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The K>rdos-Sziisz-Iu ran distribution for
equivariant processes

Jayadev S. Athreya and Anish Ghosh

Abstract. We resolve problems posed by Kesten and Erdôs-Szûsz-Turân on probabilistic

Diophantine approximation via methods of homogeneous dynamics. Our methods allows

us to generalize the problem to the setting of general measure-valued processes in R",
and obtain applications to the distribution of point sets which occur in higher-dimensional

Diophantine approximation and the geometry of translation surfaces.
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1. Introduction

1.1. Dirichlet's Theorem. The most classical result in Diophantine approximation
is Dirichlet's Theorem, which is stated in two forms: First, for all irrational
a e [0,1], and any integer Q > 1, there is a 1 <<? < Q and a p e Z relatively
prime to q so that
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(Dl) \aq~p\ <
Q-

As a corollary, one obtains that there are infinitely many f £ Q (with
gcd(p,q) — 1) satisfying

In this paper, we consider the distribution of the number of solutions to modified
versions of (Dl) and (D2) from a probabilistic perspective initiated by Erdôs-
Sziisz-Turân [ESP] and Kesten [Kes]. Our methods show how this problem can
be generalized and solved in many other geometric and number theoretic settings.

1.2. The Erdos-Sziisz-T\iran and Kesten distributions. In 1958 [ESP], Erdôs-
Sziisz-Turân introduced a problem in probabilistic Diophantine approximation:
what is the probability f(N,A,c) that a point a chosen from the uniform
distribution on [0,1] has a solution | eQ to the modified Dirichlet equation

with denominator q e [N, cA]? Here A > 0, c > 1 are fixed positive parameters,
and A is a parameter which goes to infinity. We note that by a well known result

of Hurwitz, A is the best allowable constant so that (1.1) has infinitely
many solutions for all a. Given A,c,N, let EST(A, c, A)(a) be the number of
solutions p/q e Q with gcd(/?,g) 1 to (1.1). Letting a e [0, 1] be a uniform
random variable yields an integer-valued random variable EST(A,c, A), with

P(EST(/l,c, A) — k) — m(a e [0,1] : there are exactly k solutions to (1.1)),

where m is Lebesgue measure on [0, 1]. Then, the Erdös-Szüsz-Turan question
is the existence of the limit

Considering analogously a modified version of (Dl), Kesten [Kes] defined the

sequence of random variables K(A, N) (our notation differs from [Kes]) as the

number of solutions to

where a is a uniform [0,1] random variable. That is,

P(K(A, N) k) m (a g [0, 1] : there are exactly k solutions to (1.2)).

(D2)

lim P(EST(A,c, N) > 0).

(1.2) \aq~p\ < — ,1 <q < N,

We consider the following
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Question. What (if they exist) are the limiting (as N -> oo) distributions of the

random variables EST(4,c,Y) and K(A,N)1

Our main results shows that the limiting distribution exists and can be viewed

as the probability of a random unimodular lattice intersecting a certain fixed

region. Let X2 — SL(2,K)/SL(2,Z) denote the space of unimodular lattices in
R2,via the identification

g SL(2, Z) I-»- gl2.

Let ji2 denote the Haar probability measure on X2, and given A e X2, A gTL2

let Aprjm be the set of primitive vectors in A.

Theorem 1.1. The limiting distribution of the random variables EST(/1, c, N) and

K(A, N) exist and denoting the random variables with these limiting distributions

as EST(A,c) and K{A), we have

(1.3) />(EST(4, c) k) /r2(A e *2 : #(APrim 0 HA,e) k),

and

(1.4) P(K(A) k) ß2(A e Y2 : #(Aprim n RA) k)

where

(1.5) HA c {(x,y) e M2 : xy < A, 1 < y < c},

and

(1.6) RA {(x,y) eR2 : \x\ < A, 0 < y < 1}.

Expressing the limiting distributions as distributions on the space of lattices
allows us to apply classical results on the geometry of numbers to obtain moment
and concentration estimates (Theorem 2.4). Furthermore, our translation of the

problem into a geometric and dynamical problem is axiomatic and flexible,
and as we will see in §2 applies to point sets associated to linear forms and

translation surfaces. Our proof also shows that the same result holds as long
as a is chosen from a probability measure with a continuous density (and in

higher dimensions, certain natural classes of singular measures). Our main result

(Theorem 4.1) describes how to define, construct and compute related distributions
in the general setting of equivariant processes, which we define precisely in §4.

We note that a function very similar to the one considered in (1.4) above has

been computed explicitly in the paper [SV] by Strömbergsson and Yenkatesh, and

indeed an adaptation of their methods might allow for an explicit computation
here as well.
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1.3. History. This circle of problems has a long history, starting with the original

paper of Erdös-Szüsz-Turan [ESP]. There, in addition to posing the problem of
the limiting probability of P(EST(T, c, N) > 0) (they denoted this putative limit
as /(4,c)), they showed that for A < that the limit existed and

f(A,c) ^|dlogc.

Subsequently Kesten [Kes] showed that the the limit exists under the assumption
Ac < 1, and this assumption was removed by Kesten-Sos [KS].

We were introduced to this problem by Boca, Zaharescu, and Heersink (who
has studied the problem of finding approximates with appropriate congruence
conditions [Hee]). Their methods, number theoretic in nature, yield explicit
formulas for f(A,c) (computed independently by Boca [Boc] and Xiong-
Zaharescu [XZ]), and they also considered localizing a to smaller intervals.

Our results offer detailed information on the distributions of the random
variables EST(4,c) and K(A), yielding the limiting distribution (not just the

probability of positivity) of both random variables in both this setting and in a

variety of other geometric and number theoretic contexts, and our methods can

also localize a to even shrinking intervals (§1.5.2).

Our results on the Kesten distribution were anticipated by Marklof [Mar,
Theorem 4.4], thought at the time he was not aware of Kesten's question.

Marklof-Strömbergsson [MSI, MS2] have given several beautiful applications
of homogeneous dynamics to to statistical physics via understanding the fine
scale statistics of point sets.

1.4. Organization. In the remainder of this introduction, we prove Theorem 1.1,

using equidistribution of horocycles on the space X2. In §2, we describe our
general results in the settings of lattices; linear forms; diophantine approximation
on curves, and translation surfaces. In §4 we describe our general philosophy and

state our main axiomatic theorem. In §5, we prove our results in their various

incarnations on the space of lattices, and in §6, we prove our results in the setting
of translation surfaces.

1.5. Equidistribution on the modular surface. We relate the Erdos-Szüsz-
Turân and Kesten distributions to dynamics on the space of unimodular lattices,
and prove Theorem 1.1. This approach will generalize to higher dimensions, and

will allow us derive a number of results using appropriate equidistribution results.

We begin with the original question of Erdôs-Szûsz-Turân and Kesten, proving
Theorem 1.1.
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1.5.1. Proof of Theorem 1.1. We note EST(/l,c, ./V) k if and only if

P
3 exactly k distinct — e <Q> such that N < q < cN and

<7

Equivalently, there are exactly k vectors

a
<7

A
<

q2'

\q,
where

ua

Tins follows by rewriting

P ' Z2rim such that *
J := ua I P I g\ogNHA,c,

' 1 —a \ / e C

10 1 mis'0 «-

p
a

<7

< —ï, N <q < cN
q2

as

q\qct-p\ < A,

and then as

|xy| < A, N < y < cN.

Thus, we are interested in the measure of the set of a e [0,1] satisfying

(1-7) $CSlogiVMa^prim ^ ^A,c) k.

Let Xk denote the indicator function of the set

(1.8) {AeX : # (Aprim (T HAtC) k)

To compute F(EST(T,c) k), we are interested in the TV -> oo behavior of

(1-9) f Xk(glogNUaZlrim)da.
Jo

Let t]n denote the measure da on the set {g\«gNUa^fim : 0 < a < 1}, so we

can rewrite (1.9) as qN(Xn)- We will now use suitable approximations of the

functions Xk and apply Zagier's equidistribution theorem [Zag, p. 279], which
would tell us that

qN —> M2,

as TV -» oo, where the convergence is in the weak- * topology. This gives

P(EST(T,c, TV) =k) qN(XK) —» 7*20Ik).
N—ïoo
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It is important to note that this approximation process is complicated by the fact

that the sets (1.8) are unbounded, so we cannot approximate Xk using functions of
compact support. However, the sets can be approximated from above and below

by bounded continuous functions using that the boundary of the support of Xk
has measure zero with respect to the Haar measure fi2 on X2 We refer the

reader to [MSI] which has a more general form of this argument. Indeed, as

pointed out to us by an anonymous referee, one can apply (6.28) in Theorem 6.7

of loc. cit., with a — (0,0),m l,Af / in SL(2,R), and for a suitable choice

of set 93^ defined by (1.8) independent of t.
For the Kesten distribution, we note by a similar argument that K(A, N) — k

if and only if
$(#logA^a^prim F ^a)

Thus, proceeding as above, we obtain (1.4).

1.5.2. Measures and windows. The proof of Theorem 1.1 in fact yields much

more information. A strengthening of Zagier's theorem due to Shah [Shal] allows

us to obtain the equidistribution result for any absolutely continuous measure on

[0,1]. Thus, the limiting random variables EST and K do not depend on the initial
distribution of a (as long as it is continuous). A different strengthening of Zagier's
result is due to Hejhal [Hej] (with subsequent work of Strombergsson [Str]), which

implies that we can sample a from smaller subintervals depending on N, as

long as the subintervals shrink no faster than A-1/2.
We can also consider the Erdös-Sziisz-Turan and Kesten distributions

associated to solutions of (1.1) and (1.2) with C\N < q < c2N, with 0 < cq < c2.
The limiting distributions will again be given by the probability random lattices

intersect fixed regions in k points, with the regions being given by

Ha,cuc2 {(*.30 e r2 : xy < A,ci < y <c2}

and

Ra,ci,c2 {(*,30 e M2 : \x\ < A,a < y < c2}.

1.5.3. Moments and concentration. To compute moments of the Erdös-Szüsz-
Turân and Kesten distribution, we need to understand the quantities

OO

J^k' P(X =k),t R,
k=0

where X is either EST(A,c) or K(A). For t — 1, we can rewrite this as

I ^ (^prim Fl Ha,C)
Jx2
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By the Siegel mean value theorem [Sie], we have

C 6 12
/ #{Aprim H HA,c) dfJL2(A) \HA,c\ ~^A\ogC.

JX2 71 71

This is the expected number of solutions to (1.7) (in the N -> oo limit). Note
that if A < >

E(EST(T,c) > 0) ]T>(EST(/4,c) — k) — ^A\ogC,
k> 1

71

so we have

E(EST(/4,c)) J2kp(EST(A>c) k) ^>(EST(/4,c) k),
k>1 k>1

so for k > 1, f(EST(T, c) k) 0, that is, the Erdôs-Sziisz-Turân distribution
is concentrated at 1. For the Kesten distribution, similar computations yield the

mean,
6 6/4

E(K(A)) — \Ra\ —.
7TZ 7Tz

In the setting of higher-dimensional Diophantine approximation, we will obtain
bounds on higher moments via classical results on the geometry of numbers.

2. Erdös-Szüsz-Turan and Kesten distributions in higher dimensions

2.1. Diophantine approximation. We start with a natural higher dimensional

generalization of the original Erdôs-Sziisz-Turân problem. Let d > 2 m + 1

(d — 2,m 1 corresponds to our original problem), and fix A > 0, c > 1 and a

norm || • || on Let x be chosen from the uniform distribution on [0, l]m, and

let ESTrf(zl, c, TV) denote the number of solutions (p, q) e Zm xZ (with (p, q)
primitive) to the modified Dirichlet equation

(2.1) l|xtf-p|| < Aq-h,

with q e [N,cN], and Kd(A, N) denote the number of solutions to

(2.2) \\xq — p|| < AN~~J,

with q e [1, N],

Theorem 2.1. The limiting distributions of ESTd(A,c, N) and Kd(A, N) exist
and the distributions of the limiting random variables EST^(T,c) and Kd{A)
are given by

P(ESTrf(^,c)) p.d(A e Xd : #(Aprim T Hd^c) — k)
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and

£ Xrf : #(Aprim n R(1,A) — &)

where

(2.3) HdtAtC {(x. j)e^xl : ||x||y < A, 1 < y < c}

and

(2.4) {(x,y) eKrf xK : ||x|| < A, 0 < y < 1}

2.2. Linear forms. Next, we consider systems of linear forms. Let d m + n,
m,n > 1, fix A > 0,c > 1, and norms || • \\m and || • ||„ on Rm and R". We

consider the set of m linear forms in n variables, parametrized by Mmxn(R),
the set of mxn real matrices. We identify Mmxn(R) with Rmn. Let X be

chosen from the uniform distribution on [0, l]m". We define the random variable

ESTmx„C4,c, AO as the number of solutions (p, q) e Zm x Z" (with (p, q)
primitive) to the modified Dirichlet equation

(2-5) ||*q-p||m<A||q|U",

with ||<5f||„ e [N, cN]. Similarly, we define Kmxn(A, N) as the number of solutions

to

(2.6) ll*q —PL <A\N\~*,

with ||<7|U e [1, N].

Theorem 2.2. The limiting distributions of the random variables ESTmxn(A, c, N
and Kmxn(A, N) exist and the distributions of the limiting random variables

ESTmXn{A,c) and Kmxn(A) are given by

F(ESTmx„(/l,c) k)= itd{AeXd : #(Aprim n Hmxn,A,c) k)

and

P (Kmxn(A) — fid (A G Xd * $(Aprjm H Rmxn,A) &)

(2.7) Hmxn,A,c {(x,y) e Rm xl" : ||x||m||y||„ < A, 1 < ||y||„ < c}.

(2.8) 1mXM {(x.y)el'"xB" : ||x||m < A, 0 < ||y||„ < l}.

We note that Theorem 2.1 is a special case of the above Theorem with n — 1.
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2.3. Approximation on curves. The subject of metric Diophantine approximation
on manifolds studies typical Diophantine properties of points on manifolds. It is

well known and easy to see using the Borel-Cantelli Lemma, that almost every
real number is not very well approximable. This means that the inequality

\qx-p\<\/\q\l+t
has at most finitely many solutions. This result generalises easily to arbitrary
dimension. In 1932, K. Mahler conjectured that almost every point on the

curve (x,x2,... ,xn) is not very well approximable. Mahler's conjecture started

the subject and there have been many subsequent works, including recent
dramatic advances due to Kleinbock-Margulis, Beresnevich, Velani, and others.

The constraint of lying on a manifold makes the subject considerably more

complicated than classical Diophantine approximation. Nevertheless, our approach

can be used to compute Erdôs-Sziisz-Turân and Kesten distributions for vectors

lying on curves. Let d — n + 1, and cp : [a,b] -» R" be an analytic curve
whose image is not contained in a proper affine subspace, and || • || denote a

norm on R"_1. Let x be chosen from the uniform distribution on [a,b], and let

EST0(A,c) denote the random variable counting solutions to

\\qcj)(x) — p|| < Aq~d N < q < cN.

Let K(j,(A,N) denote the random variable counting solutions to

|| qf(x) — p|| < AN~~J, 1 <q<N.

Theorem 2.3. The random variables EST^f/t,c, N) and K^,(A, N) have limiting
distributions, and the limiting random variables EST^M,c) and K$(Ä) have

distributions given by

P(EST4>(A,c) k)^p{AeXd : #(Aprimn Hd,A,c) k},

and

P(K^(A,c) k) p{A e Xd : #(Aprim n Rd>A) k},

where Hd^,c and Rd,A are as in Theorem 2.1

Remark. There is also an analogue of Theorem 2.2 for curves in the space of
linear Rm", which is exactly parallel to Theorem 2.3.

2.4. Measures and windows. As in the setting of 1 -dimensional approximation,
we can also work with q (or ||^j| in appropriate subranges of the form [ci N, C2N]
with appropriate changes to the limiting distributions (replacing the y range with
[ci,c2]). Additionally, choosing absolutely continuous measures also does not

change the limiting distribution.
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2.5. Moments and concentration. Classical results from the geometry of
numbers allow us to compute moments of the random variables EST and K.
We recall the definition of the Siegel transform: given / e Cc(9Jl) and A e Xd
define

7(A)- E
ueA„

Siegel showed

7 dtLd J7T\ f
JXd S (") JK<

fdm,

where / is Lebesgue measure. Thus, the expectation of the random variables EST
and K is proportional to the volume of the regions Ild(A.c) and Rd(A). Rd{A)
grows polynomially in A and Hd(A,c) polynomially in c and logarithmically
in A.

Building on Siegel's work, Rogers [Rog2, Rogl] and Schmidt [Sch] computed
bounds for higher moments of / These can be exploited to give precise moment
estimates for EST and K, and yield non-trivial concentration phenomenon. For

example, a consequence of [Rogl, Lemma 4] shows that for integers p < d,

f e Lp(pd), and moreover

ll/ll|<ll/llf + cPÂL p-i

Let

We have

MPAf) f - m fJm.d

'1(AeXd:\?-W)Lfdm\>T)<

fdm

MpAf)
TP

Specializing to the case p 2 :

Theorem 2.4. (Rogers [Rog2, Theorem 4], Schmidt [Sch, Theorem 3], see

also [AM, Lemma 4.3]) Let X he either ESTmx«(/l,c) or Kmxn(A). There

is a constant Cd, depending only on dimension d — m + n, so that

V(X) E((X- E(X)f < CdE{X).

In particular, for any T > 0,

P (\X-E(X)\ > T/E(X)) < Q
T2'

Proof The second assertion is an immediate consequence of the first. For the

first, we note both ESTmxn and Kmxn are random variables counting the number
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of lattice points in a bounded set (Hmxn(A,c) and Rmxn(A)). By [AM, Lemma

4.3] (which is essentially contained in Rogers), we have that for any random
variables of this type,

E(X2) < /r2 + Cdlx.

In fact Cd can be chosen to be 8Ç(d — 1 )/Ç(d) (for d > 3).

Remark. Kesten [Kes, Theorem 3] considered the d -» oo limit of Kd and

proved Poisson behavior (under appropriate normalizations) using the method of
moments.

3. Translation surfaces

Our approach also yields information on the geometry of the set of holonomy
vectors of saddle connections on translation surfaces. Given g > 1, an translation

surface S of genus g is a pair S (X,co), where A is a compact Riemann
surface of genus g and w is a holomorphic 1 -form. A saddle connection y on
S is a geodesic (in the flat metric determined by co) connecting two zeros of co,

with none in its interior. The holonomy vector of y is defined by

zy := / co G C.
Jy

The set

As := {zy : y a saddle connection on 5}

is a discrete subset of M2 with quadratic growth (cf. Masur [Masl]), that is there

are constants 0 < c\ < C2 so that

Ci R2 < #(As n 5(0, R)) < c2R2.

We define the moduli space of translation surfaces by considering equivalence
classes of translation surfaces up to biholomorphism. This space is decomposed
into strata H{a) consisting of holomorphic differentials with zeros of order

ai,...,ak, where a (oq,...,o^) is an integer partition of 2g — 2. Each

stratum consists of at most 3 connected components [KZ], and there is a natural

Lebesgue probability measure ii-H on the each stratum 'H(a), known as Masur-
Veech measure.

There is a natural SL(2, M)-action on the space £2g which respects the

decomposition into strata, and acts ergodically on each connected component
of a stratum [Mas2, Veel], The set A s varies equivariantly under this action, that

is

Ags gAs,
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where SL(2,R) acts on R2 by the usual linear action. The fine-scale geometry of
the sets A s has been a subject of much recent investigation [AC, ACL, SW, UW],
and our approach allows us to define Erdôs-Szûsz-Turân and Kesten distributions
associated to translation surfaces. We note that for g — 1, C] X2, so this

setting is another natural generalization of the original Erdôs-Szûsz-Turân and

Kesten problems.
Let 9 e [0,2n) be chosen from the uniform distribution. We want to understand

how well vectors in A s approximate the direction 9, in terms of their length.
Given A > 0, c > 1, N > 0, define the random variables EST(A, N) and K(S,N)
by

EST(S, N) #(rgAs El Ha,c,N)

and

K{S, N) # (rgAs El RA,n)

where

Ha,c,n {(*, y) e R2 : xy < A, N < y < cN}

and

Ra,n — {(*> y) e R2 ^ \x\ < A, 0 < y < Nj.

We say So has circle limit measure )i on if the measures d9 on

{gtr$S}o<e<2jr converge to /i A result of Nevo1, see for instance the paper [EM]
of Eskin and Masur, shows that for any stratum H, ßy -a.c. S e H has circle
limit measure \iy.

Theorem 3.1. Suppose So e has circle limit measure Ho Then ESTf.S'o, N)
and K(So, N) both have limiting distributions, and denoting the random variables
with this limiting distribution by EST(A) and K(S), we have

E(EST(S0) k) ß0{Se Qg :#(Asn HA,C k))

and

P{K(S0) k) ßo (S e Qg : #(A5 n RA k)).

In particular, far any stratum TL and ßy -a.e. So e H,

E(EST(A0) k) ßy(S e U : #(AS n HA,C) k)

and

P(K(S0) k) ßy(S e H : #(AS n RA) k).
1 The authors have been informed by A. Nevo that this result was in circulation for a long time but

was not published. Now, a paper dealing with the SL(2,R) case is available [Nev] and is soon going
to be supplanted by an article which deals with the case of general semisimple groups
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3.1. Lattice surfaces. For particular highly symmetric surfaces, we can say more.
We denote the stabilizer of the point S (X, co) e under the SL(2,R) action

by SL(A, oj). A translation surface S is called a lattice surface (also known
as an Veech surface) if SL(A, oj) is a lattice. The lattices that occur are always
nonuniform, and the SL(2, R) orbit of S is closed, a copy of SL(2,R)/ SL(A, oj)
in £ig. For these surfaces, we have

Theorem 3.2. Suppose So (X0,o)0) is a lattice surface, and write T

SL(X(), wo). Let jir denote the Haar probability measure on SL(2,R)/r. Then

EST(,So, N) and K(S0,N) both have limiting distributions, and denoting the

random variables with this limiting distribution by EST(So) and K(So), we have

P(EST(50) k) nr(gr e SL(2,R)/r : #(gASo n HA,C k))

and

P(K(S0) k) pr(gr e SL(2,M)/r : #(gASo C RA k)).

3.2. Expectation. To compute the expectation of the random variables K and

EST in this setting, we use the Siegel-Veech formula [Vee2]. This states that for

any SL(2, R) -invariant measure p, on H where the Siegel-Veech transform

?(s)= J2 /(z>
zeAs

is in L1 (p) for any / e Cc(R2), there is a constant (the Siegel-Veech constant)

cß so that

f (S) cß f fdm,
JH JM.2

where m is Lebesgue measure on R2. Applying this to our situation, we say that
the expectations of our limiting random variables is given by a scalar multiple
of the area of the sets HA ,c and RA, depending on the circle limit measure.
The computation of Siegel-Veech constants is an active and challenging area

of research, see, for example [EMZ] for seminal work. In the setting of lattice
surfaces, Veech [Vee2] related these constants to the covolume of SL(A, a>) in

SL(2,R).

4. Equivariant processes

In this section we define the axiomatic setup of equivariant measure-valued

processes and state our main result Theorem 4.1. This perspective is inspired
by the work of W. Veech [Vee2] and J. Marklof, as well as that of A. Eskin
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and H. Masur [EM]. It has the great advantage that once we make the proper
definitions, the proof of the main theorems are essentially tautologies. The power
of the method lies in its flexibility: we will see that the axioms can be verified
in several different situations.

4.1. Equivariant measure processes. Let n > 2, and G c GL(J,M). Let (X, p)
denote a Borel- G -space together with a G-invariant Borel probability measure p.
A {G -)equivariant measure process (also known as a Siegel measure, see [Vee2])
is a triple (X,p,v) where v is a map

v : X -> M(Ed)

from X to the space _A4(Rrf) of a -finite Radon Borel measures on satisfying
the equivariance condition

v{gx) g*v(x)

for all g e G,x e X, where G acts linearly on

4.2. Erdos-Sziisz-Turan distributions. Given a sequence of equivariant measure

processes X {(Xn,ijn,vat)} and a Borel subset TZ C Rd we define the

Erdôs-Sziisz-Turân distribution rj rj(X/IZ) on M+ as the measure given by (if
the the limit exists)

r}(X,lZ)(0,t) — lim t]n(x e X : vpf(x)(1Z) < t).
N-*oo

4.3. Equidistribution. Our main result concerns the setting where our sequence
X {X, t]n,v}, that is, a sequence of measures rjn on a fixed G-space X
together with an assignment v.

Theorem 4.1. Suppose ipy -> p, {in the weak-* topology). Then

r](X,lZ)(0,t) pt(x X : v(x)(7?.) < r).

Proof. By assumption, our measures are all Radon Borel measures, so if t]n -> /z

in the weak-* topology, we have convergence in measure for bounded continuous
functions. Now using an approximation argument to approximate Borel subsets

from above and below as before gives that for any (fixed) Borel measurable subset

B c X,
r]N(B) —» p(B).

Applying this to B {x e X : v(x)(7Z) <t}, we have our result.

This theorem, as stated, is a tautology. The key to applying it is finding
appropriate equidistribution results that allow one to take a natural sequence X
and find a limiting measure so that -* P--
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4.4. Orbits and point processes. In many of our applications, the measures ï]n
will be supported on orbits of subgroups H c G and be the push-forward of
some measure on H under the orbit map. In addition, v will often be a point
process, that is, the assignment of a discrete set with counting measure.

4.5. Applications. In this paper we focus on the applications of this formalism
in the space of lattices and the space of translation surfaces. In [ABG], we apply
these ideas to the Clilford plane in order to understand cusp excursions on general

hyperbolic manifolds.

We prove our main Diophantine results using equidistribution results for flows

on the space of unimodular lattices. Let ptd denote the Haar probability measure

on

Xd SL(d,R)/SL(</,Z).

Xd is the space of unimodular (covolume 1 lattices in M1*, via the identification

Given A gZd e X, we say that v e A is primitive if

v gw,w Zrf\{0},gcd(w) — 1

and denote by Aprjm the set of primitive points in A. For all of our Diophantine
results, we will use the equivariant assignment

which, in the notation of §4 we view as a map vd : Xd -» M(Md). Let m, n be

positive integers and let d m + n. Set

The group H is the expanding horospherical subgroup of G with respect to

The following Lemma is a straightforward generalisation of the the argument in
the introduction and allows us to interpret the Erdôs-Sziisz-Turân and Kesten

distributions in terms of homogeneous dynamics.

5. Equidistribution on the space of lattices

gSL(J,Z) \-+ gZd.

prim

(5.1) g, diag(er/m,..., e,lm,e"n,et/n), t > 0.
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Lemma 5.1. Let notation be as above. Then

ES7(A,c,N) k if and only if #(glogNuxZprim n HÄ>C) k.

We can therefore proceed as before. Let r]N denote the measure d Y on the

set {£ï0gjvwyZprim : 0 < ||y || < 1}. It is well known that

In —» dd,

as N -> oo, where the convergence, as before, is in the weak-* topology. This

seems to date to Rogers [Rog2, p. 250, (4)], who claims the result (without proof)
(see Rogers [Rog3, Chapter 4j, for a proof of an averaged version). We refer the

reader to Kleinbock-Margulis [KM1] where a stronger statement, with a rate of
convergence is proved. We note that, Zagier's theorem, used in the introduction
also comes with a rate, however the rate of convergence in these equidistribution
statements does not shed additional light on the Erdös-Szüsz-Turan distribution.
Let Xk denote the indicator function of the set

|Aef : #(Aprim n HA,C *)}.

The functions Xk can be approximated by continuous functions with compact

support on the space of lattices Xj+i, so we have, as before,

R(ESTmx„(/l,c, N) =k) t)n(xk) — dd(Xx)-
tV->oo

5.1. Diophantine approximation on curves. To obtain Erdös-Szüsz-Turan and

Kesten distributions for Diophantine approximation on curves, we follow the same

procedure above and use the following equidistribution theorem for expanding
translates of curves due to N. Shah [Sha2],

Theorem 5.2. Let f : [a,b] -> M" be an analytic curve whose image is not
contained in a proper affine subspace. Let V be a lattice in G. Then for any
Xp eG'/T and any bounded continuous function f on G/T,

(5.2) tlhn^^—/ f(gtu(<l>(s))xo)ds J^^fdp,.

6. Equidistribution on strata

6.1. Almost everywhere equidistribution. We prove Theorems 3.1 and 3.2, using
Theorem 4.1 and known equidistribution results on the space of lattices. Here, the

equivariant assignment is given by
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S I » ^ 8Z,

ZGAs

the counting measure on As. In the notation of §4, we denote this assignment v.
We are interested in the Lebesgue measure of the set of 6 e [0,2n) so that

#(rgAs n Ha,c,n) k

(or Ra,n)- Applying giogN, and using equivariance, we rewrite this as

^(^siogjveS n Ha,c k

(respectively Ra).
Let i)n(S) denote the uniform probability measure ~ on the curve

{glog TV A? : 0 < 0 < 2jrj C

and let v„ v denote the equivariant assignment. Thus, we we are in a position
to apply Theorem 4.1, with 1Z — Ha,c (or Ra)- Theorem 3.1 then follows from the

aforementioned equidistribution result of Nevo which states that rçjv^o) —>

for fjbu -a.e. So e "H.

6.2. Lattice surfaces. For Theorem 3.2, we restrict our universe to the subset

SL(2, M).S'o SL(2,M)/T, where T .SL(A0, wo). Now, the sequence of
measures can be viewed as the measures ^ supported on large circles

{glogWeT : 0 <6 < 2rr}.

By, for example, Dani-Smillie [DS], the limiting measure is the Haar probability
measure on SL(2,M)/T, yielding our result.

6.3. Other equivariant assignments. We note that there are many other
equivariant assignments (see [EM, §2] and [Vee2]) which can be studied in the context
of translation surfaces. Our results, of course, apply to all such assignments.
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