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[Q,R] =0 and Kostant partition functions

Andras Szenes and Michele VERGNE

Abstract. On a polarized compact symplectic manifold endowed with an action of a
compact Lie group, in analogy with geometric invariant theory, one can define the space of
invariant functions of degree k. A central statement in symplectic geometry, the quantization
commutes with reduction hypothesis, is equivalent to saying that the dimension of these
invariant functions depends polynomially on k. This statement was proved by Meinrenken and
Sjamaar under positivity conditioﬁs. In this paper, we give a new proof of this polynomiality
property based on a study of the Atiyah—Bott fixed point formula from the point of view
of the theory of partition functions, and a technique for localizing positivity.
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1. Introduction

1.1. Quantization and multiplicities. Let M be a compact almost complex
manifold. The complex structure J € I'(End(TM)) then induces the splitting
TM @ C = T'M & T M, where T/ M is the complex vector bundle of +i -
eigenspaces, while T’ M is the bundle of —i -eigenspaces of J acting on TM ®C .
When M is a complex manifold endowed with an Hermitian metric, then M
may be identified with the complex tangent bundle, while T/ M with the complex
cotangent bundle of M .

To every complex vector bundle £ — M over M one can associate an integer
as follows (see (2) below). Set the notation Q%(M,¢&) = T(AS(TIM)* @ E) for
the anti-holomorphic differential forms with values in £, and consider the twisted
Dolbeault-Dirac operator [BGV]

D¢ : Q9(M, ) - Q¥(M, &),

which is a first-order elliptic differential operator on M . We can associate to this
operator the Z,-graded vector space

(1) 0O(M, &) = Ker(Dg) & Coker(Dg),

where Ker(D¢) is placed in the even part, while Coker(Dg) in the odd part of
O(M,&).

Remark 1. Thought of as the formal difference of Ker(Dg) and Coker(Dg) one
can think of Q(M,&) as the virtual space of solutions of the corresponding
differential equations.

The (super)-dimension of this Z,-graded vector space is defined to be the
integer

(2) dim Q(M, &) = dimKer(D¢) — dim Coker(Dyg).

This number may be computed by the Atiyah-Segal-Singer index formula:

(3) dim Q(M, &) = /M ch(€) Todd(T? M);
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here ch(€) is the Chern character of £ and Todd(T’/ M) is the Todd class of
M.

Now assume that a compact, connected Lie group G acts compatibly on the
manifold M and the bundle &£, and preserves the almost complex structure
J. Then Q(M,E) becomes a Z,-graded representation of G, and we still
denote by Q(M,€£) the corresponding element Ker(Dg) — Coker(Dg) of the
Grothendieck ring R(G) of virtual representations of G. We will be interested
in the decomposition of this virtual representation into irreducible components.

To make this more explicit, we introduce the following notation for the Lie
data:

e Denote by T the maximal torus of G, and
e by g and t the Lie algebras of G and T, respectively;

e we will identify t* with the T -invariant subspace of g* under the coadjoint
action.

e Let A stand for the weight lattice of T thought of as a subspace of t*.

e We will use the notation e, for the character T — C* corresponding to
A € A, and write t* for the value of this character on ¢t € T. Thus we have
e)(t) =1t* for t € T, and also t* =/ AX) if X et and t = exp(X).

e Denote the set of roots of G by 2R, and choose a splitting of R into a
positive and a negative part: SR = RTUR™. Let gc = tc ®n™ @ n~ be the
corresponding triangular decomposition of the complexification of the Lie
algebra g of G.

o Write dt for the Haar measure on T satisfying [, dt = 1.
Further, we introduce the following notation:
e for X € g, we denote by VX the vector field
d
VXM —>TM, VX:qg Ee_thh:g
on M induced by the G -action;

e we define the character y¢ : 7 — C via

xe(t) = Trt|Ker(Dg) — Trt| Coker(Dg).

Atiyah—Bott—Segal-Singer [AB1, AB2, AS] gave a formula for yg(¢) in terms of
the connected components of the set of fixed points of the action of ¢ on M.
The Fourier transform Fyg: A — Z of yg¢ is a function with finite support; its
value

Fre(h) = [T (= ye () dt
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is an integer, called the multiplicity of the weight A in yg. Using the fixed
point formula, one can express Fyg(A) in terms of partition functions. The first
example of such an expression was Kostant’s formula for the multiplicity of a
weight in a finite-dimensional representation of a compact Lie group in terms of
the number of ways a weight can be expressed as a sum of positive roots.

Our focus will be the calculation of the dimension of the G -invariant part
O(M,E)C of Q(M,E), obtained by taking G -invariants on the right hand side
of (1). Thus we have

dim Q(M, E)G = dim Ker(Dg)G —dim Coker(Dg)G.

According to the Weyl character formula, this integer may be expressed via the
multiplicities using the formula

4) dim Q(M, £)¢ = f [T 0= xe@ar.
T aERT

A key tool of our approach is a formula of Paradan [Parl], expressing yg(t) as
a sum of characters of infinite dimensional virtual representations of T associated
to a collection of subtori of T (cf. Proposition 41). We will give a direct proof of
this result, deriving it from the Atiyah-Bott—Segal-Singer localization formula.

Let us demonstrate Paradan’s formula for y¢(¢) in the simplest example: that
of the complex projective line.

Example 2. Let M = P!(C) be endowed with the action of the group
G = SU(2). Let £ be the dual of the tautological bundle, and let £ = £F
for some k € Z. The maximal torus 7 of the group G corresponds to the set
of diagonal matrices in SU(2). The action of t € T on P!(C) is given by
t-(x:y)=(tx:t"'y). The Atiyah-Bott formula reads as

tk ¢tk
) Xex®) =T+ 75
Then
30 e it 0<k,
Xrex() =40, if k =-—1,

YRR if k<.

The dimension of the virtual representation Q(M, £X) is equal to y ck (1), which
is equal to k + 1 in our case.
Expanding (1 —%)7"! as the geometric series ) ;-,¢%/, we obtain

oo oo
(6) X[_',k(t) — Zt—k+2j —Ztk+2j.
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Using the identity > 72,r% = 322 % — ;_OO t2J, we obtain Paradan’s

symmetric expression for y,«(¢), which is the sum of three formal characters

(7) Xex@) =15 D =N R N ke
j=1

Jj=—00 j=1

The character ¢* Z}";_oo %/ depends on kmod2 only; it defines a generalized

function on 7 supported at ¢ = +1, and hence it is “invisible” at any ¢ # +1.

1.2. Quantization of symplectic manifolds. Consider an equivariant line bundle
L over M, endowed with a G -invariant Hermitian structure and an Hermitian
connection V. Then the curvature V2 will be of the form —i, where Q is
a closed real 2-form on M. The G -invariant connection V determines a G -
equivariant map ug : M — g*, called the moment map:

(8) i{pg, X) = Lx — Vyx,

where Ly is the Lie derivative acting on the sections of L. Observe that if
p € M is a fixed point of the T -action, then ug(p) is in t* C g*, moreover,
ne(p) is exactly the T -weight of the fiber £, . Differentiating (8), we obtain the
key identity

(9) (dug, X) + Q(VX,) =0.

The goal of this article is to give new proofs of certain polynomiality properties
of the function k +— dim Q(M, £*)C .

First, consider the case where G = T is abelian. In this case, we will write
@ : M — t* for the moment map, omitting the index 7'. Our first result concerns
the case of large k.

Theorem 3. Let £2°" and £°Y be T -equivariant vector bundles over the almost
complex manifold M. Let L be an equivariant line bundle with associated
moment map @ : M — t*. Suppose that %™ and £°% restricted to ~1(0) are
isomorphic as T -equivariant vector bundles. Then, for k large, the multiplicities
Fxeevengk (0) and Fygodag ok (0) are equal.

We give a proof of this theorem in §6, following Meinrenken, based on the
stationary phase principle applied to the integral formula of [BV2] for yeg k.

Now we turn to the case of a general compact connected G. We will need
to weaken the notion of polynomiality as follows.

Definition 4. Let E be a lattice, i.e., a free Z-module of finite rank. A function
P : E — C is quasi-polynomial if for some sublattice E¢ C E of finite index
and every A € E, the function P restricted to A + E¢ is polynomial.
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In particular, a function P : Z — C is quasi-polynomial if, for some nonzero
d € 7, the function [ — P(ld + r) is polynomial for every r € Z.

Remark 5. Informally, we will say that P is polynomial/quasi-polynomial on
a subset § C & if P restricted to § coincides with the restriction of a
polynomial/quasi-polynomial to §. Naturally, this is meaningful only if S is
sufficiently “large” for example, contains a translated cone of maximal rank.

Example 6. We return to Example 2. We compiled the relevant data in the
following table:

k -4 =3 =2 ~1 0 1 2 3
dim Q(M, LX) -3 - — 0 1 2 3 4
dim Q(M, £K)T —1 0 - 0 1 0 1 0
dim Q(M, £+)SU@) 0 0 ] 0 1 0o 0 0

Thus we see that
e dim Q(M, £¥) = k + 1; it is thus a polynomial for all k € Z.

1; if 0 <k is even,
e dimQ(M, L'k)T = 4¢—1, if 0>k is even,
. if k is odd.
In particular, this is a quasi-polynomial for all £ > 0.
o dim Q(M, £F)SU®@) s, however, only quasi-polynomial for k& > 1, and

dim Q(M, (£L~1)¥)SY®@ is not quasi-polynomial for k > 1.

This last example shows, that, in general, dim Q(M,£*)¢ is not quasi-
polynomial for small k. To obtain a stronger statement, we introduce a key
condition on L.

Definition 7. Given an almost complex manifold (M, J), we say that a line
bundle £ over M is positive if for an Hermitian structure on £, and a compatible
connection V, the corresponding curvature —i €2 satisfies

(10) Qu(V.JV)>0 forall 0 £V eT,M

at every point g € M.

Remark 8. Note that in this case,  is a symplectic form on M.
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One can arrive at the same setup starting at the other end: let (M, S2) be a
symplectic manifold endowed with a line bundle £, whose curvature is —i 2. Such
an object is called a prequantizable symplectic manifold endowed with a Kostant
line bundle [Kos]. In this case, one can choose a unique (up to homotopy) almost
complex structure J such that the quadratic form V +— Q4 (V,JV) is positive
definite at each point ¢ € M, and thus one arrives at the situation described
in Definition 7. In addition, if such a Kostant line bundle £ is endowed with
a G-action and a G -invariant connection, then the virtual representation space
Q(M, L) does not depend on the choice of such a (positive) G -invariant almost
complex structure J.

Now we are ready to formulate the statement for which we give a new proof
in this article. (As we explain below, this theorem may be obtained as a corollary
of results of [MS].)

Theorem 9. Let (M,J) be a compact, connected, almost complex manifold
endowed with the action of a connected compact Lie group G, and let L be a
positive G -equivariant line bundle on M . Assume that the set of fixed points
under the action of the maximal torus T of G on M is finite. Then

e the integer function
k — dim Q(M, £5)6

is quasi-polynomial for k > 1, and

e this quasi-polynomial is identically zero if 0 ¢ ug(M).

Remark 10. Note that the condition of the finiteness of the T -fixed point set is
not necessary. We chose to impose this condition solely to simplify the discussion.
To prove the theorem in the case of non-isolated fixed points, one needs to use the
equivariant index formula of Atiyah—Segal-Singer [AS], instead of the Atiyah—Bott
fixed point formula [ABI1].

1.3. The ideas of the proof. At first sight, the strategy seems to be clear.
The Atiyah-Bott formula gives an explicit formula for y,.« as a sum of
rational functions (cf. (11)). Choosing a generic direction in t, we can expand
these rational functions into convergent series, obtaining a formula of the form
Xck = 2 per €ku,0p, where 0, is a formal character, whose coefficients are
given by a partition function, and u, is the weight of £, (cf. (6)). To obtain
a formula for dim Q(M, £%)® when G is a torus group, one simply needs to
evaluate the constant term of this expansion. This leads to a formula of the form

dim Q(M, L9 =" Fp(—kpp),
peF
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where F0,(A) stands for the multiplicity of e; in 6,. The contribution of each
fixed point to this constant term is a polynomial in k, and thus, in this case, the
proof of polynomiality is straightforward.

When G is a general connected compact group, then we need to use (4), and
we obtain a formula of the form

dimQ(M, L% =" 3 (—1)'J|f9,,(— >« _k@,,).

peF JCR™ aeJ

Here, because of the shifts by sums of negative roots, the individual terms are
no longer polynomial for small values of k, and polynomiality is the result of a
complicated web of cancelations.

The novel idea of Paradan, which goes back to the seminal paper of Witten
[Wit], is to use a certain combinatorial expansion of the rational functions from the
Atiyah—Bott fixed point formula, which has terms expanded in different directions,
always away from the origin (cf. (7)). After resummation, one obtains a formula
(Proposition 40), whose terms are parametrized by fixed point sets of subtori of the
maximal torus 7 C G . Finally, we show that the polynomiality of dim Q(M, £*)S
hinges on a geometric statement about the weights of the action of these subtori
on the tangent space of M (Proposition 50).

1.4. Comments on [Q, R] = 0 and polynomiality. Quantization commutes with
reduction (or [Q, R] = 0 for short) is the principle that, in some cases, the virtual
space Q(M,E ® £¥)C may be identified with the virtual space of solutions of a
Dirac operator associated to a vector bundle of the form & ®£’(§ on the so-called
reduced space ug' (0)/G.

If this latter space is smooth, then, combining this principle with the Atiyah—
Singer formula (3) applied to & ® LK, we can conclude that dim Q(M, £ ® £¥)C
depends polynomially on k. The focus of the present article, the polynomiality
of this dimension function (mostly in the case when £ is trivial), is thus a key
manifestation of the [Q, R] = 0 principle.

The idea of [Q, R] = 0 was introduced in [GS] (cf. [Sja] and [Ver2] for more
details and references) in the form of a precise conjecture. The idea came from
considering the case when M is a complex projective G -manifold, £ is the
ample bundle and £ is trivial. Then the G -action on M may be extended to a
holomorphic action Gc x M — M of the complexification of the compact Lie
group G, and [Q, R] = 0 follows from the fact that (cf. [MFK]) the orbit of the
set pal(O) under this complexified action of G¢ is dense in M if this orbit is
nonempty.

If 0 is a regular value of L, then the reduced space p;!(0)/G is a symplectic
orbifold equipped with a Kostant line bundle L. Guillemin—Sternberg formulated
the conjecture that Q(M, £)¢ may be identified with Q(MEI(O)/G,EO).
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Meinrenken, in his first approach to the Guillemin—Sternberg conjecture [Meil],
determined the asymptotic behavior of dim Q(M, £¥)¢ for large k under the
assumption that 0 is a regular value of ug. By a “stationary phase” argument (that
we borrowed in part for our proof of Theorem 3), he showed that dim Q(M, £¥)C
is indeed equal to dim Q(,u(‘;l(O)/ G,L”g) for k sufficiently large, and that the
equality holds for all £ > 0 if G is abelian. He later showed polynomiality for
k > 1 for general compact groups in [Mei2]. There is also an analytic proof in
this case by Tian and Zhang [TZ].

Meinrenken—Sjamaar in [MS] formulated the Guillemin—Sternberg conjecture
for the case when O is not necessarily a regular value of the moment map, and,
using techniques of symplectic cutting, proved this more general statement. Later,
Paradan [Parl] a proof of this generalized Guillemin—Sternberg conjecture using
transversally elliptic operators. Theorem 9 is a consequence of these results.

In the present paper, we prove that dim Q(M, £EG s quasi-polynomial in
k for k > 1 directly, and without making the assumption that 0 is a regular
value of the moment map. Our main purpose-is to show that this result may be
obtained from the Atiyah—Bott fixed point formula for y,«, using Theorem 3 as
the only analytic input. The ideas underlying our paper originated in the works
of Paradan [Parl, Par2].

1.5. Contents of the paper. The paper is structured as follows: in §2 we study
the calculus of expansions of the rational sum expression given for yeoq .« by
the Atiyah-Bott fixed point formula. The main result is Corollary 15, which
gives the answer in terms of partition functions. We then proceed to introduce a
quasi-polynomial character A,[€,a], which encodes the asymptotic behavior of
this expansion. We begin §3 by Paradan’s combinatorial formula decomposing a
partition function in terms of convolution products of partitions functions in lower
dimensions. Then we apply this formula to our geometric setup (Proposition 41),
which results in a decomposition of yg in terms of certain formal characters,
which are enumerated by fixed-point sets of subtori of 7. This combinatorial
decomposition is the K -theoretical analogue of the stratification of the manifold
M via the Morse function ||u)|> used by Witten [Wit] to compute intersection
numbers on reduced spaces.

We finish the proof of Theorem 9 in §5 by studying the terms of this expansion.
We quickly reduce the final result to a numerical statement regarding the weights
of the T -action at fixed point sets of subtori. This statement is then proved via a
“localization of positivity” result: Proposition 50. Finally, we give a quick proof
of Theorem 3 in §6. A list of notations given in §7 helps the reader to navigate
through the paper.



480 A. Szenges and M. VERGNE
2. Fixed point formula and a formal character

As in the previous section, let us begin with a connected, compact, almost
complex 7 -manifold M, and a pair (£, L), consisting of a complex equivariant
vector bundle and a line bundle on M . We assume again that the T -fixed points
are isolated.

In this section, we embark on the study of the sequence of characters ygg k.
k=0,1,...

2.1. The fixed point formula. Our starting point is the Atiyah-Bott fixed point
formula [AB1], which expresses ye as a sum of contributions associated to the
fixed points of the 7T -action on M.

Before we proceed, we need to introduce notation and terminology for sets
with multiplicities, which we will call lists. A list & thus consists of a set
{®}, and a multiplicity function me : {®} — Z-o. We will use the notation
[#1,¢2,...,¢n] for the list of elements ¢q,... We will also write

o e if e {d};
o if v € ® and me(y) > 1, then ® — {yy} will denote the list ® with the

multiplicity of i decreased by 1; if mg(y¥) =1, then ® — {3} will denote
the list ® with ¥ removed;

e for a list ® and a set S, we will write ® NS for the list with underlying
set {®} NS and multiplicity function coinciding with that of @ on this set;
we will write ®\ § for the list with underlying set {®}\ S and multiplicity
function coinciding with that of & on this set;

Now, denote by F the finite set of fixed points of the 7 -action on M . For each
fixed point p € F, the weights of the T -action on the fiber £, form a list, which
we will denote by W, . Let ch(&,) be the function T — C obtained by taking the
trace of the T -action on the fiber &£, . Thus we have ch(&p) = 3, cy, €y . Similarly,
we denote by @, the list of T -weights of the complex vector space Tz{ M.

With these preparations we can state the Atiyah—Bott fixed point formula for
our case:

ch(&)
11 = .
(11) Xe ,?eF: [Tsea, (1 —e5)

This is an equality between two functions defined on an open and dense subset
of T. Indeed, the right hand side is meaningful on the set

{teT|t* #1VpeF and ¢ € d,),

while the left hand side is regular on 7.
Let us see two examples. First, we return to our Example 2.
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Example 11. Let M = P!(C) with the action of U(1) given by 7-(x : y) = (tx :
t71y), and let & = £* be the kth tensor power of the dual of the tautological
line bundle £. There are 2 fixed points p™ = (1:0) and p~ = (0: 1), and we
have
4 %
) = .
1) =5y Y o

The graph of the function Fy .« is pictured below for k = 4.

Example 12. Let M be the flag variety of C> endowed with the action of the
group U(3). The subgroup D = {(t1,12,13); t1,t2,13 € U(1)} C U(3) of diagonal
matrices is the maximal torus of U(3), and the weight lattice of D has a canonical
diagonal decomposition: Z6; + Z6, + Z65. The coordinate flag

{Cel CCey dCep Cc Cey dCey Ceg}

is fixed under D, and the rest of the fixed points in M b may be obtained
by applying to this flag the elements of the permutation group X3 in a natural
manner. We will use the notation w € 23 > p, € MP for this correspondence;
in particular, the coordinate flag will be denoted by p23.

Consider the line bundle £ induced from the character #}'z;'#;? of D. Then

4k ,—k ,—3k
171 13

* (0 —t2/t)(1 —t3/12)(1 — t3/11)

Xck(ll,tz,lg,) = Z w

weX3

where, again, w# stands for the natural action of X3 on the indices.

In what follows, we consider y,« as a character of the adjoint group G of
U(3). Let T be the maximal torus of G, with Lie algebra t. Then t* has basis
the simple roots ¢ = 6y — 6, and f = 0, — 03 and the weight lattice A of T is
Za + Z.B. The weight w13 of the bundle £ at pj»3 is 4o + 3. The multiplicity
function Fy, on A then may be represented as follows.
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. . " . . JH123
. ° ° ° ° ° .
. ° ) L J o ° .
. ° o p i ° .
. ° () [s) ° - o =1
. ° ® ° . e —2
. ° ° . ® =3

2.2. The partition function. Recall that yg is determined by its Fourier
coefficients Fye : A — Z, and that this latter function has finite support in
A. Our immediate goal is to convert the equality (11) into an equality of two
functions in the Fourier dual space of Z-valued functions on A. For this task,
we follow the same method as [GLS], [GP].

In this paragraph, we make the additional assumption that the generic stabilizer
of the T -action on M is finite; this is equivalent to the condition that ®, spans
t* for all pe F.

Before we proceed, we need to introduce a few basic notions.

e We denote by R(T) the set of finite integral linear combinations of the
characters ¢;, A € A, and

e by R(T) the space of formal, possibly infinite, integral linear combinations of
these characters. Thus the elements of R(T') are in one-to-one correspondence
with the functions m(A) : A — Z via 0 := ) ;.o m(A)e; € R(T). We will
write F@ for the function m in this case. Conversely, given a function m,
we will call the corresponding series 6 its character. If we extend the weights
A € A to linear functions on t{c, then we can also think of the elements of
R(T) as formal series of holomorphic exponential functions on tc .

e Informally, we will call § R(T) a quasi-polynomial character if its Fourier
transform F§: A — Z is quasi-polynomial (cf. Definition 4).

We collect some simple observations needed later.
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Lemma 13. (1) R\(T) is a module over R(T), and the set of quasi-polynomial
characters forms a linear subspace in 1%(T) which is stable under multipli-
cation by R(T).

(2) Elements of I%(T) whose Fourier transforms are supported on a fixed acute
cone in A may be multiplied, thus they form a ring.

(3) For ® € R(T) and A, € A, we have F(en®)(A) = FOA — ).
(4) If a quasi-polynomial function f on A vanishes at all points of a set QNA,
where Q is a non-empty open cone, then f = 0.

The proofs are straightforward and will be omitted. With these preparations,
we are ready to introduce the basic building block of our constructions. For a
list of weights @, we will need to represent the function [],cq(1 —ep)”! by an
element of R(T). To this end, we can expand each factor of the form (1 —ep)™!
as a geometric series, but this product is only meaningful in the ring R(T) if @
lies in an acute cone. To remedy this problem, we will reverse the signs of some
of the vectors in ®, which, in turn, necessitates the introduction of the notion of
polarization.

Let ® be a list of nonzero elements of A. We will call Y € t polarizing for
® if (¢,Y) # 0 for every ¢ € ®. For nonempty ® and polarizing Y, split ¢
in ® =, Ud_, where

Py ={pec®|(p,Y)>0} and Phi_={pecP|(p,Y) <0},

and introduce the formal character

oo

e @]
(12)  ©[@1Y]=(D* [T ezpx [] ( e_k¢) < 1 (Zek¢).
¢ped_ ¢edP_ k=0 ¢pePy k=0
It is easy to verify that the products in this formula are meaningful, and hence
the series ®[® 4 Y] defines an element of R(T). We also set ©[z1Y] =1 for
any Y € t.

The notation ®[P 1 Y] represents the fact that we have reoriented the elements
of ® using Y. Note, however, that ®[® 1 Y] coincides with ®[®y], where ®y
is the reoriented list, up to a sign and a shift only. These are motivated by the
following

Lemma 14. (1) FO[®1 Y] is supported on the pointed cone generated in t* by
the set & U (—d_), in particular, apart from the origin, on the half-space
{Y > 0}.

(2) As a formal character, O[®41Y] e R(T) satisfies
O@1Y]- [[(1—ep) =1.

ped
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(3) Considered as a series of holomorphic functions on the complexification Tc
of the torus group T, the series (12) converges absolutely, in a neighborhood
of the point exp(iY) € Tc, to the function [[yeqe(l —ep)™".

The proofs are straightforward and are left to the reader. Using these facts,
we can rewrite (11) as follows.

Corollary 15 ([GLS, GP]). For a vector Y, which is polarizing for the union
Uper®, of the lists ®,, the following equality holds in R(T):

(13) xe = ) ch(&) - O[®,1Y].
peF

Indeed, multiplying the right hand side of (11) and (13) by

[T [T (—es.

PEF ¢ped,

we obtain the same result. On the other hand, it is easy to see that the operation
of multiplication by this product is injective on the subspace of elements of R(T)
which are supported on a half-space bounded by a hyperplane orthogonal to Y .

Remark 16. The function FO[® 1 Y] : A — Z, traditionally, has been called
the partition function, since, assuming ® = &%, its value at u equals the
number of ways one can write i as a nonnegative integral linear combinations
of vectors from ®. In particular, the equality (13) applied to Weyl’s formula for
the characters leads to Kostant’s formula for the multiplicity of a weight in an
irreducible representation of a reductive Lie group.

A key fact is that the Fourier transform F®[® 1 Y], as a function on A, is
piecewise quasi-polynomial. Let us describe this in more detail:

Definition 17. Given a list ® spanning t*, we will call an element y € t*
®-regular if it is not the linear combination of fewer than dim(t) elements of .

The set of ®-regular elements form the complement of a hyperplane arrange-
ment in t*, and we will use the term ®-tope for the connected components of
this set.! It will be convenient to use the notation 7 (y) for the tope containing
the @®-regular element y. Note that topes are open convex cones, which are
invariant under rescaling.

' We use the word tope. as our definition is similar to the notion of tone in matroid theorv.
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Lemma 18 ([DM], see also [CPV]). Let ® be a list of nonzero vectors spanning
t*, let Y be a polarizing vector for ®, choose a ®-tope T. Then there
exists a unique quasi-polynomial character §[®1Y,T]|, whose Fourier transform
F8[®1Y,T] coincides with FO[®1TY] on ANT.

Remark 19. This lemma may be naturally extended to the situation when @ does
not span t*. In this case, denoting the smallest linear subspace of t* containing
® by span(®), the tope 7 is in span(®P), and §[® 1Y, T] is a function supported
on span(®), whose restriction to span(®) is quasipolynomial. The degree of the
quasi-polynomial F3[®1Y,T] is equal to |P| — dimspan(P).

Example 20. Let t* = Ra, A = Za, ® = [a] and let Y € t to be the vector
satisfying («,Y) = 1. Then

|[P1Y] = Zekox

Then T+ := {ta,t >0}, T~ := {toz,t < 0} are topes. The function FO[® 1 Y]
coincides with the constant function 1 on Za N 7' and with 0 on Za N7 .
The character § = ) ;.z €kxo iS quasi-polynomial as the multiplicity F§ is the
constant function 1 on Za«. Thus

S[O1Y, T = Z ek, While §[®@1Y, 7] =
keZ

2.3. The asymptotics of the character. We return to our geometric setup. We
continue to assume that the torus 7" acts on the compact almost complex manifold
M with a finite set of fixed points. We consider a Hermitian 7 -equivariant line
bundle £, a complex equivariant vector bundle £, and we would like to study
the character ycg q« .

As a first step, we take a closer look at y.. We choose an equivariant Hermitian
connection on L. Recall from §1 that u(p), the value of the associated moment
map u: M — t* at a fixed point p € F, is the weight of the 7 -action on the
fiber £,. Thus, in this instance, formula (13) may be written in the form

(14) 1e =) eun®l®p1Yl,
peF
and hence
(15) Fxe@) =) FO[®, 1 YI(A - pu(p))-
peF

Now assume that the generic stabilizer of the action of 7 on M is finite, or,
equivalently, that &, spans t* for all p € F. Then the moment map u gives
rise to a real affine hyperplane arrangement whose complement is the open set
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(16) ﬂ {y ety —u(p) is d)p-regular} C t*.
pEF

We will use the term alcove for the connected components of the set (16). The
alcoves are thus minimal nonempty intersections of the translated polyhedral cones
T+ n(p), where pe F, and 7 is a tope of ®,. Just as in the case of topes,
we will use the notation a(C) for the alcove containing the connected subset C
of the set (16).

Remark 21 ([Ati2, GS]). If £ is a positive line bundle (cf. Definition 7), then
n(M) is the convex hull of the set of points {u(p); p € F}, and the set (16) is
contained in the set of regular values of .

Next, we define a quasi-polynomial character A, [€, a] by formally replacing
the generating function for the partition function ®[®, 1 Y] in (13) by an
appropriately chosen quasi-polynomial 5[®,1Y,7] (cf. Lemma 18).

Definition 22. Given a T -equivariant vector bundle £ over M, and an alcove
a C t*, we define the formal character

(17) Aul.al = ch(&p) - 8[@p 1 Y. T(a— u(p))].
peF

where ch(&,), as usual, stands for the sum of T -weights of the fiber &,.

Remark 23. Note that we omitted the dependence on Y in the notation (cf.
Corollary 29).

The meaning of this object will become clear after Proposition 28. Note that
since A,[€,a] is a linear combination of quasi-polynomial characters, it is itself
quasi-polynomial.

We first consider the case £ = L.

Lemma 24. The quasi-polynomial FA,[L,a] coincides with F x. at all points
of anNA.

Proof. Indeed, since ch(L,) = u(p), we have
FAuL a)A) = > F8[@p 1Y, T(a— pn(p)] (A — n(p)).

PEF
On the other hand, by the definition of §[® 1Y, 7], if A belongs to the alcove
a, then
F5[0, 1. T(a— u(p)](A - u(p)) = FOL®, 1 YI(A — u(p)).

Now (15) immediately implies the statement of the Lemma. L]
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Remark 25. The finite set a« N A may be small, even empty, hence we
cannot necessarily determine A, [L, a] by restricting the quasi-polynomial function
FALIL, a] to this set.

Example 26. We return to Example 12, with px associated to the line bundle
L. The diagram depicts the dual of the Lie algebra of the maximal torus of the
adjoint group of U(3). The straight lines cut the plane into alcoves. The support
of the multiplicity function Fy, is the highlighted hexagon, and the function is
invariant under the symmetries of this hexagon.

For this example, the quasi-polynomials are polynomials, and can be guessed
by “interpolation” from the picture of Fy, given in Example 12. We have

]:AU,[E, Cl()](l’lla +n2ﬁ) =3,
FALL, a1](nia +naB) = 4 —ny,
J'-Au,[[,, Clz](l’llol -+ nzﬁ) =5—n;.
]

Now we conider the behavior of the formal character (17) for the sequence
of bundles £ ® L¥, k € Z.

Lemma 27. The function (A,k) — FALE ® LK, a](L) is quasi-polynomial on
the lattice A x Z.
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Proof. Recall that, for p € F, we denoted by W, the list of 7 -weights of
the fiber &£,, and we set ch(&,) = Zne\pp e, . Clearly, we have ch(&, ® E’;) =

ch(&p) - exu(p)- For a formal character 0 € R(T) and A,u € A, the identity
Feru0(A) = FO(A —kp) holds. This implies that

FAuE® LFalV) = ) F8[@p1Y,a—u(p)](A —n—ku(p)).

neqlp

As ¢ is a quasi-polynomial character, each term on the right hand side is a
quasi-polynomial function of (A,k), and this completes the proof. 1

For small k, in particular for k =0, A, [E® £*,a] does not have any direct
relationship with y.q -« . We have, nevertheless, the following asymptotic analog
of Lemma 24.

Proposition 28. Let b be a compact subset of an alcove a. Then there exists a
positive integer K such that for every k > K and A € kb N A, the equality

(18) FALE® L5, a)(A) = Fregee (V)
holds.

Proof. Recall that W, is the list of T -weights of the fiber &,, and ch(&,) =
> new, €y According to (13), we have

Fregck@) =YY FO[®,1Y](A—n—ku(p)).

pEF ﬂE‘I’p

while, by Lemma 27,
FALE®LFal0) =) Y F8[0p 1Y, T(a = ui(p)](2 — 1= kp(p)).

pEF nevy,

Hence, by the definition of the quasi-polynomial character § given in Lemma 18,
these two expressions coincide as long as for each p € F and n € V,, we have

A—n—ku(p) € T(a—pu(p)). Since topes are invariant under rescaling, we can
conclude that (18) holds if

(19) € a for each n € Uper¥,.

AN
k k
As the set Uper W, is finite, for large enough k, we will have b —n/k C a
for every n from this set. Hence (19) holds for large enough &, uniformly in

A € kbn A. This completes the proof. |

Corollary 29. The quasi-polynomial character A [E,a] (cf. Definition 22) does
not depend on the choice of the polarizing vector Y .
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Indeed, note that Proposition 28 holds independently of the vector Y chosen
to define A,[€ ® £¥,q], and, according to Lemma 27, FA,[E ® £F,q] is
quasi-polynomial on A x Z. Now, by choosing an appropriate b with nonempty
interior in Proposition 28, one can conclude that this quasipolynomial restricted
to {k; k> K}bnN A is the same for all choices of polarizing vectors Y. Now,
the statement follows, since the restriction to such an open set determines a
quasipolynomial (cf. Lemma 13 (4)).

Let us summarize what Proposition 28 says about JFA,[£,a]. Consider the
function (k,A) — Fxegk(A), and interpolate its values on ZxA from the values
on the sets kbN A for k sufficiently large. This will result in a quasi-polynomial
function, which is defined for all (k,A). Then, the restriction to k& = 0 of this
quasi-polynomial function gives us our function FA,[E,qa].

Remark 30. One can give the following geometric interpretation to the character
A,lE,a] when the moment map p : M — t* is associated to a positive line
bundle. In this case, the curvature form Q is non-degenerate, and p is the moment
map for the corresponding Hamiltonian structure on M . Then any element y in
an alcove a is a regular value of w, and the torus 7" acts with finite stabilizers
on u~(y). The quotient p~'(y)/T is the same orbifold for all y € a, and thus
we can denote it by M,.

The bundle £ descends to an orbifold bundle £, on M,, and each character
A allows us to twist £ by the associated line bundle L; = u~!(y) xr C; over
M, . According to the index formula for orbifolds ([Atil], see also [Verl]), the
function A — dim Q(M,,&, ® L) is quasi-polynomial. It can be easily shown
using the results of [Meil] that, in this setup, the character A,[€,a] appears as
the generating function of this quasi-polynomial:

Aul€.al =) dim Q(Mq, £, ® L)) €;.
A

We will not use this geometrical interpretation in the present article.

In what follows, we will need the extension of the definition of A,[E,a] to
the case when the generic stabilizer of the 7 action on the connected manifold
M is not finite.

Definition 31. Let the Lie group G with Lie algebra g act on a manifold M.
Then, for a subset C C M, we denote by

gc = {X € g; VX vanishes on C}

and by G¢ the connected subgroup of G with Lie algebra gc .
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In our set up then, Ty is the connected component of the generic stabilizer
of M containing the identity element, ty; C t is the Lie algebra of Tjs, and for
every p € F, the weights @, span the annihilator t;, C t*.

Clearly, the group Ty acts on each of the fibers &;, g € M, and since M is
connected, this representation does not depend on ¢g. In particular, for two fixed
points p,q € F, the weights p(p) and u(g) of T differ by an element of i,
and hence the affine-linear subspace

(20) An = pu(p) + iy

of t* does not depend on p € F. Note that, according to equation (9), the image
w(M) is contained in Ayy.

Now we can repeat the definitions given in (16) and (17) with t* replaced by
tjt. More precisely, we consider the open set in Ay consisting of those elements
y for which y — u(p) is ®&,-regular for any p € F. An alcove a C Ay is a
connected component of this open set. As before, for an alcove a, we denote
by T(a— pu(p)) the ®,-tope in ti, containing a — p(p). The formal character
Aul€, a] may be defined by equation (17) (here we choose any polarizing vector
in t):

1) Aul€,a] = ) ch(&p) - 8[Dp 1Y, T (o — u(p))].
pPEF

Note that the function F§[®, 1Y, T(a — u(p))] is supported on ti; N A, while
the weights in W, do not necessarily belong to tj; N A. Thus the multiplicity
function FA,[E, a] is supported on a finite number of translates of tjl N A, and
it is quasi-polynomial on each translate.

Denote by Cj the trivial line bundle over M endowed with the action e, of
T . For any equivariant bundle £ over M, we have a decomposition

(22) E= P ceEsC )™,
AeA/ANtY
where the sum is understood as taken over any system of representatives of the
quotient. This leads to the formula
(23) Aul€.,a] = Z erALl(E®C_3)™ q,
AeA/ANtY

which expresses the formal 7 -character A,[€,a] through quasi-polynomial
characters of the torus 7/Tys. Formula (23) has the following simple corollary:

Lemma 32. If for some A € A, the multiplicity FA,[E,a](A) is not zero, then
the restriction of A to tp is a weight of the representation of Ty on a fiber
of £.
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We end this section with a quick study of the situation when the affine space
Ay given by equation (20) is linear, i.e. passes through the origin. This is
equivalent to the condition that 7Tjs acts trivially on the fibers of £, i.e. £ is a
T/ Ty -line bundle.

Lemma 33. Let € be a T -bundle, and L be a T/ Ty -line bundle on M. Then
k> FALE ® £F,al(0) is a quasi-polynomial function of k.

Proof. Applying (23) to the bundle £ ® £*, and using the condition on £, we
obtain the equality
AulE ® £5,a](0) = ALIE™ & £F, a](0).

Since £ is a T/Ty -equivariant vector bundle, we can replace T by
T/Ty . According to Lemma 27, FAL[E™™ ® £k, a](1) is quasi-polynomial in
(A,k) € (tfl N A)x Z, and hence FA,[E™ ® £F,a](0) is a quasi-polynomial
function of k. L]

3. Decomposition of partition functions

In this section, we prove a decomposition formula for the generating function
O[P 1 Y] of the partition function introduced in (12). This formula is due to
Paradan and it will serve as the combinatorial engine of our proof of Theorem 9.

Definition 34. Given a list ® of weights in A C t*, introduce the set of
®-rational subspaces:
R(®) = {S C t* linear; ® NS spans S}.

This is the set of linear subspaces of t* spanned by some subset of ©.

Remark 35. 1. Note that {0} € R(®), and t* € R(P) if & spans t*.

2. Comparing this definition to Definition 17, we see that all subspaces
S € R(D), except for S = t*, consist of non-regular elements.

Fix a positive definite scalar product (-,-) on t*. This will allow us to define
orthogonal projections in t*, as well as to identify t and t* whenever necessary.

For each rational subspace S € R(®) and y € t*, introduce the notation yg
for the orthogonal projection of y onto S, and Ys, for the vector (ys —y) (see
the diagram below). Thus we have the orthogonal decomposition

Yy =Ys —Ysy.

In what follows, we will consider Y, to be an element of t.
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YS,V

0 ys S

Recall from Lemma 18 and Remark 19 that, on a ®-tope 7 in the linear subspace
span(®) generated by @, the partition function F®[P 1 Y] coincides with a quasi-
polynomial F§[® 1Y, 7] on the lattice span(®) N A. It is thus natural to compare
the two functions at all points of A N span(®). As we will see, the difference
may be expressed as a sum of (convolution) products of partition functions and
quasi-polynomials coming from lower-dimensional systems.

Now we can formulate Paradan’s decomposition formula ([Par2], Section 5.4,
proof of Theorem 5.1) as follows.

Proposition 36. Let & be a list of vectors in A, and let Y € t be a polarizing
vector for ©. Assume that y € t* is such that for every S € R(®), the projection
vs € S is (&N S)-regular, while the orthogonal component Ys, is polarizing
for ®\S. Then

(24) O[@1Y]= Y O[®\StYs,] §[®NS1Y.T(rs)]

SeR(P)

Observe that the set of y € t* satisfying the assumptions of Proposition 36
is a complement of the union of a finite number of hyperplanes. Indeed ys is
®-regular if it is not contained in a union of hyperplanes in S C t, while Yg,
is polarizing if it iS not contained in a union of hyperplanes in t.

Also note that if —y is in the dual cone to the cone generated by &+ U—d,
then all the terms but the one corresponding to S = {0} vanish, and hence, in
this case, the identity (24) is tautological.

Example 37. Let t* = Re, A = Za, ® := [«] and set Y € t to be the vector
satisfying («,Y) = 1. Then

O[P1Y] =) eka.
k=0
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The identity

[ors) oo -1
(25) k= D ha— Y. ka
k=0 k=—0c0 k=—00
is a particular case of Formula (24).
Indeed, in this one-dimensional case, the set R(®P) has two elements: S = {0}
and S =t*.
If we let y = ta for some ¢ > 0, then on the right hand side of (24) we have

o S[®1Y, T(ys)] = D ez €ka for S =1t*, and

o O[®1Ys,] = —Yjupetas for S = {0}.
Then Formula (24) reads:

O[e1 Y] =8[®1Y.T(ys)] + O[P1Ys,],

and this is Formula (25).

Proof of Proposition 36. Replacing y by its orthogonal projection on the sub-
space generated by ®, we may assume that V' is spanned by ®. We pass to the
Fourier transforms in order to prove that the two sides of (24) coincide. Observe
that for each term on the right hand side of (24), the Fourier transform restricted
to a tope of ® is quasi-polynomial.

We begin by showing that the Fourier coefficients of the two sides coincide on
the tope 7T (y). Indeed, the term corresponding to S = t* is §[® 1Y, T(v)], whose
Fourier coefficients coincide with those of ®[® 1 Y] on the tope 7 (y) by the
definition of §[®1Y,7(y)]. On the other hand, for any S € R(®) different from
t*, by construction, the Fourier transform of the corresponding term O[®\S 1 Y , |-
S[®NS1Y,T (ys)] is a function on A supported on the subset {A; (1, Ys,) > 0}
(cf. Lemma 14). Since (y,Ys,) = —|ys — ¥|* < 0, we see that this function
vanishes on a conic neighborhood of the half line R*y, and thus on 7T(y).

To extend the equality of Fourier coefficients to the rest of A, we use induc-
tion on the number of elements in ®. If & is empty, then both sides are equal
to 1. Now pick an element ¢ € ®, and consider ® = & —{¢} (cf. the beginning
of §2 for our conventions). Clearly (1 —ey)-O[®1Y] = O[d'1Y]. If we restrict
the Fourier transform of this equation to a tope 7, we obtain

(1 —ep)8[®1Y,T]=68[®'1Y,T]
if @ generates V and 7’ is the tope of @ containing 7, while
(1—e4)d[®1Y,T]=0

if ®" does not generate V.
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We multiply both sides of (24) by (1 —eg), and compare the results. On the
left hand side, we end up with ®[®' 1 Y]. For a term on the right hand side
corresponding to S € R(®), we separate three cases:

1. ¢ ¢ S In this case, S € R(P'), NS =d'NS and
(1—ep) - O[®P\S1Ys,] = O[P'\S1Ys,]
Thus, after multiplication by (1 —eg), we end up with the term

(26) O[P'\S1Ys,] - §[®' NS1Y, T(ys)]

2. €85, and S € R(P’) In this case P\S = P\S while (dNS)—{p} = D'NS,
which implies that

(1—eg)8[PNSTY, T(ys)] =8[®' NSHY, T (vs)]-

Thus we end up with the term (26) again.
3.8, and S ¢ R(P') In this case,

(1—ep) 8[@NSTY, T(ys)] =0.

Thus multiplying the right hand side of (24) by (1 —eg) has the effect
of replacing ® by &’. Using the inductive assumption, we can conclude that
after multiplying both sides of (24) by (1 —ey) for any ¢ € &, we obtain
an identity. As @ spans t*, this implies that the Fourier coefficients of the
difference of the two sides of (24) form a periodic function with respect to the
sublattice of finite index in A generated by ®. Since we also know that these
coefficients vanish on 7(y), they must vanish on all of A. This completes the
proof. L]

4. Decomposition of characters

4.1. Decomposition of a T -character. No we return to the geometric setup of
§2.3. In particular, from now on, we assume that the generic stabilizer of the
action of 7' on the almost complex manifold M is finite.

In this section, using the moment map w, we obtain an expression (Propo-
sition 41) for the character yg associated to an equivariant vector bundle &
on M.

We start with the formula (13) for y¢ from Corollary 15:

hE = Z ch(&p) - B[P, 1 Y]
peF



[Q, R] =0 and Kostant partition functions 495

Our plan is to substitute the decomposition formula (24) for the partition function
©[®, 1 Y] in each term parametrized by p € F in this expression. Note that
while performing this substitution, we can take a vector y? in (24) depending
on the fixed point p. We take advantage of this possibility: we choose a fixed
vector y € t* and we set the vector

y? =y —u(p)

to be the polarizing vector for the corresponding term. Informally, this means
that we expand the denominator of the term in the fixed point formula (11)
corresponding to p € F in the direction of y from u(p).

It is clear that if we choose y outside a finite set of affine hyperplanes, then
y? satisfies the assumptions of Proposition 36 for each p € F. We will call such
a y generic. For generic y, we obtain

Q7))  xe=»_, > ch(&)-0[0,\S1Ys,0] 5[0, NS1Y.T(E)]

PEF SeR(®))

Our next step is to present a geometric interpretation of this expression. We begin
by introducing certain closed subsets of M with special stabilizers. Recall that
each X €t defines a vector field VX on M, which vanishes on the fixed point
set F.

Definition 38. For p € F and S € R(®,), denote by C(p,S) the connected
component of the set

M5 = {m e M|VX(m) =0 for every X € S*}

which contains p. Let Compy (M) stand for the set of all the connected subsets
C(p,S) of M obtained this way:

Comp (M) = {C(p,S)|p € F, S € R(®p)}.

We make two important observations:

e Since M5 is also the fixed point set of the subtorus of 7" with Lie algebra
S+, the set C(p,S) is smooth, and hence it is a submanifold of M .

e For a submanifold C = C(p,S) € Compr(M), the Lie algebra of the
stabilizing subtorus Tc C T is S+.

It follows then that there is a one-to-one correspondence
{(p, SpekF, Se R(QJP)} <> {(p,C)|C € Compr(M), peCn F},

and hence we can regroup the terms of the sum in (27) according to the fixed
point component C € Comp,(M) to which it corresponds.



496 A. Szenes and M. VERGNE

To write down this formula, we will need to introduce some new notation which
reflects this correspondence; in particular, we will give new names to the vectors
y& and Yg ,». Using our scalar product to identify t with its dual, we can write
t* = tc @ t5. Recall the definition of the affine subspace Ac = pu(p) + t& C t*
and the fact that if p and g € C N F, then u(p) —u(g) belongs to té (ct. (20)
and the discussion preceding it). This implies that the projection of wu(p)—y to
tc does not depend on the choice of the fixed point p € C N F.

Using this observation, we introduce the following notations.

Definition 39. Given C € Comp;(M) and a generic y, denote by yc the
orthogonal projection of y on the affine space A¢, and introduce the notation

deF
Ye S yc -y

for the polarizing vector in tc, omitting its dependence on y (see Figure below).

Then, given C = C(p,S) € Compy(M), and a generic y € t*, we have
Ysyr = Yc, and y§ = yc — pu(p).

M(p) Yc }u‘(q) Ac

The manifold C inherits a 7 -invariant almost complex structure from M, and
the set of weights of the fiber of the complex vector bundle T/C at pe CNF
is &, N té. We can thus regroup the terms of (27) and obtain the following
result.

Proposition 40. Let £ be a complex vector bundle over an almost complex
T -manifold M, and y € t* a generic point. Then, with the notation introduced
above, we have

(28) xe= Y, Termc[u,E,y],
CeCompy (M)
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where

(29) Termc[u,&,y]

= Y ch(&) - O[®,\tg 1 Yc] - 8[®, NE 1Y, T(ve — u(p))].
peCNF

Our next step is to represent the contribution Termc[w, &€, y] of the fixed point
set C € Compy(M) to the sum (28) in the form Au[éc,a(yc)], where &c is a
certain infinite-dimensional bundle over C, and a(y¢), as usual, stands for the
alcove containing yc .

The bundle &c is constructed as follows. Consider the bundle KC =
/M /TJ C; this is a T -equivariant complex bundle? on C, whose T¢ -weights
are constant along C . The list ®¢ of these weights may be obtained by restricting
CDP\% to t¢ for any p € C N F. We split ®¢ into two groups according to
the sign of their value on the polarizing vector Yc¢ € tc:

(30) ®c = PL U g, dg = {p € Dl (g, Yc) <0}
This splitting induces a direct sum decomposition of KC':
KC = KC4+ & KC_,

where KC; and KC_ are the subspaces generated by eigenvectors of T¢ with
weights from CI)JCr and @, respectively. Finally, define the infinite-dimensional
T -equivariant virtual bundle

(B1)  S(KCtYc) = ()™ KC-dey(kC*) @ P SM™(KC* @ KCy)

m=0

over C, where SI"l(V) stands for the mth symmetric tensor product of the
vector space V', and det(V) for its top exterior power.

Then the combination of the fixed point formula with Proposition 36 leads to
the following statement.

Proposition 41. Let y be a generic point in t*, and denote by Ec the restriction
of € to C. Then for C € Compp(M), the sum

(32) Au[éc ® S(KC1Yc), alyc)]

o0
L (DRRKC= 7 A [Ec ® det(KCX) @ STI(KCE @ KCy), a(ye)]

m=0

2]n the Kahler case, KC is the conormal vector bundle to C.
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is a well-defined formal character, and, in fact,

(33) Terme [, €, ¥] = Au[€c @ S(KC 1 Yc), alyc)],

where the left hand side is defined in (29).
Hence, in view of (28), we have the following equality in R(T):

(34) xe= ), Au[éc ® S(KC 1Y), alye)]
C eCompr (M)

Proof. Indeed, for C € Compr(M), the fibers of the bundle (31) over points of
C form a T¢ -representation with finite multiplicities. Recalling the definition of
the formal character ® from (12), we see that for p € C N F, the T -character of
the fiber S(KC 1 Y¢), is G)[Cbp\té 1 Yc]. Then, (33) follows from comparing (17)
and (29). ]

Proposition 41 is a particular case of [Parl, Proposition 6.14 and Formula 1.6].
Paradan obtained this statement via localization of the index of a transversally
elliptic operator, and then derived Proposition 36 as a corollary of [Parl]. In
our work, these statements appear in a natural order: we proved Proposition 36
directly for partition functions by elementary combinatorial manipulations, and
then we deduced Proposition 41 from the Atiyah-Bott fixed point formula and
Proposition 36.

Remark 42. Let us take a closer look at the decomposition (34) of the character
xe . The term corresponding to the case when C consists of a single fixed point
p € F is ch(&,) - ©[®, 1 (u(p) — y)]. 1t is reassuring to compare this to (13),
which contains a similar term: ch(&p) - ®[®, 1 Y], but where &, is reoriented
with a vector Y independent of the point p. According to Lemma 14, these
two expressions, interpreted as generalized functions on T, coincide with the
smooth function [[yeq, (1 —t¢)_1 on the open set {t € T; t? # 1V € d,}.
Now we observe that all the other terms of (34) correspond to generalized
functions supported on positive-codimensional subtori of 7. In particular, the
term Termp[u, &, y], which equals A,[€,a] (cf. (17)), is supported on a finite
number of points of 7. One can thus think of formula (34) as a refinement of
the Atiyah—Bott formula (11).

Next, we consider the supports of the Fourier transforms of the terms of (34)
in the Fourier dual space A. For simplicity, we formulate our conclusions for the
case £ = L. (To follow the notation, it will be helpful to consult the Figure on
Page 496).
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Proposition 43. Consider the terms of the decomposition (34) for the case € = L.
Then the following statements hold.

(1) Suppose that M # C € Compy(M). Then the support of the Fourier
transform FTlermc[w, L,y], lies in the half-space

(35) I (A Ye) = (ye, Ye) ).

(2) When C = M, then the corresponding term of the sum (34) reduces to
AL, a(y)], which is a quasi-polynomial character.

(3) On the alcove a(y), the multiplicity function F yg coincides with the quasi-
polynomial FA,[L, a(y)].

The first two statements immediately follow from the definition (33) of
Termc[u, £, y]. The third statement is a consequence of the first two, since the half-
spaces (35) are in the complement of a(y). (Cf. Figure on Page 496: the half-space
(35) is the half-space under the thick line, i.e., the one not containing y.) O

Let us verify these statements on our examples. In Example 2, the decompo-

sition (7):
oo o0 o
x ok (t) = t* Z 2 — Zt‘k‘zf - Ztk“j.
j=1 j=1

j=—o0

is an instance of (34). The first term corresponds to C = P!(C), while the other
two terms come from the two fixed points.
We also give a two-dimensional example.

Example 44. In Example 12 (see also Example 26), the set of fixed point
components Compz(M) consists of the following elements:

e The complex 3-dimensional manifold M itself,

e the 6 fixed points p,, w € X3, corresponding to the vertices of the
highlighted hexagon. The corresponding values of the moment map, are as
follows:

123 = 4o+ 3P, a1y = —a + 3B, jiz = 4o + B,
l"l‘321 — —30( - 4ﬁ, ,11'231 = ——3(1 + ﬁ, “’312 = —u — 4ﬁ

e 9 components isomorphic to P!(C), whose images are intervals which span
the 9 lines on the picture below. Each of these components contains precisely
two fixed points; we will use the notation C|[p,, py] for the component con-
taining the fixed points p, and py,, and £(u,, 1y ) for the corresponding line.
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For example, the fixed point component C|[pj23, p213] may be described as
the set of flags of the form
CvCcCey ®Cey C Cey @ Cep @ Ces.

The stabilizer group of this submanifold is {(,,u); t,u € U(1)}.

{123, L213)

£{p132, p231)

{123, L132)

€123, 13z1)

Let us consider y, as a character of the maximal torus 7 of the adjoint group
of U(3) with lattice of weights A = Za @ Zf, and set y = 0. The decomposition
(34) of the character y. involves 16 formal characters of 7. By symmetry with
respect to the Weyl group, we only need to describe the terms corresponding to
M , the term corresponding to the fixed point w123, and the terms corresponding

to C(p132, 231)s C(14123, U213).
e C = M contributes the polynomial character Termas [, £,0] =3 ;.4 €x-

e The term corresponding to C = pja3 is

oo (e.} o0
Termy, ;1. L, 0] = “Cui23Ca+B+(a+p)) Z Cka Z €kp Z Ck(a+p)
k=0 k=0 k=0
which is supported outside the marked hexagon.
e The term corresponding to C = C|[pj23, p213] is
o0 o0
Termcipia,p2131 [ £, 0] = €ujn3€(B+@+p)) - Z Cka Z €kp - Z €k(a+p)>
keZ k=0 k=0
which is supported above the line £(it123, i4213)-
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e The term corresponding to C = C|[pi32, p231] is

(o @] o0
Termcp,35,p2311l1, £, 0] = —€p135€(+8) - Z Cka Z €kp - Z Ck(a+p)
keZ k=0 k=0

which is supported above the line (w132, 231)-

We can thus conclude that the multiplicities F y, restricted to the alcove a(0)
(which is the small central triangle on the picture) equals the constant 3.

Remark 45. If y € u(M) and L is positive, then, in fact, more is true: Fy.
coincides with ]:A,‘“f on the closure of the alcove a(y). This effect may be
observed in the example above. We will not use this refined property in this
article.

4.2. Decomposition of a G -character. Returning to the setup of §1, we consider
a compact connected Lie group G acting compatibly on an almost complex
manifold M, bundles £ and £ and the connection V on L. Consider the
character y¢ of the representation of G on Q(M,¢E).

Recall from §1 our notation: T is the maximal torus of G, R = RT UR™
is the decomposition of the set of roots of G corresponding to the triangular
decomposition gc = tc @ nt @ n~. We will use Wg for the Weyl group of
G, and Agom C A will stand for the subset of dominant weights, which serves
as a fundamental domain for the Wg-action on A C t*, and whose elements
parametrize the irreducible characters of G . We will identify y; with its restriction
to T.

Our goal is to understand what formula (34) tells us about y¢ as a G -character.

Remark 46. As observed by Atiyah-Bott [ABI], the Weyl character formula

€w)
Xr =
W§G Haem_(l il ewa)
is the Atiyah-Bott fixed point formula for y., associated to the line bundle
L) = G xg, C, on the coadjoint orbit GA.

Our character y¢ € R(G) may be expressed in a unique way as a finite linear
combination of irreducible characters yp, A € Agom. In particular, the quantity
Jg xedg = dim Q(M, €)Y, which we are trying to understand, is precisely the
coefficient of the trivial character in this decomposition. To obtain an explicit
formula for this multiplicity, we use the following simple corollary of the Weyl
character formula for y,.
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Lemma 47. We have
(36) dim Q(M, £)¢ = Flog - x£](0),

where

og = [[ (1—ea) € R(T).

aER™

Now we make the formal observation that multiplying y¢ by o amounts to
tensoring £ by the trivial Z,-graded bundle over M with fiber A*n™ = A®"n" @
A%dn— endowed with the adjoint T -action. More precisely, let us extend the
definition of the character yz to Z,-graded vector bundles G* = G®*" @ G°4 via

Xg* = Xgeven — X godd.

Then (36) may be written in the form

(37) dim Q(M,€)° = Fyegnen-(0).

Proposition 41 states that

38)  xeonn- = . Au[fc ® AnT ® S(KC1Ye),alye)].
CeCompy (M)

It turns out that after tensoring £ with A®n™, one can significantly strengthen
the condition on C under which the corresponding term in (38) vanishes.

We consider the G -equivariant moment map ug : M — g* satisfying equation
(8). Then the map u, obtained as the composition of pug with the restriction
g* — t*, serves as a moment map for the 7 -action. Note that the image
e (M) N t* is usually strictly smaller than p(M). For example, it M = GA is
the coadjoint orbit of A € t*, then ug(M)Nt* is the orbit WgA of A under the
Weyl group, while (M) is the convex hull of WgA.

Also, recall the definition of the affine subspace A¢c = u(p) +té C t*, where
p € C, associated to a fixed point component C € Compy(M).

Theorem 48. Let G be a compact connected Lie group acting on the almost
complex manifold M endowed with the moment maps @ and g as defined
above, and let £ be a G -equivariant vector bundle on M. Then for a generic
y € t*, the term

Apléc ® A*n” @ S(KC 1 Yc),alye)],
of (38) vanishes if the alcove a(yc) is not contained in ug(C)N Ac C t*.
This theorem is due to Paradan (|[Parl], Proposition 6.14 and Formula 1.6). In

the argument below, we will make use of Theorem 3, whose proof is postponed
to §6.
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Proof. Indeed, ug(C) is compact, while a(yc) is open, thus if a(yc) ¢
e (C) N Ac, then there is & € a(yc) \ (ug(C) N Ac), which is a regular
value of .

According to Corollary 56 proved in §6, if we construct a 7 -equivariant
isomorphism over C Ny ~1(£) between the two equivariant complex vector bundles
with fibers A'n~ and A%y~ then for any 7 -bundle G on C, we have

Au[G® A*nT,alye)] = 0.
Such an isomorphism may be constructed as follows. Let g = t@® q be the T -

invariant decomposition of g with q = [t, g]. The dual decomposition g* = t*®q*
provides us with a map ) : M — gq* satisfying

re(q) = pu(g) @& ni(q).

The condition & ¢ ug(C) N Ac implies that for ¢ € C N u='(§) we have
pni(g) #0. |

Fix a G -invariant positive definite scalar product on g, and extend it as an
Hermitian product to gc. This induces a 7 -invariant isomorphism 4 : g* — n~
satisfying [[h(v)[2 = [[v]2.

Now recall that for a Hermitian vector space H, one can define a linear
map ¢ : H — End(AH), called Clifford multiplication, given by the formula

c(v) :=€(v) —e(v)*.
Here €(v) is the multiplication operator in the exterior algebra of H:
eW):T—> VAT, TEAH,

and e(v)* is the Hermitian dual of €(v), which is the contraction by scalar
multiplication by v. Clearly, if H is a T -module with invariant Hermitian
structure, then ¢ is T -equivariant.

A key fact is that ¢(v)? = —||v||?-id, and hence c(v) is a linear isomorphism
whenever v # 0. This means that the correspondence

lg. 7] > [q. c(hlpL(@)])7]

defines the map we sought: a T -equivariant bundle-map C x A®*"n~™ —
C x A°Yy~ which is an isomorphism over p~!(§) N C. This completes the
proof. L]

S. Quasi-polynomial behavior of multiplicities: The main result

We continue with the setup of the previous section, and, at this point, we
impose the condition of positivity on our line bundle £. Recall that this means
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that the curvature of the connection V on L is of the form —iw, where the
closed 2-form @ is such that the quadratic form V — w,(V,JV) is positive
definite at each point ¢ € M . Note that this condition, in particular, implies that
@ is symplectic.

As we pointed out in the introduction, instead, one may start by a symplectic
manifold (M, ) and a Kostant line bundle £, and arrive at the same setup. Indeed,
then one can choose an almost complex structure J such that the quadratic form
V = wq(V,JV) is positive. This J is unique up to continuous deformations,
thus y .« does not depend on its choice.

Our purpose in this section is to analyse (34) for £& = £ in this situation,
and prove our main result, Theorem 9, which we repeat here for reference.

Theorem 49. Let (M,J) be a compact, connected, almost complex manifold
endowed with the action of a connected compact Lie group G, and let L be a
positive G -equivariant line bundle on M . Suppose the set of fixed points under
the action of the maximal torus T of G on M is finite. Then
e the integer function
k — dim Q(M, £K)C

is quasi-polynomial for k > 1, and

e this quasi-polynomial is identically zero if 0 ¢ pg(M).

Proof. Recall some of our notations: C € Compp(M) means that C is a
connected component of the fixed point set of a subtorus T¢ C T with Lie
algebra t¢, Ac¢ is the affine space spanned the image w(C) of C in t*, yc is
the orthogonal projection of y onto Ac, a(yc) is the alcove of A¢ containing
vc and Y¢ = yc —y is thought of as a vector in t¢ (see Definitions 38 and 39).

Combining (37), (38) and Theorem 48, and setting £ = £k we obtain the
formula

(39) dim Q(M, £ =" FA[LF @ AT @ S(KC 1 Ye), alye)](0),
c
where y is a generic element of *, and the sum runs over C € Compy(M)
satisfying yc € n(C N pgh(t%)).
First, consider the terms of this sum corresponding to C € Compy(M) for
which the affine-linear subspace Ac¢ passes through the origin: 0 € A¢. For any
such C, Lemma 33 shows that

k — FAL[LF ® A®n™ ® S(KC 1Y), alyc)](0)

is a quasi-polynomial function of k. The most important case of such a
component is C = M, and the corresponding term is the quasi-polynomial
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FA, [Ek ® A*n,a(y)] (0). If 0 is a regular value of p, then this is the only
component with 0 € A¢.

Furthermore, the terms corresponding to C with 0 € A¢ will be absent
in (39) if 0 ¢ ug(M). Indeed, then, for y chosen sufficiently close to 0,
the orthogonal projection y¢ of y to Ac¢ is also close to 0, and thus
ye ¢ w(C N pgh(t") € pe(M).

Now, both assertions of Theorem 49 will follow if we show that, for y chosen
generic and sufficiently close to 0, the terms on the right hand side of (39)
corresponding to fixed point components C € Compy(M) with 0 ¢ A¢c and
yc € u(C N pgh(t*)) C we(M) vanish for k > 1.

Consider thus such a fixed point component C € Comp;(M) and fix a point
g € C N ug'(t*) satisfying pu(g) = yc. Thus we have

(40) q€C, nui(g) =0 and u(g) = yc.

Assume, ad absurdum, that the zero weight occurs with nonzero multiplicity in
the T -character
Au[L*¥ ® AT ® S(KC 1 Ye), alyc)].

According to Lemma 32, this implies that the representation of 7T¢ on the fiber
of the bundle £¥ ® A®*n~ ® S(KC 1 Y¢) contains the trivial weight at any point
of C. In particular, the Lie algebra element Y¢ € t¢ annihilates a nonzero vector
in the fiber

(41) (£F ® A*n” ® S(KC1Ye)),

at our chosen point g.

To find a contradiction, we will give a positive lower bound on the eigenvalues
of Y¢ on this space assuming y € t* is a generic vector near 0. Let us consider
the eigenvalues of Y¢ on each of the 3 tensor factors in (41):

e The eigenvalue of Y¢ acting on [,’; is equal to k(u(q),Yc) =k{yc,Yc).

e The list of eigenvalues of Y¢ on A®n™ is parametrized by subsets 7 C R~
of the negative roots, and the eigenvalue corresponding to 7 is > ,.;{«, Yc).

e Finally, recall the definition of S(KC 1 Yc¢) from (31). Clearly, all eigenvalues
of Yo on S"(KC* @ K C41)q are nonnegative, and hence, the eigenvalues
of Y¢ on S(KC 1 Yc¢) are bounded from below by the eigenvalue of Y¢
on det KC*. This eigenvalue equals

(42) - > (n.Yc),

ned,

where @ is defined in (30).
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The positivity of the eigenvalues of Y¢ on the vector space (41) thus translates
into the inequality

43) k{yc,Yc) + Z(a, Ye)— Z (n,Yc) >0 for k >0 and every I C R™.

aecl ned,

Consider the first term: According to our assumption, the affine subspace A¢ C t*
does not pass through the origin, and hence, denoting half the distance from the
origin to Ac by dc¢, we see that

(44) k(yc.Yc) = d?

for y sufficiently close to the origin (see the Figure on Page 496).

By the definition of @, the expression (42) is also positive. Thus our worry
is the set of negative contributions, which could appear in the second term of
(43): these correspond to those o € R~ for which (o, Yc) < 0.

Clearly, for any I C R~

(45) YYe)= Y (eYe),

ael aeR, (a,Yc)<0

and we have the estimates

(46) > wra- Y @yl <all
aeR, (a,Yc)<0 aeR—, (a,yc)<0
and
@47) [ Y mve- Y o) <alyll
neds nedc, (n,yc)<0

for constants cj,c, independent of y.
Combining inequalities (44), (45), (46) and (47), we can conclude that if we
prove the inequlity

E-@rolyli+] Y @Y- Y @Ye)]>o

a€R, (a,yc)<0 nedc, (n,yc)<0

for ||y|| sufficiently small, then (43) will follow. Clearly, it is sufficient to show
that the expression in the square brackets is nonnegative, and this, in turn, will
follow if we prove that the roots a € R~ satisfying (o, yc) < 0 are in the list
of weights ®¢ of the action of the torus T¢ on the bundle T/ M/T/C on C.

This latter statement is the content of the following crucial proposition, which,
we emphasize, is the only geometric ingredient of our proof.

We note that below, we pass from the T¢ -weights of the bundle T’ M/T’C
to those of the bundle T/ M, which has the effect of reversing all signs, and
adding a number of zero-weights.
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Proposition 50. Let (M,w,g) be a Hamiltonian G -manifold, and let J be
a G -invariant almost complex structure such that w(v, Jv) > 0 for all tangent
vectors v # 0. Fix a point q € M such that pug(q) = n(q), ie, pi(g) = 0.
Then the list of complex weights of the stabilizer group T,; on T({ M with respect
to the almost complex structure J contains the following sublist of restricted
roots:

(48) [alty: @ € R, (u(g). @) > 0].

Proof. Recall that VX(g) stands for the tangent vector in Ty, M corresponding to
X € g under the G-action on M. As our calculations below will take place in
the tangent space T,M , we will omit the dependence on ¢ from our notation.

We need to show that under the conditions described above, there is a nonzero
tangent vector W € T,M such that

X W ={a,X)J(W)

for every X € t,. Here, X - W stands for the action of the stabilizer Lie algebra
gq on T, M.
Let us extend the map V : g — T,M to gc by complex linearity via

VIX +iY] = VX + J(VY).

Then V : gc — (T;M, J) is a map of complex vector spaces, which is equivariant
with respect to the action of 7, the stabilizer group of g, acting on gc by the
adjoint action, and on T, M by its natural action.

Let @ € R be a root satisfying (u(g), @) > 0, and let X,, Y, € g be two Lie
algebra elements, such that X, + iY, is in the root space gc(«), and the triple

—1 1
Eg= T(Xa +iYy), Fy = E(Xa —iYy), Hy = —i[Xq, Yol
satisfies the commutation relations of the standard basis of sly:
[Ha, Ea] = 2Ea, [Ha, Fa] — _2Fa, [Ea, Fa] = Ha.

Then we also have (B,a) = cy(B,iHy) with ¢y >0 for any g € t*.

For any X € t;, we have X - VE, = («, X) J(VE,). Thus the statement is
proved if we verify that VE, does not vanish. To show this, we prove that
wg(VEy, J(VEy)) # 0. Indeed, we have

4wq(VEg, J(VEq)) = 0q(VXa, J(VXy)) + 0q(VYa, J(VYe)) — 204 (VXq, VYa).

The first two terms of this sum are nonnegative by our assumptions on @. As
for the last term, from the key identity (9), we have
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wg(VXqy,VYe) + (Vrvy, 46, Xa) =0,

where V denotes the directional derivative. On the other hand, from the invariance
of ug, we have (Vyy, ug, Xo) + (UG, [Ya, Xe]) = 0, which leads to

=1
(49) wg(VXq, VYy) = —(MG(Q), [Xa, Ya]) = ;—(H«G(C]),a) < 0.
[0
This completes the proof of Proposition 50 and the proof of our main result
Theorem 49 as well. ]
O

6. The asymptotic result in the torus case

The purpose of this section is to give a concise proof of the following variant of
Theorem 3, which is a special case of the asymptotic result proved by Meinrenken
in [Meil].

Theorem 51. Let M be a compact almost complex T -manifold, let L be a T -
equivariant line bundle over M with moment map ., and let £° = 9" @ £°4
be a Z,-graded equivariant vector bundle over M . Assume that for a compact
subset b of the regular values of p, £ and £°Y are equivariantly isomorphic
on u~Y(y) for every y € b. Then there is a K > 0 such that

Fxeegrc(A) =0 for k > K and A € kb N A.

Proof. Again, our starting point is the Atiyah—Bott fixed point formula (11):

eku(p)ChlEp]
(50) Xes@ck =
£°®L ;n¢e¢ (1—eg)

Here we used the notation ch[E7] = ch[£7%"] — ch[S},’dd].

It clearly follows from our hypothesis that if p € F is such that w(p) € b,
we have ch[£)] = 0. Thus, introducing the subset F’' = {p € F; u(p) ¢ b} of all
fixed points, we can write

- ekp(p) (1)ch[E7] (1)
(51) Frerace ) = fre‘*mp;, [pea, (1= es(©)

To estimate this integral, we would like to exchange the summation and the
integration in this formula. However, the terms of the sum are singular expressions,
and thus we can only estimate the part of this integral where the terms of the
sum are bounded.
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To find this partial estimate, we proceed as follows. Consider the open set

Tree = {g €T| ep(g) # 1V € ®p, p € F'},

of those elements ¢ € T for which the terms of our sum are regular, and for
each g € T pick a ball U, C t centered at 0 € t such that gexp(Ug) C Treg-
Now, let pg : T — [0,1] be an auxiliary smooth function with compact support
on gexp(Ug), and consider the piece

(52) | o e aOenor @)

of the integral in (51) supported in gexp(Uy). Pulling this integral back to t via
the map gexp:t— T, we can estimate the absolute value of (52) as being less
or equal than

(53) 2.

peF’

dXx|.

[eik(“( i /k.x) Pe (8 exp(X)) ch[£7](g exp(X))
¢ [Tgea, (1—€l®-Xley(g))

Note that we omitted the constant factor e'*#(P)=i%(g) since it is of absolute
value 1.
Now we recall the following standard estimate from Fourier analysis.

Lemma 52. Let 0 #net*, and H :t — C be a smooth compactly supported

function. Then for every positive integer d, the inequality

_ Ca(H)
= nl?4

[ei(”’X)H(X) dX

t

holds, where the constant Cyz(H) depends only on a finite number of derivatives
of H; in fact, one can take

d
Ca(H) = max [Zag] (H(X))| .

Now we return to (53), and consider expression p(p)—A/k in the exponent.
Since, according to our assumptions, A/k € b, and w(p) is not in b, we have
the bound |u(p) —A/k| > 6 for some positive §. Applying Lemma 52 to our
integrand with n = k(u(p) —A/k), we obtain the following

Corollary 53. For g € Ty, and smooth function pg : T — [0,1] with compact
support in Uy, the integral (52), goes to zero faster than any negative power of
k, uniformly for A € kb.
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In order to bound the rest of the integral (51), for each g € T\ Tiep, We
will replace the Atiyah-Bott formula by an expression, which is regular at g.
Such formulas were given in [BV2]; here we sketch the setup and the relevant
notions. We begin with the case of the unit element of 7': g = 1. We follow the
exposition of ([BGV], chapters 7.8).

For a manifold M with a T -action, we define the algebra Ar(M) of
equivariant forms as the space of smooth maps « : t — T(A*T*M)T | from
t to the set of invariant differential forms on M. As a matter of notation, we
will write a(X) for the resulting differential form on M, and «(X,q) for the
value of this differential form at g € M.

The equivariant differential D : Ar(M) — A7 (M), given by the formula

Da(X) = da(X) —«(VX)a(X),

satisfies D? = 0. (Here t(v)a is the contraction of the differential form « by the
vector v.) Accordingly, @ € Ar(M) is called equivariantly closed if Da = 0.
The formulas in [BVI] express the integral [, a : t — C of an equivariantly
closed form « in terms of local data on M.

Returning to our setup of a 7 -manifold M, endowed with a line bundle £
with curvature R, = —iw, we observe that we have already encountered such
equivariantly closed forms: indeed, equation (9) may be interpreted as saying that
the expression

(54) Re(X)=Re+Lx—Vyx =i(p, X)—iw,

the equivariant curvature of the bundle £, is equivariantly closed. The equivariant
curvature may be constructed for any equivariant bundle B over M by choosing
a T -invariant connection V on B with curvature Rp. Then, again, we can define
Rp(X) = R + Lx — Vyx which is a smooth map from t to the T -invariant
sections of the bundle of algebras A*T*M ® End(B). We can then define the
equivariant forms

1 —exp(— Rp(X))
where the trace and the determinant are taken in End(B). These forms are called,
respectively, the equivariant Chern class and the equivariant Todd class of the
bundle B. Note that the latter is only defined in a neighborhood of 0 € t.

Now let us denote by b the set of those regular values & of p in t* for
which £9¢" and £°4 are isomorphic over pu~'(£); clearly, b is an open set
containing b.

Observe that since £°" is isomorphic to £°44 over p~1(b), we can assume
that the corresponding connections Vgeven and Vg are chosen to coincide
over u~(b).

(55) chp(X) = Trg[exp (Rp(X))], Todds(X) = dets l: Rp(X) jl ,
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Applying the above construction to the bundles £, £°9 and T/ M, we
obtain the equivariant curvature forms Rgeven, Rgoad and Rrys g, respectively, and
thus we have

(56) Rgeven (X, q) = Reoad(X,q) if p(q) € b.

Now we are ready to write down the relevant formula from [BV2] (see also
[BGV], Chapter 8):

Xev@rk (exp X)
1

= W L Cth (X)[ chgeven (X) = Chgodd (X)] TOddT.I M(X)’

this equality is valid for X from the neighborhood U; of 0 € t where
Toddrs 3 (X) is defined.

Writing chge(X) for chgeven(X) — chgoad (X) and using (54), we can rewrite
this expression as |

1 4 p
67 Xerorr @ X) = Gy [ X1k e () Toddrs 3y ().

Now we proceed similarly to our analysis of the Atiyah-Bott formula above. We
choose an auxiliary smooth function p; : T — [0,1] with compact support in
exp(Up), and we write

(58) (2im)dmM/2 fT P06 () Xgo gk (1) dt
dimM/2 (—lk)] ' '
= fM > H w’ x ft p1(exp(X))e K H@D=A/kX) cheo (X)) Toddrs 4 (X) dX.

i=0

According to (56), the factor chge(X,q) vanishes whenever j(g) € b. Denoting
the distance between b and the complement of b by §, we can again assume
that |u(q) —A/k| > 6 whenever A € kb. Since both M and the support of p;
are compact, we have bounds on the derivatives of the integrand in (58), which
are uniform in ¢g. Hence we can apply Lemma 52 again to conclude that for
each d, there is a constant C;, independent of ¢, such that the integral over t
in (58) is bound by Cyk~2¢. Integrating over M then gives us

Corollary 54. The integral (58) goes to zero as k — oo faster than any negative
power of k as k — oo.

Finally, we can extend these arguments to all g € T', using the generalization
of (57) given in [BV2, Theorem 3.23]. We first introduce the twisted versions of
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our characteristic forms: if s € T acts trivially on M, then we can define the
twisted Chern character

chps(X) =Tr [s exp (Rz(X))],

and
Dp,s =det[1 —s "exp (— Ra(X))],

as s acts fiberwise in any 7 -equivariant vector bundle over M .

Now let g € T be an arbitrary element, denote by M¢ the submanifold fixed
by g (thus g acts trivially on M¢) and let NM¢# be the normal bundle of M$8
in M. Then the formula in [BV2] states that

1 [ Chﬁk,g(X) Chg-ag(X) Toddpse (X)
Qui)dimME/2 J, o Dymz,g(X)

(59)  Xgegrr(gexpX) =

for X in a neighborhood U, of 0.
From here on, the arguments are identical to those we gave in the case g =1,
and hence they will be omitted. The result may be formulated as follows.

Lemma 55. For g € T, let U, be a neighborhood of 0 € t such that for X € U,
the characteristic classes Toddpz(X) and Dypzg(X)™! are defined on M¥.
Then for any smooth function pg : T — [0, 1] compactly supported in gexp(Ug),
and any A € kb, the integral

| pe0esOtergen0)ds
goes to zero faster than any negative power of k.

Now we can easily finish the proof of the theorem. Indeed, the sets
{gexp(Ug)| g € T} form an open cover of the compact torus 7. We can thus
pick a finite subset S C T such that Ugeggexp(Ugy) = T. Next, we choose a
partition of unity subordinated to this cover, i.e functions p, : T — [0,1], g € S
such that p, is compactly supported in gexp(U,) and des pg = 1. Then, for
A € kb, we have

[ ea®remocs 0t = 3 [ pees®omorr @) dt.
T T

ges
Each term of the sum goes to zero as k — oo uniformly in A, and hence so
does their sum, the expression on the left hand side, which equals Fyceg -« . As
FXsegrok is an integer, this completes the proof of Theorem 51. O

Finally, we can formulate an important corollary of Theorem 51, which is used
in the paper. Recall Definition 22 and Proposition 28.
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Corollary 56. Let £° = £ @ £°Y pe a 7Z,-graded bundle over M, and
let a C t* be an alcove. If for some y € a, which is a regular value of
i, the T -equivariant bundles £ and £°% are isomorphic on p='(y), then
AulE®,a] = 0. In particular, if uw=(y) is empty, then A,[E%,a] = 0 for any
Zy-graded vector bundle E°.

Proof. According to Lemma 18 and Proposition 28, this follows from the fact
that for a compact b C a and k sufficiently large

lekb = I‘Xg-®£k(/l):0. ]

7. List of notations

e ['(E) — space of smooth sections of the vector bundle E.

e (M,w) — compact symplectic manifold; £ — vector, £ — line bundle over
M.

e &c — vector bundle restricted to the submanifold C.

e TM - the tangent bundle of M, J € I'(End(TM)) stands for an almost
complex structure, T/ and T’ denote the +i eigenspaces of J.

e T — compact torus group, t — its Lie algebra, A — weight lattice of 7', G
— compact Lie group with maximal torus 7 and Lie algebra g.

e ug : M — g* and u: M — t* — moment maps, corresponding to a not
necessarily positive line bundle.

e [ stands for the T -fixed point set of M, which we assume to be finite.
For p € M, we denote by &, the list of tangent weights of M at p, and
by W, the list of T -weights of &, ; the weight of £, equals u(p). We will
use the notation ch(&p) = > 5y, €a-

e Fn — the Fourier transform/multiplicity function of the formal character 7
of T.

e O[P 1 Y] — formal character associated with the list of weights ® and
oriented by the vector Y (cf. (12)).

e §[®1Y,T] — formal quasi-polynomial character, whose multiplicity function
coincides with that of ®[®1 Y] on the tope T (cf. Lemma I8).

e A,[E, a] —the asymptotic character associated to £ and p (cf. Definition 22).

e Gg,gs — connected component of generic stabilizer group of the subset §
of a G-space, and its Lie algebra. In particular, T7¢c and tc stand for the
connected component of the generic stabilizer group of the subset C C M
under the action of the maximal torus.
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R(P) — set of linear subspaces spanned by subsets of the list ®; for
S € R(®) and y € t*, denote by ys the projection of y onto S and by
Ys, the vector in t corresponding to ys — y under the the isomorphism
t = t* (cf diagram after Remark 35).

Compr (M) — set of connected components of fixed point sets of M
with respect to the actions of a subtorus group of the maximal torus T
(Definition 38).

For C € Comp;(M), denote by Ac¢ the affine subspace w(p) + té: ct*,
where p € C N F (cf. (20)); for y € t*, let yc be the projection of y onto
Ac, and let Y¢ € t be the vector corresponding to yc — y (cf. diagram
after Definition 39). Finally, we denote by Termc[u, &, y] the contribution
of C to the expression of yg in Proposition 40.
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