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The Horn inequalities from a geometric point of view

Nicole BeErLINE, Michele VeErGNE and Michael WALTER

Abstract. We give an exposition of the Horn inequalities and their triple role characterizing
tensor product invariants, eigenvalues of sums of Hermitian matrices, and intersections
of Schubert varieties. We follow Belkale’s geometric method, but assume only basic
representation theory and algebraic geometry, aiming for self-contained, concrete proofs.
In particular, we do not assume.the Littlewood-Richardson rule nor an a priori relation
between intersections of Schubert cells and tensor product invariants. Qur motivation is
largely pedagogical, but the desire for concrete approaches is also motivated by current
research in computational complexity theory and effective algorithms.

Mathematics Subject Classification (2010). Primary: 22E46; Secondary: 141.24, 53D20),
15A42.
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1. Introduction

The possible eigenvalues of Hermitian matrices Xi,..., X such that X; +
.-+ + Xy = 0 form a convex polytope. They can thus be characterized by a finite
set of linear inequalities, most famously so by the inductive system of linear
inequalities conjectured by Horn [Hor]. The very same inequalities give necessary
and sufficient conditions on highest weights A;,..., Ay such that the tensor product
of the corresponding irreducible GL(r)-representations L(A;),..., L(1s) contains
a nonzero invariant vector, i.e., ¢(X) := dim(L(11) ® --- ® L(A;))S") > 0. For
s = 3, the multiplicities c(i) can be identified with the Littlewood-Richardson
coefficients. Since the Horn inequalities are linear, c(i) > 0 if and only if
c(N X) > (0 for any integer N > 0. This is the celebrated saturation property of
GL(r), first established combinatorially by Knutson and Tao [KT] building on
work by Klyachko [Kly]. Some years after, Belkale has given an alternative proof
of the Horn inequalities and the saturation property [Bel3]. His main insight is to
‘geometrize’ the classical relationship between the invariant theory of GL(r) and
the intersection theory of Schubert varieties of the Grassmannian. In particular,
by a careful study of the tangent space of intersections, he shows how to obtain
a geometric basis of invariants.

The aim of this text is to give a self-contained exposition of the Horn
inequalities, assuming only linear algebra and some basic representation theory
and algebraic geometry, similar in spirit to the approach taken in [VW]. We
also discuss a proof of Fulton’s conjecture which asserts that c(i) =1 if and
only if c(Ni) = 1 for any integer N > 1. We follow Belkale’s geometric
method [Bel2, Bel3, Bel4], as recently refined by Sherman [She], and do
not claim any originality. Instead, we hope that our text might be useful by
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providing a more accessible introduction to these topics, since we tried to give
simple and concrete proofs of all results. In particular, we do not use the
Littlewood-Richardson rule for determining c(i), and we do not discuss the
relation of a basis of invariants to the integral points of the hive polytope [KT].
Instead, we describe a basis of invariants that can be identified with the Howe-
Tan-Willenbring basis, which is constructed using determinants associated to
Littlewood-Richardson tableaux, as we explained in [VW]. We will come back to
this subject in the future. We note that Derksen and Weyman’s work [DW] can
be understood as a variant of the geometric approach in the context of quivers.
For alternative accounts we refer to the work by Knutson and Tao [KT] and
Woodward [KTW], Ressayre [Resl, Res3] and to the expositions by Fulton and
Knutson [Ful2, Knu].

The desire for concrete approaches to questions of representation theory
and algebraic geometry is also motivated by recent research in computational
complexity and the interest in efficient algorithms. Indeed, the saturation property
implies that deciding the nonvanishing of a Littlewood-Richardson coeflicient can
be decided in polynomial time [MNS]. In contrast, the analogous problem for
the Kronecker coefficients, which are not saturated, is NP-hard, but believed to
simplify in the asymptotic limit [IMW, BCM]. We refer to [Mul, BLMW] for
further detail.

These notes are organized as follows: In Section 2, we start by motivating
the triple role of the Horn inequalities characterizing invariants, eigenvalues, and
intersections. Then, in Section 3, we collect some useful facts about positions and
flags. This is used in Sections 4 and 5 to establish Belkale’s theorem characterizing
intersecting Schubert varieties in terms of Horn’s inequalities. In Section 6, we
explain how to construct a geometric basis of invariants from intersecting Schubert
varieties. This establishes the Horn inequalities for the Littlewood-Richardson
coefficients, and thereby the saturation property, as well as for the eigenvalues
of Hermitian matrices that sum to zero. In Section 7, we sketch how Fulton’s
conjecture can be proved geometrically by similar techniques. Lastly, in the
appendix, we have collected the Horn inequalities for three tensor factors and low
dimensions.

Notation. We write [n] := {1,...,n} for any positive integer n. For any group
G and representation M, we write MY for the linear subspace of G -invariant
vectors. For any subgroup H C G, we denote by G/H = {gH} the right coset
space. If F is an H -space, we denote by G xy F the quotient of G x F
by the equivalence relation (g, f) ~ (¢h™',hf) for g€ G, f € F, h € H.
Note that G xyg F is a G -space fibered over G/H, with fiber F. If F if a
subspace of a G -space X, then G xy F is identified by the G -equivariant map
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g, f1— (gH,gf) with the subspace of G/H x X (equipped with the diagonal
G -action) consisting of the (gH,x) such that g7'x € F.

2. A panorama of invariants, eigenvalues, and intersections

In this section we give a panoramic overview of the relationship between
invariants, eigenvalues, and intersections. Our focus is on explaining the intuition,
connections, and main results. To keep the discussion streamlined, more difficult
proofs are postponed to later sections (in which case we use the numbering of
the later section, so that the proofs can easily be found). The rest of this article,
from Section 3 onwards, is concerned with developing the necessary mathematical
theory and giving these proofs.

We start by recalling the basic representation theory of the general linear
group GL(r) := GL(r,C). Consider C” with the ordered standard basis
e(1),...,e(r) and standard Hermitian inner product. Let H(r) denote the
subgroup of invertible matrices ¢ € GL(r) that are diagonal in the standard
basis, i.e., te(i) = t(i)-e(i) with all 7(i) # 0. We write ¢t = (¢(1),...,¢(r)) and
thereby identify H(r) =~ (C*)". To any sequence of integers u = (u(1),..., u(r)),
we can associate a character of H(r) by ¢ > t* := t(1)AW ...t (r)*") | We say
that o is a weight and call A(r) = Z" the weight lattice. A weight is dominant
if w(1) = .-+ > u(r), and the set of all dominant weights form a semigroup,
denoted by A4 (r). We later also consider antidominant weights «, which satisfy
w(l) < <w(r).

For any dominant weight A € A(r), there is an unique irreducible repre-
sentation L(A) of GL(r) with highest weight A. That is, if B(r) denotes the
group of upper-triangular invertible matrices (the standard Borel subgroup of
GL(r)) and N(r) C B(r) the subgroup of upper-triangular matrices with all ones
on the diagonal (i.e., the corresponding unipotent), then L(A)N®) = Cv, is a
one-dimensional eigenspace of B(r) of H(r)-weight A. We say that vy is a
highest weight vector of L(A). In Section 6.1 we describe a concrete construction
of L(A) due to Borel and Weil. Now let U(r) denote the group of unitary
matrices, which is a maximally compact subgroup of GL(r). We can choose
an U(r)-invariant Hermitian inner product (-,-) (by convention complex linear
in the second argument) on each L(A) so that the representation L(A) restricts
to an irreducible unitary representation of U(r). Any two such representations
of U(r) are pairwise inequivalent, and, by Weyl’s trick, any irreducible unitary
representation can be obtained in this way. Let us now decompose their Lie alge-
bras as gl(r) = u(r) @ iu(r), where i = +/—1I, and likewise h(r) = t(r) @ it(r),
where we write t(r) for the Lie algebra of 7'(r), the group of diagonal unitary
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matrices, and similarly for the other Lie groups. Here, iu(r) denotes the space of
Hermitian matrices and it(r) the subspace of diagonal matrices with real entries.
We freely identify vectors in R” with the corresponding diagonal matrices in
it(r) and denote by (-,-) the usual inner product of it(r) =~ R”. For a subset
J C [r], we write Ty for the vector (diagonal matrix) in it(r) that has ones in
position J, and otherwise zero.
Now let O, denote the set of Hermitian matrices with eigenvalues A(1) >
- > A(r). By the spectral theorem, O, is a U(r)-orbit with respect to the
adjoint action, u - X := uXu™, and so O, = U(r) - A, where we identify A with
the diagonal matrix with entries A(1) > --- > A(r). On the other hand, recall
that any invertible matrix g € GL(r) can be written as a product g = ub, where
u € U(r) is unitary and b € B(r) upper-triangular. Since v, is an eigenvector of
B(r), it follows that, in projective space P(L(A)), the orbits of [vy] for GL(r)
and U(r) are the same! Moreover, it is not hard to see that the U(r)-stabilizers
of A and of [v,] agree, so we obtain a U(r)-equivariant diffeomorphism

2.1) O = U(r)-[va]l = GL(r) - [val € P(L(A), u-Ar>u-[va] = [u-vs]

which also allows us to think of the adjoint orbit O, as a complex projective
GL(r)-variety. An important observation is that

u-va, pa(A) (- vy))
[lval|?

(2.2) tr((u-A)A) = (

for all complex rxr-matrices A, i.e., elements of the Lie algebra gl(r) of GL(r);
p; denotes the Lie algebra representation on L(A). To see that (2.2) holds true,
we may assume that ||vy]] = 1 as well as that v = 1, the latter by U(r)-
equivariance. Now tr(AA) = (v,, pa(A)v,) is easily be verified by decomposing
A =L+ H+ R with L strictly lower triangular, R strictly upper triangular, and
H € h(r) diagonal and comparing term by term. These observations lead to the
following fundamental connection between the eigenvalues of Hermitian matrices
and the invariant theory of the general linear group:

Proposition 2.3 (Kempf-Ness, [KN]). Let Ay,...,As be dominant weights for
GL(r) such that (L(A;) ® -+ ® L(As))SM) £ {0}, Then there exist Hermitian
matrices Xi € Oy, such that Y ;_, Xg = 0.

Proof. Let 0 # w € (L(A1)®---®L(As))%“") be a nonzero invariant vector. Then,
P(v) := (w,v) is a nonzero linear function on L(A;)®---® L(A) that is invariant
under the diagonal action of GL(r); indeed, (w,g-v) = (g*-w,v) = (w,v).
Since the L(Ax) are irreducible, they are spanned by the orbits U(r)v,, . Thus
we can find uy,...,us € U(r) such that P(v) # 0 for v = (u1-v3,)® - ®(us-vy,).
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Consider the class [v] of v in the corresponding projective space P(L(A1) ®
.-+ ® L(A;)). The orbit of [v] under the diagonal GL(r)-action is contained
in the GL(r)*-orbit, which is the closed set [U(r)-vy, ® --- ® U(r) - vy]
according to the discussion preceding (2.1). It follows that GL(r) - v and its
closure, GL(r)-v (say, in the Euclidean topology), are contained in the closed
set {k(u)-v2,)® - @ (uy-vy,)} for k € C and u,...,u, € U(r).

Since P is GL(r)-invariant, P(v') = P(v) # 0 for any vector v’ in the
diagonal GL(r)-orbit of v. By continuity, this is also true in the orbits’ closure,
GL(7r) - v. On the other hand, P(0) = 0. It follows that 0 & GL(r) - v, i.e., the
origin does not belong to the orbit closure. Consider then a nonzero vector v’ of
minimal norm in GL(r)-v. By the discussion in the preceding paragraph, this
vector is of the form v/ = k(u} -vy,)®--- ® (u} -vy,) for some 0# x € C and
ul,...,us € U(r). By rescaling v we may moreover assume that ¥ = 1, so that
v’ is a unit vector.

The vector v’ is by construction a vector of minimal norm in its own GL(r)-
orbit. It follows that, for any Hermitian matrix A,

1
0= doll(e” ® -+ @) v'|”

=W, (2, (ARIR @I+ +1® - ® ps,(A))
= Y (- vag pag (A - vp)) = D te(Aug - Ag)) = ) r(AXy),
k=1

k=1 k=1

where we have used Eq. (2.2) and set X} :=u; - A for k € [s]. This implies at
once that ) ;_, Xx = 0. O]

The adjoint orbits O; = U(r) - A (but not the map (2.1)) can be defined
not only for dominant weights A but in fact for arbitrary Hermitian matrices.
Conversely, any Hermitian matrix is conjugate to a unique element & € it(r)
such that £(1) > --- > £(r). The set of all such £ is a convex cone, known as
the positive Weyl chamber C4(r), and it contains the semigroup of dominant
weights. Throughout this text, we only ever write Og = U(r)-§ for £ that are
in the positive Weyl chamber. For example, if § € C.(r) then —§ € Og«,
where &* = (—&(r),...,—&(1)) € C4(r). If A is a dominant weight then
A*Y = (=A(d),...,—A(1)) is the highest weight of the dual representation of
LX), ie., L(A*) = L(A)*.

Remark. Using the inner product (A4, B) := tr(AB) on Hermitian matrices we
may also think of A as an element in it(r)* and of O, as a coadjoint orbit
in iu(r)*. From the latter point of view, the map (Xy,...,Xs) — >3 X is
the moment map for the diagonal U(r)-action on the product of Hamiltonian
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manifolds Oy, , k € [s]. Proposition 2.3 thus relates the existence of nonzero
invariants to the statement that the zero set of the corresponding moment map is
nonempty. This is a general fact of Mumford’s geometric invariant theory.

Definition 2.4. The Kirwan cone Kirwan(r,s) is defined as the set of § =
(£1,...,&) € C4(r)® such that there exist Xy € O, with Y ;_; Xz = 0.

Using this language, Proposition 2.3 asserts that if the generalized Littlewood-
Richardson coefficient ¢(A) := dim(L(A;) ®---® L(A4))“") > 0 is nonzero then

-

A is a point in the Kirwan cone Kirwan(z,s).

Remark We will see in Section 6 that, conversely, if F Kirwan(r, s), then
c(l) > 0 (by constructing an explicit nonzero invariant). As a consequence, it
will follow that c()L) > 0 if and only if c(N/'L) > 0 for some integer N > 0. This
is the remarkable saturation property of the Littlewood-Richardson coeflicients. In
fact, we will show that the Horn inequalities give a complete set of conditions for
nonvanishing c(i) as well as for § € Kirwan(r, s), which in particular establishes
that Kirwan(r, s) is indeed a convex polyhedral cone. We will come back to these
points at the end of this section.

If there exist permutations wy such that Y ; _, wg-& = 0 then E € Kirwan(r, s)
(choose each X} as the diagonal matrix wy -&; ). This suffices to characterize the
Kirwan cone for s < 2:

Example. For s = 1, it is clear that Kirwan(r,1) = {0}. When s = 2, then
Kirwan(r,2) = {(§,§*)}. Indeed, if X; € Og, and X, € Og, with X; + X> =0,
then X, =—-X, € OET 3

In general, however, it is quite delicate to determine if a given § € Cy(r)s is
in Kirwan(r,s) or not. Clearly, one necessary condition is that > ;_,|&| = 0,
where we have defined |u| := Z;=1 p(j) for an arbitrary w € h(r). This follows
by taking the trace of the equation Y ;_, Xz = 0. In fact, it is clear that by
adding or subtracting appropriate multiples of the identity matrix we can always

reduce to the case where each |&| = 0.

Example. Let X; € Og, such that > ;_, Xz = 0. For each k, let vy denote a
unit eigenvector of X with eigenvalue &;(1). Then we have

25 0= (. (sz)vk =&+ Y (v Xpog) = (D) + Y &)
1#k 1#k
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since & (r) = miny, = (v, X;v) by the variational principle for the minimal eigen-
value of a Hermitian matrix X;. These inequalities, together with > ;_,|&| = 0,
characterize the Kirwan cone for r = 2, as can be verified by brute force.

There is also a pleasant geometric way of understanding these inequalities in
the case r = 2. As discussed above, we may assume that the Xj are traceless, i.e.,
that & = (jk,—Jjk) for some jir > 0. Recall that the traceless Hermitian matrices
form a three-dimensional real vector space, spanned by the Pauli matrices. Thus
each X identifies with a vector x; € R3, and the condition that X; € Of,
translates into ||xg|| = jx. Thus we seek to characterize necessary and sufficient
conditions on the lengths j; of vectors x; that sum to zero, > ;_, xx = 0. By
the triangle inequality, jr = |lxkll < 22,z llxrll = X2y4 Ji» which is equivalent
to the above. It is instructive to observe that jx < },. ji is precisely the
Clebsch-Gordan rule for SL(2) when the j; are half-integers.

The proof of Eq. (2.5), which was valid for any s and r, suggests that a more
general variational principle for eigenvalues might be useful to produce linear
inequalities for the Kirwan cones.

Definition 2.6. A (complete) flag F on a vector space V, dimV = r, is a chain
of subspaces

{0y =FO)Cc F(l)c---CF(j)CF(+1)C---CF(r)=V,

such that dim F(j) = j for all j = 0,...,r. Any ordered basis f =

(f(1),..., f(r)) of V determines a flag by F(j) = span{f(1),..., f(j)}. We
say that f is adapted to F.

Now let X € O be a Hermitian matrix with eigenvalues £(1) > --- > §(r). Let
(fx(1),..., fx(r)) denote an orthonormal eigenbasis, ordered correspondingly,
and denote by Fy the corresponding eigenflag of X, defined as above. Note that
Fx is uniquely defined if the eigenvalues £(j) are all distinct. We can quantify
the position of a subspace with respect to a flag in the following way:

Definition 2.7. The Schubert position of an d -dimensional subspace S C V with
respect to a flag F on V is the strictly increasing sequence J of integers defined
by

J(h) :=min{j € [r], dim F(;)N S = b}

for b € [d]. We write Pos(S, F) = J and freely identify J with the subset
{J(1) < .-+ < J(d)} of [r]. In particular, Pos(S,F) = @ for § = {0} the
zero-dimensional subspace.

The upshot of these definitions is the following variational principle:
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Lemma 2.8. Let § € C(r), X € O¢ with eigenflag Fx, and J C [r] a subset
of cardinality d. Then,
min  r(PsX) =Y £(j) = (T1.6),

S:Pos(S,Fx)=J jel

where Pg denotes the orthogonal projector onto an d -dimensional subspace

s eCr,

Proof. Recall that Fx(j) = span{ fx(1),..., fx(j)}, where (fx(1),..., fx(r)) is
an orthonormal eigenbasis of X, ordered according to &£(1) > --- > £(r). Given
a subspace S with Pos(S, Fy) = J, we can find an ordered orthonormal basis
(s(1),...,s(d)) of S where each s(a) € Fx(J(a)). Therefore,

d

d
r(PsX) =Y (s(@), Xs(@) = Y £(J(@) =Y _E().
a=1 a=1 JjeJ
The inequality holds term by term, as the Hermitian matrix obtained by
restricting X to the subspace Fy(J(a)) has smallest eigenvalue &(J(a)). Since
tr(PsX) = > ;e;6(j) for S = span{fx(j) : j € J}, this establishes the

lemma. ]

Recall that the Grassmannian Gr(d,V) is the space of d-dimensional
subspaces of V. We may partition Gr(d, V') according to the Schubert position
with respect to a fixed flag:

Definition 2.9. Let F be a flag on V, dimV =r, and J C [r] a subset of
cardinality d. The Schubert cell is

QY(F)={ScV:dimS =d, Pos(S, F) = J}.

The Schubert variety Qj(F) is defined as the closure of Q(}(F) in the
Grassmannian Gr(d, V).

The closures in the Euclidean and Zariski topology coincide; the 2j(F)
are indeed algebraic varieties. Using these definitions, Lemma 2.8 asserts that
minSeQ(}(FX)tr(PsX) = 2 jes§(j) for any X € Og. Since the orthogonal
projector Pg is a continuous function of S € Gr(d, V) (in fact, the Grassmannian
is homeomorphic to the space of orthogonal projectors of rank d), it follows at
once that
(2.10) gein | (PsX) = j{;sm = (T1,%).

As a consequence, intersections of Schubert varieties imply linear inequalities of
eigenvalues of matrices summing to zero:
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Lemma 2.11. Let X; € Of be Hermitian matrices with Y ;_, Xx = 0. If
Ji,....Js € [r] are subsets of cardinality d such that (\,_, s, (Fx,) # &,
then Zi:l(TJk,fk) <0.

Proof. Let § € (i—; Qs (Fx,). Then, 0 = >3 te(PsXg) = > 51 (Tr . &)
by (2.10). O

Remarkably, we will find that it suffices to consider only those Ji,..., Js such
that (;_, 4, (Fx) # @ for all flags Fy,..., F;. We record the corresponding
eigenvalue inequalities, together with the trace condition, in Corollary 2.13
below. Following [Bel3], we denote s-tuples by calligraphic letters, e.g., J =
Ji,...,Jds), F=(F,...,F), etc. In the case of Greek letters we continue to
write A = (A1,...,4g), etc., as above.

Definition 2.12. We denote by Subsets(d, r, s) the set of s-tuples 7, where each
Jr is a subset of [r] of cardinality d. Given such a 7, let 7 be an s-tuple of
flags on V', with dimV = r. Then we define

5 Y
QYF) =[5, (F),  Q7(F) =), (Fr).
k=1 k=1
We shall say that 7 is intersecting if Q7(F) # @ for every s-tuple of flags F,
and we denote denote the set of such 7 by Intersecting(d, r,s) C Subsets(d, r, s).

Corollary 2.13 (Klyachko, [Kly]). If § € Kirwan(r,s) then > 5_,|&| = 0, and
for any 0 < d < r and any s-tuple J € Intersecting(d,r,s) we have that
Zi:l(TJk, Ek) S O-

Example. If J = {1,...,d} C [r] then SZ‘}(F) = {F(d)} is a single point. On
the other end, if J = {r—d +1,...,r} then Q%(F) is dense in Gr(r,V), so
that Qy(F) = Gr(r,V). It follows that 7 = (J1,{r —d + 1,...,r},....4r —
d +1,...,r}) € Intersecting(d, r, s) is intersecting for any J; (and likewise for
permutations of the s factors).

For d = 1, this means that Q. (F) = P(V), so that (2.10) reduces to the
variational principle for the minimal eigenvalue, &(r) = miny, =1 (v, Xv), which
we used to derive (2.5) above. Indeed, since ({a},{r},...,{r}) is intersecting for
any a, we find that (2.5) is but a special case of Corollary 2.13.

In order to understand the linear inequalities in Corollary 2.13, we need to
understand the sets of intersecting tuples. In the remainder of this section we thus
motivate Belkale’s inductive system of conditions for an s-tuple to be intersecting.
For reasons that will become clear shortly, we slightly change notation: E will be
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a complete flag on some n-dimensional vector space W, I will be a subset of [n]
of cardinality r, and hence Q(I’(E) will be a Schubert cell in the Grassmannian
Gr(r, W). We will describe Gr(r, W) and Q?(E ) in detail in Section 3. For now,
we note that the dimension of Gr(r, W) is r(n—r). In fact, Gr(r, W) is covered
by affine charts isomorphic to C"*~")_ The dimension of a Schubert cell and the
corresponding Schubert variety (its Zariski closure) is given by

(3.1.8) dim Q(E) = dimQ,(E) = ) (I(a) —a) =:dim .

a=1

Indeed, SZ?(E) is contained in an affine chart C"”~") and is isomorphic
to a vector subspace of dimension dim/. So locally Q9(E) is defined by
r(n —r) —dim I equations. This is easy to see and we give a proof in Section 3.

Definition 2.14. Let 7 € Subsets(r,n,s). The expected dimension associated with
7 is .
A
edimZ :=r(n—r)— Z(r(n —r) —dim Iy).
k=1

This definition is natural in terms of intersections, as the following lemma
shows:

Lemma 2.15. Let £ be an s-tuple of flags on W, dimW = n, and T €
Subsets(r,n,s). If QYE) # @ then its irreducible components (in the sense of
algebraic geometry) are all of dimension at least edimZ.

Proof. Each Schubert cell Q‘}k (Ey) is locally defined by r(n —r) — dim [y
equations. It follows that any irreducible component Z C Q%(€) = (=, 27, (Ex)
is locally defined by 3 ;_,(r(n—r)—dim [) equations. These equations, however,
are not necessarily independent. Thus the codimension of Z is at most that number,
and we conclude that dim Z > edimZ. ]

Belkale’s first observation is that the expected dimension of an intersecting
tuple Z e Intersecting(r,n,s) is necessarily nonnegative,

4.2.7) edimZ =r(n—r)— Z(r(n —r)—dim/g) > 0.
k=1

This inequality, as well as some others, will be proved in detail in Section 4.
For now, we remark that the condition is rather natural from the perspective of
Kleiman’s moving lemma. Given Z € Intersecting(r, n,s), it not only implies that
the intersection of the Schubert cells, Q2(€) = MNi—; Q?k (Ex) # @, is nonempty
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for generic flags, but in fact transverse, so that the dimensions of its irreducible
components are exactly equal to the expected dimension; hence, edimZ > 0.

We now show that (4.2.7) gives rise to an inductive system of conditions.
Given a flag £ on W and a subspace V C W, we denote by EV the flag
obtained from the distinct subspaces in the sequence E(i) NV, i =0,...,n.
Given subsets I C [n] of cardinality r and J C [r] of cardinality d, we also
define their composition 1J as the subset IJ = {I(J(1)) <:-- < I(J(d))} < [n].
(For s-tuples Z and J we define Z.J componentwise.) Then we have the
following ‘chain rule’ for positions: If § € V C W are subspaces and E is a
flag on W then

(3.2.9) Pos(S, E) = Pos(V, E)Pos(S, EY).

We also have the following description of Schubert varieties in terms of Schubert
cells:

(3.1.6) Qr(E) = | @1.(E).
1'<I

where the union is over all subsets I’ C [r] of cardinality r such that I'(a) < I(«a)
for a € [r]. Both statements are not hard to see; we will give careful proofs in
Section 3 below. We thus obtain a corresponding chain rule for intersecting tuples:

Lemma 2.16. If T € Intersecting(r,n,s) and J € Intersecting(d,r,s), then we
have T.J € Intersecting(d,n,s).

Proof. Let £ be an s-tuple of flags on W = C”". Since Z is intersecting,
there exists V € Qz(£). Let £ denote the s-tuple of induced flags on V.
Likewise, since J is intersecting, we can find S € Q7(£"). In particular,
Pos(V, Ex)(a) < Ix(a) for a € [r] and Pos(S, E,l/) < Ji(b) for b € [d]
by (3.1.6). Thus (3.2.9) shows that Pos(S, Ex)(b) = Pos(V, E)(Pos(S, E} )(b)) <
Pos(V, Ex)(Jx (b)) < It (Jr(h)). Using (3.1.6) one last time, we conclude that
S e QIJ(S) L]

As an immediate consequence of Inequality (4.2.7) and Lemma 2.16 we obtain
the following set of necessary conditions for an s-tuple Z to be intersecting:

Corollary 2.17. If T € Intersecting(r,n,s) then for any 0 < d < r and any
s-tuple J € Intersecting(d,r,s) we have that edimZJ > 0.

Belkale’s theorem asserts that these conditions are also sufficient. In fact, it
suffices to restrict to intersecting J with edimJ = 0:
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Definition 2.18. Let Horn(r,n,s) denote the set of s-tuples Z € Subsets(r,n,s)
defined by the conditions that edimZ > 0 and, if r > 1, that

edimZJ =0

for all 7 € Horn(d,r,s) with 0 <d <r and edimJ = 0.

Theorem 5.3.4 (Belkale, [Bel3]). For r € [n] and s > 2, Intersecting(r,n,s) =
Horn(r, n, s).

We will prove Theorem 5.3.4 in Section 5. 'The inequalities defining
Horn(r,n,s) are in fact tightly related to those constraining the Kirwan cone
Kirwan(r,s) and the existence of nonzero invariant vectors. To any s-tuple of
dominant weights A for GL(r) such that > 3 _;|Ak| = 0, we will associate an
s-tuple Z € Subsets(r,n,s) for some [n#] such that edimZ = 0. Furthermore, if A
satisfies the inequalities in Corollary 2.13 then Z € Horn(r,n,s). In Section 6 we
will explain this more carefully and show how Belkale’s considerations allow us
to construct a corresponding nonzero GL(r)-invariant in L(A;) ®---® L(As). By
Proposition 2.3, we will thus obtain at once a characterization of the Kirwan cone
as well as of the existence of nonzero invariants in terms of Horn’s inequalities:

Corollary 6.3.3 (Knutson-Tao, [KT]). (a) Horn inequalities: The Kirwan cone
Kirwan(r,s) is the convex polyhedral cone of g? € Cy(r)* such that
Y icilék| =0, and for any 0 < d < r and any s-tuple J € Horn(d,r,s)
with edim J = 0 we have that Y y_(Ty,, &) < 0.

(b) Saturation property: For a dominant weight 1 e Ay (r)S, the space of
invariants (L(A1) ® --+ ® L(A:)SL) is nonzero if and only if A €
Kirwan(r, s).

In particular, ¢() := dim(L(A}) ® --- ® L(A)H > 0 if and only if
c(NA) > 0 for some integer N > 0.

The proof of Corollary 6.3.3 will be given in Section 6. In Appendices A and
B, we list the Horn triples as well as the Horn inequalities for the Kirwan cones
up to r = 4.

3. Subspaces, flags, positions

In this section, we study the geometry of subspaces and flags in more detail
and supply proofs of some linear algebra facts used previously in Section 2.
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3.1. Schubert positions. We start with some remarks on the Grassmannian
Gr(r, W), which is an irreducible algebraic variety on which the general linear
group GL(W) acts transitively. The stabilizer of a subspace V € Gr(r, W) is
equal to the parabolic subgroup P(V,W) = {y € GL(W) : yV C V}, with Lie
algebra p(V, W) = {x € gi(W) : xV C V}. Thus we obtain that

Gr(r,W) =GL(W)-V =~ GL(W)/P(V,W),
and we can identify the tangent space at V with
Ty Gr(r, W) = gl(W) -V = gl(W)/p(V, W) =~ Hom(V, W/ V).
If we choose a complement Q of V in W then
(3.1.1) Hom(V, Q) — Gr(r, W), ¢ (id+¢)(V)

parametrizes a neighborhood of V. This gives a system of affine charts in
Gr(r, W) isomorphic to C"™~7)_ In particular, dimGr(r, W) = r(n —r), a fact
we use repeatedly in this article.

We now consider Schubert positions and the associated Schubert cells and
varieties in more detail (Definitions 2.7 and 2.9) For all y € GL(W), we have
the following equivariance property:

(3.1.2) Pos(y 'V, E) = Pos(V, yE),
which in particular implies that
(3.1.3) yQUE) = QUyE).

Thus Q‘I)(E) is preserved by the Borel subgroup B(E) = {y €e GL(W) : yE(i) C
E(i) (Vi)}, which is the stabilizer of the flag E. We will see momentarily that
QY(E) is in fact a single B(E)-orbit. We first state the following basic lemma,
which shows that adapted bases (Definition 2.6) provide a convenient way of
computing Schubert positions:

Lemma 3.14. Let E be a flag on W, dimW =n, V C W an r-dimensional
subspace, and I C [n] a subset of cardinality r, with complement [¢. The
following are equivalent:

(i) Pos(V,E)=1.
(ii) For any ordered basis (f(1),..., f(n)) adapted to E, there exists a (unique)
basis (v(1),...,v(r)) of V of the form

v(a) € f(I(a)) +span{f(i):i € 1% i < I(a)}.
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(iii) There exists an ordered basis (f(1),..., f(n)) adapted to E such that
{fUQ)),..., fU(r))} is a basis of V.

The proof of Lemma 3.1.4 is left as an exercise to the reader. Clearly, B(E)
acts transitively on the set of ordered bases adapted to E . Thus, Lemma 3.1.4, (iii)
shows that Q‘}(E) is a single B(FE)-orbit. That is, just like Grassmannian itself,
each Schubert cell is a homogeneous space. In particular, QY(E) and its closure
Qr(E) (Definition 2.9) are both irreducible algebraic varieties.

Example. Consider the flag £ on W = C* with adapted basis (f(1),..., f(4)),
where f(1) =e(1)+e(2)+e(3), f(2) =e2)+e(3), f3) =e(3)+e&), f(4) =
e(4). If V = span{e(1),e(2)} then Pos(V, E) = {2,4}, while Pos(V, Ey) = {1, 2}
for the standard flag E, with adapted basis (e(1),e(2),e(3),e(4)).

Note that the basis (v(1),v(2)) of V given by v(1) = f(2)— f(1) = e(1) and
v(2) = f(H)—f(3)+ f(1) = e(1)+e(2) satisfies the conditions in Lemma 3.1.4, (ii).
It follows that (f(1),v(1), f(3),v(2)) is an adapted basis of E that satisfies the
conditions in (iii).

The following lemma characterizes each Schubert variety explicitly as a union
of Schubert cells:

Lemma 3.1.5. Let E be a flag on W, dimW = n, and I C [n] a subset of
cardinality r. Then,

(3.1.6) Qr(E) = @.(&),
I'<i

where the union is over all subsets 1' C [n] of cardinality r such that 1'(a) < I(a)
for a € |r].

Proof. Recall that Q;(E) can be defined as the Euclidean closure of SZ‘I)(E ). Thus
let (V) denote a convergent sequence of subspaces in Q?(E) with limit some
V € Gr(r, W). Then dim E(/(a))NV > dim E(I(a)) NV} for sufficiently large k,
since intersections can only become larger in the limit, but dim E(/(a)) NV, = a
for all k. It follows that Pos(V, E)(a) < I(a).

Conversely, suppose that V' € QY,(E), where 1'(a) < I(a) for all a. Let a’
denote the minimal integer such that /'(a) = I(a) for a =a’+1,...,r. We will
show that V' € Q;(E) by induction on «'. If @’ =0 then I’ = I and there is
nothing to show. Otherwise, let (f'(1),..., f’(n)) denote an adapted basis for E
such that v'(a) = f'(I’(a)) is a basis of V' (as in (iii) of Lemma 3.1.4). For each
e > 0, consider the subspace V, with basis vectors vg(a) = v'(a) for all a # da’
together with v.(a’) := v'(a’) + ¢f'(I(a’)). Then the space V, is of dimension
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r and in position {I'(1),...,I'(a’" —1),1(d),...,I(r)} with respect to E. By
the induction hypothesis, V., € Q;(E) for any ¢ > 0, and thus V' € Q;(E) as
Ve = V' for ¢ = 0. O

We now compute the dimensions of Schubert cells and varieties. This is
straightforward from Lemma 3.1.4, however it will be useful to make a slight
detour and introduce some notation. This will allow us to show that we can exactly
parametrize Q9(E) by a unipotent subgroup of B(E), which in particular shows
that it is an affine space.

Choose an ordered basis (f(1),..., f(n)) that is adapted to E. Then
V :=span{f(i) : i € I} € Q¥E). By Lemma 3.14, (ii) any V € Q¥E) is
of this form. Now define

Homg (V, W/ V)
;= {¢ € Hom(V, W/ V) : ¢(E(i) N V) C (E(i) + V)/V for i € [n]}

= {gb € Hom(V, W/ V) : ¢(f(l(a)))
< span { £ (I°(h)) + V : b € [I(a) —a]} for a € [r]}

where the f(j) + V for j € I° form a basis of W/V. In particular,
Homg(V,W/V) is of dimension )_._,(/(a) —a). Using this basis, we can
identify W/V with Q :=span{f(j):j € I°}. Then W =V & Q and we can
identify Homg (V, W/ V) with

HE(V, 0) := {¢ € Hom(V, 0) : ¢( £ (1))
C span{f (1°(h)) : b € [I(a) —a]} for a € [r]}.

Lemma 3.1.4, (ii) shows that for any ¢ € Hg(V, Q), we obtain a distinct subspace
(id +¢)(V) in QY(E), and that all subspaces in QY(E) can obtained in this way.
Thus, Q9(E) is contained in the affine chart Hom(V, Q) of the Grassmannian
described in (3.1.1) and isomorphic to the linear subspace Hg(V, Q) of dimension
dim /. We define a corresponding unipotent subgroup,

idy 0

UE(V,Q):={u¢=id+¢=(¢ it

) e GL(W):¢ € HE(V, O)}.

Thus we obtain the following lemma:
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Lemma 3.1.7. Let E be a flag on W, dimW = n, I C [n] a subset
of cardinality r, V € QY(E), and Q as above. Then we can parametrize
He(V,Q) = Ug(V,Q) = QUE) = Ue(V,Q)V, hence Hg(V,Q) = TyQ}(E)
and

(3.1.8) dimQY(E) = dimQ(E) = dim Hg(V, Q) = » (I(a) —a) =:dim I.

a=1

It will be useful to rephrase the above to obtain a parametrization of QY(E)
in terms of the fixed subspaces

Vo :=span{ f(1),..., f(r)} = E(r),

(3.1.9) i _
Qo :=span{ f(1),..., f(n —1)},

where the f(i):= f(r+i) for i € [n—r] form a basis of Q¢. Then W = Vo@® Q.

Definition 3.1.10. Let / C [n] be a subset of cardinality . The shuffle permutation
o7 € S, is defined by

I(a) fora=1,...,r,
I(a—r) fora=r+1,...,n.

or(a) = {

and wy € GL(W) is the corresponding permutation operator with respect to the
adapted basis (f(1),..., f(n)), defined as w; f(i) := f(oj'(i)) for i € [n].

Then Vo = w;V, where V = span{f(i):i € I} € QJ(E) as before, and so
Vo € wiQNE) = Q%w; E)
using (3.1.3). The translated Schubert cell can be parametrized by
Hy, £(Vo, Qo)
= {¢ e Hom(Vo, Qo) : ¢(f(@)) < span{ £ (1)...., f(I(a) — a)} for a € [r]},

where we identify Q¢ =~ W/V,. We thus obtain the following consequence of
Lemma 3.1.7:

Corollary 3.1.11. Let E be a flag on W, dimW =n, I C [n] of cardinality r,
and V € Q¥(E). Moreover, define w; as above for an adapted basis. Then,

QYE) = wi'QY wrE) = wy ' Uy, £ (Vo, Qo) Vo.
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Example (r =3,n = 4). Let I = {1,3,4} and E, the standard flag on W = C*,

with its adapted basis (e(1),...,e(4)). Then oy = (1334%),

oS oo =
S = O O
- o O O
S o - O

and V = w;'Vp = span{e(1),e(3),e(4)} is indeed in position / with respect to
Ey, in agreement with the preceding discussion. Moreover,

leE()(VO, QO) = {(O * *)} - Hom(C3,C1),

1 0 0 0
01 0 0
Uw; E,(Vo, Qo) = 00 1 0 C GL(4),
0 x * 1
and so Corollary 3.1.11 asserts that
1 0 0
0 -1 0 * *
Q7 (Eo) = wy Uw; o (Vo, Qo) spante(1), e(2),e@)y =span | 1. ] o] >
0 0 1

which agrees with Lemma 3.1.4.

3.2. Induced flags and positions. The space Homg (V, W/ V') can be understood
more conceptually as the space of homomorphisms that respect the filtrations
EG@) NV and (E()+ V)/V induced by the flag E. Here we have used the
following concept:

Definition 3.2.1. A (complete) filtration F on a vector space V is a chain of
subspaces

O=FOcF)c--CF@OCFi+)Cc--CF=Y,

such that the dimensions increase by no more than one, i.e., dim F(i + 1) <
dim F(i) + 1 for all i = 0,...,/ — 1. Thus distinct subspaces in a filtration
determine a flag.

Given a flag £ on W and a subspace V € W, we thus obtain an induced flag
EV on V from the distinct subspaces in the sequence E(i)NV,i =0,...,n. We
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may also induce a flag Ew,y on the quotient W/V from the distinct subspaces
in the sequence (E(i) + V)/V . These flags can be readily computed from the
Schubert position of V':

Lemma 3.2.2. Let E be a flag on W, dimW = n, and V C W an r-
dimensional subspace in position 1 = Pos(V, E). Then the induced flags EV on
V and Ew;y on W/V are given by

EV(a) = E(I(@) NV,
Bpy (B) = (E(Ic(b)) n V)/V

for a €[r] and b € [n —r], where I¢ denotes the complement of I in [n].

Proof. Using an adapted basis as in Lemma 3.1.4, (iii), it is easy to see that
dim E(i) NV = |[{] N I| and therefore that dim(E () + V)/V = |[i] N [€]. Now
observe that |[i[]N /| =a if and only if I(a) <i < I(a+ 1), while |[i]NI¢| =5
if and only if 71°(b) <i < I°(b + 1). Thus we obtain the two assertions. L]

We can use the preceding result to describe Homg (V, W/ V') in terms of flags
rather than filtrations and without any reference to the ambient space W .

Definition 3.2.3. Let V and Q be vector spaces of dimension r and n —r,
respectively, I C [n] a subset of cardinality », F a flag on V and G a flag on
Q. We define

Hi(F,G):= {¢ € Hom(V, Q) : ¢(F(a)) € G(I(a) —a)},
which we note is well-defined by
(3.2.4) 0<I@—-a<la+1)—-(@+1)<n—r @a=1,....,r—1).
It now easily follows from Lemmas 3.1.7 and 3.2.2 that
(3.2.5) Ty QY(E) = Homg(V,W/V) = H(EY, Ew,v).
As a consequence:
(3.2.6) Huw, £(Vo, Qo) = Hy (w1 E)Y, (wr E)g,) = Hi(EY, Eg,)

We record the following equivariance property:

Lemma 3.2.7. Let F be a flag on V and G a flag on Q. If ¢ € Hi(F,G),
a € GL(V) and d € GL(Q), then d¢pa=' € Hi(aF,dG). In particular,
H;(F,G) is stable under right multiplication by the Borel subgroup B(F) and
left multiplication by the Borel subgroup B(G).



422 N. BERLINE, M. VERGNE and M. WALTER

We now compute the position of subspaces and subquotients with respect to
induced flags. Given subsets I C [n] of cardinality r and J C [r] of cardinality
d , we recall that we had defined their composition IJ in Section 2 as the subset

1J={(J(1) <---<I(J(d))} S nl.
We also define their quotient to be the subset
1/JJ ={1(J°(h))—J(b)+b : be[r—d]} C[n—d],

where J¢ denotes the complement of J in [r]. It follows from (3.2.4) that 7/J
is indeed a subset of [n —d].
The following lemma establishes the ‘chain rule’ for positions:

Lemma 3.28. Let E be a flag on W, § C V C W subspaces, and
I = Pos(V,E), J = Pos(S,EY) their relative positions. Then there exists an
adapted basis (f(1),..., f(n)) for E such that {f(I(a))} is a basis of V and
{f(IJ(b))} a basis of S. In particular,

(3.2.9) Pos(S, E) = IJ = Pos(V, E) Pos(S, EY).

Proof. According to Lemma 3.1.4, (iii), there exists an adapted basis (f(1),...,
f(n)) for E such that (f(I(1)),..., f(I(r))) is a basis of V', where r =dim V.
By Lemma 3.2.2, this ordered basis is in fact adapted to the induced flag EV .
Thus we can apply Lemma 3.1.4, (ii) to EY and the subspace S C V to obtain
a basis (v(1),...,v(s)) of S of the form

v(b) € f(1J(h)) + span{f(I(a)) :a € J°,a < J(b)}.

It follows that the ordered basis (f'(1),..., f'(n)) obtained from (f(1),..., f(n))
by replacing f(/J(b)) with v(h) has all desired properties. We now obtain the
chain rule, Pos(S, E) = IJ, as a consequence of Lemma 3.1.4, (iii) applied to
f’and SCW. O

We can visualize the subsets IJ,1J¢ C [n] and I/J C [n —d] as follows.
Let L denote the string of length n defined by putting the symbol s at the
positions in /J, v at those in / \ IJ = IJ¢, and w at all other positions.
This mirrors the situation in the preceding Lemma 3.2.8, where the adapted basis
(f(1),..., f(n)) can be partitioned into three sets according to membership in
S, V\S,and W\ V. Now let L' denote the string of length n —d obtained
by deleting all occurrences of the symbol s. Thus the remaining symbols are
either v or w, i.e., those that were at locations (/J)¢ in L. We observe that the
b-th occurrence of v in L was at location IJ¢(bh), where it was preceded by
J€(bh) —b occurrences of s. Thus the occurrences of v in L’ are given precisely
by the quotient position, (//J)(h) = 1J°(b) — (J¢(b) — D).
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Example. If n = 6, I = {1,3,5,6} and J = {2,4}, then /J = {3,6} and
L= (,w,s,w,v,s). It follows that L’ = (v, w, w,v) and hence the symbols v
appear indeed at positions 1/J = {1,4}.

We thus obtain the following recipe for computing positions of subquotients:

Lemma 3.2.10. Let E be a flag on W and S CV C W subspaces. Then,

Pos(V/S, Ew;s) = Pos(V, E)/ Pos(S, EV).

Proof. Let I = Pos(V,E) and J = Pos(S, EY). According to Lemma 3.2.8,
there exists an adapted basis (f(1),..., f(n)) of E such that {f(/(a))} is a
basis of V' and {f(IJ(b))} a basis of S. This shows not only that {f(IJ¢(b))}
is a basis of V/S, but also, by Lemma 3.2.2, that ( f((/J)¢(b))) is an adapted
basis for Ey,gs. Clearly, 1J¢ C (IJ)¢, and the preceding discussion showed that
the location of the 7J¢ in (IJ)° is exactly equal to the quotient position 7/J .
Thus we conclude from Lemma 3.1.4, (iii) that Pos(V/S, Ew/s) =1/J. L]

One last consequence of the preceding discussion is the following lemma:

Lemma 3.2.11. Let E be a flag on W, dimW =n, S €V C€ W subspaces,
and | = Pos(V,E), J = Pos(S,EV). Then F(i) := ((EG)NV)+ S)/S is a
filtration on V/S, and

1J¢(b) = min{i € [n] : dim F(i) = b}
for b=1,...,dimV/8§.

Proof. As in the preceding proof, we use the adapted basis (f(1),..., f(n)) from
Lemma 3.2.8. Then {f(/J¢(b))} is a basis of V/S and F(i) = span{ f(IJ¢(b)) :
b elql,1J¢(b) <i}, and this implies the claim. ]

The following corollary uses Lemma 3.2.11 to compare filtrations for a space
that is isomorphic to a subquotient in two different ways, (S; + S2)/S2 =~
S1/(S1N S2).

Corollary 3.2.12. Let E be a flag on W, dimW = n, and S§,,5, C W
subspaces. Furthermore, let J = Pos(S1, E), K = Pos(S; N S,, ESY), L =
Pos(S; + S2, E), and M = Pos(S», ES'152). Then both JK¢ and LM€ are
subsets of [n] of cardinality g := dim S;/(S1 N S2) = dim(S1 + S2)/S>, and

JK€(b) < LM€(b)

for b € [q].
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Proof. Consider the filtration F(j) := ((E(j) N S1) + (S1 N S2))/(S1 N S) of
S1/(S1 N Sz) and the filtration F'(j) := ((E(j) N (S1 + S$2)) + S2)/S> of
(Sl + Sz)/Sz If we identify Sl/(Sl N Sz) = (Sl + Sz)/Sz, then F(j) gets
identified with the subspace ((E(j) N S1) + S2)/S2 of F'(j). It follows that

JK°(b) =min{j € [n] :dim F(j) = b} > min{;j € [n] : dim F'(j) = b}
= LME(b),
where we have used Lemma 3.2.11 twice. ]

We now compute the dimension of quotient positions:

Lemma 3.2.13. Let I C [n] be a subset of cardinality r and J C [r] a subset
of cardinality d. Then:

dim//J =dim/ +dimJ —dim 1J

Proof. Straight from the definition of dimension and quotient position,

r—d
dim7/J =Y " I1(J°(h)) — ZJC(b)
b=1
r d
= (Zl(a) _ Zl(J(b))) _ (Za—ZJ(b))
a=1 b=1 =
r d d
= (f@—a)+ > (Jb)—b) - Z( J(b)) — )
a=1 b=1 b=1

=dim/ +dimJ —dimJ.
|

Lastly, given subsets / C [n] of cardinality r and J C [r] of cardinality d,
we define

T={1(J(B)—JB)+b : be[d]} S [n—(r—d))

Clearly, I/ = 1/J¢, but we prefer to introduce a new notation to avoid confusion,
since the role of 7/ will be quite different. Indeed, 17 is related to composition,
as is indicated by the following lemmas:

Lemma 3.2.14. Let | C [n] be a subset of cardinality r, J C [r] a subset of
cardinality d. Then,

dim /7 K —dim K = dim I(JK) — dim JK
for any subset K C [d]. In particular, dim I’/ =dimIJ —dim J.
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Proof. Let m denote the cardinality of K. Then:

dim IV K — dim K = Z(IJ(K(C)) - K(c))

c=1

= i([ (J(K(c)) - J(K(c))) = dim /(JK) — dim JK.

c=1

O]

Lemma 3.2.15. Let I C [n] be a subset of cardinality r, ¢ € Hom(V, Q), and
F a flag on V. Let S = ker¢ denote the kernel, J := Pos(S, I') its position
with respect to F, and ¢ € Hom(V/S, Q) the corresponding injection.

Then ¢ € Hi(F,G) if and only if ¢ € Hy;;(Fy;s,G). In this case, we have
Jor all € Hy(FS, Fys) that ¢y € Hys(F5,G).

Proof. For the first claim, ndte that if ¢ € H;(F,G) then
B(Fyys ) = o(F(I°®)) € G(1(J°®) = I°®)) = G((1/)(b) = b).
Conversely, if ¢ € Hyp 5 (Fyss,G), then this shows that

¢(F(a)) € G(I(a) —a)

for all a = J¢(b), and hence for all a, since ¢p(F(J°(b))) =---=d(F(J°(h +
1)—1)).

For the second, we use Hy(F?%, Fy;s) = Homg(S,V/S) (Eq. (3.2.5)) and
compute

¢y (FS () = gfn,h(F(J(a)) N S) c qS((F(J(a)) + S)/S)
= ¢(F(J(a))) = G(I(J(a)) = J(a)) — G(I’ (a) — a).

L]

3.3. The flag variety. The Schubert cells of the Grassmannian were defined by
fixing a flag and classifying subspaces according to their Schubert position. As
we will later be interested in intersections of Schubert cells for different flags, it
will be useful to also consider variations of the flag for a fixed subspace.

Let Flag(W) denote the (complete) flag variety, defined as the space of
(complete) flags on W. It is a homogeneous space with respect to the transitive
GL(W)-action, so indeed an irreducible variety.
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Definition 3.3.1. Let V € W be a subspace, dimV = r, dimW = n, and
I C [n] a subset of cardinality r. We define
Flag)(V, W) = {E € Flag(W) : Pos(V, E) = I},

and Flag; (V, W) as its closure in Flag(W) (in either the Euclidean or the Zariski
topology).

We have the following equivariance property as a consequence of (3.1.2): For
all y € GL(W),

(3.3.2) y Flag? (V, W) = Flag} (yV, W).

In particular, Flag‘}(V, W) and Flag;(V, W) are stable under the action of the
parabolic subgroup P(V,W) = {y € GL(W) : yV C V}, which is the stabilizer
of V.

We will now show that Flag(}(V, W) is in fact a single P(V, W)-orbit. This
implies that both Flag(}(V, W) and Flag,;(V, W) are irreducible algebraic varieties.

Definition 3.3.3. Let E be a flag on W, dimW =n, Vo = E(r), and I C [n]
a subset of cardinality r. We define

G1(Vo, E) == {y € GL(W) : yE € Flag}(Vy, W)},
so that Flag?(Vo, W) 2 G;(Vo, E)/B(E).
Lemma 3.34. Let E be a flag on W, dimW = n, Vy = E(r), and I C [n]
a subset of cardinality r. Then, G;(Vy, E) = P(Vo, W)wy;B(E). In particular,
Flag? (Vo, W) = P(Vo, W)wr E.
Proof. Let y € GL(W). Then,
y € Gi(Vo, E) & Vo € QUYE) = yQUE) = yB(E)w;'Vy & y € P(Vo, W)w; B(E),
where we have used that QY(E) = B(E)w;'Vp. ]

We now derive a more precise parametrization of F]ag?(Vg, W).

Lemma 3.3.5. Let E be a flag on W, dimW =n, Vo and Q¢ as in (3.1.9),
and I C [n] a subset of cardinality r. Then we have that Gr(Vy,E) =
P(VO, W)Uw;E(VOs QO)wI'
Proof. Let y € GL(W). Then,
y € G1(Vo, E) ¢ Vo € QU(VE) = yQ)(E) = ywy ' Uy, £(Vo, Q0)Vo
<y € P(Vo, W)Uy, E(Vo, Qo)wr,
since QY(E) = w; Uy, e(Vo, Qo)Vo (Corollary 3.111). O
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In coordinates, using W =V, @ Qp and (3.2.6), we obtain that
GI (V()s E)

- {(g 2) ((; (l)) :a € GL(Vy),d € GL(Qy). ¢ € HI(EV",EQ(,)} wy

_ {(‘j Z) :a—bd~'c € GL(V,),d € GL(Qq),d ¢ € H;(E™, EQO)} wy.

In particular, dim Gy (Vp, E) = dim P(Vy, W) 4+ dim /. This allows us to compute
the dimension of the subvarieties Flag?(V, W) and to relate their codimension to
the codimension of the Schubert cells of the Grassmannian:

Corollary 3.3.6. Let V C W be a subspace, dimW = n, dimV = r, and
I C [n] a subset of cardinality r. Then,
(3.3.7) dim Flagl (V, W) = dim Flag, (V, W)
= dimFlag(V) + dim Flag(Q) + dim /
and
(3.3.8) dim Flag(W) — dimFlag}(V, W) = dim Gr(r, W) — dim I.
Proof. Without loss of generality, we may assume that V' = V, = E(r) for some
flag E on W. Then, Flag}(Vy, W) = G;(Vo, E)/B(E) and hence
dim Flag) (Vo, E) = dim P(Vy, W) 4 dim I — dim B(E)
= dim GL(W) — dim Gr(r, W) + dim / — dim B(E)
= dim Flag(W) — dim Gr(r, W) + dim /

since Gr(r, W) =~ GL(W)/P(Vy, W) and Flag(W) = GL(W)/B(E). This estab-
lishes (3.3.8). On the other hand, a direct calculation shows that

dim Flag(W) — dim Gr(r, W) = dim Flag(V) + dim Flag(Q),
so we also obtain (3.3.7). []

At last, we study the following set of flags on the target space of a given
homomorphism:

Definition 3.3.9. Let V, Q be vector spaces of dimension r and n —r,
respectively, and I C [n]. Moreover, let F be a flag on V and ¢ € Hom(V, Q)
an injective homomorphism. We define

Flag](F,$) := {G € Flag(Q) : ¢ € H{(F,G)}
where we recall that H;(F,G) was defined in Definition 3.2.3.
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It is clear that I(a) > 2a is necessary and sufficient for Flag?(F,¢) to be
nonempty.

Example (r=3,n=8). Let V, = C?, with basis ¢(1),...,e(3), and Q¢ == C>, with
basis e(1),...,e(5). Take ¢: Vo — Qo to be the canonical injection and let F
denote the standard flag on V4. For [ ={3,4,7}, G € Flag?(Fo,gb) if and only
if

Cé(1) C G(2), Cé()®CéR2) C G2), Ce(l) @ Ce2) @ Cé(3) C G(4).

For example, the standard flag Gy on Qg is a point in Flag)(Fo, ).
On the other hand, if I = {2,3,7} then we obtain the condition Ce(1) &
Ce(2) € G(1) which can never be satisfied. Thus in this case Flag(}(Fo,qb) = .

In the following lemma we show that Flag?(F,¢) is a smooth variety and
compute its dimension.

Lemma 3.3.10. Let V, Q be vector spaces of dimension r and n—r, respectively,
and 1 C [n] a subset of cardinality r. Moreover, let F be a flag on V and
¢ € Hom(V, Q) an injective homomorphism. If Flag)(F, ) is nonempty, that is,
if I(a) > 2a for all a € [r], then it is a smooth irreducible subvariety of Flag(Q)
of dimension

dim Flag) (F, ¢) = dim Flag(Qo) + dim I —r(n —r).

Proof. Without loss of generality, we may assume that V = V, = C',
Q= Qox=C" ", that F = Fy is the standard flag on V, and ¢ the canonical
injection C" — C"7". Then the standard flag Gy on Qg is an element of
Flag?(Fo, ). We will show that

M; := {h € GL(Qo) : h Gy € Flag)(Fy, )}

is a subvariety of GL(Qp) and compute its dimension. Note that # € My if
and only if h=1¢ € Hy(Fy, Gp). We now identify V, with its image ¢(Vy) and
denote by Ry == C"27 its standard complement in Qq. Thus Q¢ = Vo ® Ry and
we can think of A~! € GL(Qy) as a block matrix

h~'=(A B)

where A € Hom(Vp, Q¢) and B € Hom(Ry, Q¢). The condition h~1¢ €
H;(Fo, Go) amounts to demanding that A € H;(Fy,Gop), while B is uncon-
strained. Thus we can identify M; via h — h~! with the invertible elements
in
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H(Fo, Go) x Hom(Ry, Qo),

which form a nonempty Zariski-open subset, and hence a smooth irreducible
subvariety of GL(Qy). It follows that Flag(}(FO,q’)) = Mj/B(Gy) is likewise a
smooth irreducible subvariety, and

Flag? (Fy, ¢) = dim M; — dim B(Go) = dim I + (n — r)(n — 2r) — dim B(G)
= dim Flag(Q¢) + dim /! — (n — r)r,
where we have used Eq. (3.1.8) and that Flag(Qg) =~ GL(Q¢)/B(Gy). L]

4. Intersections and Horn inequalities

In this section, we study intersections of Schubert varieties. Recall from
Definition 2.12 that given an s-tuple £ of flags on W, dimW = n, and
Z € Subsets(r,n,s), we had defined

S S
QY€)= ()@ (Ex) and Qz(&) = [ Qu, (Ex).
k=1 k=1
We are particularly interested in the intersecting Z, denoted Z € Intersecting(r, n, s),
for which Qz(€) # @ for every £.

4.1. Coordinates. Without loss of generality, we may assume that W =
C", and we shall do so for the remainder of this article. As before, we
denote by (e(1),...,e(n)) the ordered standard basis of C" and by E, the
corresponding standard flag. Let Vo = Eo(r) be the standard r-dimensional
subspace, with ordered basis (e(1),...,e(r)), and Qo the subspace with ordered
basis (e(1),...,e(n—r)), where e(b) := e(r+»b). Thus W = Vo Q,. We denote
the corresponding standard flags on Vy and Qg by Fy and Gy, respectively.
Note that Fy = E,° and, if we identify Q¢ = W/V,, then Go = (Eo)w/v, -
We further abbreviate the Grassmannian by Gr(r,n) := Gr(r, C"), the parabolic
by P(r,n):= P(Vy,C") and the Borel by B(n) := B(Ey). We write Flag(n) :=
Flag(W) and Flag)(r,n) := Flag)(Vo, W) for the set of flags with respect to
which V, has position 7; Flag;(r,n) := Flag;(Vy, W) is its closure. We recall
from Definition 3.2.3 that

H;(Fy, Gy) = {gb € Hom(Vy, Qo) : phi(e(a)) € span{e(l),...,e(I(a) —a)}},
and Lemma 3.3.5 reads

(4.1.1) Gi(rn) = P(r.n) {(idVO 0

¢ ion

where we have introduced Gy (r,n) := Gy (Vy, Ep).

) : ¢ € Hi(Fo, Go)} wy,
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4.2. Intersections and dominance. We start by reformulating the intersecting
property in terms of the dominance of certain morphisms of algebraic varieties.
This allows us to give a simple proof of Lemma 4.2.6, which states that the
expected dimension of an intersecting tuple is necessarily nonnegative.

We caution that while Q%(€) € Qz(€), the latter is not necessarily the closure
of the former:

Example. Let W = C2, I, = {1}, I, = {2}, and E; = E; the same flag on W .
Since the Schubert cells Qf,’k (€) partition the projective space P(W) = Gr(1, W),
Q&) = @ is empty, but 27(€) = {E;(1)} is a point.

It is also possible that Q%(€) or Qz(£) are nonempty for some &€ but empty
for generic s-tuples £:

Example. Let W = C2, I, = I, = {1}. Then Q¥(€) = Qz(£) = E1(1) N Ex(1),
so the intersection is nonempty if and only if £, = E.

We will later show the existence of a ‘good set’ of sufficiently generic &
such that Z is intersecting if and only if Q9%(€) # @ for any single ‘good’ &
(Lemma 4.3.1). Here is a more interesting example:

Example 4.2.1. Let W = C®, s = 3, and T = (I, 1>, 13) where all I, =
{2,4,6}. The triple Z is intersecting. Let
2 £3 14 (5
f(@t):=e1+tex+ Ees g 534 + —ﬁﬁes -+ 566
and consider the one-parameter family of flags FE(¢t) with adapted basis
(), L f@t), ..., L5 f(1)). We consider the 3-tuple & = (Ej, Ea, E3), where

* dt>

E, := E(0) is the standard flag, E, := E(1), and E3 := E(—1). Then the
intersection Q9%(€) consists of precisely two points:

Vi = span {62 + /Seq,eq4 — 24+/5e; — 3+/5€3, e — 24~/5e3 + «/ges},
V5 = span {82 - \/561,84 -+ 24\@31 + 3\/563, e + 24\/583 - \/565},

and coincides with Qz(€).

To study generic intersections of Schubert cells, it is useful to introduce the
following maps: Let Z € Subsets(r,n,s). We define

o2 GL(n) x Flagj (r,n) x --- x Flag}, (r,n) — Flag(n)*
(v, Ev,...,Es) — (YE,...,YEy)
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and its extension

(4.2.2) W {GL(”) x Flag; (r,n) x --- x Flag; (r,n) — Flag(n)®

(v, Exr, ..., Es) = (VE1,...,YEy).

The following lemma shows that the images of w? and wz, respectively,
characterize the s-tuples £ of flags for which the intersections Q2(€) and
Qz(£) are nonempty:

Lemma 4.2.3. Let 7 € Subsets(r,n,s). Then,

imo? = {€ € Flag(n)® : Q¥(€) # 2},
imwz = {€ € Flag(n)® : Qz(€) # @}.

In particular, T € Intersecting(r,n,s) if and only if wz is surjective.

Proof. If £ € imw? then there exists y € GL(n) such that Ej € yFlag?k (r,n)
for k € [s]. But

Ey € yFlag] (r,n) <& y~'Ey € Flag], (r,n) & Vo € Q) (v Ex)
& yVo € Q) (Ep),

and therefore yVy € Q%(E). Conversely, if V € Q9(£), then we write V = yV,
and obtain that Ej € yFlag?k (r,n) for all k, and hence that £ € imw?. The
result for imwz is proved in the same way. 1

We now use some basic algebraic geometry (see, e.g., [Per]). Recall that a
morphism f: X — Y of irreducible algebraic varieties is called dominant if its
image is Zariski dense. In this case, the image contains a nonempty Zariski-open
subset )y such that the dimension of any irreducible component of the fibers
f~Y(y) for y € Yy is equal to dimX — dim). Furthermore, if Xy € X is a
nonempty Zariski-open subset then f is dominant if and only if its restriction
f to A, is dominant.

We also recall for future reference the following results: If X and ) are
smooth (irreducible algebraic) varieties and f: X — ) is dominant then the set
of regular values (i.e., the points y such that df, is surjective for all preimages
x € f71(y)) contains a Zariski-open set. Also, if dfy is surjective for every x
then the image by f of any Zariski-open set in X’ is a Zariski-open set in ).
In particular this is the case when f:)V — B is a vector bundle.

In the present context, the maps @2 and w7 are morphisms of irreducible
algebraic varieties and so the preceding discussion applies. Furthermore, the
domain of wz is the closure of the domain of »$ in GL(n) xFlag(n)®. Therefore,
wz is dominant if and only if @2 is dominant.
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Lemma 4.2.4. Let T € Subsets(r,n,s). Then I € Intersecting(r,n,s) if and only
if wr or @Y is dominant.

Proof. On the one hand, Lemma 4.2.3 shows that 7 is intersecting if and
only if wz is surjective. On the other hand, we have just observed that w9
is dominant if and only if @z is dominant. Thus it remains to show that ws
is automatically surjective if it is dominant. For this, we observe that the space
Flag; (r,n) x --- x Flag; (r,n) is left invariant by the diagonal action of the
parabolic P(r,n), as can be seen from (3.3.2). Thus wz factors over a map

GL(n) Xp(rn) Flag;, (r,n) x --- x Flag, (r,n) — Flag(n)*

(4.2.5) wr: {
v, E1,..., Es] = (YEq,...,YEs).

Clearly, w7z and w7 have the same image. If w7 is dominant, then its image
contains a nonempty Zariski-open set and therefore is dense in the Euclidean
topology. But the domain of @7 is compact in the Euclidean topology and
hence the image is also closed in the Euclidean topology. It follows that @z is
automatically surjective if @z is dominant. L]

A first, obvious condition for Z to be intersecting is therefore that the dimension
of the domain of wz is no smaller than the dimension of the target space. If we
apply this argument to the factored map (4.2.5), which has the same image, we
obtain that the expected dimension introduced in Definition 2.14 is nonnegative:

Lemma 4.2.6. If 7 € Intersecting(r,n,s) then

(4.2.7) edimZ =r(n—r)— Y (r(n—r)—dim) > 0.
k=1

Proof. Let X := GL(n) Xp(n) Flagy, (r,n) x---xFlag, (r,n) and Y := Flag(n)*.
If 7 is intersecting then the map @z: X — ) in (4.2.5) is dominant, hence
dimX > dim)Y. But

(4.2.8)

dim& —dimY = (dim GL(n)/ P(r,n)) + Y _ (dimFlagy, (r,n) — dim Flag(n))

k=1
s

= dim Gr(r, n) — Z (dim Gr(r,n) — dim I) = edimZ
k=1

where the first equality is obvious and the second is Eq. (3.3.8). L]
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At this point, we have established all facts that we used in Section 2 to prove
Corollary 2.17. That is, the proof of Corollary 2.17 is now complete.
We conclude this section by recording the following rules for the expected

dimension,

(4.2.9) edimZ/J = edimZ + edim 7 — edimZ.7,
(4.2.10) edimZK — edim kK = edimZ(J7K) — edim JK,
(4.2.11) edimZY = edimZJ — edim 7,

which hold for all Z € Subsets(r,n,s), J € Subsets(d,r,s), and K €
Subsets(m, d, s). Equations (4.2.9) to (4.2.11) are direct consequences of Lem-
mas 3.2.13 and 3.2.14. Eq. (4.2.10) in particular will play a crucial role in
Section 5.3, as we will use it to show that if Z satisfies the Horn inequali-
ties and J is intersecting then so does Z7. This will be key to establishing
Belkale’s theorem on the sufficiency of the Horn inequalities by induction (The-
orem 5.3.4).

4.3. Slopes and Horn inequalities. We are now interested in proving a strength-
ened version of Corollary 2.17 (see Corollary 4.3.11 below). As a first step, we
introduce the promised ‘good set’ of s-tuples of flags which are sufficiently
generic to detect when an s-tuple Z is intersecting: Define in analogy to (4.2.5)
the map

. {GL(n) X p(r,ny Flagy (r,n) x -+ x Flag (r,n) — Flag(n)*
I-
v, E1,..., Es] — (YE1,...,YEs)

Lemma 4.3.1. There exists a nonempty Zariski-open subset Good(n,s) C Flag(n)*
that satisfies the following three properties for all r € [n]:

(a) Good(n,s) consists of regular values (in the image) of @2 for every
T € Intersecting(r,n,s).

(b) For every T € Subsets(r,n,s), the following are equivalent:
(i) Z € Intersecting(r,n,s).
(ii) For all £ € Good(n,s), Q&) # @.
(iii) There exists €& € Good(n,s) such that Q(€) # @.
(¢) If T € Intersecting(r, n, s), then for every € € Good(n,s) the variety Q(E)

has the same number of irreducible components, each connected component
is of dimension edimZ, and Q%(€) is dense in Qz(E).
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Proof. Let us construct Good(n,s) satisfying the properties above. Let 7 €
Subsets(r,n,s), where r € [n]. If Z ¢ Intersecting(r,n,s) then by Lemma 4.2.4
the map w? is not dominant, and we define Uz as the complement of the Zariski-
closure of imw?. Thus Uz is a nonempty Zariski-open subset of Flag(n)®.
Otherwise, if Z € Intersecting(r,n,s) then 2 is dominant by Lemma 4.2.4.
The map @2 has the same image as @Y and is therefore also a dominant map
between smooth irreducible varieties. Thus its image contains a nonempty Zariski-
open subset Uz of Flag(n)® consisting of regular values, such that the fibers
(@N~1(E) for € € Uz all have the same number of irreducible components, each
of dimension equal to edimZ, by the calculation in (4.2.8). We now define the

good set as
Good(n,s) := ﬂ Uz,
i

where the intersection is over all s-tuples Z, intersecting or not. As a finite
intersection of nonempty Zariski-open subsets, Good(n, s) is again nonempty and
Zariski-open. By construction, it satisfies property (a).

We now show that Good(n, s) satisfies (b). To see that (bi) implies (bii), note
that for any 7 € Intersecting(r,n,s) and £ € Good(n,s), £ € Uz € ima@? =
imw?. Thus Lemma 4.2.3 shows that Q%(€) # @. Clearly, (bii) implies (biii)
since Good(n,s) is nonempty. Lastly, suppose that (biii) holds. By Lemma 4.2.3,
Q9(€) # @ implies that £ € imw?. But £ € Good(n,s) € (imwz)¢ C (imw?)°
unless Z is intersecting; this establishes (bi).

Lastly, we verify c. Observe that, for any & € Flag(n)*, the fiber (@2)"!(€)
is equal to the set of [y,y 'Ei,...,y 1Es] such that y~lE; € Flag?k (r,n)
for all k € [s]. It can therefore by y ~ yV, be identified with Q%(£). Now
assume that Z € Intersecting(r,n,s). As we vary £ € Good(n,s), € € Uz and
50 (@N)71(E) = QY(£) has the same number of irreducible components, each of
dimension edimZ. We still need to show that Q%(€) is dense in Qz(£). This
will follow if we can show that Q%(€) meets any irreducible component Z of
Q7(€). Let us assume that this is not the case, so that Z € Qz(€) \ Q%(€). But

S
Qz)\ 2% = |J ((ssz(Ek)\sz?k E) N Q,,(E,)) = U e
k:l l:,ék I{SI], o I;SIJ
Jkels): 1] #Ix

by Lemma 3.1.5. That is, 2z(€)\ Q%(€) is a union of varieties Q9,(£) with
edimZ’ < edimZ. If Z' is intersecting then any irreducible component of
2%,(€) has dimension equal to edimZ’. Otherwise, if I’ is not intersecting,
then Q9,(€) = @. It follows that any irreducible component of Qz(€) \ Q%(€)
has dimension strictly smaller than edimZ. But this is a contradiction, since the
dimension of Z is equal to at least edimZ. L]
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The following is a direct consequence of the equivalence between (bi) and (biii)
in Lemma 4.3.1:

(4.3.2) Intersecting(r, n,s) = {Pos(V,€) : V € C",dimV = r}

for every & € Good(n,s).

We now study the numerical inequalities satisfied by intersecting s -tuples more
carefully. Recall that a weight 6 for GL(r) is antidominant it 0(1) <--- < 0(r).
For example, given a subset I C [r] of cardinality r, the weight 0(a) := I(a)—a
is antidominant. It is convenient to introduce the following definition:

Definition 4.3.3. Given an s-tuple 6 = (01,...,05) of antidominant weights for
GL(r), we define the slope of a tuple 7 € Subsets(d,r,s) as

S

pa ) = 5 3 3 bela) = g:gmk,@k).
=1

k=1laely

For any nonzero subspace {0} # S € C” and s-tuple of flags F on C", we
further define

pz(S, F) := pz(Pos(S, F)).
Here and in the following, we write Pos(S,F) for the s-tuple of positions
(Pos(S, Fi))ke(s) -

Note that we can interpret p;(J) as a sum of averages of the nowhere
decreasing functions 0y for uniform choice of a € Ji.

The following lemma asserts that there is a unique slope-minimizing subspace
of maximal dimension:

Lemma 4.3.4 (Harder-Narasimhan, [Bell]). Let 0 be an s -tuple of antidominant
weights for GL(r), and F € Flag(r)®. Let my := mingoyzsccr pz(S,F) and
dy := max{dim S : puz(S, F) = m}. Then there exists a unique subspace S, € C”
such that p,é(S*,]:) =my and dim S, = d, > 0.

Proof. Existence is immediate, so it remains to show uniqueness. Thus suppose
for sake of finding a contradiction that there are two such subspaces, S; # S,
such that uz(S;, F) = m, and dim$; = dx for j = 1,2. We note that dx > 0
and that the inclusions S§; NS, & 87 and S, € S; + Sz are strict.

Let J = Pos(S1,F) and K = Pos(S; NS, F51). Then Pos(S;N S5, F) = JK
by the chain rule (Lemma 3.2.8). Let us first assume that S; NS, # {0}, so that
,u,é(j K) is well-defined. Then,

pg(TK) = pz(S1 N 82, F) = my = pg(S1, F) = pyz(J),
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where the equalities hold by definition, and the inequality holds as m, is the
minimal slope. On the other hand, note that Ji = Ji Ky U Jp K for each k € [s],
hence we can write

pe( ) = 15 (TK) + ——p5(TKS),
where d := dim S; N S, < dim Sy = d,. It follows that
43.5) me = pz(J) = 1z(TKE).

If S{ NSy ={0} then 7 = JK°¢ and so (4.3.5) holds with equality.

Likewise, let £ = Pos(S; + S», F) and M = Pos(S,, F51752), Since
S2 € 851+ S, but S, was assumed to be a maximal-dimensional subspace
with minimal slope, it follows that the slope of S; + S» is strictly larger than
m* .

pg(LM) = pz(S2, F) = my < pz(S1 + 82, F) = pz(L).

Just as before, we decompose
d' —dx

d/
where now d’ := dimS; + S, > dim S, = d« > 0. Thus we obtain the strict
inequality

(4.3.6) PF(LME) > ps(LM) = ms.

At last, we apply Corollary 3.2.12, which shows that Ji K;(b) > LxM; (b) for
all » and k, and hence

d* c
pg(L) = ?Mg(ﬁM) + pg(LME),

p3(TKE) > g LME).
Together with (4.3.5) and (4.3.6), we obtain the desired contradiction:
My = Pa(TK) = pg(LME) > m. 1

We will now use Lemmas 4.3.1 and 4.3.4 to show that the conditions in
Corollary 2.17 with edim 7 = 0 imply those for general intersecting 7.

Definition 4.3.7. Let I C [n] be a subset of cardinality . We define A7y € Ay (r)
by

Ar(a) :=a— I(a) (a € [r]).
Any highest weight A with A(1) <0, A(r) > r —n can be written in this form.

Moreover, if /¢ denotes the complement of / in [#] then the dominant weight
Arc € Ay(n —r) can be written as

(4.3.8) Are(b)y =b—1°(b) = —#{a € [r] : I(a) < I°(b)}
=—#{a €[r]: I(a) —a < b}.
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Remark. This equation has a pleasant interpretation in terms of Young diagrams.
Consider the Young diagram Y; corresponding to A7, which has I(r +1—a)—
(r +1—a) boxes in its a-th row. By definition, its transpose Y/ is the Young
diagram such that the number of boxes in the b-th row is equal to the number
of boxes in the b-th column of 7. Thus (4.3.8) asserts that Y/ =r1,_, + Ajec,
i.e., the two Young diagrams Y/ and Y;c (the latter with rows in reverse order)
make up a rectangle of size r x (n —r).

Lemma 4.3.9. Let T € Subsets(r,n,s). Set Ay = Ay, +(n—r)l, for k € [s —1]
and As = Ar,. Then we have that edimZ = —Y ;_,|Ax|. More generally, for
every J € Subsets(d,r,s),

s
edimZJ —edimJ = — Y (Ty,. he) = dp_;(J),
k=1
where we recall that (Ty,§) =3 ;c;6(j) for any J C[r] and & € it(r).

Proof. 1t suffices to prove the second statement, which follows from

edimZJ —edim 7 =dn —r)(1 —s) + Z Z (Ik(a) —a)

k=1aely
=dn—r)(1—5)— Y (Tr.An) =— > (Tr.Ak)
k=1 k=1

=dp_;(J).
]

It follows that minimizing p_;(J) and 7(edimZJ —edim ) as a function
of J are equivalent. We then have the following result:

Proposition 4.3.10. Let 7T € Subsets(r,n,s) such that edimZ > 0 and, for
any 0 < d < r and J € Intersecting(d,r,s) with edim7 = 0 we have that
edimZJ > 0. Then we have for any 0 < d <r and J € Intersecting(d,r,s) that

edimZJ > edim J.

Proof. Suppose for sake of finding a contradiction that there exists J €
Intersecting(d, r,s) with 0 <d < r and edimZ7 < edim 7, so that p_;(J) <0
according to Lemma 4.3.9. Fix some F € Good(r,s). Then 9?7(]-”) # & by
Lemma 4.3.1, (bii). Thus there exists a subspace {0} # S C C”" such that

p_; (S, F)=p_;J) <0.
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Now let Si be the unique subspace of minimal slope m, < 0 and maximal
dimension dyx > 0 from Lemma 4.3.4 and denote by 7, := Pos(Sx, F) its s-tuple
of positions. The uniqueness statement implies that on* (F) = {S«}, since slope
and dimension are fully determined by the position. Moreover, Jx is intersecting
by (4.3.2), and therefore edim J, = dim QY (F) = 0 by Lemma 4.3.1. Thus we
have found an s-tuple Ji € Intersecting(d«,r,s) with dx > 0, edim Jx = 0, and

edimZ 7, = edimZJ, —edim J, = d.m+ < 0,

where we have used Lemma 4.3.9 once again in the last equality. Since edimZ > 0,
this also implies that ds < r. This is the desired contradiction. [

Proposition 4.3.10 will be useful to prove Belkale’s Theorem 5.3.4 in Section 5
below, since it allows us to work with a larger set of inequalities.

Remark. The proof of Proposition 4.3.10 shows that we may in fact restrict to J
such that QOJ(J-') is a point for all s-tuples of good flags F € Good(r, s) — or also
to those for which Q 7(F) is a point, which is equivalent by the last statement
in Lemma 4.3.1. See the remark after Corollary 6.3.3 for the implications of this
on the description of the Kirwan cone.

We also record the following corollary which follows together with and
improves over Corollary 2.17.

Corollary 4.3.11. If Z € Intersecting(r,n,s) then for any 0 < d < r and any
s-tuple J € Intersecting(d, r,s) we have that edimZJ > edim 7.

We remark that for d = r there is only one s-tuple, J = ([r],...,[r]), and it is
intersecting and satisfies edim 7 = 0. In this case, edimZ7 —edim J = edimZ,
and so we may safely allow for d = r in Corollaries 2.17 and 4.3.11 and
Proposition 4.3.10.

We conclude this section with some simple examples of the Horn inequalities of
Corollary 4.3.11. We refer to Appendix A for lists of all Horn triples Z = (14, 12, I3)
up to n = 4.

Example 4.3.12 (r = 1). The only condition for Z € Intersecting(1,n,s) is
the dimension condition, edimZ > 0. Indeed, the Grassmannian Gr(l,n) is the
projective space PP(C"), whose Schubert varieties are given by Qg (E) = {[v] €
P(C*"):ve E(i)}. Thus T = ({i1},...,{is}) is intersecting if and only if for any
s-tuple of flags £, E((i1) N---N Es(is) # {0}. By linear algebra, it is certainly
sufficient that Zizl(n —ix) < n—1, which is equivalent to edimZ > 0. This
also establishes Theorem 5.3.4 in the case r = 1.
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Example (s = 2, r = 2). Let Z = (I1, I;). Then the condition edimZ > 0 is
Li(D+1;(2)+ I>(1)+12(2) > 2n+2. However, there are two additional conditions
coming from the 7 € Intersecting(1,2,2) with edimJ = 0. By the preceding
example, there are two such pairs, ({1},{2}) and ({2},{1}). The corresponding
conditions are 1;(1)+ I,(2) >n+1 and 1;(2) + 1(1) > n + 1.

For example, if n = 4 then Z = ({1, 4}, {2,4}) satisfies all Horn inequalities.
On the other hand, Z = ({1, 4}, {2,3}) fails one the Horn inequalities. Indeed, if
we consider 7 = ({1}, {2}) then ZJ = ({1},{3}) is such that edimZ7 = —1 < 0.

5. Sufficiency of Horn inequalities

In this section we prove that the Horn inequalities are also sufficient to
characterize intersections of Schubert varieties.

5.1. Tangent maps. In Lemma 4.2.4, we established that an s-tuple Z is
intersecting if and only if the corresponding morphism @z defined in (4.2.2)
is dominant. Now it is a general fact that a morphism f: X — ) between
smooth and irreducible varieties is dominant if and only if there exists a point
p € X where the differential T, f is surjective. This will presently allow us to
reduce the intersecting of Schubert varieties to an infinitesimal question about
tangent maps. Later, in Section 6, we will also use the determinant of the tangent
map to construct explicit nonzero tensor product invariants and establish the
saturation property.

Lemma 5.1.1. Let T € Subsets(r,n,s). Then T € Intersecting(r,n,s) if and only
if there exist ¢ = (g1,...,gs) € GL(Vy)* and h = (h1,...,hs) € GL(Qg)* such
that the linear map

(5.1.2)

A {Hom(Vo, Qo) x Hi, (Fo, Go) -+ x Hi,(Fo, Go) — Hom(V, Qo)*
PER NG 8s) > €+ gy hadegi )

IS surjective.

Proof. Using the isomorphisms Flag?k(r,n) = G (r,n)Ey = Gy, (r,n)/B(n)
(Definition 3.3.3 and Section 4.1) and Flag(n) =~ GL(n)/B(n), we find that o2
is dominant if and only if

(5.1.3)

GL(n) x Gr,(r,n) x +-- x G, (r,n) — GL®)*, (¥, 1, -, ¥s) = (YY1, -+, VVs)

is dominant. This is again a morphism between smooth and irreducible varieties
and thus dominance is equivalent to surjectivity of the differential at some point
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v, v1s--.,¥s). The map (5.1.3) is GL(n)-equivariant on the left and B(n)°®-
equivariant on the right. By the former, we may assume that y = 1, and by the
latter that yx = prwy, for some pg = (& 2’;), since Gy, (r,n) = P(r,n)wy, B(n)
according Lemma 3.3.4.

We now compute the differential. Thus we consider an arbitrary curve 1+ &X
tangent to y = 1, where X € gl(n), and curves (1 + &Y;)prwys, through the
Yk = prwi, where Y € gl(n). If we write Y; = (é’; g’;) with Ag € gl(r)
etc., then we see from (4.1.1) that (1 + eYy)prwy, is tangent to Gy (r,n)
precisely if hi'Crgr € Hp (Fo,Go), that is, if Cyp € hxHy (Fo,Go)gy'.
Lastly, the calculation (1 + eX)(1 + e¥p)yx = vk + (X + Yy + O(&?)
shows that the differential of (5.1.3) at (g,y1,...,¥s) can be identified with
X, Y1,....Y ) > (X +Y1,..., X +Y).

We may check for surjectivity block by block. Since there are no constraints
on the Ag, Br, and Dy, it is clear that the differential is surjective on the
three blocks corresponding to p(r,n). Thus we only need to check surjectivity on
the last block of the linear map, corresponding to Hom(Vy, Qp). This block can
plainly be identified with (5.1.2), since the Cj are constrained to be elements of
hi Hy, (Fo, Go)ggl. Thus we obtain that w7z is dominant if and only if (5.1.2) is
surjective. O

Remark 5.1.4. The map Ay gy can be identified with the differential of §9 at
the point [1,£], where Ej € Flag?k(r,n) is such that (Ex)"0 = gx - Fy and
(Ex)o, = hk - Go for k € [s]. This follows from the proof of Lemma 5.1.1 and
justifies calling AI,;},E a tangent map.

By the rank-nullity theorem and using Lemma 3.1.7, the kernel of the linear
map AIEE defined in (5.1.2) is of dimension at least
(5.1.5)

dim(Hom(Vy, Qo) x Hr, (Fo, Go) % --- x Hy, (Fo, Go)) — dim Hom(Vy, Q)*

s
=r(n—r)(1-ys)+ Zdim Iy = edimZ,

k=1
and Arg ; is surjective if and only if equality holds. On the other hand, it is
immediate that

S S
(5.1.6) kerA, 7= () hx Hi, (Fo. Go)gi = () Hi, (Fr. Gr),

k=1 k=1

where Fp = grFo and Gp = hyGo. As we vary g and hy, the Fr and Gy
are arbitrary flags on 1, and Qg, respectively. Thus we obtain the following
characterization:
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Definition 5.1.7. Let Z € Subsets(r, n,s). We define the true dimension of T as

(5.1.8) tdimZ := r}],iéldim Hz(F,G) = r§11£ dim ker Az,g,iz"

where the first side minimization is over all s-tuples of flags 7 on V, and G
on Qg, the second one over g € GL(r)*, h € GL(n — r)*, and where

Hz(F,G) := () Hi (Fx, Gx) < Hom(Vp, Qo).
k=1

Corollary 5.1.9. Let T € Subsets(r,n,s). Then we have tdimZ > edimZ, with
equality if and only if T € Intersecting(r,n,s).

We note that for the purpose of computing true dimensions we may always
assume that F; and G; are the standard flags on Vp and Q,, respectively (by
equivariance).

Example (s=2,r=2,n=4). We verify the example at the end of Section 4 by using
Corollary 5.1.9. We first consider Z = ({1, 4}, {2,4}). Then edimZ = 1. To bound
tdimZ, we let F = (Fy, F») and G = (G1,G>), where F; is the standard flag
on Vy, F, the flag with adapted basis (e(1) + e(2),e(2)), and G; = G, the
standard flags on Qg. Then

s Yomner- [

is one-dimensional, which shows that tdimZ < 1. Since always tdimZ > edimZ,
it follows that, in fact, tdimZ = edimZ and so Z is intersecting.

We now consider Z = ({1,4},{2,3}). Then edimZ = 0. Let F and G be
pairs of flags on Vy and Q, respectively. Without loss of generality, we shall
assume that F; and G; are the standard flags. Then

H1(F.G) = {(3 I)} N Hpy(F3,Gz) = C (g ;) ,

where C(}) := G2(1). Indeed, Hy,(F>,G>) consists of those linear maps that
map any vector in Vy into G(1). In particular, Hz(F,G) is one-dimensional for
any choice of F, and G,. Thus tdimZ =1 > 0 = edimZ, and we conclude that
7 is not intersecting.
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Example (s=2,r=3,n=6). Let 7 = ({3,4,6},{2,4,5}). Then edimZ = 3. We now
establish that Z is intersecting by verifying that tdimZ = 3. Again we choose
F; and G, to be the standard flags on Vy and Qq, respectively, while F, and
G, are defined as follows in terms of adapted bases:

Fr:  e(l) + z21e(2) + z31€(3), e(2) + z32¢(3), e(3),
Gy:  e(l) +uze2) +use3), e2)+use3), e@3).

Then a basis for Hz(F,G) is on the open set where us;u3, # 0 given by

—Z21U32 D) 0
¢1 = | —z21(us2u21 —u31) uspuzr —uz 0],
0 0 0
Z31U32 0 0 0 0 1
¢2 = | zza1(u32u21 —u31) 0wz |, $p3=10 0 uy
0 0 U3zaU31 0 0 Us3q

as can be checked by manual inspection.

5.2. Kernel dimension and position. Let us consider a tuple Z € Subsets(r,n, s),
where we always assume that r € [n]. To prove sufficiency of the Horn inequal-
ities, we aim to use Corollary 5.1.9, which states that tdimZ > edimZ, with
equality if and only if Z is intersecting.

If tdimZ = 0 then, necessarily, tdimZ = edimZ = 0, since edimZ is
nonnegative by assumption (part of the Horn inequalities). Hence in this case Z
is intersecting.

Thus the interesting case is when tdimZ > 0. To study the spaces Hz(F,G)
in a unified fashion, we consider the space

P(Z) := {(F,G.¢) € Flag(Vo)* x Flag(Qo)* x Hom(Vy, Qo) : ¢ € Hz(F,G)}.

We caution that P(Z) is not in general irreducible, as the following example
shows:

Example. Let s = 2, n = 3, r = 1, and consider [y = I, = {2}. There
is only a single flag on V, =~ C, while any flag G on Qp = C? is
determined by a line L = G(1) € P(C?). Thus we can identify P(Z) =
{(L1,La,¢) € P(C?? x Hom(C',C?) : ¢(e(1)) € Ly N Ly}. If we consider
the map (Lq,L2,¢) — (Ly,L>), then the fiber for any L; = L, is a one-
dimensional line, while for any L; # L, the fiber is just ¢ = 0. In particular,
we note that P(Z) is not irreducible.
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We now restrict to those (F,G) such that the intersection Hz(F,G) is of
dimension tdimZ. Thus we introduce

P(T) := {(F.G,¢) € P(Z) : dim Hz(F, G) = tdim I},
B(Z) := {(F,G) € Flag(Vo)® x Flag(Qo)® : dim Hz(F,G) = tdimZ}.

'The subscripts in P¢(Z) and B¢(Z) stands for the true dimension, tdimZ. We use
similar subscripts throughout this section when we fix various other dimensions
and positions.

Since tdimZ is the minimal possible dimension, this is the generic case.
Moreover, this restriction makes P(Z) irreducible, as it is a vector bundle over
B((Z). We record this in the following lemma:

Lemma 5.2.1. The space P(Z) is a closed subvariety of Flag(Vy)® x Flag(Qo)® x
Hom(Vy, Qq), and P(Z) is a nonempty Zariski-open subset of P(Z). Moreover,
Bi(Z) is a nonempty Zariski-open subset of Flag(Vy)® x Flag(Qo)*, and the map
(F,G,9) — (F,G) turns Py(Z) into a vector bundle over B((Z). In particular,
Py(Z) is an irreducible and smooth variety.

In particular:
(5.2.2) dim P(Z) = s(dim Flag(Vy) + dimFlag(Qo)) + tdimZ

Belkale’s insight is now to consider the behavior of generic kernels of maps
¢ € Hz(F,G), where (F,G) € B{(Z). We start with the following definition:

Definition 5.2.3. Let 7 € Subsets(r,n,s). We define the kernel dimension of T
as

kdimZ := min {dimker¢ : ¢ € Hz(F,G) where (F,G) € B(Z)}

There are two special cases that we can treat right away. If kdimZ = r then
any morphism in Hz(F,G) for (F,G) € By(Z) is zero, and hence tdimZ = 0.
This is the case that we had discussed initially and we record this observation
for future reference:

Lemma 5.2.4. Let T € Subsets(r,n,s) such that edimZ > 0. If kdimZ = r then
tdimZ = edimZ = 0, and hence I € Intersecting(r,n,s).

Likewise, the case where kdimZ = 0 can easily be treated directly. The idea
is to compute the dimension of Py(Z) in a second way and compare the result
with (5.2.2).
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Lemma 5.2.5. Let 7 € Subsets(r,n,s). If kdimZ = 0 then

dim P((Z) = s(dim Flag(V,) + dimFlag(Qo)) + edimZ.

Proof. We first note that kdimZ = 0 implies that there exists an injective map
¢ € Hz(F,G) for some (F,G) € B(Z). In particular, /x(a)—a > a for all k € [s]
and a € [r] (a fact that we use further below in the proof). Now define

Py := {(F.G,¢) € P(Z) : dimker ¢ = 0}

Then Py is a nonempty Zariski-open subset of P(Z) that intersects P{(Z). By
Lemma 5.2.1, the latter is irreducible. Thus it suffices to show that Py is likewise
irreducible and to compute its dimension.

For this, we consider the map

7 Py = My := Flag(Vy)® x Hom*(Vy, Qo).  (F.G,¢) — (F,¢)

where we write Hom™(Vy, Qo) for the Zariski-open subset of injective linear
maps in Hom(Vy, Qo). The fibers of & are given by

n~'(F.¢) = [ | Flagy, (Fi.)

k=1

which according to Lemma 3.3.10 are smooth irreducible varieties of dimension
sdimFlag(Q¢) —sr(n—r) + > ;_, dim ;. It is not hard to see that = gives Py
the structure of a fiber bundle over M. Therefore, Py is irreducible. Moreover,
the space My has dimension s dim Flag(Vy) + r(n —r). By adding the dimension
of the fibers, we obtain that the dimension of Py, and hence of P((Z), is indeed
the one claimed in the lemma. L]

Corollary 5.2.6. Let T € Subsets(r,n,s). If kdimZ = 0 then tdimZ = edimZ,
and hence T € Intersecting(r,n,s).

Proof. This follows directly by comparing Eq. (5.2.2) and Lemma 5.2.5. ]

We now consider the general case, where 0 < d :=kdimZ < r. We first note
that the kernel dimension is attained generically. Thus we define

Pu(Z) := {(F.G.$) € P(Z) : dimker ¢ = kdim T},
Bi(Z) := {(F,6) : 3¢ sith. (F,G,¢) € Pu(T)} < Bu(D),

where the subscripts denote that we fix both the true dimension as well as the
kernel dimension. We have the following lemma:
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Lemma 5.2.7. The set P (Z) is a nonempty Zariski-open subset of Py(1),
hence also irreducible. Moreover, By (Z) is a nonempty Zariski-open subset of

Flag(Vo)* x Flag(Qo)*.

Proof. The first claim holds since Py (Z) can be defined by the nonvanishing
of certain minors. The second claim now follows as By (Z) is the image of the
Zariski-open subset Py (Z) of the vector bundle Py(Z) — B(Z). ]

Belkale’s insight is to consider the positions of generic kernels for an induction:

Definition 5.2.8. Let Z € Subsets(r,n,s). Then we define the kernel position of
T as the tuple J € Subsets(d,r,s) defined by

Ji(b) := min {Pos(ker ¢, Fx)(b) : (F.G. ) € P(D)}
for b € [d] and k € [s]. We write kPos(Z) = J.

The goal in the remainder of this subsection is to prove the following equality:
tdimZ = edim 7 + edimZ/7,

where J = kPos(Z). This will again be accomplished by computing the dimension
of Pi(Z) in a second way and comparing the result with (5.2.2). Specifically, we
consider the spaces

Pipi(Z) := {(F., G, ) € Pu(Z) : Pos(ker ¢, F) = kPos(Z)},
Bun(D) := {(F.0) : 3¢ s.th. (F.G.$) € Pun(D)} < B (D).

Then Py (Z) is Zariski-open in Py (Z), since it can again be defined by demanding
that certain minors are nonzero. We obtain the following lemma, the second claim
in which is proved as before:

Lemma 5.2.9. Let 1 € Subsets(r,n,s) such that 0 < kdimZ < r. Then Py (Z)
is a nonempty Zariski-open subset of Py (Z), hence also irreducible. Moreover,
Bypt(Z) is a nonempty Zariski-open subset of Flag(Vy)® x Flag(Qo)*.

Corollary 5.2.10. Let T € Subsets(r,n,s) such that 0 < kdimZ < r. Then
kPos(Z) € Intersecting(d, r, s).

Proof. According to Lemma 5.2.9, Byp(Z) is a nonempty Zariski-open subset
of Flag(Vy)® x Flag(Qo)*, hence Zariski-dense. It follows that its image under
the projection (F,G) +— F is likewise Zariski-dense. For any such F, there
exists a G and ¢ such that (F,G,¢) € Piu(Z), and hence ker¢ € Q. 7y (F);
in particular, Qﬁposm (F) is nonempty. Thus Lemmas 4.2.3 and 4.2.4 show that
kPos(Z) is intersecting. Ll
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We now compute the dimension of Pyp(Z). As in the proof of Lemma 5.2.5,
it will be useful to consider an auxiliary space where we do not enforce the true
dimension:

Pip(Z) := {(F, G, ) € P(Z) : Pos(ker ¢, F) = kPos(Z)}

Note that constraint on the position of the kernel implies that its dimension is
kdimZ.

Lemma 5.2.11. Let 7 € Subsets(r,n,s) such that 0 < kdimZ < r. Then Pyy(Z)
is nonempty, smooth, irreducible, and satisfies

dim Py, (Z) = s(dim Flag(Vp) + dim Flag(Qy)) + edim J + edimZ/.7,

where J := kPos(Z).

Proof. Clearly, Py, (Z) is nonempty since it contains Py, (Z). We now introduce
My, := {(F,¢) € Flag(Vy)* x Hom(Vy, Qo) : Pos(ker ¢, F) = kPos(Z)}
and consider the map
7: Pp(D) = Myp,  (F.G.¢) > (F, ).

Its fibers are given by

s

7 N(F,¢) = | | {Gk € Flag(Qo) : ¢ € Hy, (Fi,Gr)}
k=1
To understand the right-hand side, define S :=ker¢ and let ¢: Vo/S — Qg the
corresponding injective map. By Lemma 3.2.15, ¢ € Hy, (Fy, G) if and only if
¢ € Hy, 15, (Fx)vy/s, Gr), that is, G € Flag(}k”k ((Fr)v,/s.¢) as introduced in
Definition 3.3.9. Thus we find that the fibers of 7 can be identified as

s
n N (F.¢) = | [ Flag], 5, (Fo)vy/s, ).
k=1
By Lemma 3.3.10, the k-th factor on the right-hand side is a smooth irreducible
variety of dimension dimFlag(Qo) — (r —d)(n —r) + dim I /J;, where d =
dimker¢ = kdimZ. It is not hard to see that  is a fiber bundle, and we will
show momentarily that My, is irreducible. Hence

s
(5.2.12) dim Pyy(Z) = dimMyp+s dim Flag(Qo)—s(r —d)(n—r)+ Y _ dim I/ Jx.
k=1
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It remains to show that My, is smooth and irreducible and to compute its
dimension. For this, we consider the map

7: Myp — Gr(d, Vo), (F,¢) — ker¢.

Since ¢ can be specified in terms of the kernel S := ker¢ and the injection
¢: Vo/S — Qp, it is clear that the fibers of 7 are given by

S
771(8) = Hom*(Vo/S, Qo) x [ | Flagy, (S, Vo).
k=1
Since 7 is likewise a fiber bundle, we obtain that My, is smooth and irreducible
and, using (3.3.7), that

A}
dimMyp = dimGr(d, Vo) + (r —d)(n —r) + Y _ dimFlag}_ (S, Vo)

k=1
=d(r —d) + (r —d)(n —r) + s(dimFlag(S) + dimFlag(V,/S))
+ ) dim Ji
k=1

s
=d(r —d)(1—s) + (r —d)(n — r) + sdimFlag(Vp) + ) _ dim Jj.
k=1
By plugging this result into (5.2.12) and simplifying, we obtain the desired
result. u

Corollary 5.2.13. Let T € Subsets(r,n,s) such that 0 < kdimZ < r, and
J = kPos(Z). Then,
(5.2.14) tdimZ = edim 7 + edimZ/J

Proof. Recall that Pyy(Z) € P(Z) 2 P(Z). Moreover,
Pipe(Z) = Pip(Z) N PU(T) € P(D).

All three varieties Py (Z), Pyp(Z), Py(Z) are irreducible (Lemmas 5.2.1, 5.2.9
and 5.2.11). Moreover, Py (Z) is nonempty and Zariski-open in P(Z), hence in
both Py,(Z) and Py(Z). It follows that

dim Py, (Z) = dim Py (Z) = dim P(Z).
We now obtain (5.2.14) via Lemma 5.2.11 and Eq. (5.2.2). ]

Remark. Purbhoo [Pur2] asserts that if 7 denotes the kernel position of Z
then Z/J is intersecting. However, we believe that the proof given therein is
incomplete, as it is not clear that the map (F,G,¢) — (Fy/s,G) is dominant
(cf. the remark at [Purl]). The following argument suggests that the situation is
somewhat more delicate.
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5.3. The kernel recurrence. To conclude the proof in the case that 0 < kdimZ <
r, we need to understand the right-hand side of (5.2.14) some more. We start
with the calculation

(5.3.1) tdimZ — edimZ = edim J — (edimZJ — edim 7) = edim 7 — edimZ7,

where the first equality is due to Egs. (4.2.9) and (5.2.14) and the second is
Eq. (4.2.11).

The last missing ingredient is to understand the expected dimension of the
kernel position, edim 7.

Lemma 5.3.2. Let T € Subsets(r,n,s) such that 0 < kdimZ < r, and let
J = kPos(Z). Then we have edim J < tdimZY .

Proof. For any (F,G,$) € Pyp(Z), the space Hz(F*'® Fy yerg) injects into
H;7(F*% G) by composition with the injective map ¢: Vo/ker¢p — Qg induced
by ¢ (Lemma 3.2.15). Thus,

edim 7 < tdim J < dim H7(F*"? Fy, jvery) < dim Hzz (F*%, G),

where the first inequality is always true (Corollary 5.1.9), the second holds by
definition of the true dimension and the third follows from the injection. It thus
suffices to prove that there exists (F,G,¢) € Pp(Z) such that dim Hzz (F R G)=
tdimZ7 .

For this, let K(d,Vy) denote the fiber bundle over Gr(d, Vy) with fiber over
S € Gr(d, Vp) given by Flag(S)* xFlag(Qy)*®. It is an irreducible algebraic variety
and we denote its elements by (S,F,G). We consider the morphism

w: Pop(D) — K(d, Vo), (F,G,$) — (kerg, F*'¢ G).

For any (F,G,¢) € P,(Z), dimker¢p = d and Pos(ker¢, F) = 7, hence = is
indeed a morphism.

We first prove that 7 is dominant. Note that, as a consequence of Lemma 5.2.9,
the map Py,(Z) — Flag(Qo)*, (F,G,¢) — G contains a nonempty Zariski-
open subset U C Flag(Qp)*. We now show that the image of = contains all
elements (S,F,G) with S € Gr(d,Vy), F € Flag(S)* and G € U. For this, let
(Fo0,G, ¢0) € Pip(Z) be the preimage of some arbitrary G € U. Let Sy := ker ¢y
and choose some g € GL(V,) such that g-So = S. Using the corresponding
diagonal action, F := g-Fo and ¢ := g -¢o, we obtain that (F,G,¢) € Pp(Z)
and ker¢p = §. Given F € Flag(S)*, we now choose h e GL(Vp)* such that
hyS € S, hg - FkS = Fy, and hg acts trivially on Vo/S for all k € [s]. Then
Pos(S,h - F) = Pos(S,F) = J, which shows that (h-F)S = h-FS = F.
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Moreover, (ﬁ-f)w)/s = Fy,/s . Thus ¢ € Hz(F,G) implies that ¢ € HI(E-J-‘, G)
by Lemma 3.2.15. Together, we find that the triple (ﬁ - F,G,¢) is in Pyy(Z) and
mapped by = to (S,F,G). We thus obtain that 7 is dominant.

To conclude the proof, we note that the subset W C K(d, V) consisting
of those (S,F,G) with dim H;s(F,G) = tdimZ7 is a nonempty Zariski-open
subset, and hence Zariski-dense since K(d, V) is irreducible. For each fixed
choice of S, this is the claim in Lemma 5.2.1 for B,(Z), with Z7 instead of Z.
The ‘parametrized version’ is proved in the same way. Since m is dominant, the
preimage 7~ !'(W) is a nonempty Zariski-open subset of Py,(Z). In particular,
any (F,G,7) € n Y (W) C Py (Z) satisfies dim Hzy (F5,G) < tdimZ7 . O

We thus obtain the following fundamental recurrence relation, due to Sher-
man [She], as a consequence of Eq. (5.3.1) and Lemma 5.3.2:

(5.3.3) tdimZ — edimZ < tdimZY — edimZ

Now we have assembled all ingredients to prove Belkale’s theorem:

Theorem 5.3.4 (Belkale [Bel3], restated).
For r € [n] and s > 2, Intersecting(r,n,s) = Horn(r,n,s).

Proof. We proceed by induction on r. The base case, r = 1, is Example 4.3.12.
Thus we have Intersecting(1,n,s) = Horn(1,#n,s) for all n > 1.

Now let r > 1. By the induction hypothesis, Horn(d,n’,s) =
Intersecting(d,n’,s) for all 0 < d < r and d < n'. In particular, Horn(r, n, s)
from Definition 2.18 can be written in the following form:

Horn(r, n, 5)
={Z:edimZ >0, VJ € Intersecting(d,r,5),0 <d <r,
edimJ = 0:edimZJ > 0}
={Z:edimZ >0, YJ € Intersecting(d,r,s),0 <d <r, edimZJ > edim 7}
where the second equality is due to Proposition 4.3.10. Hence it is a direct
consequence of Corollary 2.17 that Intersecting(r,n,s) € Horn(r,n,s). We now
prove the converse.
Thus let Z € Horn(r,n,s). Let d := kdimZ. If d =0 or d = r then we

know from Lemma 5.2.4 and Corollary 5.2.6, respectively, that 7 is intersecting.
We now discuss the case where 0 < d < r. By Eq. (5.3.3), we have that

tdimZ — edimZ < tdimZ7 — edimZ7,

where 7 := kPos(Z) denotes the kernel position of Z. If we can show that Z7
is intersecting then the right-hand side is zero by Corollary 5.1.9, hence so is the
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left-hand side, since tdimZ — edimZ > 0, and thus Z is intersecting, which is
what we set out to prove.

To see that Z7 is intersecting, we note that Intersecting(d,n —r + d,s) =
Horn(d,n —r + d,s) by the induction hypothesis, hence it remains to verify that
77 satisfies the Horn inequalities. Let K € Horn(m, d, s) = Intersecting(m, d, s)
for any 0 <m < d, where we have used the induction hypothesis one last time.
Thus JK € Intersecting(m,r,s) by Corollary 5.2.10 and Lemma 2.16. It follows
that

edimZ7 K — edim K = edimZ(JK) —edim 7K > 0

where the first step is (4.2.10) and the second step holds because by assumption
Z € Horn(r,n,s) and JK € Intersecting(m,r,s) = Horn(m,r,s), as explained
above. We remark that these inequalities include edimZ7 > 0 (corresponding to
m = d). Thus we have shown that 77 satisfies the Horn inequalities. This is
what remained to be proved. L]

6. Invariants and Horn inequalities

In this section, we show that the Horn inequalities not only characterize
intersections, but also the existence of corresponding nonzero invariants and,
thereby, the Kirwan cone for the eigenvalues of sums of Hermitian matrices.

6.1. Borel-Weil construction. For any dominant weight A € A (r) there exists
an irreducible representation L(A) of GL(r) with highest weight A, unique up
to isomorphism. Following Borel and Weil, it can be constructed as follows:

For any weight p € A(r), let us denote by y,: B(r) — C* the character
of B(r) such that y,(¢) = t* = t(D*W...¢(r)*" for all t € H(r) S B(r).
Here, we recall that B(r) is the group of upper-triangular invertible matrices and
H(r) € B(r) the Cartan subgroup, which consists of invertible matrices ¢ € GL(r)
that are diagonal in the standard basis, with diagonal entries #(1),...,#(r). Lastly,
we write 1, = (1,...,1) € A(r) for the highest weight of the determinant
representation of GL(r), denoted det,. It is clear that L(A +k1,) = L(A) ®de:t’rc
forany A € Ay(r) and k € Z.

Definition 6.1.1. Let A € A (r). Then we define the Borel-Weil realization of
L(A) as

Lgw(A) = {s: GL(r) — C holomorphic : s(gh) = s(g)xa=(b)
Vg € GL(r),b € B(r)}
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with the action of GL(r) given by (g - s)(h) := s(g7'h). We recall that
A* = (=A(r),...,—A(1)).

The Borel-Weil theorem asserts that Lpw(A) is an irreducible GL(7)-
representation of highest weight A. Note that, by definition, a holomorphic function
is in Lpw(A) if it is a highest weight vector of weight A* with respect to the
right multiplication representation, (g ~ s)(h) := s(hg).

The space Lpw(A) can also be interpreted as the space of holomorphic
sections of the GL(r)-equivariant line bundle Lpw (1) := GL(r) xp) C_j» over
Flag(r) = GL(r)/B(r), where we write C,, for the one-dimensional representation
of B(r) given by the character x,.

It is useful to observe that we have a GL(r)-equivariant isomorphism

(6.1.2) LA)* — Lgw(A®), f > (sy: GL(r) > C, g+ f(g-v3))

where v; denotes a fixed highest weight vector in L(A).
The tensor product of several Borel-Weil representations can again be identified
with a space of functions. E.g., if A € A4 (r) and A’ € A;(r') then

Lpw(X) ® Lpw(A)
=~ {s: GL(r) x GL(r") — C holomorphic, s(gh, g'b") = 5(g,&") xa=(b) . (b")
Vg € GL(r), g’ € GL("),b € B(r),b" € B(r')}.
We will use this below to obtain a nonzero vector in a tensor product space by

exhibiting a corresponding holomorphic function with the appropriate equivariance
properties.

6.2. Invariants from intersecting tuples. Let us consider the tangent map (5.1.2),
AL Hom(Vy, Qo) x Hy, (Fo, Go) X --- x Hy (Fo, Go) — Hom(Vy, Qo)*
PO NGt 8) > G+ adigyh o E A+ segy )

If edimZ = 0 then (5.1.5) implies that the dimension of the domain and target
space are the same. Thus we may consider the determinant of Az ;-,, as in the
following definition:

Definition 6.2.1. Let Z € Subsets(r,n,s) such that edimZ = 0. Then we define
the determinant function as the holomorphic function

5 GL(r)* xGL(n —r)* — C,
PGBy e detA,

where the determinant is evaluated with respect to two arbitrary bases.
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Here, and throughout the following, we identify Vy =~ C” and Q¢ =~ C"™", so
that GL(Vp) =~ GL(r) and GL(Q¢) =~ GL(n—r) and the discussion in Section 6.1
is applicable.

If 7 is intersecting then also tdimZ = edimZ by Corollary 5.1.9. Hence
by (5.1.8) there exist §,i; such that SI(Q’,I;) # 0. That is, §7 is a nonvanishing
holomorphic function of GL(r)* x GL(n—r)*. Our goal is to show that §7 can be
interpreted as an invariant in a tensor product of irreducible GL(r) x GL(n —r)-
representations.

We now consider the representation of GL(r) x GL(n —r) on Hom(Vy, Qo)
given by (a,d)-¢ := dpa—'. Since Hom(Vy, Qp) = Vo ® Qp, it is clear that for
g € GL(Vp), &' € GL(Qo),

(6.2.2) det(Hom(Vy, Qo) > ¢ — g'¢g~" € Hom(Vy, Qo))
= det(g)~"") det(g)".

We now restrict to the subspaces Hj(Fy, Gp):

Lemma 6.2.3. Let I C [n] be a subset of cardinality r. Then Hj(Fy, Go) C
Hom(Vy, Qo) is B(r) x B(n — r)-stable. Furthermore, for b € B(r) and
b’ € B(n —r) we have

det(Hy(Fo,Go) > ¢ v b'pb™" € Hi(Fo,Go)) = xa, B xase+r1,r (B,

where we recall that Aj was defined in Definition 4.3.7.

Proof. For the first claim, we use Lemma 3.2.7: Since the flag Fy is stabilized
by B(r) and the flag G, is stabilized by B(n —r), it is clear that Hj(Fy, Gy)
is stable under the action of B(r) x B(n —r).

For the second claim, we note that unipotent elements always act by
representation matrices of determinant one. Hence it suffices to verify the formula
for the determinant for t+ € H(r) and t' € H(n —r). For this, we work in the
weight basis of Hj(Fyp, Gp) given by the elementary matrices Ep, that send
e(a) — é(b), where a € [r] and b € [I(a) — a], and all other basis vectors to
zero. Then:

det (H[(F(), Go)2¢— [’¢t_1 € H](F(),G()))

r I(a)—a r n—r
_ 1_[ l—[ tl(b)l‘(a)_l — ( l—[ t(a)a—l(a)) ( 1_1 tf(b)r—#{a:l(a)—a<b})
a=1 p=1 a=1 b=1

— IA] t_lr]ln—r"'A.[C

9

where we have used (4.3.8) in the last step. L]
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We now show that the 37 can be interpreted as an invariant:

Theorem 6.2.4. Let T € Subsets(r,n,s) such that edimZ = 0, and let 67 denote

the corresponding determinant function (Definition 6.2.1). Then &1 belongs to

X (LBW(AZC)@LBW(A;‘C—r 1,—r)). Moreover, it transforms under the diagonal
k

action of GL(r) x GL(n —r) by the character detgn—r)(s—l) ® det’ 19 |

n—r

Proof. For the first claim, we note that if §’ € B(r)*, W e B(n —r)® then we
can write Az,gé",ﬁﬁf as a composition of Az,g,}? with the automorphisms on
Hi, (Fo,Go) that send ¢ — hjdr(gr)~". Using Lemma 6.2.3, we obtain

)
Sz(8g’ k') = 828, 1) | | xas (€)X +ranr (h):
k=1

In view of the discussion at the end of Section 6.1 this establishes the first claim.
For the second claim, let ¢ € GL(r) and g’ € GL(n —r). Thus A

maps ({,¢1,...,¢s) to

T.e"1%.¢ 'k

C+g g, 0+ ¢ thegsg o)
=g MNg'tg  + gigth ... g’ te T + hepsgr Vg

Thus we can write A as a composition of three maps: The auto-

T.e~ g, 'h
morphism ¢ + g’¢g~! of Hom(Vy, Qo), the map Az,gf,ﬁ and the automorphism

é > g~1g on Hom(Vy, Qo)*. Thus, using Eq. (6.2.2),
((g.8") - 82)@.h) = 82(g7 8. g’ "h) = det(g)" "9 det(g") ™82, ).
which establishes the second claim. ]

If 7 is intersecting then we had argued before that §7 is nonzero. By dualizing
and simplifying, we obtain the following corollary of Theorem 6.2.4:

Corollary 6.2.5. Let I € Intersecting(r,n,s) and edimZ = 0. Then,

)GL(n—r) 7& 0

s GL(r) s
(det¢ 00" @ @ L(Ar))  £0 and (det;_, ® R Lksg)
k=1

k=1
Let us correspondingly define

S GL(r)
c(Z) = dim(detﬁs_l)("_r) ® ® L()le)) '
k=1
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Then Corollary 6.2.5 states that, if Z is intersecting and edimZ = 0 then
c¢(Z) > 0. This relationship between generic intersections of Schubert cells and
tensor product multiplicities can be made quantitative. While we do not use this
in the following Section 6.3 to describe the Kirwan cone and prove the saturation
property for tensor product multiplicities, we will give a brief sketch later on in
Section 6.4 and use it to establish the Fulton conjecture.

6.3. Kirwan cone and saturation. We now show that the existence of nonzero
invariants is characterized by the Horn inequalities. For this, recall that we defined
c(i) as the dimension of the space of GL(r)-invariants in the tensor product
Qr—1 L(Ag). Thus, if we define Ay = Ay, + (n —r)1, for k € [s — 1] and
As = A, then Corollary 6.2.5 shows that

(6.3.1) cA) = ¢(T) > 0

whenever 7 is intersecting and edimZ = 0. Here, we have somewhat arbitrarily
selected the first s — 1 highest weights A{,...,A;—; to have nonnegative entries
no larger than n —r, while Ay has nonpositive entries no smaller than r —n.
Conversely, any s-tuple of highest weights A with these properties can be
obtained in this way from some Z € Subsets(r,n,s) (recall discussion below
Definition 4.3.7).

Proposition 6.3.2. Let A€ A+(r)® be an s-tuple such that Y j_,|Ax| =0, and
for any 0 <d <r and any s-tuple J € Horn(d,r,s) with edim 7 =0 we have
that Yy _(Ty.,Ax) < 0. Then c() > 0.

Proof. By adding/removing suitable multiples of 1,, the highest weight of the
determinant representation, we may assume that A;(r),...,A;—1(r) = 0 and
As(1) <0. Let n:=r +¢q, where g := max{A;(1),...,A3—1(1),—As(r)}. Then A
is associated to an s-tuple Z € Subsets(r,n,s) as in Lemma 4.3.9.

We now show that edimZ = 0 and that Z is intersecting. The former follows
from the first statement in Lemma 4.3.9, which gives that edimZ = —) ;_, | k| =
0. To see that Z is intersecting, we may use Theorem 5.3.4 and show instead that
7 satisfies the Horn inequalities edimZ7 > 0 for any J € Horn(d,r,s) with
edim7 = 0 and 0 < d < r. But the second statement in Lemma 4.3.9 implies
that these are equivalent to the linear inequalities Y 3_,(Ts,,Ax) < 0, which
hold by assumption. Thus Z is indeed intersecting and satisfies edimZ = 0.
Now (6.3.1) shows that c(i) =c(7) > 0. L]

At last we can prove the saturation property and characterize of the Kirwan
cone in terms of Horn inequalities.
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Corollary 6.3.3 (Knutson-Tao, [KT], restated). (a) Horn inequalities: The Kir-
wan cone Kirwan(r,s) is the convex polyhedral cone of § € C.(r)* such that
> i_1lék| =0, and for any 0 <d < r and any s-tuple J € Horn(d,r,s)
with edimJ = 0 we have that Y _,(Ty, &) <0.

(b) Saturation property: For a dominant weight 1 e A4 (r)®, the space of
invariants (L(A1) ® --- @ LX) s nonzero if and only if A €
Kirwan(r, s).

In particular, c(i) = dim(L(A;) @ --- ® LA™ > 0 if and only if
c(NX) > 0 for some integer N > 0.

Proof. The two statements are closely interlinked. For clarity, we give separate
proofs that do not refer to each other.

(a) Any § € Kirwan(r, s) satisfies the Horn inequalities (Corollary 2.13). We now
observe that Kirwan(r, s). is a closed subset of C4(r)® which, moreover, is
invariant under rescaling by nonnegative real numbers. Thus it suffices to
prove the converse only for = A+ (r)*. For this, we use that if A satisfies the
Horn inequalities then c(i) > 0 by Proposition 6.3.2, hence Ae Kirwan(r, s)
by Proposition 2.3.

(b) Let A € AL(r)*. If ¢(A) > O then A € Kirwan(r,s) by Proposition 2.3.
Conversely, if A € Kirwan(r,s) then it satisfies the Horn inequalities by
Corollary 2.13, hence c(A) > 0 by Proposition 6.3.2.

O]

Remark 6.3.4. As follows from the discussion below Proposition 4.3.10, the
Kirwan cone is in fact already defined by those J such that 2 7(G) is a point
for all G € Good(r, s). Ressayre has shown that the corresponding inequalities are
irredundant and can be computed by an inductive algorithm [Res2]. Demanding
that Q7(G) is a point for all good G is a more stringent requirement than
edim 7 = 0, and indeed the set of inequalities edimZJ > 0 for 7 € Horn(d, r, 5)
with edim 7 = 0 is in general still redundant. However, from a practical point of
view we prefer the latter criterion since it is much easier to check numerically.

6.4. Invariants and intersection theory. We now explain how the relationship
between generic intersections of Schubert cells and tensor product multiplicities
can be made more quantitative. Specifically, we shall relate the dimension c¢(Z)
of the space of GL(r)-invariants to the number of points in a generic intersection
Qz(€), as in the following definition:
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Definition 6.4.1. Let Z € Subsets(r,n,s) such that edimZ = 0. We define the
corresponding intersection number as

cind(ZT) := #QY(E) = #Q1(),

where £ is an arbitrary s-tuple of flags in Good(n,s). By Lemma 4.3.1, the right-
hand side is finite and independent of the choice of £ in Good(n,s). Moreover,
cint(Z) > 0 if and only if Z is intersecting.

In Section 6.2 we showed that if 7 is intersecting then c¢(Z) > 0. Indeed, in
this case the determinant function §z on GL(r)* x GL(rn—r)* is nonzero, so that
for some suitable & € GL(n — r)* the function

(6.4.2) 8,70 GLOY — C. 5, ;&) = 82(2.h)

is a nonzero vector in ®j_; LBW()L}‘k) that transforms as the character

det" 6= with respect to the diagonal action of GL(r).

In the following we show that, as we vary h, the functions 8,5 span a
vector space of dimension at least cin(Z), which w1ll imply that c(I) > Cine(Z).-
More precisely, we shall construct elements (gy, a) € GL(r)S x GL(n —r)* for
a € [cine(T)] such that §7(gq, a) # 0 while (SI(ga,hﬂ) =0 if o # B. The
construction, due to Belkale [Bel2], depends on a choice of good flags £ and
goes as follows.

Let £ be an s-tuple of good flags and consider the intersection

QUE) = {V1,.... Ve -

Let yy € GL(n) such that V, = y, - Vp for each a € [cjn(Z)], and consider
the s-tuple of flags & = (Ea...., Ea;s) defined by Eyx = y,' - Ex. Then
@2([Ya» Ea]) = €. According to Lemma 4.3.1, € is a regular value of @9, since Z is
intersecting. Since edimZ = 0, this implies that the differential of ¥ is bijective
at [y«,&], and, by equivariance, so is its differential at [1,&,]. By Remark 5.1.4,
its determinant is precisely 87(q,hq), Where Fo = (Le1s--+»8as) € GL(r)
and hg = (Ba1.-.. hays) € GL(n —r) are such that go s - Fo = (Eqx)" and
hoi - Go = (Eq k)0, for all o and k. In particular, 81(§a,5a) #0.
Using edimZ = 0, Eqgs. (5.1.5) and (5.1.6) imply that

(6.4.3) §7(8,h) #£0 < dim Hz(3 - Fo, h - Go) = 0.
Then we have the following lemma:
Lemma 6.4.4. Let T be intersecting, edimZ = 0, and £ € Good(n, s). As above,

choose vy, gy and ho for a € [cin(D)]. Define 67.4(g) = det AI i« Then
81.0(8a) # 0 for all a, while 57.4(84) =0 for all a # B.
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Proof. We only need to consider the case that o # f. In view of (6.4.3), it
suffices to show that Hz((E,)"°, (€8)0,) # {0}. For this, we define the map

bap: Vo — C"/Vo = Qo, vi> (o) 'ypv + Vo,

which is nonzero since yy Vo = Vo # Vg = ygVo. Then ¢y g is a nonzero element
in Hz((E)"0, (Ep)0,)» since

b ()"0 (@) = up(Eps (16@) ) = o (Ie(@)+Vo = (Eap) 0y (I (@)—a)
for all a € [r] and k € [s], using that Z = Pos(Vj, Ey).- U

Lemma 6.4.4 shows that the functions 871, ...,8z¢,,z) are linearly indepen-
dent. If we identify them with GL(r)-invariants as before, we obtain the following
corollary:

Corollary 6.4.5. Let edimZ = 0. Then, ¢(Z) > cin(Z).

In fact, it is a classical result that

(6.4.6) c(I) = cim(2)

(see, e.g., [Full]). Thus Corollary 6.4.5 shows that we can produce a basis of
the tensor product invariants from Belkale’s determinants 51,5((_@) = det AI,;}',E'
These invariants can be identified with the construction of Howe, Tan and
Willenbring [HTW], as described in [VW].

7. Proof of Fulton’s conjecture

We now revisit the conjecture by Fulton which states that if c(i) =1 for
an s-tuple of highest weights then ¢(N 71) =1 for all N > 1. We note that its
converse is also true and holds as a direct consequence of the saturation property
and the bound c¢(N 1) 2 0(7\), which follows from the semigroup property of
the Littlewood-Richardson coefficients. Fulton’s conjecture was first proved by
Knutson, Tao and Woodward [KTW]. We closely follow Belkale’s geometric
proof [Bel2, Bel3, Bel4], in its simplified form due to Sherman [She], which in
turn was in part inspired by the technique of Schofield [Sch].

7.1. Nonzero invariants and intersections. Let c(i) = 1. Equivalently, c(x*) =
1 and so there exists a nonzero GL(r)-invariant holomorphic function f in
Lpw(A]) ® ... ® Lpw(A}), which is unique up to rescaling.
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Suppose for a moment that there exists a nowhere vanishing function g in
Lpw(AT)®...®@ Lpw(A]) (not necessarily GL(r)-invariant). In this case, if g’ is
any other holomorphic function in Lpw (A7) ®...® Lgw(A}), then g’'/g is right
B(r)® -invariant and therefore descends to a holomorphic function on Flag(r)*.
But this is a compact space, hence any such function is constant. It then follows
that each Lpw (A7) is one-dimensional and hence that the Az are just characters,
i.e., Ay = myl, and L(Ax) = det’* for some my € Z. In this case, Fulton’s
conjecture is certainly true.

We now consider the nontrivial case when f has zeros. For any function in
Lpw(A]) ® ... ® Lpw(A;), the zero set is right B(r)®-stable. Accordingly, we
shall write f(F) = 0 for the condition that f(g) = 0, where F = g- Fy, and
consider

Zy := {F € Flag(r)* : f(F) = 0}.

Without loss of generality, we may assume that there exists an s-tuple Z with
edimZ = 0 that is related to A as in Lemma 4.3.9, i.e.,

(7.1.1) Ak = A +(m—r)l, for k €[s—1], Ay =Ap

(otherwise we may add/remove suitable multiples of 1,, as in the proof gf
Proposition 6.3.2). Now recall from (6.4.2) that the functions 51,}? = §7(—, h)
are in ®j_, Lpw(A7,) and transform as the character det=6=D with
respect to the diagonal action of GL(r). It follows that each 51,;:(!3’) o
det:(”_’)(gl)---detr'("—')(gs_l)SI’E(ﬁ) must be proportional to f. Hence,

(7.1.2) 87(8,h) = det™ " (g1) - det™ " (g,-1) £ (@) f (),

for some function f : GL(n —r)® — C, which is nonzero due to (6.4.6). In view
of (6.4.3), we obtain the following lemma:

Lemma 7.1.3. Let f, T as above. If F € Zy then Hz(F,G) # {0} for all
G € Flag(Qo)*. Conversely, if f(G) # 0 then Hz(F,G) # {0} implies that
F € Zf.

For sake of finding a contradiction, let us assume that ¢(N 1) > 1 for some
N . Then there exists an invariant f’ € Lpw(NA]) ® ... ® Lpw(NA}) that is
linearly independent from f%.

Lemma 7.1.4. Let L be a holomorphic line bundle over a smooth irreducible vari-
ety. Then two linearly independent holomorphic sections f1, f» are automatically
algebraically independent.
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Proof. Let us suppose that f, and f satisfy a nontrivial relation }; ; ¢;, TS fzj =
0. Each f{ fJ is a section of the line bundle £8¢*7) . The relation holds degree
by degree, and so we may assume that i + j is the same for each nonzero c¢; ;.
But any homogeneous polynomial in two variables is a product of linear factors.
Thus we have [];(a; fi + bi f2) = 0 for some a;,b; € C, and one of the factors
has to vanish identically. This shows that f; and f, are linearly dependent, in
contradiction to our assumption. O

Lemma 7.1.4 implies that f¥ and f’, and therefore f and f’ are
algebraically independent. As a consequence, there exists a nonempty Zariski-
open subset of F € Zy such that f/(F) # 0.

Our strategy in the below will be as follows. As before, we consider the
kernel position J of a generic map 0 # ¢ € Hz(F,G), with now F varying in
Zy . Although J is not necessarily intersecting, the condition f’(F) # 0 will
be sufficient to show that the tuple Z7 is intersecting. In Section 7.2 we will
then prove Sherman’s refined version of his recurrence relation (5.3.3), which
will allow us to show that Hz(F,G) = {0} for generic F € Zy. In view of
Lemma 7.1.3, this will give a contradiction.

We first prove a general lemma relating semistable vectors and moment
maps. Let M be a complex vector space equipped with a GL(r)-representation
and U(r)-invariant Hermitian inner product (:,-), complex linear in the second
argument, and denote by pps: gl(r) — gl(M) the Lie algebra representation. We
define the corresponding moment map ®p: P(M) — iu(r) by

(m, ppm (A)m)

for all A € gl(r); cf. Eq. (2.2).

Lemma 7.1.5. Let A €iu(r) and 0 £ m e M. If exp(At)-m A0 as t - —o0
then
lim tr(®a ([exp(Ar) - m])A4) < 0.
t—>—00

Proof. Write m = Zf-‘zl m; where the m; are nonzero eigenvectors of ppr(A),
with eigenvalues 6 < --- < 0. Then,

k
exp(At) -m = Zeei’m,- 40

i=1
as t — —oo if and only if 6; < 0. In this case,

3 020 my |2
= lim ! =6; <0. ]
=00 3, il lm|2

tim tr(Par ([exp(Ar) - m]) A)
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We now relate the position of subspaces to components of the moment map:

Lemma 7.1.6. Let A € Ay (r), F =g-Fy a flag on Vy, S a nonzero subspace
of C", and Ps the orthogonal projector. Then,

im tr(Proy([exp(Pst)g - val) Ps) = (Ts, A),

where J = Pos(S, F).

Proof. Let d = #J. We may assume that § = Sy is generated by the first d
vectors e(1),...,e(d) of the standard basis of Vj, and also that g = w is unitary.
Thus Pg, is the diagonal matrix with d ones and r —d zeros, and we need to
show that

Aim tr(®ry ([exp(Psyt)u - v;2]) Ps,) = (T, ).

Let Ry denote the orthogonal complement of Sy in V,. The action of U(Sy) x
U(Rp) commutes with Pgs, and hence we can assume that F5° is the standard
flag on Sy, while Fy,;s, has the adapted basis e(J°(b)) + Sp for b €
[r — d]. Thus we see that lim,_.exp(Ps,t)F = wyFy. It follows that
lim; . _oo[exp(Ps,t)u - v2] = [wy - v2] and hence, using (2.2), that

(va, pa(w7! Psywyr)vy)
v, ]2

We now use the preceding lemma to obtain from any nonzero invariant an
s-tuple of flags with nonnegative slope:

t—l;l;noo tr(ch(l)([eXp(PS()t)u ' UK])PS()) = = (TJ’A') . O

Lemma 7.1.7. Let p € (L(NA1)®---QL(N As))* a GL(r)-invariant homogeneous
polynomial such that p(g1-vni, ® - ® gs - Vna,) # 0, and define F =
(g1Fo,....8sF0). Then ¥ 3 (Ty. ., Ax) < 0 for all J = Pos(S,F), where S
is an arbitrary nonzero subspace of C".

Proof. Consider the representation M = L(NA;) ® .- ® L(NAg) with its
moment map Ppr, and m = gy - vy, @ -+ ® g5 - UNa, . Let Pg denote
the orthogonal projector onto the subspace S. As p is GL(r)-invariant,
p(exp(Pst) -m) = p(m) # 0, which implies that exp(Pst)-m /0 as t — —o0.
Thus Lemma 7.1.5 implies that

tlim tr(Par ([exp(Pst) - m]) Ps) < 0.
—>—00
On the other hand, Lemma 7.1.6 shows that the left-hand side of this inequality

is equal to

S S
kX: im tr(Prva,) ([exp(Pst)gk - vna, ) Ps) = kz im (7, Ag). U
=1 =1



The Horn inequalities from a geometric point of view 461

Corollary 7.1.8. Let A and T as in (7.1.1), f" € (Lpw(NA}) ® --- ®
Lpw (NA))CLUD | Let F € Flag(Vp)*, {0} # S € C”, and J = Pos(S,F).
If f'(F)#0 then T is intersecting.

Proof. Write F = (g1 - Fy,...,gs - Fo) for suitable g;,...,gs € GL(r). Then,
using (6.1.2), there exists a GL(r)-invariant homogeneous polynomial p €
(L(NA1)®---®L(NAs))* such that p(g1-vna, ® - ®gsUNa,) = f/(g15-..,8s) #
0. Thus the assumptions of Lemma 7.1.7 are satisfied.

We now show that Z7 is intersecting. For this, we use Theorem 5.3.4
and verify the Horn inequalities. Thus let 0 < m < d = dim$S and K €
Horn(m, d, s) = Intersecting(m, d,s): Since K is intersecting, there exists some
subspace S’ € Qi (FS). Hence S’ € Q_7x(F) by the chain rule (3.2.9). According
to Lemma 3.1.5, J' = Pos(S’, F) is such that J/(a) < JiyKi(a) for all k € [s]
and a € [m]. Thus we obtain the first inequality in

edimZ7 K —edim K = edimZ(JK) — edim JK
s s
=— Z(TJkKk,)tk) 2 Z(TJ,’(,)Lk) > 0;
k=1 k=1

the first equality is (4.2.11), the second is Lemma 4.3.9, and the last inequality
is Lemma 7.1.7, applied to S’. This concludes the proof. L]

7.2. Sherman’s refined lemma. We now study the behavior of dim Hz(F,G)
in more detail. We proceed as in Section 5, but for a fixed s-tuple of flags
F € Flag(Vy)*. Specifically, we consider the following refinement of the true
dimension (5.1.8) for fixed F:

tdimrZ := mgin dim Hz(F, G)
Thus we study the variety

Pr(Z) := {(G. ¢) € Flag(Qo)* x Hom(Vy, Qo) : ¢ € Hz(F,G)}.

Restricting to those G such that dim Hz(F,G) = tdimxZ, we obtain open sets
Br+(Z) € Flag(Qo)® and Px(Z) € Px(Z). Let kdimz(Z) denote the minimal
(and hence generic) dimension of ker¢ for (G, ¢) € Pr(Z). The following lemma
is proved just like Corollary 5.2.6:

Lemma 7.2.1. If kdimzZ = 0 then tdimzZ = edimZ.

Let us now assume that kdim»Z > 0. Let kPosx(Z) denote the kernel position,
defined as in Definition 5.2.8 but for fixed 7. We thus obtain an irreducible
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variety Prp(Z) over a Zariski-open subset B r xpi(Z) of Br,(Z). To compute its
dimension, we again define Pr x,(Z) € Px(Z), where we fix the kernel dimension
and position, but not the dimension of Hz(F,G). In contrast to Lemma 5.2.11,
the variety Pryp(Z) is in general neither smooth nor irreducible. However, we
can describe it similarly as before: We first constrain S = ker¢ to be in QY 7(F)
(which may not be irreducible), then ¢ is determined by ¢ € Hom™ (VO/S Qo)
and G by Gy € Flag(,’k Ik ((F)vy/s> ¢). Thus we obtain for each irreducible
component C € QY 7(F) a corresponding irreducible component Pz kp c(Z).
In particular, there exists some component Cr such that Prypc.(Z) is the
closure of Pryn(Z) in Pryp(Z), namely the irreducible component containing
the elements S = ker¢ for (¢,G) varying in the irreducible variety Pz yxp(Z).
As a consequence, dimPzyn(Z) = dimPxry, c-(Z), and so we obtain, using
completely analogous dimension computations, the following refinement of (5.3.1):

(7.2.2) tdimr Z — edimZ = dim C» — edimZ7

Indeed, when we apply (7.2.2) to generic F € Flag(Vy)® then J is intersecting
and dim Cr = edim 7, so we recover (5.3.1). We now instead apply the above to
generic F in a component of the zero set Zy of the unique nonzero invariant f .
Thus we obtain the following variant of the key recursion relation (5.3.3):

Lemma 7.2.3 (Sherman). Let f,Z as above in Section 7.1, and Z C Z; an
irreducible component such that kdimxZ # 0 for all F € Z. Then there exists
J and a nonempty Zariski-open subset of F € Z such that kPosrZ = J and

tdimr Z — edimZ < tdimZ7 — edimZ7 .

Proof. We choose d and J as the kernel dimension and position for generic
F € Z. We note that d < r, since d = r would imply that Hz(F,G) = {0}, in
contradiction to Lemma 7.1.3. Let U € Z denote the Zariski-open subset such
that kPosxZ = 7 for all F € U. We proceed as in Lemma 5.3.2. Let

X:={(F.G.¢): F €U, (G,9) € Prip.cr(D},
V:={(S,F,G):S €Gr(d, Vp), F € Flag(S)*, G € Flag(Qo)*}.

Both X and Y are irreducible varieties and we have a morphism
w: X = V,(F.G,¢) — (kergp, F*? G).

As before, we argue that m is dominant. By construction, the image of X
by the map (F,G,¢) — G contains a Zariski-open subset U’ of Flag(Qg)*.
We may also assume that f(g) #+ 0 for all G € U’, where f is the map
from (7.1.2). We now show that the image of = contains all elements (S, F,G)
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with S € Gr(d,V,), F € Flag(S)*, and G € U’. For this, let (Fy,G, o) € X
be the preimage of some arbitrary G € U’. Let Sy := ker¢pp and choose some
g € GL(Vy) such that g- Sy = S. Using the corresponding diagonal action,
define F := g-Fy and ¢ := g-¢o. Then (F,G,¢) € X, since Z is stable
under the diagonal action of GL(Vp), and ker¢ = S. Now consider the group
G C GL(V)* consisting of all elements h e GL(Vp)® such that A S € S and
hy acts trivially on V,/S for all k € [s]. Note that G is an irreducible algebraic
group. By construction, ¢ € HI(h - F,G), while d <r implies that ¢ # 0. This
means that HI(h -F,G) 7é 0, and so we obtain from Lemma 7.1.3 that h-FeZ £
It follows that, in fact, #-F € Z, as it is obtained by the action of the irreducible
algebraic group G on F € Z, and so stays in the same 1rreduc1ble component
For given F € Flag(S)*, we now choose h € G such that hy - = F, for
k € [s]. Then (h-F,G,¢) € X is a preimage of (S,F,G), and we conclude that
7 is dominant.

As before, the dominance implies that we can find a nonempty Zariski-open
set of (F,G,¢) € X such that dim H;7(F*?, G) = tdimZ7 . We may assume
in addition that ker¢ € Cx is a smooth point. For any F in this set, ¢ injects
H7(F* Fy./kerp) into Hzz (FXT¢.G) (Lemma 3.2.15). Thus,

dim Cr = dim Tyer s Cr < H7 (F*'?, Fyyjkerg) < dim Hzy (F*'?,G) = tdimZ7,

where in the first inequality we have used that the intersection 7(F) is not
necessarily transversal at S and so the tangent space of the 1ntersectlon is in
general only a subspace of the intersection of the tangent spaces (3.2.5). In view
of (7.2.2), we obtain the desired inequality. L]

Theorem 7.2.4 (Belkale). Let ¢(A) = 1. Then ¢(NA) =1 for all N > 1.

Proof. Let f, T as in Section 7.1 and recall that edimZ = 0. Assume for sake
of finding a contradiction that c¢(N 71) # 1 for some N > 0. Then there exists
another invariant f’, as in Section 7.1, such that f/(F) # 0 for a nonempty
Zariski-open subset of some irreducible component Z € Z,. If kdimzZ = 0
for some F € Z then tdimxzZ = 0 by Lemma 7.2.1. Otherwise, we may apply
Lemma 7.2.3 to the component Z. We find that there exists some 7 and another
Zariski-open subset of F in Z such that kPosrZ = J and

(7.2.5) tdimr Z — edimZ < tdimZY — edimZ” .

As a consequence, there exists some F € Zy for which all three of the properties
f/(F) #0, kPoszZ = J and (7.2.5) hold true. By Corollary 7.1.8, the first two
properties imply that Z7 = 0, and hence the right-hand side of (7.2.5) is equal
to zero by Corollary 5.1.9. This again implies that tdimzZ = 0.
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It follows that in either case there exist some G such that Hz(F,G) = {0}.
According to Lemma 7.1.3, this can only be if 7 ¢ Zy. But 7 € Zy. This is the
desired contradiction. L]

Remark. It likewise holds that ¢(1) = 2 implies that ¢(NA) = N +1 [Ike, She].
However, in general it is not true that c(A) = ¢ implies ¢(NA) = O(N¢™1).
Belkale has a found a counterexample for ¢ = 6.

A. Horn triples in low dimensions

In this appendix, we list all Horn triples J € Horn(d,r,3) for d <r < 4,
as defined in Definition 2.18, as well as the expected dimensions edim .. The
triples with edim J = 0 are highlighted in bold.

Example A (d = 1). As discussed in Example 4.3.12, only the dimension
condition edim 7 > 0 is necessary. The following are the triples in Horn(1,r,3)
(up to permutations):

r Ji Jo J3 edimJ
2 {1y {2y {2} 0

2 @ @ 1
30 {3y 3y 0
2y 2 3 0
2 B3y 3 1
By By 3 2
4y @ @ o
2y 3 @ 0
2 @ w1
3 3 @30
By By @ 1
B W @ 2
oW w3

Example A.2 (d = 2). The dimension condition edim 7 > 0 reads
(J1(1) + J1(2)) + (L2(1) + J2(2)) + (J3(1) + J3(2)) = 4r + 1.

In addition, we have to satisfy three Horn inequalities, corresponding to
K = ({1},{2},{2})) and its permutations, which are the only elements in
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Horn(1, 2,3) with dim X = 0. The resulting Horn inequalities, edim 7K > 0, are

Jl(l) + J2(2) + J3(2) = 2r + 1,
J1(2) + J2(1) + J3(2) = 2r + 1,
J1(2) + J2(2) + J3(1) = 2r + 1.

Thus we obtain the following triples in Horn(2,r,3) (up to permutations):

r J1 Jo J3 edim J

3 {1,2} {2,3} {2,3} 0
1,3y 1,3} {2,3} 0
{1,% 42,3} 12.3) |
{2,3y {2,3} {2,3} 2

4 {1,2}y {3.4} {3.4} 0
{1,3; {2,4} {3.4) 0
{1,3y {3,4} {3,4} 1
1,4, {14} {3.4} 0
L4} {2.,4} (2.4} 0
{1,4} - {2,4} {3,4} 1
{1,4} {3,4} {3,4} 2
{2,3y {2,3} {3,4) 0
{2,3} {2,4 2,4} 0
{2,3} {2,4} {3,4} 1
{2,3} {3,4} {3,4} 2
2,4y {2,4} {2,4} 1
{2,4y {2,4} {3,4} 2
2,4} {3,4} {3.4} 3
{3,4} {3,4} {3,4} 4

Example A.3. We find the following triples in Horn(3, 4, 3) (up to permutations):

r J1 Ja J3 edim 7

4 (1,2,3) {2,3.4) {234 0
1,24 {1,3,4 {2,3.4)
(1,2,4  {2,3,4) {2,3,4)
1,34y {1,3,4) {134
(1,3,4) {1,3,4}  {2,3,4)
(1,3,4)  {2,3,4)  {2,3,4)
2,34 {2,340 {2,3,4)

W= =D
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Remark. It is not an accident that both Horn(1,4,3) and Horn(3,4,3) have
the same number of elements. In fact, we can identify Intersecting(d,r,s) =
Intersecting(r — d,r,s) via Jy = {r +1—a : a € J{}. This can be seen by
using the canonical isomorphism Gr(d,C") =~ Gr(r — d,(C")*). However, the
corresponding Horn inequalities are distinct (see below).

B. Kirwan cones in low dimensions

In this appendix, we list necessary and sufficient conditions on highest weights
A, v € AL(r) such that (L(A) ® L(p) ® L)Y £ {0}, up to r = 4. That
is, these conditions describe the Kirwan cones as in Corollary 6.3.3. We use the
abbreviation Horng(d, r,s) for the set of Horn triples in 7 € Horn(d, r,s) such
that edim 7 = 0 (highlighted bold in Appendix A).

Example B.1 (r = 1). Clearly, the only condition is A(1) + p(1) + v(1) = 0.

Example B.2 (r = 2). We always have the Weyl chamber inequalities A(1) >
A(2), u(1) = u(2), and v(1) > v(2), and the equation

(A1) + A(2) + (»(1) + (@) + (v(1) + v(2)) = 0.
Using Example A.l, we obtain three Horn inequalities, namely
A() 4+ p(2) +v(2) =0,

corresponding to the triple ({1},{2},{2}) € Horng(d,r,s), and its permutations.
These are the well-known conditions for the existence of nonzero invariants in
a triple tensor product of irreducible U(2)-representations. We remark that the
Weyl chamber inequalities are redundant.

Example B.3 (r = 3). In addition to the Weyl chamber inequalities and
|A| + || + |[v] = 0, we obtain the following two inequalities from Horng(1, 3, 3)
and Example A.l,

A + pu3) +v(3) =0,
A2) + p(2) +v(3) <0,
and the following from Horng(2,3,3) and Example A.2,

(A1) +2(2) + (12 + 23) + (v(2) +v(3)) <0,
(A1) +A(3) + (1) + 1(3) + (v(2) +v(3)) <0,

as well as their permutations.
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Example B4 (r = 4). Again we have the Weyl chamber inequalities and
|A| + || + |v] = 0. We have the following two inequalities and their permutations
from Horng(1,4,3) and Example A.l,

AL + p(4) +v(4) <0,
AQ2) +p3) +v(4) <0,
AQB) 4+ p3)+v3) =0,

the following six and their permutations from Horng(2,4,3) and Example A.2,

(A1) + A(2) + (r3) + n(@) + (v(3) +v(4) <0,
(A1) +A(3) + (@) + n(@) + (»(3) +v(4)) <
(A(D) + A(@) + (r() + u@) + (v3) + v(4) <
(A() +A4) + (22 + n(4@) + (v(2) + v(4)) <0,
(A(2) + 2(3) + (£ (@) + () + (v(3) + v(4) <0,
(AQ2) +1(3) + (@) + n(#) + (v(2) +v(#) <0,

and the following three and their permutations from Horng(3,4,3) and Exam-
ple A.3,

(A +A2) +1(3)) + (2(2) + nB) + 1) + (v(2) + v(3) + v(4)) <0,
(A1) + AQ2) + A(@) + (1) + nB3) + p@) + (»(2) + v(3) + v(4)) <0,
(A +A3) +A(4) + (w(1) + n3) + @) + (v(1) +v(3) +v(4) <O.

Remark. In low dimensions, all Horn triples with edim 7 = 0 are such that the
intersection is one point, i.e., ¢(Z) = c¢ine(Z) = 1. This implies that the equations
are irredundant [Bel3, Resl] (cf. Remark 6.3.4), and it can also be explicitly
checked in the examples above. In general, however, this is not the case, and so
the Horn inequalities are still redundant. An example of such a Horn triple is the
one given in Example 4.2.1.
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