Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 64 (2018)

Heft: 1-2

Artikel: The Erdds-Szilisz-Turan distribution for equivariant processes
Autor: Athreya, Jayadev S. / Ghosh, Anish

DOl: https://doi.org/10.5169/seals-842085

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-842085
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique (2) 64 (2018), 1-21 DOI 10.4171/LEM/64-1/2-1

The Erdos-Sziisz—Turan distribution for
equivariant processes

Jayadev S. ATHrREYA and Anish GHosH

Abstract. We resolve problems posed by Kesten and Erd8s—Sziisz—Turdn on probabilistic
Diophantine approximation via methods of homogeneous dynamics. Our methods allows
us to generalize the problem to the setting of general measure-valued processes in R”,
and obtain applications to the distribution of point sets which occur in higher-dimensional
Diophantine approximation and the geometry of translation surfaces.

Mathematics Subject Classification (2010). Primary: 37A17; Secondary: 37-06, 37-02.
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1. Introduction

1.1. Dirichlet’s Theorem. The most classical result in Diophantine approximation
is Dirichlet’s Theorem, which is stated in two forms: First, for all irrational
a €[0,1], and any integer Q > 1, thereisa 1 <g < Q and a p € Z relatively
prime to g so that
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1
D1 — —.
(D1) lag — p| < 0

As a corollary, one obtains that there are infinitely many g € Q (with
ged(p,q) = 1) satisfying

1

q q

In this paper, we consider the distribution of the number of solutions to modified
versions of (D1) and (D2) from a probabilistic perspective initiated by Erdds—
Sziisz—Turan [ESP] and Kesten [Kes]. Our methods show how this problem can
be generalized and solved in many other geometric and number theoretic settings.

(D2)

1.2. The Erdos—Sziisz-Turan and Kesten distributions. In 1958 [ESP], Erdds—
Sziisz—Turédn introduced a problem in probabilistic Diophantine approximation:
what is the probability f(N,A,c) that a point « chosen from the uniform
distribution on [0, 1] has a solution f € Q to the modified Dirichlet equation
P
a|~ q?
with denominator ¢ € [N,cN]? Here A > 0,c > 1 are fixed positive parameters,
and N is a parameter which goes to infinity. We note that by a well known result
of Hurwitz, A = LS is the best allowable constant so that (1.I) has infinitely
many solutions for all «. Given A4,c, N, let EST(A,c, N)(«) be the number of
solutions p/q € Q with ged(p,q) =1 to (1.1). Letting « € [0, 1] be a uniform
random variable yields an integer-valued random variable EST(A, ¢, N), with

(1.1 P

¥

P(EST(A,c,N) =k) =m(ax €[0,1] : there are exactly k solutions to (L)),

where m is Lebesgue measure on [0, 1]. Then, the Erd§s—Sziisz—Turdn question
is the existence of the limit

lim P(EST(A,c,N) > 0).
N—oco
Considering analogously a modified version of (D1), Kesten [Kes] defined the

sequence of random variables K(A, N) (our notation differs from [Kes]) as the
number of solutions to

A
where « is a uniform [0, 1] random variable. That is,
P(K(A,N) =k) =m(a €[0,1] : there are exactly k solutions to (1.2)).

We consider the following
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Question. What (if they exist) are the limiting (as N — oo) distributions of the
random variables EST(A,¢, N) and K(A,N)?

Our main results shows that the limiting distribution exists and can be viewed
as the probability of a random unimodular lattice intersecting a certain fixed
region. Let X, = SL(2,R)/SL(2,Z) denote the space of unimodular lattices in
R?,via the identification

gSL(2,Z) — gZ2.

Let 1, denote the Haar probability measure on X, and given A € X5, A = gZ?
let Aprim be the set of primitive vectors in A.

Theorem 1.1. The limiting distribution of the random variables EST(A,c, N) and

K(A, N) exist and denoting the random variables with these limiting distributions
as EST(A,c) and K(A), we have

(1.3) P(EST(A,c) = k) = ua(A € Xo : #(Aprim N Ha,e) = k),
and

(1.4) P(K(A) = k) = pa(A € Xz : #(Aprim N Ra) = k)
where

(1.5) Hpe={(x,y) €R?® : xy<A,1<y<=<c),

and

(1.6) Ry={(x,y)€R? : |x|<A4,0<y<1)}.

Expressing the limiting distributions as distributions on the space of lattices
allows us to apply classical results on the geometry of numbers to obtain moment
and concentration estimates (Theorem 2.4). Furthermore, our translation of the
problem into a geometric and dynamical problem is axiomatic and flexible,
and as we will see in §2 applies to point sets associated to linear forms and
translation surfaces. Our proof also shows that the same result holds as long
as « is chosen from a probability measure with a continuous density (and in
higher dimensions, certain natural classes of singular measures). Our main result
(Theorem 4.1) describes how to define, construct and compute related distributions
in the general setting of equivariant processes, which we define precisely in §4.
We note that a function very similar to the one considered in (1.4) above has
been computed explicitly in the paper [SV] by Strombergsson and Venkatesh, and
indeed an adaptation of their methods might allow for an explicit computation
here as well.
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1.3. History. This circle of problems has a long history, starting with the original
paper of Erd6s—Sziisz—Turdn [ESP]. There, in addition to posing the problem of
the limiting probability of P(EST(A,c, N) > 0) (they denoted this putative limit

as f(A,c)), they showed that for 4 < ﬁ, that the limit existed and

12
f(A,c) = ;EA logec.

Subsequently Kesten [Kes] showed that the the limit exists under the assumption
Ac <1, and this assumption was removed by Kesten—Sos [KS].

We were introduced to this problem by Boca, Zaharescu, and Heersink (who
has studied the problem of finding approximates with appropriate congruence
conditions [Hee]). Their methods, number theoretic in nature, yield explicit
formulas for f(A,c) (computed independently by Boca [Boc] and Xiong—
Zaharescu [XZ]), and they also considered localizing « to smaller intervals.

Our results offer detailed information on the distributions of the random
variables EST(A,c) and K(A), yielding the limiting distribution (not just the
probability of positivity) of both random variables in both this setting and in a
variety of other geometric and number theoretic contexts, and our methods can
also localize « to even shrinking intervals (§1.5.2).

Our results on the Kesten distribution were anticipated by Marklof [Mar,
Theorem 4.4], thought at the time he was not aware of Kesten’s question.
Marklof—Strombergsson [MSI, MS2] have given several beautiful applications
of homogeneous dynamics to to statistical physics via understanding the fine
scale statistics of point sets.

1.4. Organization. In the remainder of this introduction, we prove Theorem 1.1,
using equidistribution of horocycles on the space X,. In §2, we describe our
general results in the settings of lattices; linear forms; diophantine approximation
on curves, and translation surfaces. In §4 we describe our general philosophy and
state our main axiomatic theorem. In §5, we prove our results in their various
incarnations on the space of lattices, and in §6, we prove our results in the setting
of translation surfaces.

1.5. Equidistribution on the modular surface. We relate the ErdGs—Sziisz—
Turan and Kesten distributions to dynamics on the space of unimodular lattices,
and prove Theorem 1.1. This approach will generalize to higher dimensions, and
will allow us derive a number of results using appropriate equidistribution results.
We begin with the original question of Erd&s—Sziisz—Turdn and Kesten, proving
Theorem 1.1.
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1.5.1. Proof of Theorem 1.1. We note EST(A,c, N) = k if and only if

-

q

Lty

3 exactly k distinct L g Q such that N < g <c¢N and =
q q

Equivalently, there are exactly k vectors

(Z) € Z123rim such that (;) = Ug (i])) € LlogN Hac,

where

a—£ <%,N<q<cN
q q
as
qlga — p| < A,
and then as

lxy| < A,N <y <cN.
Thus, we are interested in the measure of the set of « € [0, 1] satisfying
(1.7 #(glog NUaLpyim N Hae) = k.
Let y; denote the indicator function of the set
(1.8) {AeX : #(Aprim N Hac) =k}

To compute P(EST(A,c) = k), we are interested in the N — oo behavior of

1
(1.9) [ 20610 vta Zm)i
0

Let ny denote the measure do on the set {giog Nu,,le)ﬁm 0 <a <1}, so we
can rewrite (1.9) as ny(yxx). We will now use suitable approximations of the
functions y; and apply Zagier’s equidistribution theorem [Zag, p. 279], which
would tell us that

N —> M2,

as N — oo, where the convergence is in the weak-* topology. This gives

P(EST(A,c,N) = k) = nn(xk) feandl pn2(xK).
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It is important to note that this approximation process is complicated by the fact
that the sets (1.8) are unbounded, so we cannot approximate yx using functions of
compact support. However, the sets can be approximated from above and below
by bounded continuous functions using that the boundary of the support of yx
has measure zero with respect to the Haar measure p> on X,. We refer the
reader to [MSI1] which has a more general form of this argument. Indeed, as
pointed out to us by an anonymous referee, one can apply (6.28) in Theorem 6.7
of loc. cit., with @ = (0,0),m = 1,M = [ in SL(2,R), and for a suitable choice
of set B defined by (1.8) independent of .

For the Kesten distribution, we note by a similar argument that K(4,N) =k
if and only if

#(Zl0g NUaL i N Ra) = k.

Thus, proceeding as above, we obtain (1.4). ]

1.5.2. Measures and windows. The proof of Theorem 1.1 in fact yields much
more information. A strengthening of Zagier’s theorem due to Shah [Shal] allows
us to obtain the equidistribution result for any absolutely continuous measure on
[0, 1]. Thus, the limiting random variables EST and K do not depend on the initial
distribution of « (as long as it is continuous). A different strengthening of Zagier’s
result is due to Hejhal [Hej] (with subsequent work of Strombergsson [Str]), which
implies that we can sample « from smaller subintervals depending on N, as
long as the subintervals shrink no faster than N~1/2,

We can also consider the Erdds—Sziisz—Turdn and Kesten distributions asso-
ciated to solutions of (1.1) and (1.2) with ¢;N < g <N, with 0 <c¢; < .
The limiting distributions will again be given by the probability random lattices
intersect fixed regions in k points, with the regions being given by

Hacroo ={(x,y) €R? : xy < A,c; <y <2}

and
Racre, = {(x, ) €R? : [x| <A1 Sy S o).

1.5.3. Moments and concentration. To compute moments of the Erd&s—Sziisz—
Turdn and Kesten distribution, we need to understand the quantities

> k'P(X =k),t R,
k=0

where X is either EST(A,c) or K(A). For t = 1, we can rewrite this as

L # (Aprim N HA,c) dpa(A).
2
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By the Siegel mean value theorem [Sie], we have

6 12
Lz#{Apﬁm N HA,c}d;Lz(A) = ) |Hae| = ;AlogC.

This is the expected number of solutions to (1.7) (in the N — oo limit). Note

= C
that if A < m,

12
P(EST(4,¢) > 0) = Y _ P(EST(4,c) =k) = — AlogC,
k>1 =

so we have
E(EST(A,c)) = > kP(EST(4,c) =k) =) _ P(EST(4,c) =k).
k>1 k>1
so for k > 1, P(EST(A,c) = k) = 0, that is, the ErdGs—Sziisz—Turdn distribution

is concentrated at 1. For the Kesten distribution, similar computations yield the

mean,

6 6A
E(K(A) = — |Ral = 5.

In the setting of higher-dimensional Diophantine approximation, we will obtain
bounds on higher moments via classical results on the geometry of numbers.

2. Erdés-Sziisz—Turian and Kesten distributions in higher dimensions

2.1. Diophantine approximation. We start with a natural higher dimensional
generalization of the original Erdds—Sziisz—Turdn problem. Let d > 2 = m + 1
(d =2,m =1 corresponds to our original problem), and fix 4 > 0,c > 1 and a
norm | -|| on R™. Let x be chosen from the uniform distribution on [0, 1]™, and
let EST;(A,c, N) denote the number of solutions (p,q) € Z™ x Z (with (p,q)
primitive) to the modified Dirichlet equation

2.1) Ixg —pll < Aq™4,

with g € [N,cN], and K;(A, N) denote the number of solutions to

(22) Ixg —pll < AN,

with ¢ € [1, N].

Theorem 2.1. The limiting distributions of EST4(A,c,N) and Kyz(A,N) exist

and the distributions of the limiting random variables EST;(A,c) and K;(A)
are given by

P(EST4(A,¢)) = pa(A € Xg : #(Aprim N Hy, a,c) = k)
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and

P(Ka(A)) = pa(A € Xg : #(Aprim N Ry 4) = k)
where
(2.3) Haac={(xy) €R* xR : x|y <A, 1<y<c}
and
(2.4) Ria={(xy) €R!xR : [x| <A,0<y<1)

2.2. Linear forms. Next, we consider systems of linear forms. Let d = m +n,
m,n>1, fix A>0,c>1, and norms |- | and ||-|, on R™ and R"”. We
consider the set of m linear forms in n variables, parametrized by My,x,(R),
the set of m x n real matrices. We identify M., (R) with R™". Let X be
chosen from the uniform distribution on [0, 1]™". We define the random variable
EST,,xn(A,c, N) as the number of solutions (p,q) € Z™ x Z" (with (p,q)
primitive) to the modified Dirichlet equation

(2:5) 1Xq—pl,. < Alqlln™.

with ||g||» € [N, cN]. Similarly, we define K,,x,(A, N) as the number of solutions
to

(2.6) IXq—pl,, < AIN|"m,

with |lg]l, € [1, N].

Theorem 2.2. The limiting distributions of the random variables EST,x,(A,c, N)
and Kpyxn(A, N) exist and the distributions of the limiting random variables
ESTmxn(A,c) and Kpxn(A) are given by

P(ESmen(A, c) = k) = ,LLd(A € Xg? #(Aprim N Hpxn,A,e) = k)
and

(2.7) Hpxn,ae = {(x,y) € R" xR" ¢ [X[lmllylln < A, 1= Iyl < ¢}
(2.8) Rinxn,a = {(x,y) € R" xR" : [X[lm < 4,0 < [ly]la < 1}.

We note that Theorem 2.1 is a special case of the above Theorem with n = 1.
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2.3. Approximation on curves. The subject of metric Diophantine approximation
on manifolds studies typical Diophantine properties of points on manifolds. It is
well known and easy to see using the Borel-Cantelli Lemma, that almost every
real number is not very well approximable. This means that the inequality

lgx — p| < 1/|q|'**

has at most finitely many solutions. This result generalises easily to arbitrary
dimension. In 1932, K. Mahler conjectured that almost every point on the
curve (x,x2,...,x™") is not very well approximable. Mahler’s conjecture started
the subject and there have been many subsequent works, including recent
dramatic advances due to Kleinbock—Margulis, Beresnevich, Velani, and others.
The constraint of lying on a manifold makes the subject considerably more
complicated than classical Diophantine approximation. Nevertheless, our approach
can be used to compute Erdds—Sziisz—Turdn and Kesten distributions for vectors
lying on curves. Let d = n+ 1, and ¢ : [a,h] — R” be an analytic curve
whose image is not contained in a proper affine subspace, and || - | denote a
norm on R"~!. Let x be chosen from the uniform distribution on [a, 5], and let
EST4(A, c) denote the random variable counting solutions to

_1
lg¢(x) —pll < Ag~4,N < g <cN.
Let Ky4(A, N) denote the random variable counting solutions to

_—
lg¢(x) —p|l < AN"4,1 <q <N.

Theorem 2.3. The random variables ESTg(A,c, N) and Kg(A, N) have limiting
distributions, and the limiting random variables ESTy(A,c) and Kg(A) have
distributions given by

P(ESTy(A,c) =k) = u{A € Xg : #(Aprim N Ha a,c) = k},
and
P(K¢(A,C) = k) = M{A € Xg : #(Apiim N Ry 4) = k},

where Hg 4. and Rg a4 are as in Theorem 2.1

Remark. There is also an analogue of Theorem 2.2 for curves in the space of
linear R™", which is exactly parallel to Theorem 2.3.

2.4. Measures and windows. As in the setting of 1-dimensional approximation,
we can also work with g (or ||g|) in appropriate subranges of the form [c1 N, ca2 N]
with appropriate changes to the limiting distributions (replacing the y range with
[c1,c2]). Additionally, choosing absolutely continuous measures also does not
change the limiting distribution.
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2.5. Moments and concentration. Classical results from the geometry of
numbers allow us to compute moments of the random variables EST and K.
We recall the definition of the Siegel transform: given f € C.(R%) and A € X,
define R

fw= Y fu.

VEAprim
Siegel showed

-~ 1
fXd fdpa = @ - fdm,

where f is Lebesgue measure. Thus, the expectation of the random variables EST
and K is proportional to the volume of the regions H;(A,c) and R;(A). Rz(A)
grows polynomially in A and H;(A,c) polynomially in ¢ and logarithmically
in A.

Building on Siegel’s work, Rogers [Rog2, Rogl] and Schmidt [Sch] computed
bounds for higher moments of ? . These can be exploited to give precise moment
estimates for EST and K, and yield non-trivial concentration phenomenon. For
example, a consequence of [Rogl, Lemma 4] shows that for integers p < d,
_’f € LP(uq), and moreover

7 -1
LAIE < IAIT + Cpall I

Let | »
Mya(f):= ” f —@ d fdm i
We have | M, ()
7 p.d
,U,(AEXd.’f _EE Rdfdm‘>7’)<?.

Specializing to the case p = 2:

Theorem 2.4. (Rogers [Rog2, Theorem 4], Schmidt [Sch, Theorem 3], see
also [AM, Lemma 4.3]) Let X be either EST,xn(A,c) or Kpxn(A). There
is a constant Cg, depending only on dimension d = m + n, so that

V(X) = E((X - E(X))z) < CE(X).

In particular, for any T > 0,
C
P (|X —E(X)| > T\/E(X)) e

Proof. The second assertion is an immediate consequence of the first. For the
first, we note both EST,,x, and K,,x, are random variables counting the number
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of lattice points in a bounded set ( Hy,xn(A,c) and R,,x,(A)). By [AM, Lemma
4.3] (which is essentially contained in Rogers), we have that for any random
variables of this type,

E(X?) < p* + Cypu.

In fact C; can be chosen to be 8{(d —1)/¢{(d) (for d > 3). |

Remark. Kesten [Kes, Theorem 3] considered the d — oo limit of K; and
proved Poisson behavior (under appropriate normalizations) using the method of
moments.

3. Translation surfaces

Our approach also yields information on the geometry of the set of holonomy
vectors of saddle connections on translation surfaces. Given g > 1, an translation
surface S of genus g is a pair S = (X,w), where X is a compact Riemann
surface of genus g and w is a holomorphic 1-form. A saddle connection y on
S is a geodesic (in the flat metric determined by @) connecting two zeros of w,
with none in its interior. The holonomy vector of y is defined by

zy::fa)eC.
¥

As :={z), : y a saddle connection on S}

The set

is a discrete subset of R? with quadratic growth (cf. Masur [Masl]), that is there
are constants 0 < ¢; < ¢2 so that

c1R?* < #(As N B(0, R)) < c2R>.

We define the moduli space 2, of translation surfaces by considering equivalence
classes of translation surfaces up to biholomorphism. This space is decomposed
into strata H(«) consisting of holomorphic differentials with zeros of order
ayp,...,0, where @ = (a,...,0¢) is an integer partition of 2g — 2. Each
stratum consists of at most 3 connected components [KZ], and there is a natural
Lebesgue probability measure py on the each stratum H (o), known as Masur—
Veech measure.

There is a natural SL(2,R)-action on the space 2z which respects the
decomposition into strata, and acts ergodically on each connected component
of a stratum [Mas2, Veel]. The set Ag varies equivariantly under this action, that
is

AgS = gAs,
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where SL(2,R) acts on R? by the usual linear action. The fine-scale geometry of
the sets Ag has been a subject of much recent investigation [AC, ACL, SW, UW],
and our approach allows us to define Erdds—Sziisz—Turan and Kesten distributions
associated to translation surfaces. We note that for g = 1, Q; = X5, so this
setting is another natural generalization of the original Erd6s—Sziisz—Turan and
Kesten problems.

Let 8 € [0,2m) be chosen from the uniform distribution. We want to understand
how well vectors in Ag approximate the direction 6, in terms of their length.
Given A > 0,c > 1, N > 0, define the random variables EST(S, N) and K(S,N)
by

EST(S,N) =#(rgAs N HacN)

and
K(S,N)=#(raAs N RanN),
where
Hpen = {(x,y) e R? : xy<A,N<y< cN}
and

Ran ={(x,y)eR?® : x| <4,0<y <N}

We say Sp € Qg has circle limit measure p on Qg if the measures df on
{g:roS }o<p<2n converge to . A result of Nevo!, see for instance the paper [EM]
of Eskin and Masur, shows that for any stratum H, ux-a.e. § € H has circle
limit measure jty .

Theorem 3.1. Suppose So € Qg has circle limit measure (o. Then EST(So, N)
and K(So, N) both have limiting distributions, and denoting the random variables
with this limiting distribution by EST(S) and K(S), we have

P(EST(S()) = k) = o (S = Qg Z#(AS N HA,c — k))

and
P(K(So) =k) =po (S € Qg : #(As N Ry =k)).
In particular, for any stratum H and puy-a.e. Sy € H,
P(EST(So) = k) = pun (S € H:#(As N Hy) = k)
and
P(K(So) =k) = un(S € H :#(As N Ry) = k).
U'The authors have been informed by A. Nevo that this result was in circulation for a long time but

was not published. Now, a paper dealing with the SL(2,RR) case is available [Nev] and is soon going
to be supplanted by an article which deals with the case of general semisimple groups
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3.1. Lattice surfaces. For particular highly symmetric surfaces, we can say more.
We denote the stabilizer of the point S = (X, w) € Q¢ under the SL(2,R) action
by SL(X,w). A translation surface S is called a lattice surface (also known
as an Veech surface) if SL(X,w) is a lattice. The lattices that occur are always
nonuniform, and the SL(2,R) orbit of S is closed, a copy of SL(2,R)/SL(X, )
in Qg . For these surfaces, we have

Theorem 3.2. Suppose So = (Xo,wo) is a lattice surface, and write T =
SL(Xo,wo). Let ur denote the Haar probability measure on SL(2,R)/T". Then
EST(So, N) and K(So,N) both have limiting distributions, and denoting the
random variables with this limiting distribution by EST(Sy) and K(Sg), we have

P(EST(So) = k) = pur(¢T € SL(2,R)/T : #(gAs, N Hae = k))

and
P(K(So) = k) = ,up(g]“ € SL(2,R)/T" : #(gAs, N R4 = k))_

3.2. Expectation. To compute the expectation of the random variables K and
EST in this setting, we use the Siegel-Veech formula [Vee2]. This states that for
any SL(2,R)-invariant measure i on H where the Siegel-Veech transform

7=> f@

z€Ag

is in L1(w) for any f € C.(R?), there is a constant (the Siegel-Veech constant)

¢, SO that
f?(S)=cu,f fim,
H R2

where m is Lebesgue measure on R?. Applying this to our situation, we say that
the expectations of our limiting random variables is given by a scalar multiple
of the area of the sets H4,. and R4, depending on the circle limit measure.
The computation of Siegel-Veech constants is an active and challenging area
of research, see, for example [EMZ] for seminal work. In the setting of lattice
surfaces, Veech [Vee2] related these constants to the covolume of SL(X,w) in
SL(2,R).

4. Equivariant processes

In this section we define the axiomatic setup of equivariant measure-valued
processes and state our main result Theorem 4.1. This perspective is inspired
by the work of W. Veech [Vee2] and J. Marklof, as well as that of A. Eskin
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and H. Masur [EM]. It has the great advantage that once we make the proper
definitions, the proof of the main theorems are essentially tautologies. The power
of the method lies in its flexibility: we will see that the axioms can be verified
in several different situations.

4.1. Equivariant measure processes. Let n > 2, and G C GL(d,R). Let (X, u)
denote a Borel- G -space together with a G -invariant Borel probability measure p.
A (G -)equivariant measure process (also known as a Siegel measure, see [Vee2])
is a triple (X, px,v) where v is a map

VX —»> M@RY)

from X to the space M(R?) of o -finite Radon Borel measures on R¢ satisfying
the equivariance condition

v(gx) = g+v(x)
for all g € G,x € X, where G acts linearly on R¢.

4.2. Erdés-Sziisz-Turan distributions. Given a sequence of equivariant mea-
sure processes X = {(Xn,nwn.vn)} and a Borel subset R C R we define the
Erd&s—Sziisz—Turdn distribution n = n(X,R) on R as the measure given by (if
the the limit exists)

DX, RO, 1) = Jim nw(x € X : vy (D)(R) <1).

4.3. Equidistribution. Our main result concerns the setting where our sequence
X = {X,nn,v}, that is, a sequence of measures 7, on a fixed G-space X
together with an assignment v.

Theorem 4.1. Suppose ny — w (in the weak-* topology). Then
nX,R)(O0,t) = ;L(x € X :v(x)(R) <1).

Proof. By assumption, our measures are all Radon Borel measures, so if ny — u
in the weak-* topology, we have convergence in measure for bounded continuous
functions. Now using an approximation argument to approximate Borel subsets
from above and below as before gives that for any (fixed) Borel measurable subset
BCX,

NN (B) — p(B).

Applying this to B = {x € X : v(x)(R) <t}, we have our result. ]
This theorem, as stated, is a tautology. The key to applying it is finding

appropriate equidistribution results that allow one to take a natural sequence X
and find a limiting measure so that ny — u.
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4.4. Orbits and point processes. In many of our applications, the measures ny
will be supported on orbits of subgroups H C G and be the push-forward of
some measure on H under the orbit map. In addition, v will often be a point
process, that is, the assignment of a discrete set with counting measure.

4.5. Applications. In this paper we focus on the applications of this formalism
in the space of lattices and the space of translation surfaces. In [ABG], we apply
these ideas to the Clifford plane in order to understand cusp excursions on general
hyperbolic manifolds.

5. Equidistribution on the space of lattices

We prove our main Diophantine results using equidistribution results for flows
on the space of unimodular lattices. Let puy denote the Haar probability measure
on

X4 =SL(d,R)/SL(d, Z).

X4 is the space of unimodular (covolume 1) lattices in R4, via the identification
gSL(d,Z) —> gZ°.
Given A = gZ?% € X, we say that v € A is primitive if
v = gw,w € Z4\{0}, gcd(w) = 1

and denote by Aprim the set of primitive points in A . For all of our Diophantine
results, we will use the equivariant assignment

gSL(d.Z) — Y &y

d.
prim

vegZ

which, in the notation of §4 we view as a map vg : Xg — M(R?). Let m,n be
positive integers and let d = m + n. Set

Id, X

G = SL(d.R),T = SL(d, Z),ux = ( 0 1d
n

),H ={ux : X € Matyxa(R)}.

The group H is the expanding horospherical subgroup of G with respect to
(5.1) g: = diag(e'/™, ..., e"/™ et/" &™)t > 0.

The following Lemma is a straightforward generalisation of the the argument in
the introduction and allows us to interpret the Erdds—Sziisz—Turdn and Kesten
distributions in terms of homogeneous dynamics.
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Lemma 5.1. Let notation be as above. Then

EST(A,c,N) =k if and only if #(g1og Ntix Ziim N Hac) = k.

We can therefore proceed as before. Let ny denote the measure dY on the
set {gk,gNuyZ;"rim 0 <||Y] < 1}. It is well known that

NN —> Hd,

as N — oo, where the convergence, as before, is in the weak-* topology. This
seems to date to Rogers [Rog2, p. 250, (4)], who claims the result (without proof)
(see Rogers [Rog3, Chapter 4], for a proof of an averaged version). We refer the
reader to Kleinbock—Margulis [KM1] where a stronger statement, with a rate of
convergence is proved. We note that, Zagier’s theorem, used in the introduction
also comes with a rate, however the rate of convergence in these equidistribution
statements does not shed additional light on the Erd6s—Sziisz—Turan distribution.
Let yx denote the indicator function of the set

{AeX : #(Apim N Hye = k)}.

The functions y; can be approximated by continuous functions with compact
support on the space of lattices X441, so we have, as before,

P(ESmen(A’ c, N) = k) = UN(XK) Nj;o .u/d(XK)-

5.1. Diophantine approximation on curves. To obtain Erd&s—Sziisz—Turdn and
Kesten distributions for Diophantine approximation on curves, we follow the same
procedure above and use the following equidistribution theorem for expanding
translates of curves due to N. Shah [Sha2].

Theorem 5.2. Let ¢ : [a,h] — R" be an analytic curve whose image is not
contained in a proper affine subspace. Let T" be a lattice in G. Then for any
xo € G/T' and any bounded continuous function f on G/T,

b

1 B
(5.2) lim ——— | £ (gu(p(s)x0)ds = [G |

t_)oob—a a

6. Equidistribution on strata

6.1. Almost everywhere equidistribution. We prove Theorems 3.1 and 3.2, using
Theorem 4.1 and known equidistribution results on the space of lattices. Here, the
equivariant assignment is given by
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S — ZSZ,

zeAg

the counting measure on Ag. In the notation of §4, we denote this assignment v.
We are interested in the Lebesgue measure of the set of 6 € [0,27) so that

#(ra/\s N HA,c,N) =K
(or R4,n ). Applying gioe v, and using equivariance, we rewrite this as
#(Agl()gNrHS N HA’C) =k

(respectively Ry).
Let nn(S) denote the uniform probability measure % on the curve

{lognT0S 10 <0 <27} C Q,

and let v, = v denote the equivariant assignment. Thus, we we are in a position
to apply Theorem 4.1, with R = H4, (or R4). Theorem 3.1 then follows from the
aforementioned equidistribution result of Nevo which states that ny(Sp) — un
for Ky -a.e. So € H.

6.2. Lattice surfaces. For Theorem 3.2, we restrict our universe to the subset
SL(2,R)Sy =~ SL(2,R)/I', where I' = SL(Xy,wo). Now, the sequence of
do

measures can be viewed as the measures 5~ supported on large circles

{glugNré)F 00 < 2]1’}_

By, for example, Dani—Smillie [DS], the limiting measure is the Haar probability
measure on SL(2,R)/TI", yielding our result. Cl

6.3. Other equivariant assignments. We note that there are many other equi-
variant assignments (see [EM, §2] and [Vee2]) which can be studied in the context
of translation surfaces. Our results, of course, apply to all such assignments.
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