagram is an edge connecting the i th vertices

in the top and bottom rows; the n -diagram in which all edges are identity edges is

the unit element of *B„ (8). Brauer n -diagrams in which every edge is a through
edge will be identified with permutations; note that multiplication of Brauer

diagrams coincides with multiplication of permutations in case both diagrams are

permutations, so k©„ is a subalgebra of ©«(8). Clearly *B|(8) k; we agree
to interpret QSo(8) k.

Let ®yt,/(8) be the k-span of the set of (k, l)-diagrams. Multiplication of
Brauer diagrams makes this into a (Q3&(8), Q3/(8))-bimodule with 53yt(8) acting
by left multiplication and 58/(8) by right multiplication. This bimodule structure

will be used below to construct representations of Brauer algebras.

Semisimplicity of IB„(8) over C was studied in [Bro] in the case when 8 is

a positive integer: he showed that *8„(8) is semisimple if and only if 8 > n — I.

(5.1)

(5.2) bb' — 8N(b o h'), where b ob' b".
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Still working over C, Hanlon and Wales [HW] conjectured that 23 „ (8) is always

semisimple if 8 e C is not an integer; the conjecture was proved by Wenzl [Wen],
who also parametrized the simple modules and established the branching diagram.
Further work on semisimplicity of Brauer algebras, including semisimplicity over
other fields, can be found in [DWH, Rui, CMPX].

We assume for the remainder of this section that k is a field of characteristic

zero and 8 e k is not an integer. This assumption ensures that 23„ (8) is split
semisimple over k. Under this assumption, we show that the Brauer algebras

form a multiplicity-free family, identify a JM-sequence for this family, develop

eigenvalue formulas, and compute central idempotents using Theorem 3.11.

In order to simplify the notation, we suppress the parameter 8, writing
23„ 23„(8) from now on. There is a natural unital embedding

i : 23„ 23„+i

given by sending an «-diagram to the corresponding (« + 1)-diagram obtained by

appending an identity edge on the right (connecting two additional vertices). We

identify 23„ as a unital subalgebra of 23„+), for each «, without further mention

of t.
We write (/, j) for the «-diagram corresponding to a transposition (/, j) e &n ;

this is the diagram with through edges connecting the i th and j th top vertices

to the j th and i th bottom ones, respectively, with all other edges identity edges.

Similarly, (/, j) is the «-diagram with horizontal edges connecting the /th and

j th vertices in each row, and all other edges identity edges. We set

(5.3) si (/,/ + 1); ei (/,/ + 1), any / < «.

It is easy to see that 23„ is generated by the .sy, a for 1 < / < « — 1. Defining
relations satisfied by these generators can be found in [Naz]. Note that ef 8cy, so

8-1e; is idempotent. Any ty generates the two-sided ideal spanned by all diagrams
with at least two horizontal edges; the quotient by this ideal is isomorphic to

k6„.
Our next task is to construct the irreducible (right) 23„ -modules. For this

purpose it is useful to apply some general observations from [Gre, §6.2].
The applicability of these ideas to diagram algebras was demonstrated in

[MS, Mar, DWH, MRH, CMPX, CDVM]; here we more or less follow the

summary outline at the beginning of [CMPX]. In general, then, let A be an

algebra over a field k and e e A an idempotent. The rule

M Me

defines an exact functor F (often called the "Schur functor") from right A -modules

to right eAe -modules. The functor F takes irreducible modules to irreducible

modules, or zero. More precisely, we have the following result.
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Theorem 5.1 ([Gre, (6.2g)]). Let {L(X) : A A} be a full set of pairwise
non-isomorphic irreducible right A-modules, and let

Ae {1 e A : L(X)e f 0}.

Then {L(X)e : X e Ae} is a full set of pairwise non-isomorphic irreducible right
eAe -modules.

Note that right A-modules annihilated by e are equivalent to right A/AeA-
modules. Thus, the irreducible right A-modules L(X) with X e A\Ae are a full
set of irreducible A/AeA -modules. If A is finite dimensional, this reduces the

problem of finding an indexing set A for the irreducible A -modules to the same

problem for the smaller algebras eAe, A/AeA.
There is another functor G going from right eAe -modules to right A -modules,

defined by G(N) N <S)eAe cA. This functor, which was also considered in [Gre,

§6.2], is a right inverse to F, i.e., F(G(A)) N, so G is a full embedding.5
Furthermore, [Gre, (6.2e)] shows that G(N) always has a unique maximal proper
submodule whenever N is irreducible.

In case A is semisimple, it follows that G must take irreducible eAe -modules

to irreducible A-modules (and the unique maximal proper submodule is zero).

Thus, for irreducible A-modules M such that Me 0, we have G(F(M)) M.
So, G is also a left inverse to F. Thus, in the semisimple case, the functors F
and G implement an equivalence of categories between A-modules not killed
by e and eAe -modules. Since A AeA ® A/AeA by semisimplicity and the

A-modules killed by e are the A/AeA -modules, it follows that the A-modules

not killed by e are the same as the AeA-modules. To summarize:

Proposition 5.2. If A is semisimple, then:

(a) G takes irreducible to irreducibles.

(b) The functors F, G induce an equivalence ofcategories between AeA-modules
and eAe -modules.

Now we apply the above observations to the algebra 23«, taking e to be the

idempotent with <?„_i as in (5.3). This immediately gives functors

F„, G„_2 as above, defined by the rules

Fn{M) MÇn, Gn-2(N) N

for any right -module M, any right 23„_2 -module N. A crucial fact about

the idempotent is that there is an isomorphism of algebras

5 In [CMPX], the functors F, G are called "localization" and "globalization" functors, respectively.
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(5.4) S IM*
for each n >2. The isomorphism is given by the rule b i-> for be 23„_2 ;

note that it maps the unit element of 23„_2 to Furthermore, commutes

pointwise with <B„_2 :

(5.5) Çnb b$n, for all b e ®„_2.

In consequence, we have ®„_2 23„_2?« Hn^n-i^n • If Irr(n) is a set indexing
the irreducible 23„-modules and Irr" a set indexing the irreducible 23„/23„£„23„ -

modules, then it follows from (5.4) and the preceding remarks that

Irr(n Irr" U \n(n - 2).

Since 23„/23„£„23„ is isomorphic to k©„, we can set Irr" {A | A F n}. It is

trivial to compute Ao and Ai (as 23o 251 s k), so it immediately follows by
induction on n that

Irr(«) {A I A h n — 21 and 0 < 21 < n}.

Now that we know an indexing set for the irreducible 23 „ -modules, we turn to the

problem of constructing them. We will follow the approach of [DWH], using the

(25^,23„)-bimodule 23^« 23^;„(i5) discussed above, where k <n has the same

parity as n. Let 23"
n

be the span of the (k, n) -diagrams of rank (number of
through edges) strictly smaller than k. Since multiplication of diagrams cannot
increase the number of through edges, 23" is a sub-bimodule of 23^„, and

hence the quotient

K
is a (93fc, 23„)-bimodule. The set of (k, n)-diagrams of rank k is a complete
set of representatives of the quotient. If k — n, then F„" ^ k©„ and

F„(F„") V"tjn =0. Furthermore, if k < n, then we have an isomorphism

(5.6) Fn(Vkn) Vtfn s Vk"-2

as (23&, 18„-2)-bimodules. The isomorphism arises from forgetting the rightmost
horizontal edge in b'Çn, for each (k,n)-diagram h. (There is a factor of 8-1 which
does not matter.) By restriction, since k©& is contained in 23^, the bimodule

Vk is a (k&k, 23„) -bimodule. Therefore, if A \~k, we define

SA <g>feSit V£.

This is a right 23„ -module, where Sx is the Specht module considered in the

previous section. If Ah n, then k — n and F„" k©„, so A4 (A'n) Sx as

right 23„ -modules (with 23„Ç„23„ acting trivially). Clearly this is an irreducible

-module; indeed, it is irreducible as a k©„ -module.
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Proposition 5.3. A full set of irreducible right ©„ -modules is the set of M^'n)
such that Ab k, 0 < k < n, and n, k are of the same parity.

Proof. Assume that k,n have the same parity. To show that the are

pairwise non-isomorphic and irreducible, we proceed by induction. We consider
the two cases k < n and k — n. (Modules between the two cases are non-
isomorphic by Theorem 5.1.)

If k < n and Ah k, then it follows from (5.4), (5.6), and the definition of
M ("*•'") that

F„(M(A'n)) <g>ke* s* ®kS)t Vf'2

as right ©„-2 -modules. Since ©„ is semisimple, and M^x-n~2) f 0 by the

inductive hypothesis, it follows that

Gn-2{M(X'n~2)) ^ M{X'n)

as right ©„-modules. Furthermore, by Proposition 5.2(a), is irreducible
as a right ©„-module. Appealing to Proposition 5.2(b), we see that the distinct

are pairwise non-isomorphic.
In the case k n and Ah«, we have M(X'n) ^ sx. Such modules are

pairwise non-isomorphic (and irreducible) by the remarks preceding the theorem.

This completes the proof.

Remark 5.4. Although not needed in the sequel, to complete the picture we
describe a k-basis for M^x'nK This requires finding a complete set of orbit

representatives for the left action of &k on the set of (A, n) -diagrams of rank k.
If b is a (A, n) -diagram, we let jt(b) in &k be the permutation obtained from
b by removing the horizontal edges and their endpoints. Recall from [FG, Xi]
that a (A, n)-diagram b is a flat (A,«)-dangle if it(b) is the identity. Then the

set of flat (A,n)-dangles is the desired set of representatives. Any (A,«)-diagram
b is uniquely expressible as a product

b 7x{b)d{b),

where d(b) is a flat (A, n) -dangle d(h). It follows that the set

{u®û?|ue S A, d a flat (A,«)-dangle}

is a k-basis for where S A is any k-basis of Sl.

Next, we explain why the family {©„ | « > 0} is multiplicity-free. Recall that

if B is a subalgebra of an algebra A and if M is a right B -module, then the
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induced module is the right ,4-module Ind^ M defined by Indß M M ®ß A.
The functor Ind^ from B -modules to ,4-modules is a left adjoint to the usual

restriction functor Resß from A -modules to B -modules, meaning that Frobenius

reciprocity holds:

Hony (Indg M, N) sé Homß(M, Res^ N),

where M is any right B -module, N any right ,4-module.
We can apply these generalities to the inclusion i : 23„_i 23„, which

identihes 23„_i with a subalgebra of 23„. Wenzl [Wen] observed that £„23„

£„Q3„_i and also that the map

(5.7) 2S„_i £„©„ defined by x %nx

gives an isomorphism 2S„-i ^ £«23„ of (Q3„_2.23„_i)-bimodules. Note that

£„23„_i is a left 2S„_2 -module since £„ commutes with 23„_2, by (5.5). Let
Ah k where k < n and k has the same parity as n. If we restrict the 23„ -module

isomorphism

M(A,«) ^ Qn_2(M(A,n-2)) M(l,n-2) ^
to 23„_i, it follows that

(5.8) Resl^_i m(A'") Ind^l2

as right 23„_i-modules. In light of Frobenius reciprocity this says that

Hom®„_, (ResM(A'n),M(/x'n-1)) ^ Hom®„_2 (M(A'""2), Res

for any /x h I < n — 1 where I has the same parity as n — 1. Here, we omitted the

sub and superscripts on the restriction functors for readability. Since the algebras

are semisimple, this says that

(5.9) [ResM(A'n) : M(/X'""1)]n_1 [Res : M(A'"-2)]m_2,

where we write [M : S]n for the multiplicity of an irreducible 23„ -module S

in another 93„ -module M. By induction, we may assume that the right hand

side of (5.9) is always 0 or 1. This shows that restriction from 23„ to 23„_j is

multiplicity-free, at least for the case of k < n.
If k n and A F n, then M(k-n) ^ SA with 23„£„23„ acting trivially. That

is, its restriction to 23„_i is a module with 23„_i Ç„_i /t„_i c 23„£„23,, acting
trivially, so the restriction is a k6„_i -module. This means that the restriction rule
in this case is the same as the usual restriction rule for symmetric groups (which
is also multiplicity-free). This completes the proof that the family {23„ | n > 0}
is a multiplicity-free family, in the sense of Definition 1.1.
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In fact, the above analysis shows that the restriction of an irreducible
23„ -module Afto 23„_i breaks up into a direct sum of irreducible 23„-i -

modules indexed by all partitions p. obtained from A by removing
or adding one box. This justifies the branching graph for this family, which is

displayed in Figure 2 below.

0

\

Figure 2

Branching graph for the family {©„}

Since {23„ | n > 0} is a multiplicity-free family, each 23„ has canonical

idempotents sj given by Definition 1.3. These idempotents are indexed by paths
T of length n in the branching graph. The set Tab(n) may be identified with the

set of up-down tableaux, which are sequences of partitions of the form

(5.10) T (A0, Ai, • • • A„_i, A„)

such that Ao 0 and, for each k, the partition Xk+i is obtainable from the

preceding partition A& by adding or removing exactly one box.

We wish to compute the idempotents ej by means of a sequence of JM-
elements, according to the results of Section 3. Following Nazarov [Naz], we

define elements e (A >1 by

(5.11)

k—1 k—1

h £> k)- J2 (a)-
i=1 /=1
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We define J\ as zero. Our definition of these elements differs slightly from
Nazarov's, in that we have removed an unnecessary shift by (8 — l)/2. For any
n e N, the elements may be regarded as elements of 03„ by means

of the embeddings 03i C ••• C 03„_i C 03„. The following easy results can be

checked by direct computations.

Lemma 5.5 ([Naz, Lemma 2.1]). For any k 1,n, the element Jk commutes
with any h e 03„_i. Hence, the elements pairwise commute in 03„.

We omit the easy proof, which is given in [Naz], The lemma immediately
gives the following commutation relations between the Jk and the generators .v,-,

ei defined in (5.3). Note that the relations in part (c) differ from those given by
Nazarov because our definition of Jk differs slightly from his.

Proposition 5.6 ([Naz, Prop. 2.3]). The following relations hold in the algebra

(a) SkJi Jisk, ek Ji Jiek (I f k,k + \

(b) sk Jk -lk - i sk : ek 1, sk Jk i Jk sk 1 ek.

(t-) ^k(Jk T" Jk+1) (1 ~ (Jk T Jk+\)^k •

Proof The commutation relations (a) follow from Lemma 5.5 if I > k + 1 and

from the definitions otherwise. Furthermore, it is easy to check from the definition
that the elements Jk can be defined by the recursion

Ji 0, J/c+i skJksk + sk -ek (k> 1).

This implies the relations (b). Turning to (c), we have by direct computation for

any I — 1,..., k - 1 the equalities

ek (k, I) — ek (k + 1, /) and ek (k, I) — ek (k + 1, /).

Combining these equalities with the obvious identities eksk ek, <sek and

the definition of the Jk produces the leftmost equality in (c). The rightmost
equality in proved similarly.

Relations (a) and (b) of the proposition immediately imply the following.

Corollary 5.7 ([Naz, Cor. 2.4]). The sum zn J\ -\ 1- Jn-\ + ./„ is a central
element of 03„.

It remains to compute the eigenvalues of the Jk on the irreducible modules
and prove that the sequence (Jk)ken is separating.
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Proposition 5.8. Let Ab k where k n —21 and 0 < 21 < n. Suppose that ax
is the eigenvalue of equation (4.5). Then the central element zn J\ + + Jn

of 53„ acts on M— Sx ®k6*; Vf as the scalar ßx ax + /(I — 8).

Proof This argument follows the proof of [GG2, Theorems 5.3, 5.1]. We proceed

by induction on n. The base cases n — 0, 1 are trivial, so assume that n > 2.

There are two cases.

If 1 0, then Ah n and Sx, with the ideal Q3„Ç„53„ acting
trivially. We can write

Zn ?n" ~Zn,

where z®" ffi<j 0> J *s the sum of all the transpositions in &n and

zn Y2i<j 0> J) G VSnÇn^n- It follows from Proposition 4.2 that zn acts as

the scalar ax, so the proof is complete in case 1 0.

Now suppose I > 0. In this case we use the isomorphism

M(A,„) ^ Vf-2 8^nHn IjnXn

from the proof of Proposition 5.3. Since the central element zn acts by a

fixed scalar on the entire module, it suffices to compute its eigenvalue on any

nonzero vector in the module, so we consider its action on u ® v ® where

ynk vk

(;u <g> v)zn-2 (ax + (/-!)(!- 8)) u <g> v.

0^M®»eSA <8»Ds6a Vf 2. By induction we have

It follows that

(w <g> V (g> £„)z„ (u®V <g) ij„)(zn-2 + Jn-1 + Jn)

(u (g) V <E> Çn)zn-2 + (u <8 V ® %n)(Jn-1 + Jn)-

By Proposition 5.6(a) we know that \en-\ commutes with z„_2, so the

first term in the right hand side of the above is

(u (g) V ® £„)z„_2 (w ® v)zn—2 ® Çn — (ax + (l - 1)(1 - 8)) u ® v ® $n-

The second term in the right hand side is computed by Proposition 5.6(c) as

(w ® t> ® Çn)(Jn-i + Jn) (1 - 8) u <8 v (g) £„.

Hence, by combining the equations in the last three displays, we obtain the

equality
(m <g) V <8 %n)zn — (ax + /(I - 8)) w ® v ®

and the proof is complete.
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This result will now be applied to compute the eigenvalues of the Jk on the

Gelfand-Tsetlin basis of the irreducible 23 „ -modules.

Proposition 5.9. Suppose that A e Irr(n) and {uT | T A} is the Gelfand-Tsetlin
basis of M^'n\ Let T (Ao, Ay,..., A„) be an up-down tableau with Xn A.

Suppose that Ak and A&_i differ by a box in row i and column j. Then the

eigenvalue of Jk on the eigenvector »y is

Ii
— i if Xk has one more box than Xk-i,

(1 — 8) + i — j if Xk has one fewer box than Xk-i-

Proof Set Zk X!/=i /; and note that Jk zk — Zk-\, for any 1 < k < n.
We proceed by induction on ». For « 1 the result is clear: c-r(l) 0 as

Ji=0. Let « > 1 and let T e Tab(n). By the inductive hypothesis, cj(k) has

the desired value for any k < n — 1. By Proposition 3.6(a), cj(k) cj(k) for all
k < », so cy(A) has the desired value for all k < ». Thus, it suffices to compute
the value cy(n).

By Propositions 3.3 and 5.8 we have cy(«) ßx — ßß, where T^/i, and

ßx ax + /(I — 8). There are two cases to consider: if A A„ has one more
box or one fewer box than p, A„_i. In the first case, Propositions 5.8 and 4.3

give us ßß aß + /(I - 8), and

c-r(n) ßx~ ßß j — i-

In the second case, ßß aß + (/ — 1)(1 — 8), and hence

cj(n) ß\ - ßß (1 - 8) + i - j.

This complete the proof.

Corollary 5.10. The sequence (Jk \ k e N) is a JM-sequence in the sense of
Definition 3.1.

Proof Since Jk — Zk ~ zk-\ and Zk Z(®^) for all 1 <k <n (Corollary 5.7),

it follows that each Jk e Xn and that (Jk)keN is additively central. To prove that

it is also a separating sequence, we use Proposition 3.5. That is, we verify that
S T if and only if cs Cj. (One direction is automatic.)

Proposition 5.9 computes the content vectors cy (cy(l),.... cy(»)) for each

T e Tab(»). If T (A0 ->••••->• A„), we write T[k] — (Ao -»•••-> Ak) for
the truncated path. Assume S T are distinct paths of length » and find the

first level k < n at which the paths S,T diverge. So S[k — 1] T[A — 1], yet
S [A] f T[A]. Let S [A ] A and T[A] p be the terminal shapes of the paths,
and let T[A — 1] p. There are three cases.
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Case 1: A, v are obtained by adding different boxes to /x. Here cs(k) and

cj(k) are both computed using the first formula in Proposition 5.9. Appealing to
Remark 4.4, we see that cs(k) ^ cj(k).

Case 2: X, v are obtained by removing different boxes from /x. We must use

the second formula in Proposition 5.9. Appealing to Remark 4.4, we again have

Cs(k)^CT(k).

Case 3: One of A, v is obtained by adding a box and the other by removing
one. Here cs(k) and cj(k) cannot possibly be equal, as Proposition 5.9 says that

one value is an integer and the other is not (recall that 8 e k \ Z).

All cases reach the conclusion that cs f ct so the proof is complete.

Examples 5.11. To avoid ambiguity, we write £^(A) for the primitive central

idempotent e(A) in 93„. The £(n)(X) can be computed recursively using Theorem
3.11 and Proposition 5.9, referring to the branching graph in Figure 2. Of course

£(%) 1.

Primitive central idempotents for n 2:

£(2)(0) P° £<»() p®

£(2)(m) PDm£(1)(D) PDm * J-0
£(2)(B) PdB£(1)C) •

Primitive central idempotents for n — 3:

£(3)(p) - P^£(2)M + PgD£(2)(e) + P0 £(2)(0)

+ ('l-m(/-4)1)g(2)@ + 1 • e(2)(0)

£<3\m) P£(2)(m) (J:it(88+2)+"fi(2)M

£<3>(BP) £(2)(m) + PgP £(2)(B)

_ (./3+8)(J3—2) (2)/ \ I (J3+8—2XJ3+2) (2)/iq\_ 3(8—1) Ê H 3(S=Î) S

£(3>(g) - P|£(2>(B)=-(y3+3gy-i)g(2)(B).
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Primitive central idempotents for n 4:
There are eight idempotents at this level; we compute two of them:

e(4)(m) FDme(3)(D) + P^Ê(3)(œd) +

_ (J4+8—l)(/4+ l) (3)/ \ rJ4+l)(J4-3) „(3)/ X _
U4+8)(-r42-4)J4 (3W— 28 k W "I" (8+4)8 fc W 2(8—2)(8—4)8

fc WV

£(4)(E^ P^f e(3)(SP) + £(3)(m)

_ (J4+8)(J4+8—2)(>4+2)./4 (3)/pp\ (,/4+8+ l)(J4—3) p(3)( A- 8(8+2)8 £ (tr> 48 S (ŒDh

We note that the summands in each s^n\A) are the various sj in that block, so

the sj are recoverable from the above expressions.

Remark 5.12. The recent paper [KMP] explores a completely different technique
for computing central idempotents in semisimple Brauer algebras. Their technique
is specific to that context.

A. Primitive central idempotents via trace characters

We give a brief exposition of another approach to computing the primitive central

idempotents in a split semisimple finite dimensional algebra A. The approach

generalizes a classical formula of Frobenius for the central idempotents of group
algebras CG for finite groups G (see Corollary A.2 below) in terms of the

irreducible characters of G. We show that the irreducible trace characters of A
still uniquely determine its central idempotents, provided its defining field k has

characteristic zero.

Here, it is not necessary that A fits into a multiplicity-free family. The

requirement on k guarantees invertibility of the (dim A) x (dim A) matrix of the

natural trace form on A. A slightly more general result (due to Kilmoyer) can
be found in [CR1, Proposition (9.17)]; see also [Rami].

Definition. Given any (not necessarily irreducible) finite dimensional A-module
V, let xV be the trace character of V, defined by

yv (a) trace(<pv(a)),

where <pv : A -> Endk(K) is the representation corresponding to the ^(-module
V. If [V] X for A e Irr(A), we write yx in place of yV

Let p — xA be the trace character of the left regular module; i.e., the

character of A regarded as a module over itself by left multiplication. Since

Endfc(FA) (FÂ)* (gi Vx, it follows from (1.1) that
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As* ©A(dim VX)VX

as left .4-modules. Since characters are additive on direct sums of modules and

since /A0) dim Vx, it follows that

(Al) p £A(dim Vx) xx Ea xxWxx-

The problem of finding central idempotents e(A) is now framed as follows.
Given a fixed basis B B(A) of A, write

(A2) e(A) Eier? cb h

and try to compute the coefficients cB e k. To that end, we may multiply both
sides of (A2) by a basis element h' e B, and then apply p to both sides to get

(A3) p(fi(X)b') Eies P(bb') cb

On the other hand, we can use (Al) to express p(s(X)b') as

(A4) p(e(X)b') Ea ^(l)^(e(A)ô') yA(l) xX(b')-

(The last equality in (A4) comes by multiplying the equation 1 E;i SUX) on
the right by b', then applying to both sides.) Note that xX(eUL)b') — 0 for
A p., since s(n)b' belongs to a block upon which xX acts as zero.

Finally, we combine (A3) and (A4) to obtain

(A5) EhesPibb ')c£ xHDxHb').

For fixed A, we may regard (A5) as a linear system (one equation for each b')
that govern the values This leads to the following result.

Proposition A.l. Suppose a split semisimple finite dimensional algebra A has

underlying field Ik. of characteristic zero. Then the primitive central idempotents

e(A) of A are uniquely determined by its irreducible characters.

Proof. Given a basis B of A, let M (p(bh'))h,heB be the square matrix
of coefficients in the linear system (A5), with rows indexed by b' and columns

by b. This is just the matrix of the natural bilinear trace form, i.e., (a,a')
p(aa') Va,a' e A, with respect to the basis B. As A is split semisimple over
a field of characteristic zero, a classical argument, as in [Vin, Theorem 11.54],

shows that the trace form is nondegenerate. Hence M is invertible.

Let rA be the column vector (xX(l)xX(b'))b'eB~ ^ien t'ie column vector

(cb)beB dedn'n8 £(A) in (A2) is uniquely determined and equal to M~lrx.
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We note that the vector rx in the proof of Proposition A.l is just the A-row of
the character table of A, scaled by yA(l) dim^ Vx. So we have an alternative
method of producing the irreducible characters, provided this table is known. See,

e.g., [Ram2] for the case of Brauer algebras.

In the case of group algebras, Proposition A.l recovers the classical formula
of Frobenius (see [Fro, III, pp. 244-274]). In that case, the matrix M of the

natural trace form is easy to invert.

Corollary A.2 (Frobenius). Suppose that A — kG is a split semisimple group
algebra over a field k of characteristic zero, where G is a finite group. Then for
any A e Irr(kG),

«W t^t AA(A,_1) g
1 1

geG

Proof. This follows from the observation that p(g) is zero for any g f Ig,
while p(1g) IG j, where Ig denotes the identity element of G. Indeed, let

B{A) — G be the basis of A given by the group elements. Then the matrix
M (P(ggf))g', geG 'n the proof of the proposition is |G| times the permutation
matrix P (8g-i,g>)g, gG, so M~l ^PT. Then

p(gg') IGI Sg-i,g'

in terms of the usual Kronecker delta. The formula for e(A) now follows by an

easy calculation.
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